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Abstract. The classic Generative Adversarial Net (GAN) and its vari-
ants can be roughly categorized into two large families: the unregularized
versus regularized GANs. By relaxing the non-parametric assumption on
the discriminator in the classic GAN, the regularized GANs have better
generalization ability to produce new samples drawn from the real distri-
bution. Although the regularized GANs have shown compelling perfor-
mances, there still exist some unaddressed problems. It is well known that
the real data like natural images are not uniformly distributed over the
whole data space. Instead, they are often restricted to a low-dimensional
manifold of the ambient space. Such a manifold assumption suggests the
distance over the manifold should be a better measure to characterize the
distinct between real and fake samples. Thus, we define a pullback oper-
ator to map samples back to their data manifold, and a manifold margin
is defined as the distance between the pullback representations to distin-
guish between real and fake samples and learn the optimal generators.
We justify the proposed model from both theoretical and empirical per-
spectives, demonstrating it can produce high quality images as compared
with the other state-of-the-art GAN models.

Keywords: Regularized GAN, Image generation, Semi-supervised clas-
sification, Lipschitz regularization, Manifold learning.

1 Introduction
Since the Generative Adversarial Nets (GAN) was proposed by Goodfellow et
al. [5], it has attracted much attention in literature with a number of variants
have been proposed to improve its data generation quality and training stability.
In brief, the GANs attempt to train a generator and a discriminator that play
an adversarial game to mutually improve one another [5]. A discriminator is
trained to distinguish between real and generated (fake) samples as much as
possible, while a generator attempts to generate good samples that can fool the
discriminator. Eventually, an equilibrium is reached where the generator can
produce high quality samples that cannot be distinguished by a well trained
discriminator.

The classic GAN and its variants can be roughly categorized into two large
families: the unregularized versus regularized GANs. The former contains the
original GAN and many variants [19], where the consistency between the dis-
tribution of their generated samples and real data is established based on the
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non-parametric assumption that their discriminators have infinite modeling a-
bility. In other words, the unregularized GANs assume the discriminator can
take an arbitrary form so that the generator can produce samples following any
given distribution of real samples.

On the contrary, the regularized GANs focus on some regularity conditions
on the underlying distribution of real data, and it has some constraints on the
discriminators to control their modeling abilities. The two most representative
models in this category are Loss-Sensitive GAN (LS-GAN) [11] and Wasserstein
GAN (WGAN) [1]. Both are enforcing the Lipschitz constraint on training their
discriminators. Moreover, it has been shown that the Lipschitz regularization on
the loss function of the LS-GAN yields a generator that can produce samples
distributed according to any Lipschitz density, which is a regularized form of
distribution on the supporting manifold of real data.

Compared with the family of unregularized GANs, the regularized GANs
sacrifice their ability to generate an unconstrained distribution of samples for
better training stability and generalization performances. For examples, both
LS-GAN and WGAN can produce uncollapsed natural images without involv-
ing batch-normalization layers, and both address vanishing gradient problem in
training their generators. Moreover, the generalizability of the LS-GAN has also
been proved with the Lipschitz regularity condition, showing the model can gen-
eralize to produce data following the real density with only a reasonable number
of training examples that are polynomial in model complexity. In other words,
the generalizability asserts the model will not be overfitted to merely memo-
rize training examples; instead it will be able to extrapolate to produce unseen
examples beyond provided real examples.

Although the regularized GANs, in particular LS-GAN [11] considered in this
paper, have shown compelling performances, there are still some unaddressed
problem. To train the loss function, the LS-GAN defines a margin to separate
the loss functions between the real and generated samples. The loss of a real
sample should be smaller than the loss of a fake sample by at least a margin
that is a function of distance between the two samples. While the margin-based
constraint on training the loss function is intuitive, directly using the ambient
distance as the loss margin may not accurately reflect the dissimilarity between
data points.

It is well known that the real data like natural images do not uniformly
distribute over the whole data space. Instead, they are often restricted to a low-
dimensional manifold of the ambient space. Such manifold assumption suggests
the “geodesic” distance over the manifold should be a better measure of the
margin to separate the loss functions between real and fake examples. For this
purpose, we will define a pullback mapping that can invert the generator function
by mapping a sample back to the data manifold. Then a manifold margin is
defined as the distance between the representation of data points on the manifold
to approximate their distance. The loss function, the generator and the pullback
mapping are jointly learned by a threefold adversarial game. We will prove that
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the fixed point characterized by this game will be able to yield a generator that
can produce samples following the real distribution of samples.

