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Testing general relativity in the nonlinear, dynamical, strong-field regime of gravity is one of the major
goals of gravitational wave astrophysics. Performing precision tests of general relativity (GR) requires
numerical inspiral, merger, and ringdown waveforms for binary black hole (BBH) systems in theories beyond
GR. Currently, GR and scalar-tensor gravity are the only theories amenable to numerical simulations. In this
article, we present a well-posed perturbation scheme for numerically integrating beyond-GR theories that
have a continuous limit to GR. We demonstrate this scheme by simulating BBH mergers in dynamical Chern-
Simons gravity (dCS), to linear order in the perturbation parameter. We present mode waveforms and energy
fluxes of the dCS pseudoscalar field from our numerical simulations. We find good agreement with analytic
predictions at early times, including the absence of pseudoscalar dipole radiation. We discover new
phenomenology only accessible through numerics: a burst of dipole radiation during merger. We also
quantify the self-consistency of the perturbation scheme. Finally, we estimate bounds that GR-consistent

LIGO detections could place on the new dCS length scale, approximately £ < O(10) km.
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I. INTRODUCTION

General relativity has been observationally and experi-
mentally tested for almost a century, and has been found
consistent with all precision tests to date [1]. But no matter
how well a theory has been tested, it may be invalidated at any
time when pushed to a new regime. Indeed, there are many
theoretical reasons to believe that general relativity (GR)
cannot be the ultimate description of gravity, from non-
renormalizability to the black hole information problem.

Moreover, from the empirical standpoint, all precision
tests of GR to date have been in the slow-motion,
weak-curvature regime. With the Laser Interferometer
Gravitational Wave Observatory (LIGO) now detecting
the coalescence of compact binary systems [2—4], we finally
have direct access to the nonlinear, dynamical, strong-field
regime of gravity. This is an arena where GR lacks precision
tests, and it may give clues to a theory beyond GR. The
LIGO collaboration has already used the detections of
GW150914, GW151226, and GW170104 to perform some
tests of GR [4,5], but these are not yet very precise: a model-
independent test gives 96% agreement with GR.

Both black hole (BH) and neutron star (NS) binaries
probe the strong-field regime. However, NSs have the
added complication that the equation of state of dense
nuclear matter is presently unknown. Until more is known
about the equation of state, we must rely on binary black
holes (BBHs) for precision tests of GR. Yunes, Yagi, and
Pretorius argued [6] that the lack of understanding of BBH
merger in beyond-GR theories severely limits the ability to
constrain gravitational physics using GW150914 and
GW151226. Thus, to perform tests of GR with BBHs,
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we require inspiral, merger, and ringdown waveform
predictions for these systems, which can only come from
numerical simulations.

To date, BBH simulations have only been performed in
GR and scalar-tensor gravity [7] (note that BBHs in massless
scalar-tensor gravity will be identical to GR, under ordinary
initial and boundary conditions). There are a huge number of
beyond-GR theories [7], and for the vast majority of them,
there is no knowledge of whether there is a well-posed initial
value formulation, a necessity for numerical simulations.
Indeed, there is evidence that dynamical Chern-Simons
gravity, the beyond-GR theory we use here as an example,
lacks a well-posed initial value formulation [8].

Our goal is to numerically integrate BBH inspiral,
merger, and ringdown in theories beyond GR that are
viable but that do not necessarily have a well-posed initial
value problem. This goal is relevant even for those only
interested in parametric, model-independent tests, because
there is presently no theory guidance for late-inspiral and
merger waveforms in theories beyond GR.

We are only interested in theories that are sufficiently
“close” to GR: for a theory to be viable, it has to be able to pass
all the tests that GR has passed. This motivates an effective
field-theory (EFT) approach. We assume that there is a high-
energy theory whose low-energy limit gives GR plus “small”
corrections. The effective theory of GR with corrections does
not need to capture arbitrarily short-distance physics. Such a
theory is valid up to some cutoff, and modes shorter than this
distance scale are said to be outside of the regime of validity of
the EFT. The EFT only needs to be well-posed for the modes
within the regime of validity. This can be accomplished with
perturbation theory.
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We present a perturbation scheme for numerically
integrating beyond-GR theories that limit to GR. For such
a theory, we perturb it about GR in powers of the small
coupling parameter. We collect equations of motion at each
order in the coupling, creating a tower of equations, with
each level inheriting the same principal part as the back-
ground GR system. The well-posedness of the initial value
problem in GR [9] thus ensures the well-posedness of this
framework, even if the “full” underlying theory may not
have a well-posed initial value formulation.

In this study, we apply our perturbation framework to
BBH mergers in dynamical Chern-Simons gravity (dCS)
[10], to linear order in perturbation theory. This theory
involves a pseudoscalar field coupled to the parity-odd
Pontryagin curvature invariant with a small coupling
parameter, and at linear order gives a scalar field evolving
on a GR BBH background.

There are a number of theoretical motivations for con-
sidering dynamical Chern-Simons. The dCS interaction
arises when cancelling gravitational anomalies in chiral
theories in curved spacetime [11-13], including the famous
Green-Schwarz anomaly cancellation in string theory [14]
when compactified to four dimensions [10,15,16]. DCS also
arises in loop quantum gravity when the Barbero-Immirzi
parameter is allowed to be a spacetime field [17,18]. From an
EFT standpoint, dCS is the lowest-mass-dimension correc-
tion that has a parity-odd interaction. All other EFTs at the
same mass dimension have parity-even interactions, so the
phenomenology of dCS is distinct [19]. The dCS interaction
was also included in Weinberg’s EFT of inflation [20].

From a practical standpoint, there are already a large
number of dCS results in the literature that we can compare
against [19,21-26], including post-Newtonian (PN) calcu-
lations for the BBH inspiral. One of the more important results
is that scalar dipole radiation is highly suppressed in dCS
during the inspiral [19]. Dipole radiation is present in scalar-
tensor theory and Einstein-dilaton-Gauss-Bonnet (EAGB),
and enters with two fewer powers of the orbital velocity (i.e.
1 PN order earlier) than the leading quadrupole radiation of
GR. This leads to gross modifications of the inspiral, but dCS
avoids this problem because the dipole is suppressed. As a
result, the perturbative treatment of dCS will be valid for a
longer period of inspiral than scalar-tensor or EdGB.

The paper is organized as follows. Section II covers the
analytical and numerical formalisms. More specifically, in
Sec. I A we introduce dynamical Chern-Simons, and in
Sec. II B we present the perturbation scheme, which is valid
for any theory with a continuous limit to GR. We discuss
the numerical scheme in Sec. II C (some numerical details
are in the Appendix). We present the results of numerically
implementing this formalism in dCS on three different
binary mergers in Sec. III. Section III A reviews some
previously-known analytic phenomenology of the BBH
inspiral problem in dCS. Section III B presents the wave-
form results, and IIIC presents the energy fluxes, both
including comparison to PN. In Sec. IIID we use the
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numerical results to assess the validity of the perturbation
scheme. In Sec. IIE we use the numerical results to
estimate the detectability of dCS and the bounds that could
be placed by LIGO detections. We conclude and discuss in
Sec. IV, and lay out plans for future work.

II. FORMALISM

Throughout this paper, we set ¢ = 1 and 2 = 1 so that
[M] = [L]~". Since there will be more than one length scale,
we explicitly include factors of the reduced Planck mass
m;lz = 87G and the “bare” gravitational length GM,

though quantities in our code are nondimensionalized
with GM = 1. Latin letters in the middle of alphabet
{i,j,k,I,m,n} are (3-dimensional) spatial indices, while
Latin letters in the beginning of the alphabet {a, b, ¢, d}
refer to (4-dimensional) spacetime indices. We follow the
sign conventions of [9], and g,,, refers to the 4-dimensional
spacetime metric, with signature (—+++), and with V its
Levi-Civita connection.

A. Action and equations of motion

The method we present in this paper applies to a large
number of beyond-GR theories that have a continuous limit
to GR, but for concreteness we focus on dCS. We start with
the four-dimensional action

I:/d4x\/_g[LEH+L19+Lint+Lmat+"']7 (1)

where the omitted terms (...) are above the cutoff of our
EFT treatment. Here g without indices is the determinant of
the metric, Lgy is the Einstein-Hilbert Lagrangian, L 4 is the
Lagrangian of a minimally coupled (pseudo-)scalar field 3
(also referred to in the literature as the axion), L;, is a
beyond-GR interaction between 9 and curvature terms, and
L .. 1s the Lagrangian for ordinary matter. In this paper, we
are considering a binary black hole (BBH) merger in dCS,
so we ignore L.
Explicitly, these action terms are given by

my
R

_ 1 2
-5k Ly= 5(8'9% (2a)

LEH =

Ly = — % £29*RR. (2b)

Here the Ricci scalar of g,, is R. With our unit system,
[g] = [L]°, coordinates carry dimensions of length, [x] =
[L]!, and note that the scalar field d has been canonically
normalized, [9] = [L]~'. We have omitted any potential
V(9), so d is massless and long-ranged, as appropriate for a
“gravitational” degree of freedom. In the interaction
Lagrangian L;,, the scalar field § is coupled to the
4-dimensional Pontryagin density (also known as the
Chern-Pontryagin density) *RR,
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_ 1 :
*RR = *RadeRubcd = EeahefRedeRahcdv (3)

where €., is the fully antisymmetric Levi-Civita tensor.

