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Abstract 

This paper presents a novel level set-based topology optimization implementation, which addresses two 
main problems of design-for-additive manufacturing (AM): the material anisotropy and the self-support 
manufacturability constraint. AM material anisotropy is widely recognized and taking it into account 
while performing structural topology optimization could more realistically evaluate the structural 
performance. Therefore, both build direction and in-plane raster directions are considered by the topology 
optimization algorithm, especially for the latter, which are calculated through deposition path planning. 
The self-support manufacturability constraint is addressed through a novel multi-level set modeling. The 
related optimization problem formulation and solution process are demonstrated in details. It is proved by 
several numerical examples that, the manufacturability constraints are always strictly satisfied. 
Marginally, the recently popular structural skeleton-based deposition paths are also employed to assist the 
structural topology optimization, and its characteristics are discussed.  

Keywords: Deposition path planning; Topology optimization; Additive manufacturing; Manufacturability 
constraint 

 

1. Introduction 

Additive manufacturing (AM), also known as 3D printing, refers to a series of processes which produce 
the part through the layer-by-layer material deposition. It has demonstrated the outstanding characteristic 
that, the part can be in any geometric complexity and many manufacturability constraints of the 
traditional subtractive machining are eliminated. Hence, AM is greatly preferred by the design 
community for the extremely enhanced degrees of design freedom.   

Therefore, design methodology for AM parts has attracted plenty of attentions. Strategically, several 
design for AM (DfAM) frameworks have been proposed. Rosen  [1] proposed the process-structure-
property-behavior framework for cellular structures, where the idea of manufacturing planning-assisted 
structural performance evaluation was proposed. Ponche [2] proposed a global DfAM framework where 
the build direction, the part geometry and the deposition paths are consecutively designed. However, a 
drawback of the consecutive process is the reduced design optimality, especially compared to the 
concurrent design process. Part consolidation is also an active DfAM research direction, where the 
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function surface and function volume concepts have been widely explored to realize the function 
integration [3,4]. Liu [5] evaluated the structural performance of consolidated AM parts through topology 
optimization and accordingly, proposed the guidelines for part consolidation. 

More specifically, topology optimization has been widely adopted as the main methodology for 
embodiment design of AM parts [6], because it performs the freeform shape and topology evolution, and 
thus, produces very complex geometry which fits the characteristic of AM. Several aspects have been 
actively investigated about the topology optimization for AM, such as the lattice structure design [7–9], 
the multi-material structure design [10,11], the support-free manufacturability constraint [12–14], the 
minimum component size issue [15,16], and the design interpretation [17,18], etc. Even so, as 
summarized in [15,19,20], a lack of feasible solutions is still the situation for many AM-related problems.  

In this work, we intend to address the AM-induced material anisotropy when dealing with the topology 
optimization problem, and at the same time, solve the self-support manufacturability constraint. 

Material anisotropy is a phenomenon caused by the layer-by-layer deposition process, where the material 
properties could be very different along the build direction, the in-layer raster direction, and the in-layer 
transverse direction. This phenomenon is widely recognized and extensive experimental studies have 
been conducted for disclosure [21–25]. The general conclusion is that, the material properties are stronger 
in the in-layer raster direction, and those in the build direction are the weakest, especially for polymer 
printing. Moreover, these experimental results have been embedded into finite element programs to 
improve the numerical analysis accuracy [26–28], and some [27,29] have utilized the experimental data to 
optimize the build direction to enhance the structural performance. 

On the other hand, there exists the gap that, the AM induced material anisotropy is rarely addressed by 
topology optimization implementations, with the exception, Liu [5] performed the concurrent build 
direction and structural topology optimization for 2D cases. However, 3D study would be practically 
more meaningful, even though the problem complexity is drastically increased. Especially within each 
printing layer, the material properties depend on the planned deposition paths, and the design problem is 
transformed into a concurrent multi-layer deposition path planning and structural topology optimization 
problem. Recently, Smith and Hoglund [30] explored the raster direction optimization and realized the 
optimized printing paths into real parts. However, a limitation is that, the raster directions are treated as 
discrete orientation variables but the continuity could be low. Liu and Yu [31] performed the concurrent 
raster direction and topology optimization by building the continuous contour-offset printing paths and 
additionally, addressed the optimal printing path design for fixed geometry problems through the radial 
basis function (RBF) fitting and level set modeling. These two works targeted the planar problems, but to 
the best of the authors’ knowledge, there is no extension to 3D. Innovatively, we contribute a multi-level 
set-based method to solve the 3D concurrent design problems. Multiple level set functions are employed 
to represent the sliced printing layers and facilitate the related deposition path planning. It is worth 
noticing that, the build direction is assumed to be fixed for the sake of simplicity. 

