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Testing general relativity in the nonlinear, dynamical, strong-field regime of gravity is one of the major

goals of gravitational wave astrophysics. Performing precision tests of general relativity (GR) requires

numerical inspiral, merger, and ringdown waveforms for binary black hole (BBH) systems in theories beyond

GR. Currently, GR and scalar-tensor gravity are the only theories amenable to numerical simulations. In this

article, we present a well-posed perturbation scheme for numerically integrating beyond-GR theories that

have a continuous limit to GR.We demonstrate this scheme by simulating BBHmergers in dynamical Chern-

Simons gravity (dCS), to linear order in the perturbation parameter. We present mode waveforms and energy

fluxes of the dCS pseudoscalar field from our numerical simulations. We find good agreement with analytic

predictions at early times, including the absence of pseudoscalar dipole radiation. We discover new

phenomenology only accessible through numerics: a burst of dipole radiation during merger. We also

quantify the self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-consistent

LIGO detections could place on the new dCS length scale, approximately l≲Oð10Þ km.

DOI: 10.1103/PhysRevD.96.044020

I. INTRODUCTION

General relativity has been observationally and experi-

mentally tested for almost a century, and has been found

consistent with all precision tests to date [1]. But no matter

howwell a theory has been tested, it may be invalidated at any

time when pushed to a new regime. Indeed, there are many

theoretical reasons to believe that general relativity (GR)

cannot be the ultimate description of gravity, from non-

renormalizability to the black hole information problem.

Moreover, from the empirical standpoint, all precision

tests of GR to date have been in the slow-motion,

weak-curvature regime. With the Laser Interferometer

Gravitational Wave Observatory (LIGO) now detecting

the coalescence of compact binary systems [2–4], we finally

have direct access to the nonlinear, dynamical, strong-field

regime of gravity. This is an arena where GR lacks precision

tests, and it may give clues to a theory beyond GR. The

LIGO collaboration has already used the detections of

GW150914, GW151226, and GW170104 to perform some

tests of GR [4,5], but these are not yet very precise: a model-

independent test gives 96% agreement with GR.

Both black hole (BH) and neutron star (NS) binaries

probe the strong-field regime. However, NSs have the

added complication that the equation of state of dense

nuclear matter is presently unknown. Until more is known

about the equation of state, we must rely on binary black

holes (BBHs) for precision tests of GR. Yunes, Yagi, and

Pretorius argued [6] that the lack of understanding of BBH

merger in beyond-GR theories severely limits the ability to

constrain gravitational physics using GW150914 and

GW151226. Thus, to perform tests of GR with BBHs,

we require inspiral, merger, and ringdown waveform

predictions for these systems, which can only come from

numerical simulations.

To date, BBH simulations have only been performed in

GR and scalar-tensor gravity [7] (note that BBHs in massless

scalar-tensor gravity will be identical to GR, under ordinary

initial and boundary conditions). There are a huge number of

beyond-GR theories [7], and for the vast majority of them,

there is no knowledge of whether there is a well-posed initial

value formulation, a necessity for numerical simulations.

Indeed, there is evidence that dynamical Chern-Simons

gravity, the beyond-GR theory we use here as an example,

lacks a well-posed initial value formulation [8].

Our goal is to numerically integrate BBH inspiral,

merger, and ringdown in theories beyond GR that are

viable but that do not necessarily have a well-posed initial

value problem. This goal is relevant even for those only

interested in parametric, model-independent tests, because

there is presently no theory guidance for late-inspiral and

merger waveforms in theories beyond GR.

We are only interested in theories that are sufficiently

“close” toGR: for a theory to beviable, it has to be able to pass

all the tests that GR has passed. This motivates an effective

field-theory (EFT) approach. We assume that there is a high-

energy theory whose low-energy limit gives GR plus “small”

corrections. The effective theory of GRwith corrections does

not need to capture arbitrarily short-distance physics. Such a

theory is valid up to some cutoff, and modes shorter than this

distance scale are said to beoutside of the regimeof validity of

the EFT. The EFTonly needs to be well-posed for the modes

within the regime of validity. This can be accomplished with

perturbation theory.
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We present a perturbation scheme for numerically
integrating beyond-GR theories that limit to GR. For such
a theory, we perturb it about GR in powers of the small
coupling parameter. We collect equations of motion at each
order in the coupling, creating a tower of equations, with
each level inheriting the same principal part as the back-
ground GR system. The well-posedness of the initial value
problem in GR [9] thus ensures the well-posedness of this
framework, even if the “full” underlying theory may not
have a well-posed initial value formulation.

In this study, we apply our perturbation framework to

BBH mergers in dynamical Chern-Simons gravity (dCS)

[10], to linear order in perturbation theory. This theory

involves a pseudoscalar field coupled to the parity-odd

Pontryagin curvature invariant with a small coupling

parameter, and at linear order gives a scalar field evolving

on a GR BBH background.
There are a number of theoretical motivations for con-

sidering dynamical Chern-Simons. The dCS interaction
arises when cancelling gravitational anomalies in chiral
theories in curved spacetime [11–13], including the famous
Green-Schwarz anomaly cancellation in string theory [14]
when compactified to four dimensions [10,15,16]. DCS also
arises in loop quantum gravity when the Barbero-Immirzi
parameter is allowed to be a spacetime field [17,18]. From an
EFT standpoint, dCS is the lowest-mass-dimension correc-
tion that has a parity-odd interaction. All other EFTs at the
same mass dimension have parity-even interactions, so the
phenomenology of dCS is distinct [19]. The dCS interaction
was also included in Weinberg’s EFT of inflation [20].

From a practical standpoint, there are already a large

number of dCS results in the literature that we can compare

against [19,21–26], including post-Newtonian (PN) calcu-

lations for theBBHinspiral.Oneof themore important results

is that scalar dipole radiation is highly suppressed in dCS

during the inspiral [19]. Dipole radiation is present in scalar-

tensor theory and Einstein-dilaton-Gauss-Bonnet (EdGB),

and enters with two fewer powers of the orbital velocity (i.e.

1 PN order earlier) than the leading quadrupole radiation of

GR. This leads to gross modifications of the inspiral, but dCS

avoids this problem because the dipole is suppressed. As a

result, the perturbative treatment of dCS will be valid for a

longer period of inspiral than scalar-tensor or EdGB.
The paper is organized as follows. Section II covers the

analytical and numerical formalisms. More specifically, in
Sec. II A we introduce dynamical Chern-Simons, and in
Sec. II B we present the perturbation scheme, which is valid
for any theory with a continuous limit to GR. We discuss
the numerical scheme in Sec. II C (some numerical details
are in the Appendix). We present the results of numerically
implementing this formalism in dCS on three different
binary mergers in Sec. III. Section III A reviews some
previously-known analytic phenomenology of the BBH
inspiral problem in dCS. Section III B presents the wave-
form results, and III C presents the energy fluxes, both
including comparison to PN. In Sec. III D we use the

numerical results to assess the validity of the perturbation
scheme. In Sec. III E we use the numerical results to
estimate the detectability of dCS and the bounds that could
be placed by LIGO detections. We conclude and discuss in
Sec. IV, and lay out plans for future work.

II. FORMALISM

Throughout this paper, we set c ¼ 1 and ℏ ¼ 1 so that

½M� ¼ ½L�−1. Since there will be more than one length scale,

we explicitly include factors of the reduced Planck mass

m−2
pl ¼ 8πG and the “bare” gravitational length GM,

though quantities in our code are nondimensionalized

with GM ¼ 1. Latin letters in the middle of alphabet

fi; j; k; l; m; ng are (3-dimensional) spatial indices, while

Latin letters in the beginning of the alphabet fa; b; c; dg
refer to (4-dimensional) spacetime indices. We follow the

sign conventions of [9], and gab refers to the 4-dimensional

spacetime metric, with signature ð−þþþÞ, and with ∇ its

Levi-Civita connection.

A. Action and equations of motion

The method we present in this paper applies to a large

number of beyond-GR theories that have a continuous limit

to GR, but for concreteness we focus on dCS. We start with

the four-dimensional action

I ¼
Z

d4x
ffiffiffiffiffiffi

−g
p ½LEH þ Lϑ þ Lint þ Lmat þ � � ��; ð1Þ

where the omitted terms ð…Þ are above the cutoff of our

EFT treatment. Here gwithout indices is the determinant of

the metric, LEH is the Einstein-Hilbert Lagrangian, Lϑ is the

Lagrangian of a minimally coupled (pseudo-)scalar field ϑ

(also referred to in the literature as the axion), Lint is a

beyond-GR interaction between ϑ and curvature terms, and

Lmat is the Lagrangian for ordinary matter. In this paper, we

are considering a binary black hole (BBH) merger in dCS,

so we ignore Lmat.

Explicitly, these action terms are given by

LEH ¼
m2

pl

2
R; Lϑ ¼ −

1

2
ð∂ϑÞ2; ð2aÞ

Lint ¼ −
mpl

8
l
2ϑ�RR: ð2bÞ

Here the Ricci scalar of gab is R. With our unit system,

½g� ¼ ½L�0, coordinates carry dimensions of length, ½x� ¼
½L�1, and note that the scalar field ϑ has been canonically

normalized, ½ϑ� ¼ ½L�−1. We have omitted any potential

VðϑÞ, so ϑ is massless and long-ranged, as appropriate for a

“gravitational” degree of freedom. In the interaction

Lagrangian Lint, the scalar field ϑ is coupled to the

4-dimensional Pontryagin density (also known as the

Chern-Pontryagin density) �RR,
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�RR≡ �RabcdRabcd ¼
1

2
ϵabefRef

cdRabcd; ð3Þ

where ϵabcd is the fully antisymmetric Levi-Civita tensor.