The coupling strength of this interaction is governed by
the new parameter # with dimensions of length. This
parameter takes on specific values if this EFT arises from
the low-energy limit of certain string theories [14] or to
cancel gravitational anomalies [13,15,16]. However, here
we simply take it as a “small” coupling parameter. In the
limit that £ — 0, we recover general relativity with a
massless, minimally coupled scalar field.

The coupling parameter conventions vary throughout the
literature. To enable comparisons, we express the couplings
of a number of works in terms of our conventions. To put
Yagi et al. [19] into our conventions, use

mplfz
8 9

To convert Alexander and Yunes [10] into our conventions,

1
—m2 aYSYT =

YSYT
K —2 pls

ﬂYSYT =1. (4)

To compare with McNees et al. [27], use

f2
aMSY = +? . (6)

MSY _ , -1
K =my,

The conventions of Stein [26] agree with ours (except for an
inconsequential sign change in the definition of *RR, which
is compensated for by an additional sign everywhere *RR
appears).

Below we will perform an expansion in powers of #2. To
simplify matters, we insert a dimensionless formal order-
counting parameter ¢ that will keep track of powers of #2.
Expanding in a dimensionless parameter ensures that
field quantities at different orders have the same length
dimension.

Specifically, we replace the action in Eq. (1) with

I, = /d“xv —g[Lgy + Lo+ L+ Ly + -], (7)

a one-parameter family of actions parameterized by e.
Formally, we recover the action in Eq. (1) when ¢ = 1.

Varying the action Eq. (7) with respect to the scalar field,
we have the sourced wave equation

09 = e%ﬂ*RR, 8)

where [1 = V,V is the d’Alembertian operator. Varying
with respect to the metric gives the corrected Einstein field
equations,

mglGab + mpleszab = Tzh + Tzn}?t, (9)
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where G, is the Einstein tensor of ¢,,,, and the tensor C,,
includes first and second derivatives of 9, and second and
third derivatives of the metric,

Cub = ecde(anRb)”V"19 + *R”(ab)dvcvd& (10)

Since we are focusing on BBH mergers, 7% = 0. The
scalar field’s stress-energy tensor 7%, is given by the
expression for a canonical, massless Klein-Gordon field,

1
Tgb = Vaﬁvbél - Egabvcélvc& (1 1)

From here forward we will drop the superscript 9.
The “full” system of equations for dCS is thus the pair of
Egs. (8) and (9).

B. Perturbation scheme

Because C,, in Eq. (9) contains third derivatives of the
metric, the “full” system of equations for dCS likely lacks a
well-posed initial value formulation [8]. In the language of
particle physics, this is equivalent to the appearance of
ghost modes above a certain momentum scale [28].

From the EFT point of view, though, the ghost modes
and ill-posedness are nothing more than the breakdown of
the regime of validity of the theory, which should be valid
for long wavelength modes in the decoupling limit £ — 0.
To excise the ghost modes and arrive at a well-posed initial
value formulation, we expand about ¢ = 0, which is simply
GR coupled to a massless minimally-coupled scalar field
and certainly has a well-posed initial value problem [9].
As a result, all higher orders in ¢ will inherit the well-
posedness of the zeroth-order theory, by inheriting the
principal parts of the differential equations.

We begin this order-reduction scheme by expanding the
metric and scalar field in power series in ¢,

0 = k
Gav = Gy + > &Ry,
k=1

(12a)

9=Y 9, (12b)

o0

k=0

Note that since ¢ is dimensionless, each %) has the same
units as 9, and similarly for hg;). This expansion is now
inserted into the field equations, which are likewise
expanded in powers of &, and we collect orders homo-
geneous in X, as below. This results in a “tower’” of systems
of equations that must be solved at progressively increasing
orders in €. This scheme is quite general, and should apply
to any theory that has a continuous limit to GR.

"Note that this is not a Taylor series, since there is no factor of
1/k! in the kth term. These factors must be tracked if using
standard perturbation theory, e.g. with the xPert package [29,30].
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1. Order €°

Zeroth order comes from taking & — 0, which simply
gives the system of GR coupled to a massless, minimally
coupled scalar field,

m2Gaplg®) = T4, (13a)

0090 = o, (13b)
where G,,[g\”)] is the Einstein tensor of the background
metric ¢, 0 is the associated d’ Alembert operator, and
T©) is the stress-energy of 9(°). This system certainly has a
well-posed initial value problem.

Because of the explicit presence of ¢ in front of L;,, in the
action [Eq. (7)], C,, does not appear in the metric
equation (13a), and the Pontryagin source does not appear
on the right-hand side of the scalar equation (13b). These
terms have been pushed to one order higher and will
appear below.

On general grounds, we expect that any initially non-
vanishing scalar field will radiate away within a few
dynamical times. Similarly, if we start with a 9% =0
initial condition and impose purely outgoing boundary
conditions, 9 will remain zero throughout the entire
simulation. Therefore, rather than simulating a vanishingly
small 9, we simply analytically assume that 8©) = 0.

Therefore, at order O(e°), the system will simply be

GuplgY] =0, (14)
and the solution will be
(99, 99) = (4R, 0), (15)

where R is a GR solution to the BBH inspiral-merger-
ringdown problem.

2. Order €!

Continuing to linear order in &, we find the system

M Gap ;90 = —mpt>Coy + 14, (162)
090+ Oe0 — TR 2FRRIO. (16b)

As noted above, the explicit presence of ¢ in the action (7)
and equations of motion [(8) and (9)] lead to C ©) and
[*RR](©) appearing in these &' equations strictly as source
terms. By construction, the principal part of this differential
system is the same as the principal part of the O(&”) system,
and thus it inherits its well-posedness property. This is true
at all higher orders in perturbation theory.

Here, GV[h(1); ¢(O] is the linearized Einstein operator,
built with the covariant derivative V(©) compatible with g(*),
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acting on the metric deformation h("). The d’Alembert
operator receives the correction OW, which depends on the
metric deformation 4(!). The quantity CES,) is the same as
the definition given in Eq. (10), evaluated on the back-
ground quantities (¢(¥,9). Similarly, [*RR]® is the
Pontryagin density evaluated on the background spacetime
metric ¢(©). Finally, T((llb) is the first-order perturbation to the
stress-energy tensor; since 7', is quadratic in 9, T((llb) has
pieces both linear and quadratic in 9(°) (the quadratic-in-
90) pieces are linear in A()).

The crucial property at this order is that both C(*) and 7(!)
are built from pieces linear and quadratic in 9. At order
O(€%), we found that 8(°) = 0. Therefore, when evaluated

on the O(&°) solution [Eq. (15)], these both vanish,
TWEO =0 =0. (17)
ab .

Therefore, at order O(e') in perturbation theory, evaluating
on the background solution, we have the system

1
m2G) M) g0 = 0,

a

(18a)

0090 = %ﬂ[*RR]m). (18b)

In the metric perturbation equation (18a), starting with
h") = 0 initial conditions and imposing purely outgoing
boundary conditions will enforce 4(!) = 0 throughout the
entire simulation. Similarly, we can argue that small pertur-
bations of (") would radiate away on a few dynamical times,
since there is no potential to confine the metric perturbations.
Once again, rather than simulating a vanishingly small field,
we will just analytically assume that 2(") = 0. Therefore, at
order O (81 ), there is no metric deformation, and the system is
only Eq. (18b), driven by the background system (14) which
generates the source term [*RR](©).

3. Order €*

This perturbation scheme can be extended to any order
desired. Although this paper reports only on work extend-
ing through O(e'), we sketch the derivation of O(&?), since
that is the lowest order where a metric deformation is
sourced.

Schematically, the system at O(&?), after accounting for
the vanishing of 8 and (), is

mAGoy (W] = —my2CL)9M] + T [9M, 9], (19a)
00092 — 0. (19b)

The operator C(V[9(V] is linear in its argument, and
T@[9M 9] is linear in each slot. Various other
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combinations have vanished. In (19a), vanishing source
terms were quadratic in () or built from the product of
hM x 90 In (19b), £2[*RR]V) is proportional to 4(!) and
thus vanishes, as do terms such as M9 (linear in A1)
and @90 (linear in 9).

