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A B S T R A C T

Structural geologists support their mind with tools, and these tools are increasingly computer based. The advent
of Intelligent Systems will allow creation of research teams that combine the strengths of the human mind and
computer processing to produce new research results. The efficacy of these approaches will require a solid
grounding in cognitive science. Critical to this approach are databases, which are potentially transformative
solely in their ability to allow access to data, in a primary form. Emerging more recently, however, is the concept
of a dataguide, in which computer-aided analysis informs ongoing decisions about where and what data to
collect. The creation of human and computer teams can expand the types of questions that can be addressed in
structural geology and tectonics research, but it will take a community-based effort to understand the value of
data to experts and how computers might aid an expert in the field.

1. Introduction

The pace of technological advances influences nearly every aspect of
our lives, including the professional aspects of being a structural geol-
ogist. The transformation in the last 50 years has been profound: There
were virtually no computer skills necessary in the 1960s to operate as a
professional geologist. Now, it is difficult to imagine working without
drafting programs, digital stereonet programs, web search engines, vi-
sualization platforms such as Google Earth, and Geographical
Information Systems. What will the future of geology look like as
technology advances our ability to collect and assimilate data? The rate
of data collection is certain to increase with advances in instrumenta-
tion, such as using a cell phone to measure strike and dip (see
Whitmeyer et al. (this volume) for current limitations) or a mobile
agent that can autonomously carry an instrument package to collect
data at new locations (Qian et al., 2017). Future data will primarily be
digital and thus require digital systems to store, search, analyze, and
share.

Digital databases are now essential for every field in the sciences -
here we the term database, synonymously with data system, to include
both storage and access. Structural geology – in addition to many other
field-based research areas that do not collect instrumental data – has
been slow to adapt to digital databases. To not utilize databases – as an
individual or a community - is to invite scientists to ignore research that
is not in a database (Chan et al., 2016). The more positive way to view

the situation is that cyberinfrastructure can both increase the quality of
what we already do, as well as facilitate new types of analyses and
approaches that we have not imagined. The appropriate technologies
(e.g., data systems, graph databases, digital field instruments and
aligned metadata) are now available and efforts – such as StraboSpot
(https://www.strabospot.org/) – are attempting to support this effort
for the community.

The expert geologist has always supported their mind with tools. A
Brunton geologic compass measures slopes more precisely than the
human eye, and maps hold more data than can be held in mind at a
given moment. Here we consider the transformations in practice and
the new ways to support the expert mind that are afforded by digital
data. First, we discuss current data use and data collection strategies.
Second, we consider the relative strengths and weaknesses of the
human and computer reasoning. Third, we combine these to consider
how practice could change with access to data collected by more than
one person. Fourth, we discuss how practice could change if compu-
tational tools were developed to augment the limitations of the human
mind, and offer some suggestions on key areas for future research. We
conclude by considering the nature of these new human – computer
teams, how to support such teams, and highlight some key questions to
focus on opportunities and obstacles to adoption of community-data
based science.

The paper is intended to serve two readers, the structural geologist
interested in thinking about how they can make best use of new classes
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of tools to transform new field and laboratory practices - to free
themselves from looking for digital replacements to field notebooks and
think about the new intellectual opportunities offered by data systems.
We also explicitly aim to recruit the members of the structural geology
community who will take the steps needed to forge the interdisciplinary
links with computer science to build the types of tools that can trans-
form field science.

2. Collaboration

Many geologist have recognized the myriad opportunities available
in digital data. Some have addressed the need for a new tool (e.g.,
Stereonets; Allmendinger et al., 2017), and others have worked to de-
velop the capacity for geologists and computer scientists to work in
interdisciplinary teams to develop new tools (e.g., Mookerjee et al.,
2015a; b). For the most part, the perspective of these efforts is on
building a tool that will allow an expert to advance their individual
research program. Here we take a different perspective considering
what are the limitations of the human mind in practicing science and
how advances in digital data can create new research teams that
combine the strengths of the human mind and computer processing to
produce transformative research.