2 Related work
The original GAN [5, 12, 15] can be viewed as the most classic unregularized
model with its discriminator based on a non-parametric assumption of infinite
modeling ability. Since then, great research efforts have been made to efficiently
train the GAN by different criteria and architectures [13, 17, 16]. For example,
[19] presents an energy-based GAN by minimizing an energy function to learn an
optimal discriminator, and an auto-encoder structured discriminator is presented
to compute the energy. [2] presents another information-theoretic GAN to learn
disentangled representations capturing various latent concepts and factors in
generating samples.

In contrast to unregularized GANs, Loss-Sensitive GAN (LS-GAN) [11] was
recently presented to regularize the learning of a loss function in Lipschitz space,
and proved the generalizability of the resultant model. [1] also proposed to min-
imize the Earth-Mover distance between the density of generated samples and
the true data density, and they show the resultant Wasserstein GAN (WGAN)
can address the vanishing gradient problem that the classic GAN suffers from.
Coincidentally, the learning of WGAN is also constrained in a Lipschitz space.

Recent efforts [3, 4] have also been made to learn a generator along with a
corresponding encoder to obtain the representation of input data. The generator
and encoder are simultaneously learned by jointly distinguishing between not
only real and generated samples but also their latent variables in an adversarial
process. Both methods still focus on learning unregularized GAN models without
regularization constraints.

Researchers also leverage the learned representations by deep generative net-
works to improve the classification accuracy when it is too difficult or expensive
to label sufficient training examples. For example, [6] presents variational auto-
encoders [7] by combining deep generative models and approximate variational
inference to explore both labeled and unlabeled data. [15] treats the samples
from the GAN generator as a new class, and explore unlabeled examples by
assigning them to a class different from the new one. [13] proposes to train a
ladder network [17] by minimizing the sum of supervised and unsupervised cost
functions through back-propagation, which avoids the conventional layer-wise
pre-training approach. [16] presents an approach to learn a discriminative clas-
sifier by trading-off mutual information between observed examples and their
predicted classes against an adversarial generative model. [4] seeks to jointly
distinguish between not only real and generated samples but also their latent
variables in an adversarial process. These methods have shown promising results
for classification tasks by leveraging deep generative models.

3 The Formulation
3.1 Loss Functions and Margins

The Loss-Sensitive Adversarial Learning (LSAL) aims to generate data by learn-
ing a generator G that transforms a latent vector z ∈ Z of random variables
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drawn from a distribution PZ(z) to a real sample x , G(z) ∈ X , where Z and
X are the noise and data spaces respectively. Usually, the space Z is of a lower
dimensionality than X , and the generator mapping G can be considered as an
embedding of Z into a low-dimensional manifold G(Z) ⊂ X . In this sense, each
z can be considered as a compact representation of G(z) ∈ X on the manifold
G(Z).

Then, we can define a loss function L over the data domain X to characterize
if a sample x is real or not. The smaller the loss L, the more likely x is a real
sample. To learn L, a margin ∆x(x,x′) that measures the dissimilarity between
samples will be defined to separate the loss functions between a pair of samples
x and x′, so that the loss of a real sample should be smaller than that of a fake
sample x′ by at least ∆x(x,x′). Since the margin ∆x(x,x′) is defined over the
samples in their original ambient space X directly, we called it ambient margin.

In the meantime, we can also define a manifold margin ∆z(z, z
′) over the

manifold representations to separate the losses between real and generated sam-
ples. This is because the ambient margin alone may not well reflect the difference
between samples, in particular considering real data like natural images often
only occupy a small low-dimensional manifold embedded in the ambient space.
Alternatively, the manifold will better capture the difference between data points
to separate their losses on the manifold of real data.

To this end, we propose to learn another pullback mapping Q that can project
a data sample x back to the latent vector z , Q(x) that can be viewed as the
low-dimensional representation of x over the underlying data manifold. Then,
we can use the distance ∆z(z, z

′) between latent vectors to approximate the
geodesic distance between the projected points on the data manifold, and use
it to define the manifold margin to separate the loss functions of different data
points.