We leave detailed discussion of order O(¢?) to future
work [31].

4. Summary and scaling

Let us briefly summarize the perturbative order-
reduction scheme and discuss the scaling of different
orders. The system at orders £° and &' is

O(e%): Guylg™] =0, 90 =0, (20a)
O@): 0090 = %fz[*RR}@), R =0,  (20b)
and if we were to continue to O(e?),

O(e?): GLy[h?] = mPTe 9 =0,  (20c)

where 7¢I may be determined from the right-hand side
of Eq. (19a).

Zeroth order (20a) is just vacuum GR, which has no
intrinsic scale. As is very common in numerical relativity
simulations, the coordinates used in the simulation are
dimensionless and in units of the total ADM mass,
X% = x*/(GM). This means that V may be nondimension-
alized by pulling out a factor of (GM)~!, Riemann may be
nondimensionalized by pulling out a factor of (GM)~2, etc.

Meanwhile, the new length scale and coupling parameter
¢ enters at first order. If we nondimensionalize the
derivative operator and curvature tensors in Eq. (20b),
we will find

(GM)=2000) 9 = % 2(GM)™['RR)®.  (21)

We therefore define the dimensionless scalar field ¥ via

my 4 2
9 = ?" <G—M> ¥, (22)

Then ¥ will satisfy
OO = [*RR]©. (23)

Thus the analytic dependence of 9!) on (#/GM) has been
extracted. The solution ¥ can later be scaled to reconstruct
1) for any allowable value of (£/GM).

All of the results that we present will be given in terms of
powers of the dimensionless coupling (£/GM). We will
also compare to known post-Newtonian results [24], that

PHYSICAL REVIEW D 96, 044020 (2017)

were presented in terms of }SYT. To perform the com-
parison, we use the conversion given in Eq. (4).

Finally, though we do not address O(&?) simulations in
this paper, we should still study how /(?) scales with # and
(GM). Since the perturbative scheme preserves the units of
length of fields, [2¥)] = [g] = [L]° is already dimension-
less; however, it still depends on (¢/GM) in a specific way.
When we move to units in which we measure lengths and
times in units of (GM ), we find it is appropriate to define a
scaled metric deformation Y via

4 4
1= (g ) Yo 24)

Then this dimensionless quantity Y will satisfy an equation
that is schematically

V2T + L.OT. ~ (V¥)2 + (V¥)(VR) + (V2¥)R,  (25)

where L.O.T. stands for lower order terms, and all deriv-
atives and curvatures are O(e”) dimensionless quantities.

C. Numerical scheme

For the order &' part of the order reduction scheme, our
overall goal is to solve Eq. (23) on a dynamical background
metric. We co-evolve the metric and the scalar field, where
Eq. (23) is driven by Eq. (20a). The whole system is
simulated using the Spectral Einstein Code (SrEC) [32],
which uses the generalized harmonic formulation of gen-
eral relativity in a first-order, constraint-damping system
[33] in order to ensure well-posedness and hence numerical
stability. We have added a scalar field module that is
similarly a first-order, constraint-damping system, follow-
ing [34], as outlined in Appendix A.

The code uses pseudospectral methods on an adaptively-
refined grid [35,36], and thus numerical convergence with
resolution of both the metric variables and the scalar field is
exponential. We demonstrate the numerical convergence of
the scalar field in Appendix A.

The initial data for the binary black hole background is a
superposition of two Kerr-Schild black holes with a
Gaussian roll-off of the conformal factor around each
black hole [37]. The initial data for the scalar field is
similarly given by a superposition of approximate dCS
solutions around isolated black holes, and is given in more
detail in Sec. III B.

The metric equations are evolved in a damped harmonic
gauge [38,39], with excision boundaries just inside the
apparent horizons [40,41], and minimally-reflective,
constraint-preserving boundary conditions on the outer
boundary [42]. The scalar field system, meanwhile, uses
purely outgoing boundary conditions modified to reduce
the influx of constraint violations into the computational
domain [34].
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The Pontryagin density source term *RR is computed
throughout the simulation in a 3 4 1 split from the available
spatial quantities as outlined in Appendix B.

III. RESULTS

A. Background: Phenomenology of binary
black hole inspirals in dCS

To give the proper context for our numerical results, we
first review the previously known phenomenology relevant
to this problem. Analytical and numerical results are known
for isolated black holes in the decoupling limit, and
analytical results are known for the binary black hole
problem in the decoupling limit and at slow velocities
(v/c < 1).

Any spherically-symmetric metric will have vanishing
Pontryagin density.” Thus the Schwarzschild solution with
vanishing scalar field is already a solution to the “full” dCS
system. An isolated spinning black hole in dCS, however, is
not given by the Kerr solution of GR [21,22,44,45]; the
scalar field is sourced, and the metric acquires corrections.
Analytical results for the leading-order, small-coupling
corrections to the Kerr metric have been found in the
slow-rotation approximation (a < M) [21,22,45,46].
Additionally, numerical results have been found for the
scalar field for general rotation [25,47]. The leading-order
correction to Kerr is dipolar scalar hair, while the scalar
monopole vanishes. This vanishing scalar monopole means
that scalar dipole radiation is heavily suppressed in dCS. At
a large radius away from an isolated black hole labeled by
A, the dipolar scalar field goes as

1 iy
8 =52, (26)
A

where R, is the distance from black hole A, ng is the spatial
unit vector pointing away from BH A, and 4/, is the scalar
dipole moment of the BH. This scalar dipole moment is
given by [19]

o = =3B, @)

“This is straightforward to verify with a computer algebra
system, using the canonical form for a spherically symmetric
metric, ds? = —e200:0) g2 4+ 26000 gy2 1+ 12402, Since it is true
in this coordinate system, it is true in general. This is also proven
in Appendix A of [43] following a tensorial approach. Finally,
one can appeal to a symmetry argument. If the metric is invariant
under an O(3) isometry, then the curvature tensor and *RR, being
tensorial objects built only from g, must also be invariant under
this symmetry. Therefore *RR must be a constant on each 2-
sphere. The group O(3) also contains the reflection symmetry,
sending points to their antipodes. The metric is invariant under
this reflection, but *RR must flip sign, as it is a pseudoscalar. But
then we must have *“RR = —*RR, so *RR = 0.
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where y/, is the dimensionless spin vector of black hole A,
¥y = Ji,/GM3 (this factor of G in the denominator arises
from our usage of natural units, where angular momentum
is dimensionless, [J] = [L]°, in units of 7).

The dCS binary inspiral problem in the post-Newtonian
regime (v < ¢) was first treated by Yagi et al. [19]. When
two spinning BHs with scalar dipole hair are placed in
proximity with each other, the hair is responsible for a
number of effects. First, there is a correction to the binding
energy due to the dipole-dipole interaction. Second, as the
BHs orbit each other, the net guadrupole of the binary
system has a time derivative on the orbital timescale. The
binary’s combined dipole moment is also time-varying, but
only on the spin-precession timescale, so it is heavily
suppressed. Thus in the far zone of the binary, the scalar
field exhibits predominantly quadrupole and higher radi-
ation, and no / = 0 monopole radiation.

The dominant far-zone multipole moments for the scalar
field have |m|=1-1 with />2 and the / =1 modes
radiate on the spin-precession timescale. To make compar-
ing to PN simpler, we are simulating aligned-spin systems,
so the [ = 1 mode will in fact be non-radiative at early
times. Yagi et al. [19] gave expressions for the scalar field
91 due to spinning and nonspinning binaries, presented in
terms of symmetric tracefree (STF) tensors. In most
numerical relativity work, however, we decompose fields
into spherical harmonics,

ZYIWL 0 (p l}n . (28)

Im

Using [48], we convert the STF expressions from [19,49]
into spherical harmonics at extraction radius R for a spin-
aligned binary, when the post-Newtonian approximation is
valid (the early inspiral), giving

1)FZ 477,' 1
'95,3 = \/?p(lll +u2),
gz _ [2x 1 "2 2 ™M (GMa) e,
21 15SR\"'m 2M

(1)FZ _ 321 m% m2 . i
193‘2 = \IEE 2+,U2M2 (GMw)2/3ze 2,

(29)

Here ¢ = (1) is the orbital phase, w = w(t) = ¢ is the
orbital frequency, m, is the mass of each black hole,
M = my + my, is the total mass,” and U4 1s the z component
(the only component since this calculation is for a spin-
aligned binary) of the scalar dipole moment from
Eq. (27). Note that the (1,0) mode is time-independent

’In PN literature, m is often used as the total mass. We use M
here in order to be consistent with numerical relativity literature.
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(and hence nonradiative), since we are focusing on spin-
aligned systems.