There are opportunities inherent in any scientific collaboration
(Galison, 1997). The field of tectonics now commonly involves teams of
experts from different disciplines (e.g., structural geology, geophysics,
sedimentology, and geochronology) that come to understandings that
were not possible when each discipline considered the problem in iso-
lation. Such teams are constituted with knowledge overlap such that
members agree on common goals and what counts as an answer, and
complementary skills and knowledge to allow new approaches that
would not occur from more traditional approaches. Similarly, designing
an intelligent system to support a human-computer team requires un-
derstanding the strengths and weaknesses of the human. By under-
standing human strengths, we may avoid spending time trying to solve
hard Computer Science problems that humans are proficient at and
devote efforts to solving problems that humans are not-so-proficient at.
Furthermore, understanding how humans reason about and practice
science is necessary to design a science partner that can coordinate their
efforts with the human in such a way as to minimize cognitive load on
the human. New designs will require programs of work to address a
range of fundamental cognitive science and computer science ques-
tions. Below we consider the relative strengths of human mind and
computer algorithms, and how expert's work is influenced by initial
hypotheses.

2.1. Modes of mapping

When an expert goes into a new field location, they are not a tabula
rasa. They have initial hypotheses that come from some collection of
prior information that might include published papers, aerial photos,
other people's geological maps and narratives, and an understanding of
the regional geological history.

Research has confirmed the importance of a priori information in
pre-field planning and in-field decision making. Baker et al. (2016)
studied expert and novice data collection in an unfamiliar field area
when individuals were tasked with a goal of developing a geological
map of the area. No geological interpretation for the area was provided.
Although this approach would be unusual practice for an area where
previous work had been done, this set-up allowed the researchers to
study practice in the absence of a mental model developed by others,
thus simulating a novel field area. Participants were shown examples of
the rock types that were present and were provided with an aerial photo
and topographic map of the field area. Expert's paths, reports, and
constructed geologic maps all revealed the use of the aerial photo to
establish an initial hypothesis. In contrast to novices, experts were more
likely to ultimately develop a correct geological map if they had an

initial hypothesis (even if the initial hypothesis of the structure in the
area was incorrect), and expert's paths through the area were more
efficient than novices, tending towards the areas that provided the
highest quality information for discerning among possible interpreta-
tions.

How to take advantage of the various sources of information from
the past that are available before entering the field is a critical part of
the apprenticeship in a field science. Each mentor may vary in their
explicit training on how initial models, or hypotheses, may guide data
collection (Gilbert, 1886; Chamberlin, 1890). We have observed at least
four distinct data collection approaches.

Reconnaissance mode is necessary when one is new to an area, and
broad divisions of the geology are necessary. This is employed when the
data collector does not know much about an area - still widely ap-
plicable in places like Alaska – and is akin to using a satellite photo to
get a sense of large scale structures and the geomorphological patterns.
In the field, this activity is typically done by finding, and climbing up
to, the highest point or otherwise best views of the field area. From this
vantage point one may develop a mental model of the area by visually
estimating large scale features and preparing for navigation within the
area. One important function of reconnaissance mode is data collection
planning: Where do rocks outcrop, where are the good, or dangerous
routes among stops, which outcrops might be most revealing about
larger scale structures?

Sampling mode is employed when your goal is to get a specific spe-
cimen and just enough context to use it. This mode is now widely used
in geochemistry, for example. One drawback to operating exclusively in
this mode is that results are often misinterpreted because the context
was not understood. The best use of this approach is typically done
when a specialist in sample analysis works with a geologist who is well-
acquainted with the field area to provide the context from previous
larger scale work.

Mapping mode is survey-/field-camp-/quadrangle-style mapping.
The mode involves making stations that contain a limited number of
measurements and identifying contacts between units. The goal of
covering as large an area as possible in a limited time results in a ne-
cessary tension between the number of measurements and the spacing
between measurements – and a tendency to minimize the time at each
station, and thus likely the details recorded. Generally, the locations of
units between stations is interpolated from trends at outcrops and larger
map patterns. A particularly valuable application of this mode is the
construction of outcrop maps, which do all of the above and also dis-
play the extent of the outcrops, to preserve the data that was used for
filling-in and aid future researchers finding key outcrops. Because of its
pedagogical value (Whitmeyer et al., 2009), most geologists are taught
basic mapping mode.