3.2 Learning Objectives

Formally, let us consider a loss function L(x, z) defined over a joint space X ×Z
of data and latent vectors. For a real sample x and its corresponding latent
vector Q(x), its loss function L(x, Q(x)) should be smaller than L(G(z), z) of a
fake sample G(z) and its latent vector z. The required margin between them is
defined as a combination of margins over data samples and latent vectors

∆µ,ν(x, z) , µ∆x(x, G(z)) + ν∆z(Q(x), z) (1)

where the first term is the ambient margin separating loss functions between data
points in the ambient space X , while the second term is the manifold margin
that separates loss functions based on the distance between latent vectors.

When a generated sample is far away from a real sample, a larger margin will
be imposed between them to separate their losses; otherwise, a smaller margin
will be used to separate the losses. This allows the model to focus on improving
the poor samples that are still far away from real samples, instead of wasting
efforts on improving those well-generated data that are already close to real
examples.
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Then we will use the following objective functions to learn the fixed points
of loss function L∗, the generator G∗ and the pullback mapping Q∗ by solving
the following optimization problems.
(I) Learning L with fixed G∗ and Q∗:

L∗ = arg min
L
S(L,G∗, Q∗) ,

Ex∼Px(X)
z∼PZ (z)

C
[
∆µ,ν(x, z) + L(x, Q∗(x))− L(G∗(z), z)

]
(II) Learning G with fixed L∗ and Q∗:

G∗ = arg min
G
T (L∗, G,Q∗) , Ez∼PZ(z) L

∗(G(z), z))

(III) Learning Q with fixed L∗ and G∗:

Q∗ = arg max
Q
R(L∗, G∗, Q) , Ex∼PX(x) L

∗(x, Q(x))

where 1) the expectations in the above three objective functions are taken with
respect to the probability measure PX of real samples x and/or the probability
measure PZ of latent vectors z. 2) the function C[·] is the cost function measuring
the degree of the loss function L violating the required margin ∆µ,ν(x, z), and
it should satisfy the following two conditions:

C[a] = a for a ≥ 0, and C[a] ≥ a for any a ∈ R.

For example, the hinge loss [a]+ = max(0, a) satisfies these two conditions, and it
results in a LSAL model by penalizing the violation of margin requirement. Any
rectifier linear function ReLU(a) = max(a, ηa) with a slope η ≤ 1 also satisfies
these two conditions.

Later on, we will prove the LSAL model satisfying these two conditions can
produce samples following the true distribution of real data, i.e., the distribu-
tional consistency between real and generated samples.

3) Problem (II) and (III) learn the generator G and pullback mapping Q in
an adversarial fashion: G is learned by minimizing the loss function L∗ since real
samples and their latent vectors should have a smaller loss. In contrast, Q is
learned by maximizing the loss function L∗ – the reason will become clear in the
theoretical justification of the following section when proving the distributional
consistency between real and generated samples.

4 Theoretical Justification
In this section, we will justify the learning objectives of the proposed LSAL model
by proving the distributional consistency between real and generated samples.

Formally, we will show that the joint distribution PGZ(x, z) = PZ(z)PX|Z(x|z)
of generated sample x = G(z) and the latent vector z matches the joint distri-
bution PQX(x, z) = PX(x)PZ|X(z|x) of the real sample x and its latent vector
z = Q(x), i.e., PGZ = PQX . Then, by marginalizing out z, we will be able to
show the marginal distribution PGZ(x) =

∫
z
PGZ(x, z)dz of generated samples

is consistent with PX(x) of the real samples. Hence, the main result justifying
the distributional consistency for the LSAL model is Theorem 1 below.
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4.1 Auxiliary Functions and their Property

First, let us define two auxiliary functions that will be used in the proof:

fQX(x, z) =
dPQX
dPGQ

, fGZ(x, z) =
dPGZ
dPGQ

(2)

where PGQ = PGZ + PQX , and the above two derivatives defining the auxiliary
functions are the Radon-Nikodym derivative that exists since PQX and PGZ
are absolutely continuous with respect to PGQ. Here, we will need the following
property regarding these two functions in our theoretical justification.

Lemma 1. If fQX(x, z) ≥ fGZ(x, z) for PGQ-almost everywhere, we must have
PGZ = PQX .