The behavior of the scalar field during the late inspiral
and merger was previously unknown, and is part of the
motivation for the present numerical study.

B. Scalar field waveforms

We performed three numerical simulations in this for-
malism, each at low, medium, and high numerical reso-
lutions, with parameters given by Table I. We chose three
values for the BHs’ dimensionless spins of 0.0, 0.1, and 0.3,
to qualitatively see the effect of spin on the physics, and to
allow for comparison with analytical calculations. While
SPEC can simulate very high spins [41], the analytics we
compare against use the small-spin expansion and stop at
linear order in spin. Therefore the O(y?) errors should be at
most ~30% of the O(y) effects we compare against.
Similarly, while modeling spin precession is possible
[50], it is not the focus of this study, and thus we have
eliminated this complication by aligning all of the spins
with the orbital angular momentum.

As mentioned in Sec. III A, the scalar field around an
isolated, slowly spinning black hole in dCS is approx-
imately a dipole. We use this analytic approximation as the
basis for our initial data, as mentioned in Sec. II C. The
initial scalar field is a superposition of two slow-rotation
dipole solutions (since all of the dimensionless spins are
<0.3), one around each black hole. We apply a boost to
account for the initial velocity of each black hole. As our
scalar field evolution system is first-order (see
Appendix A), we also initialize the variables corresponding
to the spatial and time derivatives of ¥ to the analytical
derivatives of the approximate dipole solution. For the
nonspinning simulation, we set the initial value of ¥ and its
derivatives to zero.

We plot mode-decomposed waveforms extracted from
the highest resolution simulations of the three simulations

TABLE 1. Parameters of numerical runs. Each run was per-
formed at low, medium, and high resolutions. We give the mass
ratio m, /m, where the subscripts label the black holes. All of the
spins are aligned in the z-direction, so we give the Z component of
the dimensionless spin vector x4 for each black hole. The initial
orbital frequency is Q. Initial orbital parameters were chosen so
that the eccentricity was below 5 x 107, The time simulated to
METEEr iS Iyerger» and the amount of ringdown simulated there-
after is tgp, both in units of GM. The final mass of the remnant
black hole is mg;,,, in units of M. The remnant spins are in the
z-direction, and thus we give the Z component yg, of the
dimensionless spin.

I'Mer: 1, MEinal
Q(GM)  Dueer Ze L Yigal

Name Z_l X1 X2
Spin 0.3 3.0 0.30 0.30 0.0163
Spin 0.1 3.0 0.10 0.10 0.0164

Spin 0.0 3.0 0.00 0.00 0.0190

5841 764 0.96 0.68
5452 817 097 0.59
3457 697 097 0.54
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in Figs. 1, 2, and 3. Each figure shows the (I =2,m = 2)
mode of the Newman-Penrose quantity ¥, decomposed
into spin-weight —2 spherical harmonics, and the dominant
(I,m = 1 — 1) modes of the scalar V) for [ = 1, 2, 3, along
with the PN comparisons from Eq. (29).

We immediately see that at early times, there is good
qualitative agreement between the numerical waveforms
and the PN predictions, with the (/ =2,m = 1) mode
dominating, as expected. In the PN formulas of Eq. (29),
we used the instantaneous coordinate orbital frequency and
phase calculated from the black hole trajectories for @ and
¢. Since the starting phase is arbitrary, we perform a phase

x1072
6 (GM)Re[RW™]
O_
—6—
X 1073 | | | |
e 1
9 ((/GM) 2RC[RﬂE1?0)}
O_
<]
= | Numerical
= —2 =-=-=-= Post-Newtonian
= %104 | | | |
3 _ 1
< 6o ((/GM)Re[Rv])) ] .
S| S e
—6—
X 1073 | | | |
_ 1
1 ((/GM) QRC[RﬂE?)?z)]
() = e LN
1
I I I I I I
-6 -5 -4 -3 -2 -1 0 1
(t* - tPnak)/GM X 102
FIG. 1. Waveforms for simulation with spin y = 0.3z on each

black hole. The top panel shows the real part of the (I =2,m =2)
mode of the spin-weight —2 spherical harmonic decomposition of
the Newman-Penrose scalar ¥,, extracted at a (large enough)
radius of R = 290GM. This serves as a proxy for the gravitational
waveform. The lower three panels show the (1,0), (2,1) and (3,2)
scalar spherical harmonic modes of the scalar 8(1) at R = 300G M.
The numerical values from the simulation are shown by the solid
blue curves, while the PN calculations are shown by the dashed
black curves. The time axis corresponds to the approximate
retarded time (simulation time minus extraction radius) minus the
merger time, which is computed as the time of peak amplitude

of W),

044020-7



OKOUNKOVA, STEIN, SCHEEL, and HEMBERGER

x 1072 .
a—|  (GM)Re[RU*]
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><1074 | | | |

6 ((/GM)Re[RY}). ]

Mode amplitude
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FIG. 2. Similar to Fig. 1, but with spin y = 0.1Z on each BH.

alignment (by eye) between the numerical results and the
PN waveforms.

As expected, because the spins are not precessing, there
is no dipole radiation at early times. The offset away from
zero seen in the (I = 1,m = 0) panel of Fig. 1 is a real
physical effect: it is due to the combined dipole moments of
the two individual black holes and their orbital angular
momentum. After merger, the / = 1 moment settles down
to a new non-zero value (below the resolution of this figure)
determined by the spin of the final black hole, again via
Eq. (27). In between, there is a burst of scalar dipole
radiation. This is a newly discovered phenomenon that
could not have been computed with analytic post-
Newtonian calculations. Scalar monopole radiation, mean-
while, is consistent with zero within the numerical errors of
the simulation.

C. Energy fluxes

Having solved for the scalar field 90 we can
evaluate physical quantities such as its stress-energy tensor,
Eq. (11). From Tfl),), we can compute the energy flux
through some 2-sphere S% at coordinate radius R via

PHYSICAL REVIEW D 96, 044020 (2017)

al  (GM)Re[RU\*]
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Numerical
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X
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o

o

0
—6—
T I
(t* - tPoak)/GM X 102
FIG. 3. Similar to Fig. 1, but with no spin on either BH.

E® = /S : T nadst. (30)
Here n“ is the timelike unit normal to the spatial slice, and
dS" is the proper area element of S}, i.e. dS* = N’ /ydA,
where N? is the spacelike unit normal to S%, y is the
determinant of the induced 2-metric, and dA is the
coordinate area element.

Like the metric and scalar field, we similarly expand T(a’i)

and EY in powers of &,

CED TR S
k=0 k=0

(#-0) includes the appropriate orders of both

where each E
the scalar field and metric. Since 8 =0 and T{(;Z) is
quadratic in 9, we have TSZ’()) = TE;Z’I) =0, and similarly
E®O — EO1) — 0. The first nonvanishing order is TSZ‘”,

which is given by

1
T((li.Z) — Vag(l)vbg(l) _Egahvclg(l)vcﬁ(l). (32)
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Using the results of the simulations, we compute 7', n¢,
interpolate it onto surfaces of fixed coordinate radius R,
compute T,n°N' by contracting with the normal, and
perform spectral integration with the induced area element

to obtain E*?. That is, we compute

o [ e oo
2

R

We also compute the energy flux at order (£/GM)°,

which for vanishing 8(°) consists purely of the background
gravitational energy flux, as (c.f. [51])

5O — jim & " y,ar
_RI—I>1;310167TG 82| J-c 4

where numerically we set the lower bound of the time
integral to the start of the simulation, assuming there was
comparatively little radiation before the start.

We plot the numerical values of E(*?(R) and E”)(R) in
Fig. 4, keeping (spin-weighted) spherical harmonics up
through [ = 8. We check for the convergence of the flux
quantities with increasing extraction radius, and present the
results at R = 300GM, which agree with the results
at R =200GM.

In Fig. 4 we also plot a post-Newtonian approximation to

2
dQ,  (34)

E?)_ This is computed using the far-zone PN solution for
9 from [19], which only includes the I = 2 quadrupole
radiation. We impose circular orbits and aligned spins,
convert to our conventions via Eq. (4), and reinsert the
appropriate factors of G. The result for at least one nonzero
spin is

(9.2) 5 £ \*(my m : 14/3
E®Y — _ A Y (A GMw)'/3,
PN 1536G (GM) (M)“ M“) (GMa)

(35)

and for two nonspinning black holes,

— 2 () 22 (GMw).
PN 15G (GM) 2 (M) (36)

In these expressions, y, is the dimensionless spin of black
hole A, n = mym,/M? is the symmetric mass ratio, and
om = my — m, is the mass difference.