The coupling strength of this interaction is governed by

the new parameter l with dimensions of length. This

parameter takes on specific values if this EFT arises from

the low-energy limit of certain string theories [14] or to

cancel gravitational anomalies [13,15,16]. However, here

we simply take it as a “small” coupling parameter. In the

limit that l → 0, we recover general relativity with a

massless, minimally coupled scalar field.

The coupling parameter conventions vary throughout the

literature. To enable comparisons, we express the couplings

of a number of works in terms of our conventions. To put

Yagi et al. [19] into our conventions, use

κYSYT ¼ 1

2
m2

pl; αYSYT4 ¼−
mpll

2

8
; βYSYT ¼ 1: ð4Þ

To convert Alexander and Yunes [10] into our conventions,

κAY ¼ 1

2
m2

pl; αAY4 ¼ þmpll
2

2
; βAY ¼ 1: ð5Þ

To compare with McNees et al. [27], use

κMSY ¼ m−1
pl ; αMSY ¼ þl2

2
: ð6Þ

The conventions of Stein [26] agree with ours (except for an

inconsequential sign change in the definition of �RR, which
is compensated for by an additional sign everywhere �RR
appears).

Below we will perform an expansion in powers of l2. To

simplify matters, we insert a dimensionless formal order-

counting parameter ε that will keep track of powers of l2.

Expanding in a dimensionless parameter ensures that

field quantities at different orders have the same length

dimension.

Specifically, we replace the action in Eq. (1) with

Iε ¼
Z

d4x
ffiffiffiffiffiffi

−g
p ½LEH þ Lϑ þ εLint þ Lmat þ � � ��; ð7Þ

a one-parameter family of actions parameterized by ε.

Formally, we recover the action in Eq. (1) when ε ¼ 1.

Varying the action Eq. (7) with respect to the scalar field,

we have the sourced wave equation

□ϑ ¼ ε
mpl

8
l
2�RR; ð8Þ

where □ ¼ ∇a∇
a is the d’Alembertian operator. Varying

with respect to the metric gives the corrected Einstein field

equations,

m2
plGab þmplεl

2Cab ¼ Tϑ
ab þ Tmat

ab ; ð9Þ

where Gab is the Einstein tensor of gab, and the tensor Cab

includes first and second derivatives of ϑ, and second and

third derivatives of the metric,

Cab ≡ ϵcdeða∇
dRbÞ

c∇eϑþ �Rc
ðabÞ

d∇c∇dϑ: ð10Þ

Since we are focusing on BBH mergers, Tmat
ab ¼ 0. The

scalar field’s stress-energy tensor Tϑ
ab is given by the

expression for a canonical, massless Klein-Gordon field,

Tϑ
ab ¼ ∇aϑ∇bϑ −

1

2
gab∇cϑ∇

cϑ: ð11Þ

From here forward we will drop the superscript ϑ.

The “full” system of equations for dCS is thus the pair of

Eqs. (8) and (9).

B. Perturbation scheme

Because Cab in Eq. (9) contains third derivatives of the

metric, the “full” system of equations for dCS likely lacks a

well-posed initial value formulation [8]. In the language of

particle physics, this is equivalent to the appearance of

ghost modes above a certain momentum scale [28].

From the EFT point of view, though, the ghost modes

and ill-posedness are nothing more than the breakdown of

the regime of validity of the theory, which should be valid

for long wavelength modes in the decoupling limit l → 0.

To excise the ghost modes and arrive at a well-posed initial

value formulation, we expand about ε ¼ 0, which is simply

GR coupled to a massless minimally-coupled scalar field

and certainly has a well-posed initial value problem [9].

As a result, all higher orders in ε will inherit the well-

posedness of the zeroth-order theory, by inheriting the

principal parts of the differential equations.

We begin this order-reduction scheme by expanding the

metric and scalar field in power series in ε,
1

gab ¼ g
ð0Þ
ab þ

X

∞

k¼1

εkh
ðkÞ
ab ; ð12aÞ

ϑ ¼
X

∞

k¼0

εkϑðkÞ: ð12bÞ

Note that since ε is dimensionless, each ϑðkÞ has the same

units as ϑ, and similarly for h
ðkÞ
ab . This expansion is now

inserted into the field equations, which are likewise

expanded in powers of ε, and we collect orders homo-

geneous in εk, as below. This results in a “tower” of systems

of equations that must be solved at progressively increasing

orders in ε. This scheme is quite general, and should apply

to any theory that has a continuous limit to GR.

1
Note that this is not a Taylor series, since there is no factor of

1=k! in the kth term. These factors must be tracked if using
standard perturbation theory, e.g. with the XPERT package [29,30].
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1. Order ε0

Zeroth order comes from taking ε → 0, which simply

gives the system of GR coupled to a massless, minimally

coupled scalar field,

m2
plGab½gð0Þ� ¼ T

ð0Þ
ab ; ð13aÞ

□
ð0Þϑð0Þ ¼ 0; ð13bÞ

where Gab½gð0Þ� is the Einstein tensor of the background

metric gð0Þ, □ð0Þ is the associated d’Alembert operator, and

Tð0Þ is the stress-energy of ϑð0Þ. This system certainly has a

well-posed initial value problem.

Because of the explicit presence of ε in front of Lint in the

action [Eq. (7)], Cab does not appear in the metric

equation (13a), and the Pontryagin source does not appear

on the right-hand side of the scalar equation (13b). These

terms have been pushed to one order higher and will

appear below.

On general grounds, we expect that any initially non-

vanishing scalar field will radiate away within a few

dynamical times. Similarly, if we start with a ϑð0Þ ¼ 0

initial condition and impose purely outgoing boundary

conditions, ϑð0Þ will remain zero throughout the entire

simulation. Therefore, rather than simulating a vanishingly

small ϑð0Þ, we simply analytically assume that ϑð0Þ ¼ 0.

Therefore, at order Oðε0Þ, the system will simply be

Gab½gð0Þ� ¼ 0; ð14Þ

and the solution will be

ðgð0Þ; ϑð0ÞÞ ¼ ðgGR; 0Þ; ð15Þ

where gGR is a GR solution to the BBH inspiral-merger-

ringdown problem.

2. Order ε1

Continuing to linear order in ε, we find the system

m2
plG

ð1Þ
ab ½hð1Þ; gð0Þ� ¼ −mpll

2C
ð0Þ
ab þ T

ð1Þ
ab ; ð16aÞ

□
ð0Þϑð1Þ þ□

ð1Þϑð0Þ ¼ mpl

8
l
2½�RR�ð0Þ: ð16bÞ

As noted above, the explicit presence of ε in the action (7)

and equations of motion [(8) and (9)] lead to Cð0Þ and

½�RR�ð0Þ appearing in these ε1 equations strictly as source

terms. By construction, the principal part of this differential

system is the same as the principal part of theOðε0Þ system,

and thus it inherits its well-posedness property. This is true

at all higher orders in perturbation theory.

Here, Gð1Þ½hð1Þ; gð0Þ� is the linearized Einstein operator,

built with the covariant derivative∇ð0Þ compatible with gð0Þ,

acting on the metric deformation hð1Þ. The d’Alembert

operator receives the correction□ð1Þ, which depends on the

metric deformation hð1Þ. The quantity C
ð0Þ
ab is the same as

the definition given in Eq. (10), evaluated on the back-

ground quantities ðgð0Þ; ϑð0ÞÞ. Similarly, ½�RR�ð0Þ is the

Pontryagin density evaluated on the background spacetime

metric gð0Þ. Finally, Tð1Þ
ab is the first-order perturbation to the

stress-energy tensor; since Tab is quadratic in ϑ, T
ð1Þ
ab has

pieces both linear and quadratic in ϑð0Þ (the quadratic-in-

ϑð0Þ pieces are linear in hð1Þ).
The crucial property at this order is that bothCð0Þ and Tð1Þ

are built from pieces linear and quadratic in ϑð0Þ. At order
Oðε0Þ, we found that ϑð0Þ ¼ 0. Therefore, when evaluated

on the Oðε0Þ solution [Eq. (15)], these both vanish,

C
ð0Þ
ab ½ϑð0Þ ¼ 0� ¼ 0; T

ð1Þ
ab ½ϑð0Þ ¼ 0� ¼ 0: ð17Þ

Therefore, at orderOðε1Þ in perturbation theory, evaluating
on the background solution, we have the system

m2
plG

ð1Þ
ab ½hð1Þ; gð0Þ� ¼ 0; ð18aÞ

□
ð0Þϑð1Þ ¼ mpl

8
l
2½�RR�ð0Þ: ð18bÞ

In the metric perturbation equation (18a), starting with

hð1Þ ¼ 0 initial conditions and imposing purely outgoing

boundary conditions will enforce hð1Þ ¼ 0 throughout the

entire simulation. Similarly, we can argue that small pertur-

bations of hð1Þ would radiate away on a few dynamical times,

since there is no potential to confine the metric perturbations.

Once again, rather than simulating a vanishingly small field,

we will just analytically assume that hð1Þ ¼ 0. Therefore, at

orderOðε1Þ, there is nometric deformation, and the system is

only Eq. (18b), driven by the background system (14) which

generates the source term ½�RR�ð0Þ.

3. Order ε2

This perturbation scheme can be extended to any order

desired. Although this paper reports only on work extend-

ing throughOðε1Þ, we sketch the derivation ofOðε2Þ, since
that is the lowest order where a metric deformation is

sourced.