Level set method is a well-established structural topology optimization method. Osher and Sethian [32] 
initially proposed the level set to be an interface modeling and propagating method, and later, Wang et al. 
[33] and Allaire et al. [34] developed the structural topology optimization method under the level set 
framework. It has several advantages compared to other topology optimization methods, such as the clear-
cut interface representation, the always available interface-related information (e.g. curvature), and the 
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parameterized [35] and feature-based [36,37] geometry representation, etc. In the past decade, extensive 
research efforts have been spent on level set topology optimization [38] subject to diversified physical 
disciplines, e.g. solid mechanics [33,34], fluid dynamics [39], and thermal dynamics [40,41] etc. Another 
reason for employing the level set method is that, it has been used for tool path planning for traditional 
contour machining, which derives the contour-offset tool paths based on the signed distance information 
[42,43]. Hence, it is feasible to perform the deposition path planning-integrated structural topology 
optimization under the unified level set framework. Other than the contour-offset path pattern, a novel 
structural skeleton-based path pattern is realized under the level set framework, which is a highlight of 
this paper. Skeleton is a lower dimensional description of the object. As defined by Blum [44], it is the 
locus of all the interior maximal circles for 2D or spheres for 3D, and thus, the skeleton points together 
with the related interior maximal circles/spheres form a complete description of the geometry. In recent 
years, the skeleton concept has been used in topology optimization field to measure and control the 
component length scale, under both density-based [45] and level set [46,47] frameworks, because the 
interior maximal circles/spheres can effectively measure the local component length scale. In addition, the 
structural skeleton has also been used to generate deposition paths for additive manufacturing [48,49].  

Another contribution of this work is that, the self-support manufacturability constraint issue is addressed 
for 3D structures. This manufacturability constraint arises at surface regions whose angle of inclination is 
smaller than the threshold value, which are also known as overhangs. Supports are required to prevent 
these overhangs from distortion or even collapse. However, utilization of the support requires additional 
design and pre-processing effort, wastes material, and lengthens the printing process. Therefore, self-
support topology optimization has been actively investigated. Hu et al. [50] slimmed the support through 
a shape optimization approach. Mirzendehdel and Suresh [51] transformed the part design into a multi-
objective topology optimization problem with a balanced objective function between the support material 
consumption and structural compliance. Bracket et al. [15] proposed a solution to repeatedly linearize the 
boundary segments and accordingly, penalize the unbuildable ones; however, this solution remains to be a 
conceptual idea. Leary et al. [12] proposed a post-treatment method to add materials to the overhang areas. 
This method has been proven effective, but the result optimality is sacrificed. Gaynor [13,52] realized the 
overhang-free control through an additional layer of design variable projection. Langelaar [14,53] 
proposed another type of density filter which achieved similar overhang free design effects. A limitation 
of the density filter-based method is that, the extra-layer of density filter greatly increases the sensitivity-
related computational cost [14,52]. Very recently, Qian [54] developed a Heaviside projection based 
integration function to penalize the undercut or overhang areas. Wu et al. [55] explored the self-support 
issue of porous infill by using the rhombic cells. In summary, existing methods have partially addressed 
the self-support manufacturability constraint but it still deserves more exploration for better 
computational efficiency and robustness. Therefore, a multi-level set-based method is contributed in this 
work to address this self-support manufacturability issue, about which more details will be specified in 
the later sections. 

It is noted that, this paper contributes to two topics: the deposition path-integrated design and the self-
support design. For the former, it is useful for the fused deposition modeling (FDM) process; while for 
the latter, it employs the general applicability for support-required AM processes. 
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2. Level set method 

Generally, the level set function Φሺݔ, ܴ௡	ሻ:ݕ 	⟼ ܴ, describes the geometry as presented in Eq. (1). 

ቐ
Φሺݔ, ሻݕ ൐ 0, ,ݔ ݕ ∈ Ω/߲Ω
Φሺݔ, ሻݕ ൌ 0, ,ݔ ݕ ∈ ߲Ω
Φሺݔ, ሻݕ ൏ 0, ,ݔ ݕ ∈ Ω/ܦ

 (1) 

where Ω represents the material domain, ܦ indicates the entire design domain, and thus ܦ/Ω represents 
the void.  

It provides an implicit approach for geometry description and accordingly, performing the contour-offset 
deposition path planning was previously studied and the method is inherited in this work. Moreover, we 
propose a novel approach to addressing the self-support constraint based on the multi-level set 
interpolation technique. The numerical details will be presented at the rest of this section. 