Although the gravitational flux at order (¢/GM)" is by
far the largest energy flux, the scalar field flux at order
(¢/GM)* sharply increases before merger. The spin con-
tributions are dominant, as the scalar flux for the spin-0
simulation is comparatively small until the merger, when
nonlinearities become very important. At early times, our
fully numerical results qualitatively agree with the PN
results of [19], validating our and their calculations. We
expect the O(1) ratio between PN and full numerics in

PHYSICAL REVIEW D 96, 044020 (2017)

1 == EONR
1 - (€/GM)ET PN 7
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f 1 0.32 |
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10- 2 ]
. 0.0z __—— -
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(t* - tPoak)/GM x 10

FIG. 4. Order (¢£/GM)® and (£/GM)* energy fluxes, as a
function of time, aligned at the peak of ‘I‘f‘2>. We plot the order
(¢/GM)* numerical scalar energy flux extracted at R = 300GM
[colored solid lines; Eq. (33)] and the corresponding post-
Newtonian approximation [dashed lines, Egs. (35) and (36)],
for the highest resolution of each simulation. We also plot the
energy flux at order (£/GM)°, which consists solely of the
background gravitational radiation [Eq. (34)], for the spin 0.3
simulation (dot-dashed black line); the GW flux is the same order
of magnitude for all three spin configurations. The O(1) ratio
between PN and numerics is likely due to the PN fluxes only
including [ = 2, whereas numerical quantities are computed with
all modes up to [ = 8.

Fig. 4 stems from the PN expressions (35), (36) only
including / = 2, whereas our numerics include all modes
up through / = 8.

D. Regime of validity

Since this method is perturbative, we expect that it breaks
down—becomes invalid—at some point. There are two
types of breakdown. First, at every instant of time, there is
the question of whether the series converges. We expect that
the series should only converge when ¢ < GM, and we
assess this in Sec. III D 1. Second, over much longer times,
there will be a secular drift between the perturbative solution
and the “true” solution, so that the two solutions become out
of phase. We assess the dephasing below in Sec. III D 2.

1. Instantaneous validity

The perturbative scheme is valid pointwise at every
instant in time if the series for the metric (12a) and scalar
(12b) are convergent. Roughly, we can assess this by
comparing the magnitudes of successive terms in the series.
As shown in Sec. II B, up through order €2, the metric and
scalar are expanded as

Gap = gg,),) + ezhfb) + O(&), (37a)

044020-9



OKOUNKOVA, STEIN, SCHEEL, and HEMBERGER

9 =ed) + O(e). (37b)

Thus we cannot assess the convergence of 9 without going
to O(&?), but at O(£?) we can compare the magnitudes of

gg%) and hfb). A rough condition for convergence is that

2 0
A AT (38)
where || - || is an L? norm.

The magnitude of hazb depends on the strength of
the coupling parameter ¢, as discussed in Sec. I B 4, via

h(azb) = (¢/GM)*Y,, where Y, is independent of Z. Thus
we translate Eq. (38) into a condition on the maximum
allowed value of £/GM,

)\ 1/4
Nc(wwu> | 39)

max ”Tab” min
where C is some factor of order unity, and on the right-hand
side, the ratio is evaluated pointwise, and then the minimum
is taken over the domain outside of the apparent horizons,
at each coordinate time. At values of #/GM larger than this
estimate, we expect the perturbative approach fails to

converge somewhere in the spacetime.

In these order ¢' simulations, we have not simulated Y.
We can, however, make scaling estimates from its sche-
matic equation of motion, Eq. (25). The source term

4
GM

mplfzcglg should be of the same order of magnitude as

Tffh) (which we do compute in the simulations), so to within
an order of magnitude, we estimate

OO ~ T4 [W], (40)
1
I~ 1T 21 (41)

Here L is a characteristic curvature length scale, and
T,,[¥] is shorthand for the “stress-energy” T,,[¥] =
VWYV, ¥ -1g,,(V¥)?. Therefore, we estimate the
allowed value for £/GM as

o g\
~CL™! (—) . 42
1T T 42)

i
GM

max min

We plot this estimate in Fig. 5 for each of the spin
configurations considered in this study. During inspiral, the
curvature is highest around the smaller black hole, so we let
L = min(Gm,Gm,). After merger, we let L = Gmpgipy
(see Table I for values).

We can compare our estimates for the regime of validity
|€/GM)|,,.x to those computed in Stein [26]. Stein com-
puted |£/Gm|,,, of a stationary, isolated black hole as a
function of y of the body, using methods that are

PHYSICAL REVIEW D 96, 044020 (2017)

1 01__ - 0.3z
g 1N\N 0.1z Perturbation
3 NXX 0.0z theory invalid
= 4
— 10"
] Perturbation theory valid
T T T T || T T T T T | T
—2 —1 ;
(t - tMerger)/GM x10
FIG. 5. Estimate of instantaneous regime of validity of pertur-

bation theory for each of the binary black hole configurations in
this study, as a function of coordinate time relative to merger.
Perturbation theory in powers of |£/GM]| is invalid in the shaded
region above each curve. The maximum allowed value of
|¢/GM| comes from Eq. (42). The jaggedness at early times
is due to p-refinement of the spectral subdomains causing points
to cross the mask outside of apparent horizons. The jump near
time of merger is due to formation of the common horizon. After
merger, the remnant black hole governs |¢/GM|,,,,. Since all
simulations have comparable remnant spins (see Table I), the
final values of valid |¢/GM| are similar.

independent of ours. At late times, we find direct agree-
ment, at the 5% level, by setting C = (32)"/* ~2.38. At
early times, after including a factor of M/m, to convert
from |£/GM]| to |£/Gm,|, we again find agreement. At
early times, the low-spin simulation has a very large
regime of validity, because the Pontryagin density is small,
and hence Chern-Simons effects are also small. However,
approaching the time of merger, orbital motion and non-
linearities source enough energy density in the scalar
field to restrict the regime of validity of |£/GM]| to order
unity.

2. Secular validity (dephasing)

The true physical system at € > 0 radiates energy more
quickly than the GR-only (¢ = 0) solution that we are using
as the background for perturbation theory. As a result, the
true solution will inspiral more quickly, so the orbital phase
will have a secularly growing deviation away from the
background. A post-Newtonian scaling estimate (see
below) says that the standard solution will break down
over a secular timescale of order T, ~ TSR (£/GM) 2072,
where TSR is the radiation-reaction timescale in GR. This
scaling (£/GM)~ is characteristic of singular perturbation
theory [52-54].

If the length of a detected gravitational waveform is long
compared to the secular breakdown time, then we will need
a method to extend the secular regime of validity of the
calculation—for example, multiple-scale analysis (MSA)
[52] or the dynamical renormalization group [53,54]. We
save this issue for future work. Here, we will estimate the
dephasing time (secular breakdown time).
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Let us focus on quasicircular, adiabatic inspirals.
Similarly to the scalar field and metric variables in
Egs. (12a) and (12b), we can expand the accumulated

orbital phase ¢(7) and the orbital frequency w(r) = ¢(¢) of
the binary in powers of &,

¢ =P + eV + 29 + O(&%), (43)

o =09 + V) + 20 + O(e?), (44)

where ¢(©) corresponds to the phase of the binary in pure
GR, and ¢! contains the dCS corrections at order &' and
so on. Since the metric deformation at O(e') vanishes, the
phase correction at O(e') also vanishes, ¢(!) =0 = (V).
The first nonvanishing orbital phase correction is

Ap=¢p?). (45)

We can use A¢ to assess the secular regime of validity, and
in Sec. III E we will also use it to assess the detectability of
dynamical Chern-Simons.

We do not have A¢ directly from the simulation,
as we do not evolve the &2 system. However, we can
estimate it from previously known analytical results
combined with numerical quantities available during the
simulation.

Consider the local-in-time expansion of the orbital phase
correction A¢ around any “alignment time” f,

+O(t—19)°, (46)
1 dw®
Ap(1) = A1) + (1 = 1) (1) + §<t B
+ O(t - tO)S (47)

If our simulation had started at reference time ¢, then we
would have Ag(ty) = 0. The linear piece (¢ — to)w® (1)
corresponds to a perturbative, instantaneous frequency
shift, which is completely degenerate with a renormaliza-
tion of the physical mass M(¢) in terms of the “bare” mass
M (e = 0). Therefore, the constant and linear pieces of this
expansion are not observable.