Schematically, the system at Oðε2Þ, after accounting for

the vanishing of ϑð0Þ and hð1Þ, is

m2
plG

ð1Þ
ab ½hð2Þ� ¼ −mpll

2C
ð1Þ
ab ½ϑð1Þ� þ T

ð2Þ
ab ½ϑð1Þ; ϑð1Þ�; ð19aÞ

□
ð0Þϑð2Þ ¼ 0: ð19bÞ

The operator Cð1Þ½ϑð1Þ� is linear in its argument, and

Tð2Þ½ϑð1Þ; ϑð1Þ� is linear in each slot. Various other

OKOUNKOVA, STEIN, SCHEEL, and HEMBERGER PHYSICAL REVIEW D 96, 044020 (2017)

044020-4



combinations have vanished. In (19a), vanishing source

terms were quadratic in hð1Þ or built from the product of

hð1Þ × ϑð1Þ. In (19b), l2½�RR�ð1Þ is proportional to hð1Þ and
thus vanishes, as do terms such as □ð1Þϑð1Þ (linear in hð1Þ)
and □

ð2Þϑð0Þ (linear in ϑð0Þ).
We leave detailed discussion of order Oðε2Þ to future

work [31].

4. Summary and scaling

Let us briefly summarize the perturbative order-

reduction scheme and discuss the scaling of different

orders. The system at orders ε0 and ε1 is

Oðε0Þ∶ Gab½gð0Þ� ¼ 0; ϑð0Þ ¼ 0; ð20aÞ

Oðε1Þ∶ □
ð0Þϑð1Þ ¼ mpl

8
l
2½�RR�ð0Þ; hð1Þ ¼ 0; ð20bÞ

and if we were to continue to Oðε2Þ,

Oðε2Þ∶ G
ð1Þ
ab ½hð2Þ� ¼ m−2

pl T
eff
ab ; ϑð2Þ ¼ 0; ð20cÞ

where Teff
ab may be determined from the right-hand side

of Eq. (19a).

Zeroth order (20a) is just vacuum GR, which has no

intrinsic scale. As is very common in numerical relativity

simulations, the coordinates used in the simulation are

dimensionless and in units of the total ADM mass,

Xa ¼ xa=ðGMÞ. This means that ∇ may be nondimension-

alized by pulling out a factor of ðGMÞ−1, Riemann may be

nondimensionalized by pulling out a factor of ðGMÞ−2, etc.
Meanwhile, the new length scale and coupling parameter

l enters at first order. If we nondimensionalize the

derivative operator and curvature tensors in Eq. (20b),

we will find

ðGMÞ−2□ð0Þϑð1Þ ¼ mpl

8
l
2ðGMÞ−4½�RR�ð0Þ: ð21Þ

We therefore define the dimensionless scalar field Ψ via

ϑð1Þ ¼ mpl

8

�

l

GM

�

2

Ψ: ð22Þ

Then Ψ will satisfy

□
ð0Þ
Ψ ¼ ½�RR�ð0Þ: ð23Þ

Thus the analytic dependence of ϑð1Þ on ðl=GMÞ has been
extracted. The solution Ψ can later be scaled to reconstruct

ϑð1Þ for any allowable value of ðl=GMÞ.
All of the results that we present will be given in terms of

powers of the dimensionless coupling ðl=GMÞ. We will

also compare to known post-Newtonian results [24], that

were presented in terms of αYSYT4 . To perform the com-

parison, we use the conversion given in Eq. (4).

Finally, though we do not address Oðε2Þ simulations in

this paper, we should still study how hð2Þ scales with l and

ðGMÞ. Since the perturbative scheme preserves the units of

length of fields, ½hðkÞ� ¼ ½g� ¼ ½L�0 is already dimension-

less; however, it still depends on ðl=GMÞ in a specific way.
When we move to units in which we measure lengths and

times in units of ðGMÞ, we find it is appropriate to define a
scaled metric deformation ϒ via

h
ð2Þ
ab ≡

�

l

GM

�

4

ϒab: ð24Þ

Then this dimensionless quantityϒ will satisfy an equation

that is schematically

∇2ϒþ L:O:T: ∼ ð∇ΨÞ2 þ ð∇ΨÞð∇RÞ þ ð∇2
ΨÞR; ð25Þ

where L.O.T. stands for lower order terms, and all deriv-

atives and curvatures are Oðε0Þ dimensionless quantities.

C. Numerical scheme

For the order ε1 part of the order reduction scheme, our

overall goal is to solve Eq. (23) on a dynamical background

metric. We co-evolve the metric and the scalar field, where

Eq. (23) is driven by Eq. (20a). The whole system is

simulated using the Spectral Einstein Code (SPEC) [32],

which uses the generalized harmonic formulation of gen-

eral relativity in a first-order, constraint-damping system

[33] in order to ensure well-posedness and hence numerical

stability. We have added a scalar field module that is

similarly a first-order, constraint-damping system, follow-

ing [34], as outlined in Appendix A.

The code uses pseudospectral methods on an adaptively-

refined grid [35,36], and thus numerical convergence with

resolution of both the metric variables and the scalar field is

exponential. We demonstrate the numerical convergence of

the scalar field in Appendix A.

The initial data for the binary black hole background is a

superposition of two Kerr-Schild black holes with a

Gaussian roll-off of the conformal factor around each

black hole [37]. The initial data for the scalar field is

similarly given by a superposition of approximate dCS

solutions around isolated black holes, and is given in more

detail in Sec. III B.

The metric equations are evolved in a damped harmonic

gauge [38,39], with excision boundaries just inside the

apparent horizons [40,41], and minimally-reflective,

constraint-preserving boundary conditions on the outer

boundary [42]. The scalar field system, meanwhile, uses

purely outgoing boundary conditions modified to reduce

the influx of constraint violations into the computational

domain [34].
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The Pontryagin density source term �RR is computed

throughout the simulation in a 3þ 1 split from the available

spatial quantities as outlined in Appendix B.

III. RESULTS

A. Background: Phenomenology of binary

black hole inspirals in dCS

To give the proper context for our numerical results, we

first review the previously known phenomenology relevant

to this problem. Analytical and numerical results are known

for isolated black holes in the decoupling limit, and

analytical results are known for the binary black hole

problem in the decoupling limit and at slow velocities

(v=c ≪ 1).

Any spherically-symmetric metric will have vanishing

Pontryagin density.
2
Thus the Schwarzschild solution with

vanishing scalar field is already a solution to the “full” dCS

system. An isolated spinning black hole in dCS, however, is

not given by the Kerr solution of GR [21,22,44,45]; the

scalar field is sourced, and the metric acquires corrections.

Analytical results for the leading-order, small-coupling

corrections to the Kerr metric have been found in the

slow-rotation approximation (a ≪ M) [21,22,45,46].

Additionally, numerical results have been found for the

scalar field for general rotation [25,47]. The leading-order

correction to Kerr is dipolar scalar hair, while the scalar

monopole vanishes. This vanishing scalar monopole means

that scalar dipole radiation is heavily suppressed in dCS. At

a large radius away from an isolated black hole labeled by

A, the dipolar scalar field goes as

ϑ
ð1Þ
A ¼ μiAn

i
A

R2
A

; ð26Þ

where RA is the distance from black hole A, niA is the spatial

unit vector pointing away from BH A, and μiA is the scalar

dipole moment of the BH. This scalar dipole moment is

given by [19]

μiA ¼ −
5

2

mpll
2

8
χiA; ð27Þ

where χiA is the dimensionless spin vector of black hole A,

χiA ¼ JiA=GM
2
A (this factor of G in the denominator arises

from our usage of natural units, where angular momentum

is dimensionless, ½J� ¼ ½L�0, in units of ℏ).

The dCS binary inspiral problem in the post-Newtonian

regime (v ≪ c) was first treated by Yagi et al. [19]. When

two spinning BHs with scalar dipole hair are placed in

proximity with each other, the hair is responsible for a

number of effects. First, there is a correction to the binding

energy due to the dipole-dipole interaction. Second, as the

BHs orbit each other, the net quadrupole of the binary

system has a time derivative on the orbital timescale. The

binary’s combined dipole moment is also time-varying, but

only on the spin-precession timescale, so it is heavily

suppressed. Thus in the far zone of the binary, the scalar

field exhibits predominantly quadrupole and higher radi-

ation, and no l ¼ 0 monopole radiation.

The dominant far-zone multipole moments for the scalar

field have jmj ¼ l − 1 with l ≥ 2 and the l ¼ 1 modes

radiate on the spin-precession timescale. To make compar-

ing to PN simpler, we are simulating aligned-spin systems,

so the l ¼ 1 mode will in fact be non-radiative at early

times. Yagi et al. [19] gave expressions for the scalar field

ϑð1Þ due to spinning and nonspinning binaries, presented in
terms of symmetric tracefree (STF) tensors. In most

numerical relativity work, however, we decompose fields

into spherical harmonics,

ϑð1ÞFZ ¼
X

lm

Ylmðθ;φÞϑð1ÞFZl;m : ð28Þ

Using [48], we convert the STF expressions from [19,49]

into spherical harmonics at extraction radius R for a spin-

aligned binary, when the post-Newtonian approximation is

valid (the early inspiral), giving

ϑ
ð1ÞFZ
1;0 ¼

ffiffiffiffiffiffi

4π

3

r

1

R2
ðμ1 þ μ2Þ;

ϑ
ð1ÞFZ
2;1 ¼

ffiffiffiffiffiffi

2π

15

r

1

R

�

μ1
m2

M
− μ2

m1

M

�

ωðGMωÞ1=3e−iϕ;

ϑ
ð1ÞFZ
3;2 ¼

ffiffiffiffiffiffiffiffi

32π

105

r

1

R

�

μ1
m2

2

M2
þ μ2

m2
1

M2

�

ωðGMωÞ2=3ie−2iϕ:

ð29Þ

Here ϕ ¼ ϕðtÞ is the orbital phase, ω ¼ ωðtÞ ¼ _ϕ is the

orbital frequency, mA is the mass of each black hole,

M ¼ m1 þm2 is the total mass,
3
and μA is the z component

(the only component since this calculation is for a spin-

aligned binary) of the scalar dipole moment from

Eq. (27). Note that the (1,0) mode is time-independent

2
This is straightforward to verify with a computer algebra

system, using the canonical form for a spherically symmetric

metric, ds2 ¼ −e2αðt;rÞdt2 þ e2βðt;rÞdr2 þ r2dΩ2. Since it is true
in this coordinate system, it is true in general. This is also proven
in Appendix A of [43] following a tensorial approach. Finally,
one can appeal to a symmetry argument. If the metric is invariant
under anOð3Þ isometry, then the curvature tensor and �RR, being
tensorial objects built only from g, must also be invariant under
this symmetry. Therefore �RR must be a constant on each 2-
sphere. The group Oð3Þ also contains the reflection symmetry,
sending points to their antipodes. The metric is invariant under
this reflection, but �RR must flip sign, as it is a pseudoscalar. But
then we must have �RR ¼ −�RR, so �RR ¼ 0.