Problem-solving mode is collecting data guided by one or more
mental models. This approach is most clearly aligned with the form-
alism of a multiple working hypotheses approach to science, where data
is collected to discern among different potential models (Gilbert, 1886;
Chamberlin, 1890). Most academic structural geologists work in this
mode. In this case, the boundary of the field area is defined by the
problem to be solved. There is significant variability about how to work
in this mode, because both the problems and the people who work on
them are very different from each other. Within problem-solving mode,
there are discernible approaches. One common goal is to collect as
many high-quality observations as possible in a field day. Different
approaches emphasize in-depth querying of each stop vs. higher density
observations vs. more observations over a larger area. The variations
within this spectrum result from the personal preference of the practi-
tioner and/or the nature of the question to be addressed.

2.1.1. Empirically based vs. theoretically motivated data collection
The modes described above represent approaches to disciplinary

aims that can be located along a continuum from data-driven data
collection to theory-driven data collection. For example, mapping mode
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could be solely empirically based data collection. In this approach, one
does not know what he or she are going to find, and the geologist will
work out a model (or adopt one from the literature) once they have an
idea about what the rocks “are saying”. Conversely theoretically mo-
tivated data collection generally requires working in problem-solving
mode. This approach typically requires that the practitioner think they
are in a good place to test a conceptual model. From a cognitive science
perspective “data-driven” and “theory-driven” distinguish between
“bottom-up” and “top-down” approaches where thinking is influenced
by information from the world or from memory, respectively. These
data collection strategies are sound scientific approaches, but it is im-
portant to recognize that they are also, ultimately, connected to what is
going on in the mind of the practitioner.

Both approaches require empirical data collection and a conceptual
model; the difference is which of the two, data or model, has primacy.
Mapping mode – relative to problem-solving mode - allows a weaker
commitment to prior expectations about what will be found.
Consequently, the expert has more latitude to wander in mapping
mode, using exploratory procedures, such as walking a rough grid, in an
area to develop a sense of the outcrops, and what observations might be
available. Theoretically driven problem-solving mode, in contrast, is
the product of strong expectations about what will be found so that a
few high-quality observations may yield significant new insights (such
as those that could discriminate among theories). In many such cases
observations would not have been made without the expectation to
guide searching. In practice experts might vacillate between the two
modes, as one observation triggers a revision of model and thus new
plans are required to explore a new line of inquiry.

Notice that observation of current practice does not unambiguously
identify one approach as superior to another: They have different
strengths and weaknesses. Likely the strengths and weaknesses interact
with both the skills of the observer and the context of the problem. But,
a fundamental problem for supporting field science and field data col-
lection decisions is that we do not have a good metric to measure the
value of any type of field data collection practice. Similarly, when
students develop data collection strategies and begin to learn to co-
ordinate models and data, it would be helpful to have measures of good
and poor practices as skills develop. For example, we do not have clear
evidence to guide educator's practice of providing a subset of in-
formation on an area where students will be training. The work of Baker
et al. (2016) identifies a number of variables that are potentially im-
portant indicators of developing data collection decision making skills.

All science is inherently a collaboration with the past, but we are on
the cusp of a transformation in this practice as we deepen collabora-
tions mediated by computers. Computers allow access to much more of
the past at any given moment in the field than ever before possible in
the form of databases. Further, computer aided analysis can serve as a
dataguide to enhance the use of past data to inform ongoing decisions
about where and what data to collect. Fig. 1 illustrates the ways data-
bases and dataguides might influence the familiar workflow of a geol-
ogist. Together, human-computer teams can transform model devel-
opment supporting the cycle of prediction, observation, and revision
that constitutes science. To invest in development of computational
resources in a strategic manner requires some understanding of the
value of data to experts and ultimately how computers might aid an
expert.

2.2. Relative strengths of the human mind and computers

To understand the cognitive challenges and opportunities of human-
computer teams consider what the human mind does well, and not-so-
well, and how with the current state of the art computers might support
cognitive weaknesses. Broadly speaking, humans are very good at tasks
that require cognitive flexibility and poor at tasks that involve opti-
mally combining a large number of variables. In contrast, the compu-
ter's strengths and weaknesses are the complement: Computers are

inflexible, unable to apply competence in one domain to any other, but
excel in rendering precise calculations with any number of variables.