Proof. To show PGZ = PQX , consider an arbitrary subset R ⊆ X ×Z. We have

PQX(R) =

∫
R

dPQX =

∫
R

dPQX
dPGQ

dPGQ =

∫
R

fQXdPGQ

≥
∫
R

fGZdPGQ =

∫
R

dPGZ
dPGQ

dPGQ =

∫
R

dPGZ = PGZ(R).

(3)

Similarly, we can show the following inequality on Ω \R with Ω = X × Z

PQX(Ω \R) ≥ PGZ(Ω \R).

Since PQX(R) = 1− PQX(Ω \R) and PGZ(R) = 1− PGZ(Ω \R), we have

PQX(R) = 1− PQX(Ω \R) ≤ 1− PGZ(Ω \R) = PGZ(R). (4)

Putting together Eq. (3) and (4), we have PQX(R) = PGZ(R) for an arbitrary
R, and thus PQX = PGZ , which completes the proof.

4.2 Main Result on Consistency

Now we can prove the consistency between generated and real samples with the
following Lipschitz regularity condition on fQX and fGZ .

Assumption 1 Both fQX(x, z) and fGZ(x, z) have bounded Lipschitz constants
in (x, z).

It is noted that the bounded Lipschitz condition for both functions is only applied
to the support of (x, z). In other words, we only require the Lipschitz condition
hold on the joint space X × Z of data and latent vectors.

Then, we can prove the following main theorem.

Theorem 1. Under Assumption 1, PQX = PGZ for PGQ-almost everywhere
with the optimal generator G∗ and the pullback mapping Q∗. Moreover, fQX =

fGZ =
1

2
at the optimum.
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The second part of the theorem follows from the first part. since PQX = PGZ

for the optimum G∗ and Q∗, fQX =
dPQX
dPGQ

=
dPQX

d(PQX + PGZ)
=

1

2
. Similarly,

fGZ =
1

2
. This shows fQX and fGZ are both Lipschitz at the fixed point depicted

by Problem (I)-(III).
Here we give the proof of this theorem step-by-step in detail. The proof will

shed us some light on the roles of the ambient and manifold margins as well as
the Lipschitz regularity in guaranteeing the distributional consistency between
generated and real samples.

Proof. Step 1: First, we will show that

S(L∗, G∗, Q∗) ≥ Ex,z[∆∗µ,ν(x, z)], (5)

where ∆∗µ,ν(x, z) is defined in Eq. (1) with G and Q being replaced with their
optimum G∗ and Q∗.

This can be proved following the deduction below

S(L∗, G∗, Q∗) ≥
Ex,z[∆∗µ,ν(x, z)] + ExL

∗(x, Q∗(x))− EzL
∗(G∗(z), z)

This follows from C[a] ≥ a. Continuing the deduction, we have the RHS of the
last inequality equals

Ex,z[∆∗µ,ν(x, z)] +

∫
x,z

L∗(x, z)dPZ|X(z = Q∗(x)|x)dPX(x)

−
∫
x,z

L∗(x, z)dPX|Z(x = G∗(z)|z)dPZ(z)

≥ Ex,z[∆∗µ,ν(x, z)] +

∫
x,z

L∗(x, z)dPZ(z)dPX(x)

−
∫
x,z

L∗(x, z)dPX(x)dPZ(z)

= Ex,z[∆∗µ,ν(x, z)],

which follows from the Problem (II) and (III) where G∗ and Q∗ minimizes and
maximizes L∗ respectively. Hence, the second and third terms in the LHS are
lower bounded when PZ|X(z = Q∗(x)|x) and PX|Z(x = G∗(z)|z) are replaced
with PZ(z) and PX(x) respectively.
Step 2: we will show that fQX ≥ fGZ for PGQ-almost everywhere so that we
can apply Lemma 1 to prove the consistency.

With Assumption 1, we can define the following Lipschitz continuous loss
function

L(x, z) = α[−fQX(x, z) + fGZ(x, z)]+ (6)

with a sufficiently small α > 0. Thus, L(x, z) will also be Lipschitz continuous
whose Lipschitz constants are smaller than µ and ν in x and z respectively. This
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will result in the following inequality

∆∗µ,ν(x, z) + L(x, Q∗(x))− L(G∗(z), z) ≥ 0.