3
In PN literature, m is often used as the total mass. We use M

here in order to be consistent with numerical relativity literature.
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(and hence nonradiative), since we are focusing on spin-

aligned systems.

The behavior of the scalar field during the late inspiral

and merger was previously unknown, and is part of the

motivation for the present numerical study.

B. Scalar field waveforms

We performed three numerical simulations in this for-

malism, each at low, medium, and high numerical reso-

lutions, with parameters given by Table I. We chose three

values for the BHs’ dimensionless spins of 0.0, 0.1, and 0.3,

to qualitatively see the effect of spin on the physics, and to

allow for comparison with analytical calculations. While

SPEC can simulate very high spins [41], the analytics we

compare against use the small-spin expansion and stop at

linear order in spin. Therefore theOðχ2Þ errors should be at
most ∼30% of the OðχÞ effects we compare against.

Similarly, while modeling spin precession is possible

[50], it is not the focus of this study, and thus we have

eliminated this complication by aligning all of the spins

with the orbital angular momentum.

As mentioned in Sec. III A, the scalar field around an

isolated, slowly spinning black hole in dCS is approx-

imately a dipole. We use this analytic approximation as the

basis for our initial data, as mentioned in Sec. II C. The

initial scalar field is a superposition of two slow-rotation

dipole solutions (since all of the dimensionless spins are

≤0.3), one around each black hole. We apply a boost to

account for the initial velocity of each black hole. As our

scalar field evolution system is first-order (see

Appendix A), we also initialize the variables corresponding

to the spatial and time derivatives of Ψ to the analytical

derivatives of the approximate dipole solution. For the

nonspinning simulation, we set the initial value ofΨ and its

derivatives to zero.

We plot mode-decomposed waveforms extracted from

the highest resolution simulations of the three simulations

in Figs. 1, 2, and 3. Each figure shows the ðl ¼ 2; m ¼ 2Þ
mode of the Newman-Penrose quantity Ψ4 decomposed

into spin-weight −2 spherical harmonics, and the dominant

ðl; m ¼ l − 1Þmodes of the scalar ϑð1Þ for l ¼ 1, 2, 3, along

with the PN comparisons from Eq. (29).

We immediately see that at early times, there is good

qualitative agreement between the numerical waveforms

and the PN predictions, with the ðl ¼ 2; m ¼ 1Þ mode

dominating, as expected. In the PN formulas of Eq. (29),

we used the instantaneous coordinate orbital frequency and

phase calculated from the black hole trajectories for ω and

ϕ. Since the starting phase is arbitrary, we perform a phase

TABLE I. Parameters of numerical runs. Each run was per-

formed at low, medium, and high resolutions. We give the mass

ratio m1=m2 where the subscripts label the black holes. All of the

spins are aligned in the z-direction, so we give the ẑ component of

the dimensionless spin vector χ⃗A for each black hole. The initial

orbital frequency is Ω0. Initial orbital parameters were chosen so

that the eccentricity was below 5 × 10−4. The time simulated to

merger is tMerger, and the amount of ringdown simulated there-

after is tRD, both in units of GM. The final mass of the remnant

black hole is mFinal, in units of M. The remnant spins are in the

z-direction, and thus we give the ẑ component χFinal of the

dimensionless spin.

Name
m1

m2
χ1 χ2 Ω0ðGMÞ tMerger

GM

tRD
GM

mFinal

M
χFinal

Spin 0.3 3.0 0.30 0.30 0.0163 5841 764 0.96 0.68

Spin 0.1 3.0 0.10 0.10 0.0164 5452 817 0.97 0.59

Spin 0.0 3.0 0.00 0.00 0.0190 3457 697 0.97 0.54

FIG. 1. Waveforms for simulation with spin χ ¼ 0.3ẑ on each

black hole. The top panel shows the real part of the ðl¼ 2;m¼ 2Þ
mode of the spin-weight −2 spherical harmonic decomposition of

the Newman-Penrose scalar Ψ4, extracted at a (large enough)

radius of R ¼ 290GM. This serves as a proxy for the gravitational

waveform. The lower three panels show the (1,0), (2,1) and (3,2)

scalar spherical harmonic modes of the scalar ϑð1Þ at R¼ 300GM.

The numerical values from the simulation are shown by the solid

blue curves, while the PN calculations are shown by the dashed

black curves. The time axis corresponds to the approximate

retarded time (simulation time minus extraction radius) minus the

merger time, which is computed as the time of peak amplitude

of Ψ
ð2;2Þ
4 .
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alignment (by eye) between the numerical results and the

PN waveforms.

As expected, because the spins are not precessing, there

is no dipole radiation at early times. The offset away from

zero seen in the ðl ¼ 1; m ¼ 0Þ panel of Fig. 1 is a real

physical effect: it is due to the combined dipole moments of

the two individual black holes and their orbital angular

momentum. After merger, the l ¼ 1 moment settles down

to a new non-zero value (below the resolution of this figure)

determined by the spin of the final black hole, again via

Eq. (27). In between, there is a burst of scalar dipole

radiation. This is a newly discovered phenomenon that

could not have been computed with analytic post-

Newtonian calculations. Scalar monopole radiation, mean-

while, is consistent with zero within the numerical errors of

the simulation.

C. Energy fluxes

Having solved for the scalar field ϑð1Þ, we can

evaluate physical quantities such as its stress-energy tensor,

Eq. (11). From T
ðϑÞ
ab , we can compute the energy flux

through some 2-sphere S2R at coordinate radius R via

_EðϑÞ ¼
Z

S2
R

T
ðϑÞ
ab n

adSb: ð30Þ

Here na is the timelike unit normal to the spatial slice, and

dSb is the proper area element of S2R, i.e. dS
b ¼ Nb ffiffiffi

γ
p

dA,

where Nb is the spacelike unit normal to S2R, γ is the

determinant of the induced 2-metric, and dA is the

coordinate area element.

Like the metric and scalar field, we similarly expand T
ðϑÞ
ab

and _EðϑÞ in powers of ε,

T
ðϑÞ
ab ¼

X

∞

k¼0

εkT
ðϑ;kÞ
ab ; _EðϑÞ ¼

X

∞

k¼0

εk _Eðϑ;kÞ; ð31Þ

where each _Eðϑ;kÞ includes the appropriate orders of both

the scalar field and metric. Since ϑð0Þ ¼ 0 and T
ðϑÞ
ab is

quadratic in ϑ, we have T
ðϑ;0Þ
ab ¼ T

ðϑ;1Þ
ab ¼ 0, and similarly

_Eðϑ;0Þ ¼ _Eðϑ;1Þ ¼ 0. The first nonvanishing order is T
ðϑ;2Þ
ab ,

which is given by

T
ðϑ;2Þ
ab ¼ ∇aϑ

ð1Þ∇bϑ
ð1Þ −

1

2
gab∇cϑ

ð1Þ∇cϑð1Þ: ð32Þ

FIG. 2. Similar to Fig. 1, but with spin χ ¼ 0.1ẑ on each BH. FIG. 3. Similar to Fig. 1, but with no spin on either BH.
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Using the results of the simulations, we compute Tabn
a,

interpolate it onto surfaces of fixed coordinate radius R,

compute Tain
aNi by contracting with the normal, and

perform spectral integration with the induced area element

to obtain _Eðϑ;2Þ. That is, we compute

_Eðϑ;2ÞðRÞ ¼
Z

S2
R

T
ðϑ;2Þ
ai naNi ffiffiffi

γ
p

dA: ð33Þ

We also compute the energy flux at order ðl=GMÞ0,
which for vanishing ϑð0Þ consists purely of the background

gravitational energy flux, as (c.f. [51])

_Eð0Þ ¼ lim
R→∞

R2

16πG

Z

S2
R

�

�

�

�

Z

t

−∞

Ψ4dt
0
�

�

�

�

2

dΩ; ð34Þ

where numerically we set the lower bound of the time

integral to the start of the simulation, assuming there was

comparatively little radiation before the start.

We plot the numerical values of _Eðϑ;2ÞðRÞ and _Eð0ÞðRÞ in
Fig. 4, keeping (spin-weighted) spherical harmonics up

through l ¼ 8. We check for the convergence of the flux

quantities with increasing extraction radius, and present the

results at R ¼ 300GM, which agree with the results

at R ¼ 200GM.