2.1 Contour-offset path planning through level set 

Under the discrete level set framework, level set values are defined on the finite element mesh nodes and 
Eq. (2) is usually solved to initialize the level set field to follow the signed distance convention. Therefore, 
level set is effective in offsetting the structural boundary by easily extracting the iso-value level set 
contours. This technique was previously applied to generate the tool paths for the traditional contour 
machining [42,43], which can be trivially extended to plan the deposition paths for AM; see Fig. 1 for two 
examples. 

,ݔΦሺ׏| |ሻݕ ൌ 1 (2) 

 

  

Fig. 1 Two examples of the level set-based deposition paths of the contour-offset pattern 

Given the technical merits, the level set method can effectively and efficiently generate the deposition 
paths, regardless of the geometric complexity.  



5 
 

Then, the local deposition orientation can be analytically expressed by Eq. (3) [56]. 

ߠ ൌ
ߨ
2
൅ arctanሺ

߲Φ/߲ݕ
߲Φ/߲ݔ

ሻ (3) 

According to the classic laminate theory, the elasticity tensor including the in-layer orientation variable ߠ 
is expressed by Eq. (4). 

ሻߠሺࡰ ൌ  ሻ் (4)ߠሺࡷ଴ࡰሻߠሺࡷ

where ࡰ is the elasticity tensor given the in-layer deposition orientation ߠ, and ࡰ଴ is the elasticity tensor 
when  ߠ equals to zero. ࡷሺߠሻ stands for the coordinate transformation tensor. The orientation variable ߠ 
is defined in Fig. 2. 

 

Fig. 2 Definition of the orientation variable 

2.2 Multi-level set modeling of AM parts 

Multi-level set modeling has been widely applied to diversified multi-material topology optimization 
problems, such as the ‘color’ level set [57–60] and the MMLS (Multi-Material Level Set) [61]. But in fact, 
multi-level set modeling can have broader applicability, especially for those which involve only a single 
material type but still require interpolation of multiple level set functions, e.g. the product family design 
as conducted in [62].  

Innovatively in this work, multiple level set functions are employed to represent the sliced homogeneous 
AM part, and a novel interpolation of the multiple level set functions is proposed to address the self-
support manufacturability constraint. 

  

ωଵ:Φଵ ൐ 0 

 ૚	ܚ܍ܡ܉ܔ
ωଶ:Φଶ ൐ 0 

 ૛	ܚ܍ܡ܉ܔ 							

ωଷ:Φଷ ൐ 0
		  

 ૜	ܚ܍ܡ܉ܔ

ωଵ:Φଵ ൐ ܚ܍ܡ܉ܔ 0 ૚

ωଶ:Φଶ ൐ 0 
Φଵ ൅ ݀ ൐ ܚ܍ܡ܉ܔ 0 ૛

ωଷ:Φଷ ൐ 0 
Φଶ ൅ ݀ ൐ ܚ܍ܡ܉ܔ 0 ૜

ߠ

ݔ

ݕ
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(a) Multi-layer modeling (b) Multi-layer modeling subject to the 
manufacturability constraint 

Fig. 3 Multi-level set based modeling 

To be specific, figure 3a presents an example of the multi-level set modeling. There are three printing 
layers, each of which is represented by an independent level set function. Therefore, each layer is 
expressed by Eq. (5). 

߱௜ ൌ ሼݔ, ݕ |Φ௜ሺݔ, ሻݕ ൐ 0ሽ (5) 

For a step forward, if the self-support manufacturability constraint is considered, the layers cannot be 
independently defined and the material domain of a higher layer should be constrained with a maximum 
overhang distance of ݀. Therefore, a modified representation of the layers is presented in Eq. (6); also see 
Fig. 3b. 

߱ଵ ൌ ሼሺݔ, ሻݕ |Φଵሺݔ, ሻݕ ൐ 0ሽ 

߱௜ ൌ ሼሺݔ, ,ݔ|Φ௜ሺ	ሻݕ ሻݕ ൐ 0,Φ௜ିଵሺݔ, ሻݕ ൅ ݀ ൐ 0ሽ, ݅ ൐ 1 
(6) 

 

Fig. 4 The inclination angle definition 

Specifically about the ݀, it is calculated through Eq. (7), based on the layer height ݄ and the threshold 
inclination angle	ߛ for self-support. Definition of the inclination angle is shown in Fig. 4. 