Then, by C[a] = a for a ≥ 0, we have

S(L,Q∗, G∗) = Ex,z[∆∗µ,ν(x, z)] +

∫
x,z

L(x, z)dPQX

−
∫
x,z

L(x, z)dPGZ

= Ex,z[∆∗µ,ν(x, z)] +

∫
x,z

L(x, z)fQX(x, z)dPGQ

−
∫
x,z

L(x, z)fGZ(x, z)dPGQ

where the last equality follows from Eq. (2). By substituting (6) into the RHS
of the above equality, we have

S(L,Q∗, G∗) =

Ex,z[∆∗µ,ν(x, z)]− α
∫
x,z

[−fQX(x, z) + fGZ(x, z)]2+dPGQ

Let us assume that fQX(x, z) < fGZ(x, z) holds on a subset (x, z) of nonzero
measure with respect to PGQ. Then since α > 0, we have

S(L∗, Q∗, G∗) ≤ S(L,Q∗, G∗) < Ex,z[∆∗µ,ν(x, z)]

The first inequality arises from Problem (I) where L∗ minimizes S(L,Q∗, G∗).
Obviously, this contradicts with (5), thus we must have fQX(x, z) ≥ fGZ(x, z)
for PGQ-almost everywhere. This completes the proof of Step 2.
Step 3: Now the theorem can be proved by combining Lemma 1 and the result
from Step 2.

As a corollary, we can show that the optimal Q∗ and G∗ are mutually inverse.

Corollary 1. With optimal Q∗ and G∗, Q∗−1 = G∗ almost everywhere. In other
words, Q∗(G∗(z)) = z for PZ-almost every z ∈ Z and G∗(Q∗(x)) = x for PX-
almost every x ∈ X .

The corollary is a consequence of the proved distributional consistency PQX =
PGZ for optimal Q∗ and G∗ as shown in [3]. This implies that the optimal
pullback mapping Q∗(x) forms a latent representation of x as the inverse of the
optimal generator function G∗.

5 Semi-Supervised Learning

LSAL can also be used to train a semi-supervised classifier by exploring a large
amount of unlabeled examples when the labeled samples are scarce. To serve
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as a classifier, the loss function L(x, z,y) can be redefined over a joint space of
X ×Z ×Y where Y is the label space. Now the loss function measures the cost
of assigning jointly a sample x and its manifold representation Q(x) to a label
y∗ by minimizing L(x, z,y) over Y below

y∗ = arg min
y∈Y

L(x, z,y) (7)

To train the Loss function of LSAL in a semi-supervised fashion, We define the
following objective function

S(L,G,Q) = Sl(L,G,Q) + λ Su(L,G,Q) (8)

where Sl is the objective function for labeled examples while Su is for unlabeled
samples, and λ is a positive coefficient balancing between the contributions of
labeled and unlabeled data.

Since our goal is to classify a pair of (x, Q(x)) to one class in the label space
Y, we can define the loss function L by the negative log-softmax output from a
network. So we have

L(x, z,y) = − log
exp(ay(x, z))∑
y′ exp(ay′(x, z))

which ay(x, z) is the activation output of class y. By the LSAL formulation, given
a label example (x,y), the L(x, Q(x),y) should be smaller than L(G(z), z,y) by
at least a margin of ∆µ,ν(x, z). So the objective Sl is defined as

Sl(L,G∗, Q∗) ,
Ex,y∼Pdata(x,y)

z∼PZ (z)

C
[
∆µ,ν(x, z) + L(x, Q∗(x),y)− L(G∗(z), z,y)

] (9)

For the unlabeled samples, we rely on the fact that the best guess of the label
for a sample x is the one that minimizes L(x, z,y) over the label space y ∈ Y.
So the loss function for an unlabeled sample can be defined as

Lu(x, z) , min
y
L(x, z,y) (10)

We also update the L(x, z,y) to − log
exp(ay(x,z))

1+
∑

y′ exp(ay′ (x,z))
. Equipped with the new

Lu, we can define the loss-sensitive objective for unlabeled samples as

Su(L,G∗, Q∗) ,

Ex,y∼Pdata(x,y)
z∼PZ (z)

C
[
∆µ,ν(x, z) + Lu(x, Q∗(x),y)− Lu(G∗(z), z,y)

]
Like in the LSAL, G∗ and Q∗ can be found by solving the following opti-

mization problems.
– Learning G with fixed L∗ and Q∗:

G∗ = arg min
G
T (L∗, G,Q∗) ,

Ey∼PY (y)
z∼PZ (z)

L∗u(G(z), z) + L∗(G(z), z,y)
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– Learning Q with fixed L∗ and G∗:

Q∗ = arg max
Q
R(L∗, G∗, Q) ,

Ex,y∼Pdata(x,y) L
∗
u(x, Q(x)) + L∗(x, Q(x),y)

In experiments, we will evaluate the semi-supervised LSAL model in image clas-
sification task.