However, the curvature (¢ — fo)?dw'? /di|,_, cannot be
redefined or scaled away. Therefore, within a sufficiently
short window of time around the alignment time 7, the
deformation to the orbital phase is given by

,dw®
dt

A = +O((t—1y)%). (48)

1=ty

(t=1)
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We use this to define the perturbative secular time 7' (7)
at any instant f, via

1 dw®
I~Ap=-—T2. —| 49
¢ 2 sec dt I:lo ( )
1do® -1/2
sec = | A @ B (50)
2 dr |,
0

roughly the time to dephase by order one radian.

Thus we need to estimate dw'? /dt from our simulation.
Under the assumption of quasicircular, adiabatic orbits,
there is a one-to-one correspondence between the orbital
frequency w and orbital energy E. In other words, there
exists a function of one variable, E(®) or @(E). Therefore
from the chain rule we can find the time derivative

do dodE dE/dt

== 51
dt dEdt dE/dw (51)

This depends on the conservative sector through the
frequency-dependence of orbital energy, dE/dw, and on
the dissipative sector through the radiated power, dE/dt.
Just as with the frequency, we expand the orbital energy in
powers of &,

E =EO 4+ ¢EV) + 2E? 1 O(&). (52)

We can then use this to expand Eq. (51) in powers of ¢. The
O(€?) piece is given by

do?  dw® [dE®/dt dE®? /dw
dt — dt |[dE9/dt dEO)/dw|

(53)

The prefactor dw'®)/dt is simply the background (GR)
evolution of the orbital frequency. The first term in square
brackets in Eq. (53) comes from the dissipative sector of the
dynamics, since it depends on the radiated power dE?) /dt.
The second term, meanwhile, comes from the conservative
sector, as it depends on the correction to the orbital energy
E®(w). Both of the factors in square brackets scale as
(¢/GM)*v* [19,24] for BBHs with spin. Plugging this
scaling into Eq. (50) recovers Ty ~ TSR(£/GM) 2072,

We find it useful to rewrite dE©) /dw in the second term
using the chain rule (51) to give

dao®

dt— dE©)/dr| dt dt

do©/dt [dE®  dw® dE?)
B do |

(54)

Now we can discuss how to evaluate these factors from our
numerical simulation and previously known analytical
results. The background energy flux dE©/dr comes
from the numerical simulation via Eq. (34). We also have
the background frequency evolution dw(®)/dt from the
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numerical simulation, via a time derivative of the coor-
dinate orbital frequency.

The two O(€?) quantities require approximations. In the
dissipative sector, there are two contributions to dE®?) /dt:
the first from scalar radiation, and the second from
gravitational radiation. We expect these to be the same
order of magnitude. Since we do not have access to the
gravitational radiation, we approximate that to within an
order of magnitude,

E® ~ E02) (55)

where E(*2) was given in Eq. (33). This is further justified
during the inspiral, where the O(¢?) dissipative correction
due to gravitational waves is higher-PN than the scalar
radiation [19].

In the conservative sector, we can approximate E?) (@)
from a post-Newtonian calculation [24,49]. The (PN-
approximate) correction to the orbital energy E?) also
has two pieces: the scalar binding energy and the metric-
deformation binding energy. Again we are going to make
an approximation and ignore the metric deformation piece,
approximating

9.2

E®() ~ By, (56)
where E]g'g]% is the scalar dipole-dipole interaction. After
accounting for a missing minus sign in [24,49], this is
given by

3t ln!2
9,2 1275
EgY = P i (57)
Az
= 7[3(/41 : n12><ﬂ2 : "12) - (/h 'Hz)]’ (58)
12

where again !, is the scalar dipole moment given in
Eq. (27). In our case the spins are in the Z direction, so
the (uy - nyo) term vanishes. To leading PN order, we use
the Kepler relation w*> = GM/r}, and obtain

9.2

E]<)D) = 4xa*(GM) ™ 1y (59)
(8.2)
dE
% = 8w (GM)™ o, (60)

where p4 now refers to the Z component. For @ we again
use the coordinate orbital frequency from the simulation.

To summarize this calculation: we are approximating the
secular breakdown time 7. [Eq. (50)] by assuming a
quasi-circular, adiabatic inspiral, and thus we compute
dw'® /dt, Eq. (54). We approximate the dissipation E®)
from only the scalar flux, Eq. (55). We approximate the
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FIG. 6. Estimate of secular regime of validity from dephasing
time Ty, Eq. (50). The perturbative scheme is valid within a
sufficiently short time window |f — #| < T about an alignment
time 7. For longer times, multiple-scale analysis or renormaliza-
tion will be needed to extend the regime of validity. The
dephasing time is parametrically longer than the GR radiation
reaction time, T, ~ Tgﬁ(f /GM)~2v72. As expected it shrinks
toward merger, remaining nonzero.

conservative correction E?)(w) from the post-Newtonian
scalar dipole-dipole interaction, Eq. (56).

In Fig. 6 we plot (£/GM )*T.(t,), the time to secularly
dephase by about ~1 radian, around various alignment
times f,. We have checked that at early times, this
numerical estimate agrees with an analytic PN estimate.
As expected, T is parametrically longer than the GR
radiation-reaction time. The time window for secular
validity shrinks approaching merger, but does not vanish.

The value of T, and hence secular regime of validity, is
smallest near merger. For the spin 0.3 simulation, just before
merger, we find the time to dephase by about 1 radian
from the GR background is T, ~ 15GM(£/GM)=2. If
Advanced LIGO detects a gravitational waveform of
length, say, 200G M, then a perturbative calculation without
MSA/renormalization would be valid for (¢/GM) < 1/4.
For longer waveforms or larger values of (£/GM), MSA or
renormalization would be required. However, larger values
of (£/GM) will be very close to the limit on the instanta-
neous regime of validity, Fig. 5.

E. Detectability and bounds estimates

We now turn to the issue of how well Advanced LIGO/
Virgo would be able to detect or bound the effects of
dynamical Chern-Simons gravity from observations of a
binary black hole merger. As we do not yet have metric
waveforms [that arise at O(&?)], we make order-of-magni-
tude projections of detectability and bounds from the
dephasing estimates in the previous section.

Suppose that LIGO detects a gravitational waveform
similar to one of those we have simulated, with approx-
imately 5 cycles of inspiral in band before merger—similar
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FIG. 7. Estimated orbital phase difference (top) for the three

different simulations as a function of time, given by the quadratic
approximation Eq. (48). We choose the alignment time #; to be
when the common apparent horizon forms, the last time when we
have access to the orbital frequency. From A¢ we can estimate
how large ¢ must be for a detectable deviation from GR, or
project bounds on ¢ for GR-consistent detections. For reference,
we also plot the gravitational waveform (bottom) from the spin
0.3 simulation, with approximately 5 cycles of inspiral before
merger. This is approximately how many cycles were seen in
GW150914 [2]. The two other simulations’ gravitational wave-
forms are similar.

to GWI150914 [2], with a total mass approximately
M ~ 60 M. Such a detection would come with errors
due to noise and calibration uncertainty; let us define the
overall waveform phase uncertainty o4 Let us further
assume that the dCS corrections to the full waveform
are not degenerate with redefining bare binary parameters.
Upon detection there are two distinct possibilities: (i) the
detected waveform is consistent with GR predictions; or
(ii) the detection is inconsistent with any point in the GR
parameter space.

In the case of consistency, we would be able to place
bounds on the size of Z. Crudely, we would be able to say

Ay, =2A¢ < 0y, (61)

where the factor of two comes from the gravitational wave
being at twice the orbital frequency. If we have consistency
with GR, then the quadratic approximation for A¢ in
Eq. (48) holds.

We plot the quadratic approximation to the orbital phase
difference (relative to GR) in Fig. 7. By taking the
maximum value of A¢ over the length of the waveform,
and taking into account the scaling with (£/GM)*, we can
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derive a projected bound on 7. For example, from the spin
0.3 simulation and M ~ 60 M, we would find

f U¢ 1/4 O'¢ 1/4
L )<o013 £<1km(22)" (62
<GM> <01> o s (0.1 (62)

and from the spin 0.1 simulation,

y 1/4 o\ /4
)< < ¢
<GM> 0.2 (0 1> or ¢ <18 km (O.l) . (63)

The spin 0.0 simulation would only give (¢/GM)S
1.4(6,4/0.1)!/4. Such a bound would be past the instanta-
neous regime of validity limit during merger for this
simulation (see Fig. 5). It is not internally self-consistent
to use this perturbative result to claim a constraint on the
regime past perturbative validity, so conservatively, no
statement can be made. The higher spin simulations do
not suffer from this problem.