In Fig. 4 we also plot a post-Newtonian approximation to
_Eðϑ;2Þ. This is computed using the far-zone PN solution for

ϑð1Þ from [19], which only includes the l ¼ 2 quadrupole

radiation. We impose circular orbits and aligned spins,

convert to our conventions via Eq. (4), and reinsert the

appropriate factors of G. The result for at least one nonzero
spin is

_E
ðϑ;2Þ
PN ¼ −

5

1536G

�

l

GM

�

4
�

m2

M
χ1 −

m1

M
χ2

�

2

ðGMωÞ14=3;

ð35Þ

and for two nonspinning black holes,

_E
ðϑ;2Þ
PN ¼ −

2

15G

�

l

GM

�

4

η2
δm2

M2
ðGMωÞ8: ð36Þ

In these expressions, χA is the dimensionless spin of black

hole A, η ¼ m1m2=M
2 is the symmetric mass ratio, and

δm ¼ m1 −m2 is the mass difference.

Although the gravitational flux at order ðl=GMÞ0 is by
far the largest energy flux, the scalar field flux at order

ðl=GMÞ4 sharply increases before merger. The spin con-

tributions are dominant, as the scalar flux for the spin-0

simulation is comparatively small until the merger, when

nonlinearities become very important. At early times, our

fully numerical results qualitatively agree with the PN

results of [19], validating our and their calculations. We

expect the Oð1Þ ratio between PN and full numerics in

Fig. 4 stems from the PN expressions (35), (36) only

including l ¼ 2, whereas our numerics include all modes

up through l ¼ 8.

D. Regime of validity

Since this method is perturbative, we expect that it breaks

down—becomes invalid—at some point. There are two

types of breakdown. First, at every instant of time, there is

the question of whether the series converges. We expect that

the series should only converge when l ≪ GM, and we

assess this in Sec. III D 1. Second, over much longer times,

therewill be a secular drift between the perturbative solution

and the “true” solution, so that the two solutions become out

of phase. We assess the dephasing below in Sec. III D 2.

1. Instantaneous validity

The perturbative scheme is valid pointwise at every

instant in time if the series for the metric (12a) and scalar

(12b) are convergent. Roughly, we can assess this by

comparing the magnitudes of successive terms in the series.

As shown in Sec. II B, up through order ε2, the metric and

scalar are expanded as

gab ¼ g
ð0Þ
ab þ ε2h

ð2Þ
ab þOðε3Þ; ð37aÞ

FIG. 4. Order ðl=GMÞ0 and ðl=GMÞ4 energy fluxes, as a

function of time, aligned at the peak of Ψ
ð2;2Þ
4 . We plot the order

ðl=GMÞ4 numerical scalar energy flux extracted at R ¼ 300GM
[colored solid lines; Eq. (33)] and the corresponding post-

Newtonian approximation [dashed lines, Eqs. (35) and (36)],

for the highest resolution of each simulation. We also plot the

energy flux at order ðl=GMÞ0, which consists solely of the

background gravitational radiation [Eq. (34)], for the spin 0.3

simulation (dot-dashed black line); the GW flux is the same order

of magnitude for all three spin configurations. The Oð1Þ ratio

between PN and numerics is likely due to the PN fluxes only

including l ¼ 2, whereas numerical quantities are computed with

all modes up to l ¼ 8.
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ϑ ¼ εϑð1Þ þOðε3Þ: ð37bÞ

Thus we cannot assess the convergence of ϑ without going

to Oðε3Þ, but at Oðε2Þ we can compare the magnitudes of

g
ð0Þ
ab and h

ð2Þ
ab . A rough condition for convergence is that

∥h
ð2Þ
ab ∥≲ ∥g

ð0Þ
ab ∥; ð38Þ

where ∥ · ∥ is an L2 norm.

The magnitude of h
ð2Þ
ab depends on the strength of

the coupling parameter l, as discussed in Sec. II B 4, via

h
ð2Þ
ab ¼ ðl=GMÞ4ϒab, where ϒab is independent of l. Thus

we translate Eq. (38) into a condition on the maximum

allowed value of l=GM,

�

�

�

�

l

GM

�

�

�

�

max

∼ C

�

∥g
ð0Þ
ab ∥

∥ϒab∥

�1=4

min

; ð39Þ

where C is some factor of order unity, and on the right-hand

side, the ratio is evaluated pointwise, and then the minimum

is taken over the domain outside of the apparent horizons,

at each coordinate time. At values of l=GM larger than this

estimate, we expect the perturbative approach fails to

converge somewhere in the spacetime.

In these order ε1 simulations, we have not simulatedϒab.

We can, however, make scaling estimates from its sche-

matic equation of motion, Eq. (25). The source term

mpll
2C

ð1Þ
ab should be of the same order of magnitude as

T
ð2Þ
ab (which we do compute in the simulations), so to within

an order of magnitude, we estimate

□
ð0Þϒ ∼ Tab½Ψ�; ð40Þ

1

L2
∥ϒ

ð2Þ
ab ∥ ∼ ∥Tab½Ψ�∥: ð41Þ

Here L is a characteristic curvature length scale, and

Tab½Ψ� is shorthand for the “stress-energy” Tab½Ψ� ¼
∇aΨ∇bΨ −

1
2
gabð∇ΨÞ2. Therefore, we estimate the

allowed value for l=GM as

�

�

�

�

l

GM

�

�

�

�

max

∼ CL−1=2

�

∥g
ð0Þ
ab ∥

∥Tab½Ψ�∥

�1=4

min

: ð42Þ

We plot this estimate in Fig. 5 for each of the spin

configurations considered in this study. During inspiral, the

curvature is highest around the smaller black hole, so we let

L ¼ minðGm1; Gm2Þ. After merger, we let L ¼ GmFinal

(see Table I for values).

We can compare our estimates for the regime of validity

jl=GMjmax to those computed in Stein [26]. Stein com-

puted jl=Gmjmax of a stationary, isolated black hole as a

function of χ of the body, using methods that are

independent of ours. At late times, we find direct agree-

ment, at the 5% level, by setting C ¼ ð32Þ1=4 ≈ 2.38. At

early times, after including a factor of M=m2 to convert

from jl=GMj to jl=Gm2j, we again find agreement. At

early times, the low-spin simulation has a very large

regime of validity, because the Pontryagin density is small,

and hence Chern-Simons effects are also small. However,

approaching the time of merger, orbital motion and non-

linearities source enough energy density in the scalar

field to restrict the regime of validity of jl=GMj to order

unity.

2. Secular validity (dephasing)

The true physical system at ε > 0 radiates energy more

quickly than the GR-only (ε ¼ 0) solution that we are using

as the background for perturbation theory. As a result, the

true solution will inspiral more quickly, so the orbital phase

will have a secularly growing deviation away from the

background. A post-Newtonian scaling estimate (see

below) says that the standard solution will break down

over a secular timescale of order Tsec ∼ TGR
RRðl=GMÞ−2v−2,

where TGR
RR is the radiation-reaction timescale in GR. This

scaling ðl=GMÞ−2 is characteristic of singular perturbation
theory [52–54].

If the length of a detected gravitational waveform is long

compared to the secular breakdown time, then we will need

a method to extend the secular regime of validity of the

calculation—for example, multiple-scale analysis (MSA)

[52] or the dynamical renormalization group [53,54]. We

save this issue for future work. Here, we will estimate the

dephasing time (secular breakdown time).

FIG. 5. Estimate of instantaneous regime of validity of pertur-

bation theory for each of the binary black hole configurations in

this study, as a function of coordinate time relative to merger.

Perturbation theory in powers of jl=GMj is invalid in the shaded

region above each curve. The maximum allowed value of

jl=GMj comes from Eq. (42). The jaggedness at early times

is due to p-refinement of the spectral subdomains causing points

to cross the mask outside of apparent horizons. The jump near

time of merger is due to formation of the common horizon. After

merger, the remnant black hole governs jl=GMjmax. Since all

simulations have comparable remnant spins (see Table I), the

final values of valid jl=GMj are similar.
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Let us focus on quasicircular, adiabatic inspirals.

Similarly to the scalar field and metric variables in

Eqs. (12a) and (12b), we can expand the accumulated

orbital phase ϕðtÞ and the orbital frequency ωðtÞ ¼ _ϕðtÞ of
the binary in powers of ε,

ϕ ¼ ϕð0Þ þ εϕð1Þ þ ε2ϕð2Þ þOðε3Þ; ð43Þ

ω ¼ ωð0Þ þ εωð1Þ þ ε2ωð2Þ þOðε3Þ; ð44Þ

where ϕð0Þ corresponds to the phase of the binary in pure

GR, and ϕð1Þ contains the dCS corrections at order ε1 and

so on. Since the metric deformation at Oðε1Þ vanishes, the
phase correction at Oðε1Þ also vanishes, ϕð1Þ ¼ 0 ¼ ωð1Þ.
The first nonvanishing orbital phase correction is

Δϕ≡ ϕð2Þ: ð45Þ

We can use Δϕ to assess the secular regime of validity, and

in Sec. III E we will also use it to assess the detectability of

dynamical Chern-Simons.

We do not have Δϕ directly from the simulation,

as we do not evolve the ε2 system. However, we can

estimate it from previously known analytical results

combined with numerical quantities available during the

simulation.

Consider the local-in-time expansion of the orbital phase

correction Δϕ around any “alignment time” t0,

ΔϕðtÞ ¼ Δϕðt0Þ þ ðt− t0Þ
dΔϕ

dt

�

�

�

�

t¼t0

þ 1

2
ðt− t0Þ2

d2Δϕ

dt2

�

�

�

�

t¼t0

þOðt− t0Þ3; ð46Þ

ΔϕðtÞ ¼ Δϕðt0Þ þ ðt − t0Þωð2Þðt0Þ þ
1

2
ðt − t0Þ2

dωð2Þ

dt

�

�

�

�

t¼t0

þOðt − t0Þ3: ð47Þ

If our simulation had started at reference time t0, then we

would have Δϕðt0Þ ¼ 0. The linear piece ðt − t0Þωð2Þðt0Þ
corresponds to a perturbative, instantaneous frequency

shift, which is completely degenerate with a renormaliza-

tion of the physical mass MðεÞ in terms of the “bare” mass

Mðε ¼ 0Þ. Therefore, the constant and linear pieces of this

expansion are not observable.