(a) LSAL

(b) DC-GAN

(c) LS-GAN

(d) BEGAN

Fig. 1. Generated samples by various methods. Size 64 × 64 on CelebA data-set. Best
seen on screen.

6 Experiments
We evaluated the performance of the LSAL model on four datasets, namely
Cifar10 [8], SVHN [10], CelebA [18] and 64× 64 cropped center ImageNet [14].
We compared the image generation ability of the LSAL, both qualitatively and
quantitatively, with other state-of-the-art GAN models. We also assessed the
inherent representation learning ability of the pullback mapping Q and trained
LSAL model in semi-supervised fashion for image classification task.

6.1 Architecture and Training

While this work does not aim to test new idea of designing architectures for the
GANs, we adopt the exisiting architectures to make the comparison with other
models as fair as possible. Three convnet models have been used to represent the
generator G(z), the pullback mapping Q(x) and the loss function L(x, z). We use
hinge loss as our cost function C[·] = max(0, ·). Similar to DCGAN [12], we use
strided-convolutions instead of pooling layers to down-sample feature maps and
fractional-convolutions for the up-sampling purpose. Batch-normalization (BN)
also has been used before Rectified Linear (ReLU) activation function in the
generator and pullback mapping networks while weight-normalization (WN) is
applied to the convolutional layers of the loss function. We also apply the dropout
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Fig. 2. Network architecture for the loss function L(x, z). All convolution layers have
a stride of two to halve the size of their input feature maps.

with a ratio of 0.2 over all fully connected layers. The loss function L(x, z) is
computed over the joint space X ×Z, so its input consists of two parts: the first
part is a convnet that maps an input image x to an n-dim vector representation;
the second part is a sequence of fully connected layers that successively maps the
latent vector z to an m-dim vector too. Then an (n+m)-dim vector is generated
by concatenation of these two vectors and goes further through a sequence of
fully connected layers to compute the final loss value. For more details about the
architecture of net For the semi-supervised LSAL, the loss function L(x, z,y)
is also defined over the label space Y. In this case, the loss function network
defined above can have multiple outputs, each for one label in Y. The main
idea of loss function network is illustrated in Figure 2. For more details about
the architecture of G and Q and L networks, please refer to the supplementary
material.

The Adam optimizer has been used to train all of the models on four datasets.
For image generation task, we use the learning rate of 10−4 and the first and
second moment decay rate of β1 = 0.5 and β2 = 0.99. In the semi-supervised
classification task, the learning rate is set to 6 × 10−4 and decays by 5% every
50 epochs till it reaches 3 × 10−4. For both Cifar10 and SVHN datasets, the
coefficient λ of unlabeled samples, and the hyper parameters µ and ν for manifold
and ambient margins are chosen based on the validation set of each dataset. The
L1-norm has been used in all of the experiments for both margins.

Model Inception score

Real data 11.24 ± 0.12

ALI[4] 4.98 ± 0.48
LS-GAN[11] 5.83 ± 0.22
LSAL 6.43 ± 0.53

Table 1. Comparison of Inception score for various GAN models on Cifar10 data-set.
Inception score of real data represents the upper bound of the score.
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Finally, it is noted that, from theoretical perspective, we do not need to do
any kind of pairing between generated and real samples in showing the distri-
butional consistency in Section 4. Thus, we can randomly choose a real image
rather than a “ground truth” counterpart (e.g., the most similar image) to pair
with a generated sample. The experiments below also empirically demonstrate
the random sampling strategy works well in generating high-quality images as
well as training competitive semi-supervised classifiers.

6.2 Image Generation Results

Qualitative comparison: To show the performance of the LSAL model, we
qualitatively compared the generated images by proposed model on CelebA
dataset with other state of the art GANs models. As illustrated in Figure 1,
the LSAL can produce details of face images as compared to other methods.
Faces have well defined borders and nose and eyes have real shape while in LS-
GAN 1(c) and DC-GAN 1(b) most of generated samples don’t have clear face
borders and samples of BEGAN model 1(d) lack stereoscopic features. Figure 3
shows the samples generated by LSAL for Cifar10, SVHN, and tiny ImageNet
datasets.