Humans skill in flexibly solving problems is important for handling
novel problems, and for making reasonable decisions under uncertainty
due to little data (although not always with high accuracy in geology,
see Bond et al., 2007). Further, humans use knowledge acquired in one
domain to solve problems in another. This skill highlights a strength of
human cognition: Analogical reasoning. Humans can solve problems by
analogy by mapping what they know about something onto a new
problem to generate a novel solution (Gentner, 1983). The generation
of new hypotheses to explain conflicting data is an example where
humans can work from analogy to develop new mental models of the
world (e.g., Chi, 2008). This approach is well exhibited by the work of
Gilbert (1877), whose account of laccoliths in the Henry mountain
formation relied in part on an analogy to volcanoes. Although recent
advances in qualitative spatial reasoning in Artificial Intelligence (AI)
has led to impressive accomplishments in analogical reasoning, such as
recognizing pattern progressions in Ravens progressive matrices (Lovett
and Forbus, 2017), the application to general reasoning and novel
problems is still in the future. Similarly, while humans are good at
pattern recognition (as documented by Chase and Simon, 1973 for
chess experts), computers are rapidly advancing in this area (Armengol
et al., 2017). However, the notable human skill is to extract patterns
from a small number of examples, where in contrast computers need
many examples to learn patterns. Another domain where humans no-
tably exceed current machine ability is in locomotion. Humans, like all
mobile animals, are highly skilled in adapting their movements to
varied terrains.

Conversely, humans are also notably poor at well-structured pro-
blems that require combining multiple variables. For example, humans
deviate in predictable ways from Bayesian solutions to estimating the
likelihood of events with differing base rates (Kahneman, 2000). When
confronted with such problems, even experts in statistics, employ
heuristics (Tversky and Kahneman, 1974). While heuristics may re-
present satisficing (searching for an acceptable solution but not ne-
cessarily the optimal solution) given the constraints of human memory
and time, they yield predictable errors and biases that can interfere
with scientific progress (Hergovich et al., 2010).

In distinct contrast, the domain of the multivariate is where com-
puters excel. Computers can readily keep track of a vast number of
variables and optimally combine them. The quality of computer rea-
soning in well-formulated problems is independent of the number of
variables – the outcome may take longer to get to, but the outcome is no
less accurate for a million variables than for three. This situation means
computers are good at “needle-in-a-hay-stack” problems. At a
minimum, computers are better than humans at finding optimal an-
swers to complex searches, although computers are not necessarily al-
ways good at satisficing (Lin et al., 2015). To state the obvious, this
situation is why we rely on computer assistance in calculating statistics
and not our own intuitions about what is significant or likely due to
chance. Even in cases where computers are solving complex problems,
they are doing so in ways that yield narrowly focused solutions. IBM's
Watson can provide usable (even valuable) support for oncologists. It
has done so by incorporating hundreds of thousands of pages of re-
search reports to achieve diagnostic skill that is trusted because there is
high concordance with experts (Somashekhar et al., 2017). Watson is
adept at handling rare diseases for non-expert doctors, in clinics where
those diseases are hardly ever seen. However, for all of Watson's skill,
its current ability would not transfer to other domains. For instance, it is
not currently designed to diagnose other diseases – much less learn to
play a new game or drive a car.

We do not anticipate that in the near future computers will be re-
placing experts. As Eric Schmidt, CEO of Google noted in 2013, “…
humans will continue to do what we do well, and that computers will
continue to do what they do very well, and the two will coexist, but in
different spaces …. the separation of powers means that computers will
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sit around and help you. They'll serve as your assistants.” Working in
cybernetic teams recognizes the value of the two partners. We advocate
research investment towards developing cyberinfrastructure that fo-
cuses on developing tools that can support the geologist's mind – their
most important tool – in two ways: 1) Increasing the amount of data
available to the human mind; and 2) Increasing the quality of decisions
when the human seeks to optimize collection of data.