However, the curvature 1
2
ðt − t0Þ2dωð2Þ=dtjt¼t0

cannot be

redefined or scaled away. Therefore, within a sufficiently

short window of time around the alignment time t0, the
deformation to the orbital phase is given by

Δϕ ¼ 1

2
ðt − t0Þ2

dωð2Þ

dt

�

�

�

�

t¼t0

þOððt − t0Þ3Þ: ð48Þ

We use this to define the perturbative secular time Tsecðt0Þ
at any instant t0 via

1 ≈ Δϕ ¼ 1

2
T2
sec

dωð2Þ

dt

�

�

�

�

t¼t0

; ð49Þ

Tsec ≡

�

1

2

dωð2Þ

dt

�

�

�

�

t¼t0

�

−1=2

; ð50Þ

roughly the time to dephase by order one radian.

Thus we need to estimate dωð2Þ=dt from our simulation.

Under the assumption of quasicircular, adiabatic orbits,

there is a one-to-one correspondence between the orbital

frequency ω and orbital energy E. In other words, there

exists a function of one variable, EðωÞ or ωðEÞ. Therefore
from the chain rule we can find the time derivative

dω

dt
¼ dω

dE

dE

dt
¼ dE=dt

dE=dω
: ð51Þ

This depends on the conservative sector through the

frequency-dependence of orbital energy, dE=dω, and on

the dissipative sector through the radiated power, dE=dt.
Just as with the frequency, we expand the orbital energy in

powers of ε,

E ¼ Eð0Þ þ εEð1Þ þ ε2Eð2Þ þOðε3Þ: ð52Þ

We can then use this to expand Eq. (51) in powers of ε. The

Oðε2Þ piece is given by

dωð2Þ

dt
¼ dωð0Þ

dt

�

dEð2Þ=dt

dEð0Þ=dt
−
dEð2Þ=dω

dEð0Þ=dω

�

: ð53Þ

The prefactor dωð0Þ=dt is simply the background (GR)

evolution of the orbital frequency. The first term in square

brackets in Eq. (53) comes from the dissipative sector of the

dynamics, since it depends on the radiated power dEð2Þ=dt.
The second term, meanwhile, comes from the conservative

sector, as it depends on the correction to the orbital energy

Eð2ÞðωÞ. Both of the factors in square brackets scale as

ðl=GMÞ4v4 [19,24] for BBHs with spin. Plugging this

scaling into Eq. (50) recovers Tsec ∼ TGR
RRðl=GMÞ−2v−2.

We find it useful to rewrite dEð0Þ=dω in the second term

using the chain rule (51) to give

dωð2Þ

dt
¼ dωð0Þ=dt

dEð0Þ=dt

�

dEð2Þ

dt
−
dωð0Þ

dt

dEð2Þ

dω

�

: ð54Þ

Now we can discuss how to evaluate these factors from our

numerical simulation and previously known analytical

results. The background energy flux dEð0Þ=dt comes

from the numerical simulation via Eq. (34). We also have

the background frequency evolution dωð0Þ=dt from the
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numerical simulation, via a time derivative of the coor-

dinate orbital frequency.

The two Oðε2Þ quantities require approximations. In the

dissipative sector, there are two contributions to dEð2Þ=dt:
the first from scalar radiation, and the second from

gravitational radiation. We expect these to be the same

order of magnitude. Since we do not have access to the

gravitational radiation, we approximate that to within an

order of magnitude,

_Eð2Þ
≈ _Eðϑ;2Þ; ð55Þ

where _Eðϑ;2Þ was given in Eq. (33). This is further justified

during the inspiral, where the Oðε2Þ dissipative correction
due to gravitational waves is higher-PN than the scalar

radiation [19].

In the conservative sector, we can approximate Eð2ÞðωÞ
from a post-Newtonian calculation [24,49]. The (PN-

approximate) correction to the orbital energy Eð2Þ also

has two pieces: the scalar binding energy and the metric-

deformation binding energy. Again we are going to make

an approximation and ignore the metric deformation piece,

approximating

Eð2ÞðωÞ ≈ E
ðϑ;2Þ
DD ; ð56Þ

where E
ðϑÞ
DD is the scalar dipole-dipole interaction. After

accounting for a missing minus sign in [24,49], this is

given by

E
ðϑ;2Þ
DD ¼ 4π

3μi1μ
j
2n

12
hiji

r312
ð57Þ

¼ 4π

r312
½3ðμ1 · n12Þðμ2 · n12Þ − ðμ1 · μ2Þ�; ð58Þ

where again μiA is the scalar dipole moment given in

Eq. (27). In our case the spins are in the ẑ direction, so

the ðμA · n12Þ term vanishes. To leading PN order, we use

the Kepler relation ω2 ¼ GM=r312 and obtain

E
ðϑ;2Þ
DD ¼ 4πω2ðGMÞ−1μ1μ2 ð59Þ

dE
ðϑ;2Þ
DD

dω
¼ 8πωðGMÞ−1μ1μ2; ð60Þ

where μA now refers to the ẑ component. For ω we again

use the coordinate orbital frequency from the simulation.

To summarize this calculation: we are approximating the

secular breakdown time Tsec [Eq. (50)] by assuming a

quasi-circular, adiabatic inspiral, and thus we compute

dωð2Þ=dt, Eq. (54). We approximate the dissipation _Eð2Þ

from only the scalar flux, Eq. (55). We approximate the

conservative correction Eð2ÞðωÞ from the post-Newtonian

scalar dipole-dipole interaction, Eq. (56).

In Fig. 6 we plot ðl=GMÞ2Tsecðt0Þ, the time to secularly

dephase by about ∼1 radian, around various alignment

times t0. We have checked that at early times, this

numerical estimate agrees with an analytic PN estimate.

As expected, Tsec is parametrically longer than the GR

radiation-reaction time. The time window for secular

validity shrinks approaching merger, but does not vanish.

The value of Tsec, and hence secular regime of validity, is

smallest near merger. For the spin 0.3 simulation, just before

merger, we find the time to dephase by about 1 radian

from the GR background is Tsec ∼ 15GMðl=GMÞ−2. If
Advanced LIGO detects a gravitational waveform of

length, say, 200GM, then a perturbative calculation without

MSA/renormalization would be valid for ðl=GMÞ ≲ 1=4.
For longer waveforms or larger values of ðl=GMÞ, MSA or

renormalization would be required. However, larger values

of ðl=GMÞ will be very close to the limit on the instanta-

neous regime of validity, Fig. 5.

E. Detectability and bounds estimates

We now turn to the issue of how well Advanced LIGO/

Virgo would be able to detect or bound the effects of

dynamical Chern-Simons gravity from observations of a

binary black hole merger. As we do not yet have metric

waveforms [that arise at Oðε2Þ], we make order-of-magni-

tude projections of detectability and bounds from the

dephasing estimates in the previous section.

Suppose that LIGO detects a gravitational waveform

similar to one of those we have simulated, with approx-

imately 5 cycles of inspiral in band before merger—similar

FIG. 6. Estimate of secular regime of validity from dephasing

time Tsec, Eq. (50). The perturbative scheme is valid within a

sufficiently short time window jt − t0j ≪ Tsec about an alignment

time t0. For longer times, multiple-scale analysis or renormaliza-

tion will be needed to extend the regime of validity. The

dephasing time is parametrically longer than the GR radiation

reaction time, Tsec ∼ TGR
RRðl=GMÞ−2v−2. As expected it shrinks

toward merger, remaining nonzero.
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to GW150914 [2], with a total mass approximately

M ≈ 60 M⊙. Such a detection would come with errors

due to noise and calibration uncertainty; let us define the

overall waveform phase uncertainty σϕ. Let us further

assume that the dCS corrections to the full waveform

are not degenerate with redefining bare binary parameters.

Upon detection there are two distinct possibilities: (i) the

detected waveform is consistent with GR predictions; or

(ii) the detection is inconsistent with any point in the GR

parameter space.

In the case of consistency, we would be able to place

bounds on the size of l. Crudely, we would be able to say

Δϕgw ¼ 2Δϕ≲ σϕ; ð61Þ

where the factor of two comes from the gravitational wave

being at twice the orbital frequency. If we have consistency

with GR, then the quadratic approximation for Δϕ in

Eq. (48) holds.

We plot the quadratic approximation to the orbital phase

difference (relative to GR) in Fig. 7. By taking the

maximum value of Δϕ over the length of the waveform,

and taking into account the scaling with ðl=GMÞ4, we can

derive a projected bound on l. For example, from the spin

0.3 simulation and M ≈ 60 M⊙, we would find

�

l

GM

�

≲ 0.13

�

σϕ

0.1

�

1=4

or l≲ 11 km

�

σϕ

0.1

�

1=4

; ð62Þ

and from the spin 0.1 simulation,

�

l

GM

�

≲ 0.2

�

σϕ

0.1

�

1=4

or l≲ 18 km

�

σϕ

0.1

�

1=4

: ð63Þ

The spin 0.0 simulation would only give ðl=GMÞ≲
1.4ðσϕ=0.1Þ1=4. Such a bound would be past the instanta-

neous regime of validity limit during merger for this

simulation (see Fig. 5). It is not internally self-consistent

to use this perturbative result to claim a constraint on the

regime past perturbative validity, so conservatively, no

statement can be made. The higher spin simulations do

not suffer from this problem.

These bounds forecasts can immediately be turned

around into detectability forecasts. We can forecast that

dynamical Chern-Simons corrections would be detectable

in aM ≈ 60 M⊙ binary with parameters consistent with our

spin 0.3 simulation if l≳ 11 km, and similarly for the spin

0.1 simulation if l≳ 18 km.