(a) Cifar10 (b) SVHN (c) Tiny ImageNet

Fig. 3. Generated samples by LSAL on different data-sets. Samples of (a) Cifar10 and
(b) SVHN are of size 32 × 32. Samples of (c) Tiny ImageNet are of size 64 × 64.

We also walk through the manifold space Z, projected by the pullback map-
ping Q. To this end, pullback mapping network Q has been used to find the
manifold representations z1 and z2 of two randomly selected samples from the
validation set. Then G has been used to generate new samples for z’s on the
linear interpolate of z1 and z2. As illustrated in Figure 4, the transition between
pairs of images are smooth and meaningful.

Quantitative comparison: To quantitively assess the quality of LSAL gen-
erated samples, we used Inception Score proposed by [15]. We chose this metric
as it had been widely used in literature so we can fairly compare with the other
models directly. We applied the Inception model to images generated by various
GAN models trained on Cifar10. The comparison of Inception scores on 50, 000
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Fig. 4. Generated images for the interpolation of latent representations learned by
pullback mapping Q for CelebA data-set. First and last column are real samples from
validation set.

images generated by each model is reported in Table 1. Inception score of real
data was computed over the training set and it represents the upper bound that
can be achieved on Cifar10.

6.3 Semi-supervised classification

Using semi-supervised LSAL to train an image classifier, we achieved competitive
results in comparison to other GAN models. Table 3 shows the error rate of
the semi-supervised LSAL along with other semi-supervised GAN models when
only 1, 000 labeled examples were used in training on SVHN with the other
examples unlabeled. For Cifar10, LSAL was trained with various numbers of
labeled examples. In Table 2, we show the error rates of the LSAL with 1, 000,
2, 000, 4, 000, and 8, 000 labeled images. The results show the proposed semi-
supervised LSAL successfully outperforms the other methods.

# of labeled samples 1000 2000 4000 8000

Model Classification error

Ladder network[13] 20.40
CatGAN [16] 19.58
CLS-GAN[11] 17.3
Improved GAN [15] 21.83 ± 2.01 19.61 ± 2.32 18.63 ± 2.32 17.72 ± 1.82
ALI[4] 19.98 ± 0.89 19.09 ± 0.44 17.99 ± 1.62 17.05 ± 1.49
LSAL 18.83± 0.44 17.97± 0.74 16.22± 0.31 14.17± 0.62

Table 2. Comparison of classification error on Cifar10

6.4 Trends of Ambient and Manifold Margins

We also illustrate the trends of ambient and manifold margins as the learning
algorithm proceeds over epochs in Figure 5. The curves were obtained by training
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Fig. 5. Trends of manifold and ambient margins over epochs on the Cifar10 dataset.
Example images are generated at epoch 10, 100, 200, 300, 400.

the LSAL model on Cifar10 with 4, 000 labeled examples, and both margins are
averaged over mini-batches of real and fake pairs sampled in each epoch.

From the illustrated curves, we can see that the manifold margin continues
to decrease and eventually stabilize after about 270 epochs. As manifold margin
decreases, we find the quality of generated images continues to improve even
though the ambient margin fluctuates over epochs. This shows the importance of
manifold margin that motivates the proposed LSAL model. It also demonstrates
the manifold margin between real and fake images should be a better indicator
we can use for the quality of generated images.

Model Classification error

Skip deep generative model[9] 16.61 ± 0.24
Improved GAN [15] 8.11 ± 1.3
ALI[4] 7.42 ± 0.65
CLS-GAN[11] 5.98 ± 0.27
LSAL 5.46± 0.24

Table 3. Comparison of classification error on SVHN test set for semi-supervised
learning using 1000 labeled examples.

7 Conclusion

In this paper, we present a novel regularized LSAL model, and justify it from
both theoretical and empirical perspectives. Based on the assumption that the
real data are distributed on a low-dimensional manifold, we define a pullback
operator that maps a sample back to the manifold. A manifold margin is defined
as the distance between the pullback representations to distinguish between real
and fake samples and learn the optimal generators. The resultant model also
demonstrates it can produce high quality images as compared with the other
state-of-the-art GAN models.
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