3. Sharing and combining data (in the field)

Bringing digital data into the field may seem to be simply a logis-
tical solution to the limitations of paper and backpacks (e.g., thousands
of high resolution thin sections in place of tens of photocopies of thin
sections). In fact, the advent of databases for field data frees humans
from their memory limitations, just as maps and photocopies do, but on
a scale that may itself be transformative. Fig. 1 illustrates how com-
munity data and models (illustrated on the left as parts of the data
system) might influence the familiar individual workflow in the center
column. Consider the scientific potential of having a record of other's
data available while in the field (“Realtime access to prior data” of
Fig. 1). Having data present on location, in the midst of on-site data
collection decisions, would change the nature of scientific practice and
debate in three fundamental ways:

3.1. Changes in model testing

The current practice of sharing data in an interpreted form in
journals, or geological maps, removes access to the raw data. This
practice is changing: De Paor and Whitmeyer (2009) and Pavlis and
Mason (2017) discuss the weaknesses of current practices and how
digital data opportunities change field workflows. Most experts only
have access to their own un-interpreted data. Access to data in situ al-
lows experts opportunities to build on, reinterpret, and when needed,
correct data. Evaluation of new interpretations are now done largely on
the basis of internal consistency (does a proposed model account for the
existing data). While there may be aspects of a field area that would
clearly contradict a specific interpretation, unless that aspect were re-
corded, the limitations of human memory are such that it is difficult to
evaluate whether or not past experiences are consistent with a proposed

theoretical interpretation. Thus, access to other researcher's models in
the field would allow the embedded expert to test that model – the
availability of the model could guide an expert to attend to previously
unnoticed (and thus unrecorded) aspects of a field area.

3.2. Changes in model development

Perhaps the most transformative opportunity provided by access to
data in the field is the affordance for developing new models. Providing
raw data to a broader community opens the opportunity for more sci-
entists to draw on their areas of expertise. Each person may consider the
patterns evident in the data and align them with models in their domain
of training. This approach lowers the logistical barriers to inter-
disciplinary theory trading (Galison, 1997), and may allow considera-
tion of application of models in one domain in another. Providing data
in the field could be an especially powerful way to advance science as
the field area in which the expert is embedded can help constrain and
inform new models. Furthermore, a field area may offer clues to in-
terpretation of other field areas. Accessing data in the field allows ex-
perts to search for other areas of the world that express patterns that are
similar to the ones evident in the area they are currently investigating.
Although current algorithms for searching for data patterns are rudi-
mentary, at best, making data sets publically available should effec-
tively feed a positive feedback loop of increasing search algorithm
quality and data quantity. Allowing new types of visualization (“vi-
sualization tools” of Fig. 1) is another way to facilitate new model de-
velopment.

Undergraduate field education in mapping often includes heuristic
advice to increase the efficiency of mapping mode data collection. The
practice of walking along strike and perpendicular to strike highlights
the importance of continuities and discontinuities in the geometric
patterns to inferring the geological structures present in an area. Such
practices recognize the primacy of working from a geometric inter-
pretation towards kinematic and dynamic models of geological pro-
cesses (Shipley and Tikoff, 2016). Developing kinematic and dynamic
models had until recent advances in computation required significant
mathematical sophistication, at least in structural geology. The advent
of digital resources in the field offer the opportunity to more closely
integrate geometry, kinematics and dynamics with data collection.

Project Idea

FIeld Observation
and Data Collection

Data Visualization

Geologic 
Hypotheses/Predictions

Spatial inference Statistical inference

DATA SYSTEM DATA GUIDE

suggestions for data collection

automated visualization options

ongoing hypothesis generation

ongoing statistical analysis

realtime access to prior data

visualization tools

statistical tools

Fig. 1. How a geologist's workflow (center) may be influ-
enced by data systems (left column), which are the current
data, models and tools (e.g., visualization and analytic
methods) of the research community, and dataguides (right
column), which are software routines that are built from
community tools to actively support each step of an in-
dividual's workflow.
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3.3. Changes in data sampling

Access to raw data would fundamentally change even the basic
decisions about where to collect data. The expert would no longer be on
their own, they could have the past history of data collection in any
area (Fig. 1). This approach affords several important opportunities: 1.
Greater efficiency by not collecting redundant data. Although some
data collection leaves lasting traces, many do not, so an expert cannot
know by looking at an outcrop what data has been recorded there. 2.
Strategic coverage by collecting data that complements existing data in
areas that have not been covered or where there is inconsistency in the
extant data. 3. Developing data sets that allow statistical analysis by
collecting multiple observations for the same information in the same
location – this approach then allows assessment of prior assumptions
about the representativeness of data in a region. 4. Increased quality
assurance by allowing the community to correct erroneous data in the
manner of Wikipedia and OpenStreetMap. Such new community prac-
tices will be important to support trust in the digital data.