݀ ൌ ݄/tanሺߛሻ (7) 

 

 

(a) ݀ ് 0 and ߛ ൌ 45° (b) ݀ ൌ 0 

Fig. 5. Design space comparison from a 2D view 

Printing 
layers 

Overhang 
area 

The inclination angle 
definition 

The part 

Printing 
platen 
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In practice, ݄ tends to be small and ߛ varies within the range of [30°, 60°] depending on the specific AM 
process. Therefore, ݀ tends to be a small positive value and in case that only a limited number of printing 
layers are involved, assuming ݀ ൌ 0 would not have a major impact on the design space size; refer to 
Figure 5 for an example. Hence, according to the geometric characteristics of the part, we distinguish the 
optimization problem into two types with different levels of solving complexity: (i) if the overall printing 
height is much smaller in length scale compared to the other two dimensions, ݀ can be assumed to be zero 
which will greatly simplify the later sensitivity analysis, as demonstrated in Section 4; (ii) otherwise, ݀ 
cannot be ignored and the regular adjoint sensitivity result has to be post-processed; see the details in 
Section 5.  

By assuming ݀ ൌ 0 of problem type 1, the material interpolation is realized through Eq. (8). 

,ݔ௜ሺࡰ ሻݕ ൌෑܪቀΦ௝ሺݔ, ሻቁݕ

௜

௝ୀଵ

 ሺΦ௜ሻሻ (8)ߠሺࡰ

where ܪ means the Heaviside function and, ݅	 and ݆ are the layer index. 

Otherwise, the problem type 2 with the material interpolation as shown Eq. (9) will be explored. 

,ݔ௜ሺࡰ ሻݕ ൌ ,ݔ൫Φ୧ሺܪ ,ݔሺΦ௜ିଵሺܪሻ൯ݕ ሻݕ ൅ ݀ሻࡰሺߠሺΦ௜ሻሻ, ݅ ൐ 1 

,ݔଵሺࡰ ሻݕ ൌ ,ݔ൫Φଵሺܪ  ሺΦ௜ሻሻߠሺࡰሻ൯ݕ
(9) 

 

3. Optimization problem type 1 

3.1 Problem formulation and solution 

Subject to Eq. (8), the conventional compliance minimization problem is formulated as shown below: 

min.			 ܬ ൌ 	෍቎න ,ݔቀΦ௝ሺܪሺ࢛௜ሻෑࢋሺ࢛௜ሻࢋሺΦ௜ሻሻߠሺࡰ ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

 

.ݏ ,ሺ࢛ܽ			.ݐ ࢜,઴ሻ ൌ ݈ሺ࢜ሻ, ∀࢜ ∈ ܷ௔ௗ 

ܸ ൌ 	෍න ሺΦ௜ሻ݀Ω௜ܪ
஽

ே

௜ୀଵ

൑ ௠ܸ௔௫	 

ܽሺ࢛, ࢜,઴ሻ ൌ 	෍቎න ,ݔቀΦ௝ሺܪሺ࢜௜ሻෑࢋሺ࢛௜ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

 

݈ሺ࢜ሻ ൌ න ࣎ ∙ ࢜݀Γ
డஐ

 

(10)
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in which ܽሺ ሻ is the energy bilinear form and ݈ሺ ሻ is the load linear form. The load linear expression 
does not include ઴, because it is assumed that the area applied of boundary traction force ࣎ is non-
designable. ࢛௜and ࢜௜ are the deformation vector and the test vector within the ith printing layer, and	ࢋሺ ሻ 
is the strain. ܷ௔ௗ ൌ ሼ࢜ ∈ ࢜|ଵሺΩሻௗܪ ൌ  Γ஽ሽ is the space of kinematically admissible displacement	݊݋	0
field. The body forces are ignored in this work. 

Material derivative and the adjoint method are employed to perform the shape sensitivity analysis. 

To be specific, the Lagrangian is constructed in Eq. (11). 

ܮ ൌ ܬ ൅ ܽሺ࢛,࢝,઴ሻ െ ݈ሺ࢝ሻ ൅ ሺ෍නߣ ሺΦ௜ሻ݀Ω௜ܪ
஽

ே

௜ୀଵ

െ ௠ܸ௔௫ሻ (11) 

Then, material derivative of the Lagrangian is presented in Eq. (12). 