We can draw three simple lessons on detectability and

bounds from these results. First, better phase sensitivity

(smaller σϕ) is an obvious way to improve the odds of

detectability, or place stronger bounds. This comes from

improved detector sensitivity, but also from higher signal-to-

noise ratio (SNR) events. Second, at fixed phase sensitivity,

lower-mass events would be better than higher mass events,

to a point. Lower mass events obviously have smaller GM,

but they also spend more time in band, and thus have more

time for dephasing. There is a tradeoff, though, because

lower mass events are quieter, and also because most of the

dephasing comes right before merger—so the mass must be

high enough for merger to be in band. Finally, we can easily

see that higher spin systems would lead to stronger con-

straints or a better chance of detecting dCS effects.

Let us compare our projected bounds to those appearing

previously in the literature. Ali-Haïmoud and Chen [55]

used solar system data from Gravity Probe B and the

LAGEOS satellites to constrain the characteristic length

scale to l≲ 108 km. Yagi, Yunes and Tanaka [22] found a

similar bound from table-top experiments. This is compa-

rable to the curvature radius in the solar system.

Yunes and Pretorius [21] applied a precession calculation

from the extreme mass-ratio limit to PSR J0737–3039 to

estimate a constraint of l≲ 104 km. However, this calcu-

lation missed some effects (such as the scalar binding

energy), and the mass ratio of PSR J0737–3039 is very

close to 1. Moreover, the curvature radius at the surface of

one of the NSs in this system should be order ∼10 km,

which means there is room between 10–104 km where l

could be large compared to the curvature length, and thus

FIG. 7. Estimated orbital phase difference (top) for the three

different simulations as a function of time, given by the quadratic

approximation Eq. (48). We choose the alignment time t0 to be

when the common apparent horizon forms, the last time when we

have access to the orbital frequency. From Δϕ we can estimate

how large l must be for a detectable deviation from GR, or

project bounds on l for GR-consistent detections. For reference,

we also plot the gravitational waveform (bottom) from the spin

0.3 simulation, with approximately 5 cycles of inspiral before

merger. This is approximately how many cycles were seen in

GW150914 [2]. The two other simulations’ gravitational wave-

forms are similar.
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the calculation would not be internally self-consistent.

Yagi, Stein, Yunes, and Tanaka [24] performed a more

careful analysis, using post-Newtonian theory for binary

NS systems. They concluded that even PSR J0737–3039,

with its high orbital velocity and exquisite timing, would

not be able to yield a constraint on dCS for the foreseeable

future, and that gravitational wave measurements would be

the best hope.

Yagi, Yunes, and Tanaka [23] used post-Newtonian

calculations to project the level of constraints that might

arise from second and third generation GW detectors. If

next-generation detectors such as Einstein Telescope [56]

were to observe binary black hole inspirals consistent with

GR, then YYT project a bound of l ≲Oð10–100Þ km.

Second-generation ground-based detectors could place a

similar constraint. The only caveat here is that YYT use

post-Newtonian estimates, stopping at the ISCO frequency,

for systems that would be seen not only in the inspiral, but

also in the merger and ringdown, where PN is invalid. The

additional SNR contributed by merger and ringdown will

likely improve constraints.

Stein and Yagi [49] projected a number of constraints on

l based on both pericenter precession in pulsar binaries and

gravitational wave measurements. For a LIGO detection of

a ð10þ 11ÞM⊙ BBH inspiral, consistent with GR, at an

SNR of 30, they projected a bound on the order of

l≲ 10 km. Note that this is the same order of magnitude

as the projected bound we estimate here.

Finally, Stein [26] projected a bound based on the

observations of the black hole candidate GRO J1655–40.

Assuming observations were consistent with GR, Stein

projected a constraint of l≲ 22 km. However, such a

constraint would require (for example) accretion disk

modeling in the presence of the dCS correction, which

has not been simulated.

IV. DISCUSSION AND FUTURE WORK

In this study, we have performed the first fully nonlinear

inspiral, merger, and ringdown numerical simulations of a

binary black hole system in dynamical Chern-Simons

gravity. These are the first BBH simulations in a theory

besides general relativity and standard scalar-tensor gravity.

BBH in scalar-tensor is identical to that in GR, unless one

imposes an external scalar field gradient [57,58]. Therefore

these are also the first numerical simulations in a theory

where the BBH dynamics differ from GR under ordinary

initial and boundary conditions.

The “full” equations of motion for dCS, and many other

corrections to GR, probably lack a well-posed initial value

formulation. This is not an obstacle if the corrections are

treated as being a low-energy effective field theory. In

Sec. II we formulated a perturbation scheme which guar-

antees a well-posed initial value problem. We stress that

this scheme is applicable not just to dCS, but also any

deformation of general relativity which has a continuous

limit to GR.

We performed fully nonlinear numerical simulations

through order Oðε1Þ in the perturbation scheme. We

simulated binaries with mass ratio q ¼ 3 and aligned spins

with equal dimensionless spin parameters χ1 ¼ χ2, taking

on three values, χ ¼ 0.0, 0.1, 0.3. The background (ε0)

metric radiation and perturbative (ε1) scalar radiation

waveforms are presented in Sec. III B. We found good

agreement with PN waveform predictions [19,24] during

the early inspiral.

We have also discovered new phenomenology in dCS. In

agreement with PN predictions, dCS does not suffer from

dipole radiation during the early inspiral. However, during

merger, there is a burst of dipole radiation. This phenome-

non can only be studied with full numerical simulations.

We extracted energy fluxes in Sec. III C, finding good

agreement with PN at early times. We found that the scalar

field’s Oðε2Þ energy flux during the inspiral was approx-

imately 10−6ðl=GMÞ4 times smaller than the correspond-

ingOðε0Þ (GR) energy flux for the highest spin simulation,

rising to a 10−3ðl=GMÞ4 fraction of GR during merger.

This energy flux enters into our detectability estimate.

Since we use a perturbative scheme, it is important to

understand where perturbation theory breaks down. In

Sec. III D 1 we estimated the maximum values of l=GM
for the perturbation theory to be convergent at each time

during the simulation. During the inspiral and ringdown,

the regime of validity agrees with estimates from [26]. The

tightest bound on the instantaneous regime of validity

comes during merger, and is comparable for spinning and

non-spinning black hole mergers, close to l=GM ≲ 1.

The additional radiation in the scalar field ϑð1Þ leads to a

secular drift in orbital phase between the “true” orbital

dynamics and the GR background from which we perturb.

Therefore even if perturbation theory is instantaneously

under control, the perturbative solution will dephase after a

sufficiently long time. We numerically estimated this

dephasing time in Sec. III D 2, and it agrees with post-

Newtonian scaling at early times. At times approaching

merger, the dephasing time becomes shorter, but remains

nonzero.

This dephasing calculation served as the basis for

estimating detectability and predicting bounds that

LIGO would be able to place on l, in Sec. III E. For

q ¼ 3, M ≈ 60 M⊙, and aligned dimensionless spins of

χ1 ¼ χ2 ¼ 0.3, we estimated that a GR-consistent detection

would yield a bound of

l≲ 11 km

�

σϕ

0.1

�

1=4

; ð64Þ

where σϕ is LIGO’s statistical phase uncertainty on the

detected waveform, which depends on the SNR of the

detection. Conversely, an l above this value would be
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detectable by LIGO. Lower spins lead to poorer detect-

ability and/or bounds. Better bounds come from three

places: (i) improved phase sensitivity (higher SNR),

(ii) lower mass events (while keeping merger in band),

and (iii) higher spin systems.

A. Future work

The natural next step in this program is to continue to the

order ε2 system, as outlined in Sec. II B 3. This is the lowest

order where gravitational radiation is modified, and would

involve solving for h
ð2Þ
ab , which is sourced by g

ð0Þ
ab and ϑð1Þ.

With the solution for the deformation to the metric h
ð2Þ
ab ,

we will be able to directly compare dCS predictions against

LIGO data. We will also have a more complete assessment

of the convergence of the perturbation scheme.

Comparing dCS predictions against LIGO data will yield

the first direct bounds on the theory from the strong-field,

dynamical regime of gravity. To do so will involve

extending GR parameter estimation [59] with one addi-

tional parameter, l, which will be simultaneously inferred

or constrained from the data.

A complete analysis would involve thorough exploration

of the 7-dimensional parameter space of quasicircular

BBHs (mass ratio and two spin vectors; the l dependence

is analytic in the perturbative approach). For example, in

this work, we have focused on aligned-spin binaries in

order to simplify comparisons with analytic predictions.

The scalar energy flux in the case of misaligned binaries

may be an order of magnitude larger than in the spin

aligned case (see [19] and the erratum). Building a

surrogate waveform model [60,61] would simultaneously

allow for an efficient exploration of parameter space and

efficient parameter estimation/constraints with LIGO data.

The standard perturbation theory approach we used here

will be sufficient if we find that the dephasing time is long

compared to LIGO signals. However, if we need to extend

the secular regime of validity, some form of multiple-scale

analysis [52] or dynamical renormalization group [53,54]

approach will be required.