Databases can also facilitate a community effort, such as the de-
velopment and testing of a community model (“community efforts” of
Fig. 1). This approach is more common in scientific communities in
which equipment or data is very expensive, but it could be equally well
applied to community-based structural geology objectives.

Our predictions about the opportunities are largely theoretical,
based on basic understanding of the strengths and limitations of the
human mind and observations of current practices. The value of high
resolution digital data is already evident in resolving some field pro-
blems (see Pavlis and Mason, 2017), but how it can best be used is an
important question to address as such technologies become more
widely adopted. The absence of evidence to guide research planning
points to a critical need for evidence to inform field-database design
decisions and future human-computer team field practices.

4. Cyberinfrastructure as a field partner

Section 3 highlights the advantage of supporting the human expert's
memory with a computer to provide greater data access; this section
considers the potential active roles a computer could play in a data
collection and interpretation team that combines the strength of the
flexible human mind (recognizing patterns from small number of ex-
amples, creating new solutions to problems by analogy to unrelated
domains) and the strength of a computer mind (extracting patterns
from massive data, immune to bias, using probability-based optimal
strategies, such as those grounded in Bayesian statistics). We refer to
the broad category of computer generated advice for data collection in
the field as a dataguide. Fig. 1 illustrates how a dataguide, on the right
side, might influence the familiar individual workflow in the center
column. A critical piece of the architecture of a dataguide will be the
reasoning based on scientific values so that expert and machine can
work together to optimize the scientific value of their teamwork. Here
we focus on advice on optimal strategies for data collection drawn from
prior data, another important area for work would be advice based on
extraction of patterns from data, and more broadly research on in-
telligent systems (e.g., Gil et al., in press).

We draw in part from the research literature on data collection by
autonomous agents. Robots collect data in a variety of environments
inhospitable to humans on Earth (e.g., Binney et al., 2010) and Mars
(e.g., Woods et al., 2009). Some of the computer science design work in
these areas should serve as a foundation for developing dataguides. We
conceive of the human-computer teams as similar to human-robot
teams, without the need to solve the difficult mobility and instrument
deployment challenges that need to be overcome for a robot to auton-
omously collect useful data. How might a computer guide a human to
collect data they would not normally collect as a matter of standard
expert field practice? The computer must understand the scientific goals
and the state of extant data and models.

Candela et al. (2017) outline the concept of a hypothesis map to
support communication between expert and a robot about data and
hypotheses. The structure allowed a robot to improve maps of rock-type
by sampling in areas that would help improve geological maps that had
been built from sparse observations with rock unit boundaries inter-
polated by eye. Such a structure could as easily guide a human as a
robot to important areas in a landscape to collect data. To serve as a
dataguide for structural geology experts, the system would need to
evaluate Bayesian priors for all measurements of interest (Fig. 1). A
simple way to achieve this goal would be to interpolate among existing
data points in a region. This approach highlights the importance of
establishing functions for spatial fitting of data (Pebesma, 2004), and
the broad importance of developing statistical models of structural
geology data (e.g., Davis and Titus, 2017).

Thinking about how best to support an expert emphasizes the im-
portance of conceptualizing expert practice as a form of learning
(Shipley and Tikoff, 2017). Thus, dataguides could support learning in
each of the modes of practice with their differing goals. For example, a
dataguide for reconnaissance mode should be able to provide the
computably best location that combines cost (e.g., danger and time) to
get to a location with its benefit (e.g., viewshed – the area visible from a
specific location). In other modes, a dataguide could check incoming
data for consistency and identify places where observations may be
erroneous or variable and where there would be significant value to
additional data. For example, in problem solving mode, a computer
might aid in developing the optimal balance between sampling density
and area for a given time frame given the variability and trends in the
incoming data. Ultimately dataguides may include models of an area
and be able to search large data sets for data that is inconsistent with a
proposed model, or even propose alterative models (for examples of
such a dataguide in molecular biology see Karp, 1991). Finally, we note
that dataguides may also serve as potential supports for student
learning in the field where instructor contact is often limited by the
logistics of field space and students' independent paths.