These bounds forecasts can immediately be turned
around into detectability forecasts. We can forecast that
dynamical Chern-Simons corrections would be detectable
inaM ~ 60 M binary with parameters consistent with our
spin 0.3 simulation if # 2 11 km, and similarly for the spin
0.1 simulation if Z > 18 km.

We can draw three simple lessons on detectability and
bounds from these results. First, better phase sensitivity
(smaller o) is an obvious way to improve the odds of
detectability, or place stronger bounds. This comes from
improved detector sensitivity, but also from higher signal-to-
noise ratio (SNR) events. Second, at fixed phase sensitivity,
lower-mass events would be better than higher mass events,
to a point. Lower mass events obviously have smaller GM,
but they also spend more time in band, and thus have more
time for dephasing. There is a tradeoff, though, because
lower mass events are quieter, and also because most of the
dephasing comes right before merger—so the mass must be
high enough for merger to be in band. Finally, we can easily
see that higher spin systems would lead to stronger con-
straints or a better chance of detecting dCS effects.

Let us compare our projected bounds to those appearing
previously in the literature. Ali-Haimoud and Chen [55]
used solar system data from Gravity Probe B and the
LAGEOS satellites to constrain the characteristic length
scale to Z < 10® km. Yagi, Yunes and Tanaka [22] found a
similar bound from table-top experiments. This is compa-
rable to the curvature radius in the solar system.

Yunes and Pretorius [21] applied a precession calculation
from the extreme mass-ratio limit to PSR J0737-3039 to
estimate a constraint of # < 10* km. However, this calcu-
lation missed some effects (such as the scalar binding
energy), and the mass ratio of PSR J0737-3039 is very
close to 1. Moreover, the curvature radius at the surface of
one of the NSs in this system should be order ~10 km,
which means there is room between 10-10* km where #
could be large compared to the curvature length, and thus
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the calculation would not be internally self-consistent.
Yagi, Stein, Yunes, and Tanaka [24] performed a more
careful analysis, using post-Newtonian theory for binary
NS systems. They concluded that even PSR J0737-3039,
with its high orbital velocity and exquisite timing, would
not be able to yield a constraint on dCS for the foreseeable
future, and that gravitational wave measurements would be
the best hope.

Yagi, Yunes, and Tanaka [23] used post-Newtonian
calculations to project the level of constraints that might
arise from second and third generation GW detectors. If
next-generation detectors such as Einstein Telescope [56]
were to observe binary black hole inspirals consistent with
GR, then YYT project a bound of # < O(10-100) km.
Second-generation ground-based detectors could place a
similar constraint. The only caveat here is that YYT use
post-Newtonian estimates, stopping at the ISCO frequency,
for systems that would be seen not only in the inspiral, but
also in the merger and ringdown, where PN is invalid. The
additional SNR contributed by merger and ringdown will
likely improve constraints.

Stein and Yagi [49] projected a number of constraints on
¢ based on both pericenter precession in pulsar binaries and
gravitational wave measurements. For a LIGO detection of
a (10 + 11)M,, BBH inspiral, consistent with GR, at an
SNR of 30, they projected a bound on the order of
¢ < 10 km. Note that this is the same order of magnitude
as the projected bound we estimate here.

Finally, Stein [26] projected a bound based on the
observations of the black hole candidate GRO J1655-40.
Assuming observations were consistent with GR, Stein
projected a constraint of ¢ <22 km. However, such a
constraint would require (for example) accretion disk
modeling in the presence of the dCS correction, which
has not been simulated.

IV. DISCUSSION AND FUTURE WORK

In this study, we have performed the first fully nonlinear
inspiral, merger, and ringdown numerical simulations of a
binary black hole system in dynamical Chern-Simons
gravity. These are the first BBH simulations in a theory
besides general relativity and standard scalar-tensor gravity.
BBH in scalar-tensor is identical to that in GR, unless one
imposes an external scalar field gradient [57,58]. Therefore
these are also the first numerical simulations in a theory
where the BBH dynamics differ from GR under ordinary
initial and boundary conditions.

The “full” equations of motion for dCS, and many other
corrections to GR, probably lack a well-posed initial value
formulation. This is not an obstacle if the corrections are
treated as being a low-energy effective field theory. In
Sec. II we formulated a perturbation scheme which guar-
antees a well-posed initial value problem. We stress that
this scheme is applicable not just to dCS, but also any
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deformation of general relativity which has a continuous
limit to GR.

We performed fully nonlinear numerical simulations
through order O(e') in the perturbation scheme. We
simulated binaries with mass ratio ¢ = 3 and aligned spins
with equal dimensionless spin parameters y; = y,, taking
on three values, y = 0.0, 0.1, 0.3. The background (&%)
metric radiation and perturbative (e') scalar radiation
waveforms are presented in Sec. III B. We found good
agreement with PN waveform predictions [19,24] during
the early inspiral.

We have also discovered new phenomenology in dCS. In
agreement with PN predictions, dCS does not suffer from
dipole radiation during the early inspiral. However, during
merger, there is a burst of dipole radiation. This phenome-
non can only be studied with full numerical simulations.

We extracted energy fluxes in Sec. III C, finding good
agreement with PN at early times. We found that the scalar
field’s O(¢?) energy flux during the inspiral was approx-
imately 107%(¢#/GM)* times smaller than the correspond-
ing O(£°) (GR) energy flux for the highest spin simulation,
rising to a 1073(£/GM)* fraction of GR during merger.
This energy flux enters into our detectability estimate.

Since we use a perturbative scheme, it is important to
understand where perturbation theory breaks down. In
Sec. IID I we estimated the maximum values of £/GM
for the perturbation theory to be convergent at each time
during the simulation. During the inspiral and ringdown,
the regime of validity agrees with estimates from [26]. The
tightest bound on the instantaneous regime of validity
comes during merger, and is comparable for spinning and
non-spinning black hole mergers, close to £/GM < 1.

The additional radiation in the scalar field 9!) leads to a
secular drift in orbital phase between the “true” orbital
dynamics and the GR background from which we perturb.
Therefore even if perturbation theory is instantaneously
under control, the perturbative solution will dephase after a
sufficiently long time. We numerically estimated this
dephasing time in Sec. III D2, and it agrees with post-
Newtonian scaling at early times. At times approaching
merger, the dephasing time becomes shorter, but remains
nonzero.

This dephasing calculation served as the basis for
estimating detectability and predicting bounds that
LIGO would be able to place on #, in Sec. IIIE. For
q=3, M~60 Mg, and aligned dimensionless spins of
71 = x> = 0.3, we estimated that a GR-consistent detection
would yield a bound of

Gd’ 1/4
£ <11 km( 2%
~ m(o.1> ’

(64)
where 6,4 is LIGO’s statistical phase uncertainty on the
detected waveform, which depends on the SNR of the
detection. Conversely, an ¢ above this value would be
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detectable by LIGO. Lower spins lead to poorer detect-
ability and/or bounds. Better bounds come from three
places: (i) improved phase sensitivity (higher SNR),
(i) lower mass events (while keeping merger in band),
and (iii) higher spin systems.

A. Future work

The natural next step in this program is to continue to the
order &* system, as outlined in Sec. II B 3. This is the lowest
order where gravitational radiation is modified, and would
involve solving for hfb), which is sourced by gig) and 9.

With the solution for the deformation to the metric hazb,
we will be able to directly compare dCS predictions against
LIGO data. We will also have a more complete assessment
of the convergence of the perturbation scheme.

Comparing dCS predictions against LIGO data will yield
the first direct bounds on the theory from the strong-field,
dynamical regime of gravity. To do so will involve
extending GR parameter estimation [59] with one addi-
tional parameter, £, which will be simultaneously inferred
or constrained from the data.

A complete analysis would involve thorough exploration
of the 7-dimensional parameter space of quasicircular
BBHs (mass ratio and two spin vectors; the £ dependence
is analytic in the perturbative approach). For example, in
this work, we have focused on aligned-spin binaries in
order to simplify comparisons with analytic predictions.
The scalar energy flux in the case of misaligned binaries
may be an order of magnitude larger than in the spin
aligned case (see [19] and the erratum). Building a
surrogate waveform model [60,61] would simultaneously
allow for an efficient exploration of parameter space and
efficient parameter estimation/constraints with LIGO data.

The standard perturbation theory approach we used here
will be sufficient if we find that the dephasing time is long
compared to LIGO signals. However, if we need to extend
the secular regime of validity, some form of multiple-scale
analysis [52] or dynamical renormalization group [53,54]
approach will be required.