Finally, let us emphasize that our approach is not limited

to dynamical Chern-Simons gravity: dCS is a proof of

principle. Any theory with a continuous limit to GR can be

treated with the same scheme, and reusing a large fraction

of the code. In particular, we will consider EdGB and a

class of theories proposed in [62]. Switching from dCS to

another theory will only involve changing source terms that

appear on the right hand sides of the differential equations

we are solving numerically.
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APPENDIX A: SCALAR FIELD

EVOLUTION FORMULATION

In this appendix, we discuss the numerical evolution

scheme for a (massless) Klein-Gordon field, denoted by the

code variable Ψ, in greater detail. This is an update of the

system described in [34], which did not include the “γ1γ2”

constraint-damping term (see below). The basic equation

we are simulating is

□Ψ ¼ S; ðA1Þ

for some prescribed source term S (in this work, the source

term is the Pontryagin density �RR).
We first review the 3þ 1 ADM formalism for the

foliation of a spacetime into spatial slices, as used in

numerical relativity [65]. We decompose the metric as

gab ¼ γab − nanb; ðA2Þ

where gab is the spacetime metric, na is a timelike unit one-

form normal to the spatial slice with nan
a ¼ −1, and γab is

the induced spatial metric and projector, with naγab ¼ 0. In

ADM variables, the timelike unit normal can be written in

terms of a lapse, α, and shift βi, as na ¼ ðα−1;−α−1βiÞ.
We work with the Spectral Einstein Code (SPEC), which

uses the generalized harmonic formulation of general

relativity, and evolves a symmetric hyperbolic first-order

system of metric variables gab, Φiab ¼ ∂igab and Πab ¼
−nc∂cgab [33].

We similarly define a set of first-order variables for the

scalar field Ψ as

Φi ¼ ∂iΨ; ðA3Þ

Π ¼ −na∂aΨ ¼ −α−1ð∂tΨ − βi∂iΨÞ: ðA4Þ

From these definitions and the equality of mixed partial

derivatives, we can create a system of constraints which

vanish in the continuum limit, and which an accurate

evolution of the system will satisfy to within some

tolerance:

NUMERICAL BINARY BLACK HOLE MERGERS IN … PHYSICAL REVIEW D 96, 044020 (2017)

044020-15



C
ð1Þ
i ¼ ∂iΨ −Φi; ðA5Þ

C
ð2Þ
i ¼ ½ijk�∂jΦk: ðA6Þ

In Eq. (A6) the indices j, k are summed and ½ijk� is

the completely antisymmetric Levi-Civita symbol, with

½123� ¼ þ1.

The evolution equation (A1) thus becomes a set of first-

order time evolution equations for fΨ;Φi;Πg. However, in
order to prevent numerical errors in the constraints from

making the evolution unstable, we follow what is done in

the metric system and add specific multiples of the

constraints to the evolution equations. These combinations

of constraints are chosen so as to ensure that the system is

symmetric hyperbolic and that the constraints are damped

out, ensuring a well-posed evolution scheme. The evolution

equation for Ψ is thus

∂tΨ ¼ −αΠþ βm½∂mΨþ γ1ð∂mΨ −ΦmÞ�; ðA7Þ

where the first terms come from the definitions ofΦi andΠ,

and the last term is a constraint damping term with

coefficient γ1. The evolution equation for Φi is

∂tΦk ¼ −α½∂kΠþ γ2ðΦk − ∂kΨÞ�
− Π∂kαþ βm∂mΦk þΦm∂kβ

m; ðA8Þ

where the term with γ2 is a constraint damping term,

and all other terms come from definitions of the first-order

variables and equality of mixed partial derivatives. Finally,

the evolution equation for Π is

∂tΠ ¼ αΠK þ βm∂mΠþ αΦmΓ
m þ γ1γ2β

mð∂mΨ −ΦmÞ
− αgmn∂nΦm − gmn

Φn∂mαþ αS; ðA9Þ

where K is the trace of the extrinsic curvature, Γ
m ≡

gabΓm
ab is a specific contraction of the Christoffel con-

nection coefficients, S is the source term, and the γ1γ2 term

is the appropriate constraint-damping term to keep the

system symmetric hyperbolic.

This “γ1γ2” term was not included in the previous

description [34], but it is required if both γ1 and γ2 are

nonzero. The parameters γ1 and γ2 play the same role in the

damping and characteristic analysis of this Klein-Gordon

system as they do in the generalized harmonic system [33].

Specifically, in order for the constraint C
ð1Þ
i to be damped,

we must have γ2 > 0 (satisfying the constraint C
ð1Þ
i implies

satisfaction of the constraint C
ð2Þ
i ). The choice γ1 ¼ −1

makes the system linearly degenerate. In practice we set the

values of γ1 and γ2 to match those of the generalized

harmonic evolution of the metric variables, so that the

characteristic speeds of the metric and scalar field sys-

tems agree.

The scalar field variables, like the metric variables, are

represented spectrally. In order to reduce the amount of

numerical noise in the system, we apply the same filters we

use for the metric variables to the scalar field system,

namely filtering the top 4 tensor spherical harmonics and

using an exponential Chebyshev filter for the radial piece.

In order to assess the accuracy of the simulations, we

evaluate the constraints that the generalized harmonic

evolution system must satisfy [33], as well as the

constraints for the first-order scalar field system given

by Eqs. (A5) and (A6). We combine these constraints,

contracting with a Euclidean metric to give a constraint

energy as

C2 ¼ C
ð1Þ
i C

ð1Þ
i þ C

ð2Þ
j C

ð2Þ
j : ðA10Þ

Since the code is spectral, we check for exponential

convergence of these constraint energies as we increase

the number of angular and radial basis functions per

subdomain (and hence the resolution). We plot the con-

vergence of the L∞ norm of the constraint energies for the

highest spin simulation of this study, which has the greatest

level of constraint violation, in Fig. 8. We find that the error

decreases exponentially with resolution. The lower spin

simulations have similar qualitative behavior.

APPENDIX B: PONTRYAGIN DENSITY

IN 3+ 1 SPLIT

Since numerical relativity computations are formulated

in a 3þ 1 split, we must compute the scalar field’s source

term—the Pontryagin density—in terms of 3 dimensional

quantities. First, it is straightforward to verify

FIG. 8. Numerical error convergence for the highest spin (0.3 ẑ)
simulation performed in this study, which shows the greatest level

of constraint violation. We plot the L∞ norm of the constraint

energy defined in Eq. (A10) for the low, medium and high

numerical resolutions (adding a constant number of angular and

radial basis functions to increase resolution). Note that these

constraints are not normalized, but the relative error between the

levels shows exponential convergence. The constraint energy

increases at merger, which also happens in the metric evolution

system, and is consistent with other BBH simulations.
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�RR≡ �RabcdRabcd ¼ �CabcdCabcd; ðB1Þ

where Cabcd is the Weyl tensor, and its left dual is
�Cabcd ≡ 1

2
ϵabefCef

cd. Thus we do not need to consider

all of Riemann, but only its trace-free part, Weyl. The

Pontryagin density is completely insensitive to the Ricci

part of curvature.

In a 4-dimensional numerical relativity simulation, it is

especially convenient to decompose Weyl into its electric

and magnetic parts, defined as

Eab ≡þCacbdn
cnd; ðB2Þ

Bab ≡ −�Cacbdn
cnd: ðB3Þ

The minus sign in (B3) follows the conventions of [66,67]

and the implementation in SPEC [32], though much of the

literature has a plus sign. From the symmetries of Weyl, the

two tensors Eab and Bab are both symmetric (Eab ¼ EðabÞ
and Bab ¼ BðabÞ), purely spatial (Eabn

a ¼ 0 ¼ Babn
a), and

trace-free (Ea
a ¼ 0 ¼ Ba

a). We may also write an inver-

sion formula for Weyl in terms of Eab and Bab (thanks to

Alfonso García-Parrado for bringing this inversion formula

to our attention),

ðB4Þ

where the operator is a projector that imposes the

symmetries of the Riemann tensor (Rabcd ¼ R½ab�½cd� ¼
Rcdab). Here we have the induced 3-dimensional volume

element,

ϵabc ≡ ndϵdabc; ϵabcd ¼ −4n½aϵbcd�: ðB5Þ

For coordinate component calculations, we use the con-

ventions where ϵabcd ¼ þ ffiffiffiffiffiffi

−g
p ½abcd� where ½abcd� is the

alternating symbol, with ½0123� ¼ þ1 (see e.g. [68]). We

also have ϵabcd ¼ −½abcd�= ffiffiffiffiffiffi

−g
p

, and similar conventions

for the 3-dimensional volume element: ϵabc ¼
ffiffiffi

γ
p ½abc�

and ϵabc ¼ ½abc�= ffiffiffi

γ
p

(this makes use of the identity
ffiffiffiffiffiffi

−g
p ¼ α

ffiffiffi

γ
p

).

With this above decomposition, it is easy to verify that

the Pontryagin density can be expressed simply in terms of

the electric and magnetic parts of Weyl,

�RR ¼ −16EabB
ab: ðB6Þ

Thus all that remains is to compute Eab and Bab from

other quantities. Finding these expressions for E and B
comes from the standard Gauss-Codazzi-Mainardi (GCM)

equations (see [65] for a didactic explanation). After using

the GCM equations, for the electric Weyl tensor we find

Eab ¼ KabK
c
c −Ka

cKbc þ ð3ÞRab

−
1

2
γa

cγb
dð4ÞRcd −

1

2
γabγ

cdð4ÞRcd þ
1

3
γab

ð4ÞR: ðB7Þ

Here ð3ÞRab is the spatial 3-Ricci tensor while
ð4ÞRab is the

4-Ricci tensor, and Kab is the extrinsic curvature of the

spacelike hypersurface. The second line of (B7) contains

4-Ricci terms which would vanish if the 4-metric was

Ricci-flat, for example if it solves the Einstein equations in

vacuum. These terms were not included in e.g. [69].

Meanwhile, for the magnetic Weyl tensor we find the

simple expression

Bab ¼ −ϵcdðaD
cKbÞ

d; ðB8Þ

where Da is the covariant derivative induced on the 3-

surface which is compatible with the 3-metric, Daγbc ¼ 0.
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