5. Discussion

Just as an expert may provide advice to another expert when they
head to a specific field area for the first time, so too may a computer
provide advice based on past and incoming data. This team could im-
prove expert field-decision making with computational resources to
bring new data to the field and combine multiple variables to improve
the quality of data that can be collected under conditions of limited
resources. Consider three key questions for this future:

1) What is the path to developing cybernetic teams? Our experience
suggests that effective science in this area will arise from inter-
disciplinary teams that combine geology, cognitive science, and
computational science. The historian of science Peter Galison (1997)
has investigated moments of technological transition in physics,
including the Manhattan project. He observes that these moments
involve experts from two disciplines, often theoretical and applied
sciences, to come together to work towards a common goal (e.g.,
functional land-based radar systems). This coming together formed
a trading zone, which was a physically common space (the experts
literally worked side by side) and an analogically common space
(the experts agreed on goals and what counted as progress). Such
trading zones have a number of important properties from the
perspective of advancing science. A trading zone lowers the en-
ergetic barriers to theoretical change so that progress can be made
in the absence of a Kuhnian revolution (Kuhn, 1962). Furthermore,
the trading zone is a practice that structures interdisciplinary in-
teractions to allow progress. Finally, a trading zone effectively tests
theories by probing them to offer direction in design decisions. Such
a practice is critical to addressing convergence science combining so-
cial and natural sciences to advance the human technology frontier (U.S.
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National Science Foundation Big Ideas report, 2016) and may
transform both disciplinary geology and cognitive and computer
sciences.

2) What are the key questions/hurdles/challenges? The value of the
database will be determined by the richness of the data it contains
and the ease in extracting useful data. Thus, important work needs
to go into developing a system that is easy to input, output, and
search for data. Supporting community adoption is not separate but
should be integral to efforts to build the database to increase the
likelihood of adoption. Comparable considerations are needed for
dataguides. For example, Wiltshire et al. (2013) argues that to be
effective, the technological agents must be social. Beyond providing
information, a dataguide may need to have some rudimentary social
skills (e.g., provide precise and accurate communication, detect and
try to correct communication errors, and take into consideration all
members of the team in plans), in order to be adopted and support
extending science practice. We note that digital changes bring in
new types and standards of evidence that are inherently statistical,
professional development and education will need to provide these
new analytic skills.

3) What new science questions become possible? We note informally
that insights that occur in the field are predominantly small insights,
limited in theoretical important, because they tend to be spatially
local (e.g., recognition of relationships among observations in a
local field area). The more important insights, recognized as ad-
vances by the community, tend to occur at home. We hypothesize
that this situation reflects more than just incubation time, but the
current state of regional information available in the field, and op-
portunity to develop ideas with peers. With a rich database that
includes additional critical pieces, such as papers interpreting si-
milar areas in the world, or data not usually found in the field (e.g.,
seismic sections), insights become possible in the field with the ac-
companying opportunity to immediately check them in situ. Thus,
the rate of model development moves from a one cycle per field
seasons to multiple cycles in a single season.

5.1. Digital ecosystems: what is possible (and coming)

The structural geology community – because of the lack of a digital
database – is not yet fully engaged in the possibilities of a digital data
system. However, community efforts, including StraboSpot and
EarthCube end-user meetings, seek to integrate the field geology com-
munity into a broader effort to support cyberinfrastructure (Gil et al.,
2014; Gil et al., in press). In addition to combining data across labs, a
database can alter familiar community practices by introducing the
possibility for new collaborations where a researcher could watch data
coming into a database as it is being collected and provide guidance and
suggestions to the individual in the field. Further, a database could have
an expert on call for a given region to answer questions for visitors.
Having digital records of expert's generating hypotheses from new data
and ways to test them could be used to aid training of, and better un-
derstand the learning opportunities for, advanced students, and such
records could also aid cognitive science as it seeks to develop ways to
support disciplinary practice. The field investigator might also query
the community if they encounter an interesting outcrop they could ask,
where are more of “these?” In the near term, human experts in the area
might have to answer these queries, but eventually a dataguide might
provide an answer from satellite images or other data. The community
is working to develop databases to make available the community's
intellectual tools to a researcher in the field. There are active efforts to
develop the pieces of the data system highlighted in Fig. 1. Here we
offer a vision of future research where community tools are leveraged
by AI to transform science.
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