Finally, let us emphasize that our approach is not limited
to dynamical Chern-Simons gravity: dCS is a proof of
principle. Any theory with a continuous limit to GR can be
treated with the same scheme, and reusing a large fraction
of the code. In particular, we will consider EAGB and a
class of theories proposed in [62]. Switching from dCS to
another theory will only involve changing source terms that
appear on the right hand sides of the differential equations
we are solving numerically.
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APPENDIX A: SCALAR FIELD
EVOLUTION FORMULATION

In this appendix, we discuss the numerical evolution
scheme for a (massless) Klein-Gordon field, denoted by the
code variable W, in greater detail. This is an update of the
system described in [34], which did not include the “y;y,”
constraint-damping term (see below). The basic equation
we are simulating is

0¥ =38, (A1)
for some prescribed source term S (in this work, the source
term is the Pontryagin density *RR).

We first review the 3+ 1 ADM formalism for the
foliation of a spacetime into spatial slices, as used in
numerical relativity [65]. We decompose the metric as

Gab = Yab — Nallp, (AZ)
where g, is the spacetime metric, n,, is a timelike unit one-
form normal to the spatial slice with n,n* = —1, and y, is
the induced spatial metric and projector, with n¢y,;, = 0. In
ADM variables, the timelike unit normal can be written in
terms of a lapse, a, and shift ', as n“ = (a=!, —a~! ).

We work with the Spectral Einstein Code (SpEC), which
uses the generalized harmonic formulation of general
relativity, and evolves a symmetric hyperbolic first-order
system of metric variables g,,, ®;,, = 0;9,, and I, =
_ncacgab [33].

We similarly define a set of first-order variables for the
scalar field W as

@i - ailP, (A3)

=-n"0,¥=—-a'(0,¥ — p'0,¥). (A4)
From these definitions and the equality of mixed partial
derivatives, we can create a system of constraints which
vanish in the continuum limit, and which an accurate
evolution of the system will satisfy to within some
tolerance:
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V=0 -a, (AS5)

c® = [ijk|0,®;. (A6)
In Eq. (A6) the indices j, k are summed and [ijk] is
the completely antisymmetric Levi-Civita symbol, with
[123] = +1.

The evolution equation (A1) thus becomes a set of first-
order time evolution equations for {¥, ®,, IT}. However, in
order to prevent numerical errors in the constraints from
making the evolution unstable, we follow what is done in
the metric system and add specific multiples of the
constraints to the evolution equations. These combinations
of constraints are chosen so as to ensure that the system is
symmetric hyperbolic and that the constraints are damped
out, ensuring a well-posed evolution scheme. The evolution
equation for V¥ is thus

ath = —all + ﬁm [8mlP + 71 (am\P - (I)m)]’ (A7)
where the first terms come from the definitions of ®; and I1,
and the last term is a constraint damping term with
coefficient y;. The evolution equation for ®; is

0@ = —a[O 1 + yo (P — 0,¥)]

— o + p"0,, D) + D,,00™, (A8)
where the term with y, is a constraint damping term,
and all other terms come from definitions of the first-order
variables and equality of mixed partial derivatives. Finally,
the evolution equation for IT is

Ol = allK + 0,11 + a®@, I + 71y, (am‘y - q)m)
- agmnanq)m - gm”q)nama + as, (A9)

where K is the trace of the extrinsic curvature, I =
g*’T™ , is a specific contraction of the Christoffel con-
nection coefficients, S is the source term, and the y,y, term
is the appropriate constraint-damping term to keep the
system symmetric hyperbolic.

This “y,y,” term was not included in the previous
description [34], but it is required if both y; and y, are
nonzero. The parameters y; and y, play the same role in the
damping and characteristic analysis of this Klein-Gordon

system as they do in the generalized harmonic system [33].
(1)

i

to be damped,
(1)

i

Specifically, in order for the constraint C
we must have y, > 0 (satisfying the constraint C; ’ implies
satisfaction of the constraint Cl(»z)). The choice y; = -1
makes the system linearly degenerate. In practice we set the
values of y; and y, to match those of the generalized
harmonic evolution of the metric variables, so that the
characteristic speeds of the metric and scalar field sys-

tems agree.
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FIG. 8. Numerical error convergence for the highest spin (0.3 2)
simulation performed in this study, which shows the greatest level
of constraint violation. We plot the L* norm of the constraint
energy defined in Eq. (A10) for the low, medium and high
numerical resolutions (adding a constant number of angular and
radial basis functions to increase resolution). Note that these
constraints are not normalized, but the relative error between the
levels shows exponential convergence. The constraint energy
increases at merger, which also happens in the metric evolution
system, and is consistent with other BBH simulations.

The scalar field variables, like the metric variables, are
represented spectrally. In order to reduce the amount of
numerical noise in the system, we apply the same filters we
use for the metric variables to the scalar field system,
namely filtering the top 4 tensor spherical harmonics and
using an exponential Chebyshev filter for the radial piece.

In order to assess the accuracy of the simulations, we
evaluate the constraints that the generalized harmonic
evolution system must satisfy [33], as well as the
constraints for the first-order scalar field system given
by Egs. (A5) and (A6). We combine these constraints,
contracting with a Euclidean metric to give a constraint
energy as

c2=cc + P, (A10)
Since the code is spectral, we check for exponential
convergence of these constraint energies as we increase
the number of angular and radial basis functions per
subdomain (and hence the resolution). We plot the con-
vergence of the L* norm of the constraint energies for the
highest spin simulation of this study, which has the greatest
level of constraint violation, in Fig. 8. We find that the error
decreases exponentially with resolution. The lower spin
simulations have similar qualitative behavior.

APPENDIX B: PONTRYAGIN DENSITY
IN 3+1 SPLIT

Since numerical relativity computations are formulated
in a 3 4 1 split, we must compute the scalar field’s source
term—the Pontryagin density—in terms of 3 dimensional
quantities. First, it is straightforward to verify
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*RR = *RabcdRabcd — *CadeCabC(b (Bl)

where C,,.; is the Weyl tensor, and its left dual is
*Cabed = Leabe/ C, .. Thus we do not need to consider
all of Riemann, but only its trace-free part, Weyl. The
Pontryagin density is completely insensitive to the Ricci
part of curvature.

In a 4-dimensional numerical relativity simulation, it is
especially convenient to decompose Weyl into its electric
and magnetic parts, defined as

Eab = +Cacbdncndv (BZ)

Bab = _*Cacbdncnd' <B3)

The minus sign in (B3) follows the conventions of [66,67]
and the implementation in SpEC [32], though much of the
literature has a plus sign. From the symmetries of Weyl, the
two tensors E,;, and B, are both symmetric (E,, = E ()
and B, = B(up)), purely spatial (E,,n* =0 = B,,n"), and
trace-free (E“, = 0 = B“,). We may also write an inver-
sion formula for Weyl in terms of E,;, and B, (thanks to
Alfonso Garcia-Parrado for bringing this inversion formula
to our attention),

Cabed = 13[4 Eac(Vod + nona) — €ab“naBee] ,  (B4)

where the operator is a projector that imposes the
symmetries of the Riemann tensor (Rupeq = Rjapjjca) =
R.4q,)- Here we have the induced 3-dimensional volume
element,

(B5)

— ,d —
€abc = N"€qapes €abcd = _4n[a€bcd]'

For coordinate component calculations, we use the con-
ventions where €,,.; = ++/—glabcd] where [abcd] is the
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alternating symbol, with [0123] = +1 (see e.g. [68]). We
also have €***? = —[abcd]/,/=g, and similar conventions
for the 3-dimensional volume element: €,,. = \/y[abc]
and €’ = [abc]/,/y (this makes use of the identity
V=9 = /7).

With this above decomposition, it is easy to verify that
the Pontryagin density can be expressed simply in terms of
the electric and magnetic parts of Weyl,

*RR = —16E,B. (B6)

Thus all that remains is to compute £, and B,, from
other quantities. Finding these expressions for £ and B
comes from the standard Gauss-Codazzi-Mainardi (GCM)
equations (see [65] for a didactic explanation). After using
the GCM equations, for the electric Weyl tensor we find

Eah = Kahch - KaCKbc + <3)Rah

1 1 1
- E}’aCVbd(4)Rcd - E}/ab}/Cd(4)Rcd =+ g}’ab(4>R-

(B7)
Here )R, is the spatial 3-Ricci tensor while )R, is the
4-Ricci tensor, and K, is the extrinsic curvature of the
spacelike hypersurface. The second line of (B7) contains
4-Ricci terms which would vanish if the 4-metric was
Ricci-flat, for example if it solves the Einstein equations in
vacuum. These terms were not included in e.g. [69].

Meanwhile, for the magnetic Weyl tensor we find the
simple expression

By, = _ecd(aDCKb)dv (BS)

where D, is the covariant derivative induced on the 3-
surface which is compatible with the 3-metric, D,y;. = 0.
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