′ܮ ൌ ′ܬ ൅ ܽ′ሺ࢛,࢝,઴ሻ െ ݈′ሺ࢝ሻ ൅ ሺ෍නߣ ሺΦ௜ሻ݀Ω௜ܪ
஽

ே

௜ୀଵ

െ ௠ܸ௔௫ሻ′ (12) 

where, 

′ܬ ൌ 2෍቎න ,ݔቀΦ௝ሺܪሺ࢛௜ሻෑࢋሺ࢛௜′ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

 

൅෍቎෍න ,ݔ൫Φ௞ሺߜሺ࢛௜ሻࢋሺ࢛௜ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ሻ൯ݕ ෑ ,ݔቀΦ௝ሺܪ ሻቁݕ

௜

௝ୀଵ,௝ஷ௞

௡ܸ௞|׏Φ௞|݀Ω௜
஽

௜

௞ୀଵ

቏

ே

௜ୀଵ

 

(13) 

ܽ′ሺ࢛,࢝,઴ሻ ൌ 	෍቎න ܪሺ࢝௜ሻෑࢋሺ࢛௜′ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ቀΦ௝ሺݔ, ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

 

൅෍቎න ܪሺ࢝௜′ሻෑࢋሺ࢛௜ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ቀΦ௝ሺݔ, ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

 

൅෍቎෍න ,ݔ൫Φ௞ሺߜሺ࢝௜ሻࢋሺ࢛௜ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ሻ൯ݕ ෑ ,ݔቀΦ௝ሺܪ ሻቁݕ

௜

௝ୀଵ,௝ஷ௞

௡ܸ௞|׏Φ௞|݀Ω௜
஽

௜

௞ୀଵ

቏

ே

௜ୀଵ

 

(14) 

݈′ሺ࢜ሻ ൌ න ࣎ ∙ ࢝′݀Γ
డஐ

 (15) 

൭෍න ሺΦ௜ሻ݀Ω௜ܪ
஽

ே

௜ୀଵ

െ ௠ܸ௔௫൱

ᇱ

ൌ෍න ,ݔ൫Φ௜ሺߜ ሻ൯ݕ ௡ܸ௜|׏Φ௜|݀Ω௜
஽

ே

௜ୀଵ

 (16) 

Substitute Eq. (13-16) into Eq. (12). Collect all the terms including ࢝ and the sum is naturally equivalent 
to zero; see Eq. (17). 
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෍቎න ,ݔቀΦ௝ሺܪሺ࢝௜′ሻෑࢋሺ࢛௜ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

െ න ࣎ ∙ ࢝ᇱ݀Γ
డஐ

ൌ 0 

 

(17) 

Then, collect the terms including ࢛′ and force the sum equivalent to zero, which is: 

2෍቎න ܪሺ࢛௜ሻෑࢋሺ࢛௜′ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ቀΦ௝ሺݔ, ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

 

൅෍቎න ,ݔቀΦ௝ሺܪሺ࢝௜ሻෑࢋሺ࢛௜′ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ሻቁݕ

௜

௝ୀଵ

݀Ω௜
஽

቏

ே

௜ୀଵ

ൌ 0 

(18) 

By solving Eq. (18), solution of the adjoint variable ࢝ ൌ െ૛࢛  is derived. Then, by collecting the 
remaining terms, the sensitivity result is obtained as: 

ᇱܮ ൌ െ෍቎෍න ,ݔ൫Φ௞ሺߜሺ࢛௜ሻࢋሺ࢛௜ሻࢋሺΦ௜ሻ൯ߠ൫ࡰ ሻ൯ݕ ෑ ,ݔቀΦ௝ሺܪ ሻቁݕ

௜

௝ୀଵ,௝ஷ௞

௡ܸ௞|׏Φ௞|݀Ω௜
஽

௜

௞ୀଵ

቏

ே

௜ୀଵ

 

൅ߣ෍න ,ݔ൫Φ௜ሺߜ ሻ൯ݕ ௡ܸ௜|׏Φ௜|݀Ω௜
஽

ே

௜ୀଵ

 

(19) 

Therefore, 

௡ܸ௞ ൌ െߣ ൅෍቎ࡰ൫ߠሺΦ௜ሻ൯ࢋሺ࢛௜ሻࢋሺ࢛௜ሻ ෑ ܪ ቀΦ௝ሺݔ, ሻቁݕ

௜

௝ୀଵ,௝ஷ௞

቏

ே

௜ୀ௞

 (20) 

which guarantees that ܮᇱ ൑ 0. 

3.2 Numerical examples 

For all the numerical examples, the finite element analysis is performed based on fixed hexahedral 
meshes and the artificial weak material properties are adopted by the voids in order to prevent the 
singularity problem; see Eq. (21). 

௩ࡰ ൌ 10ିଷ(21) ࡰ

in which ࡰ௩ is the elasticity tensor of the void. 

The volume constraint is addressed through the Augmented Lagrange method which has the Lagrange 
multiplier as: 

௞ାଵߣ ൌ ௞ߣ ൅ ௞ሺ෍නߤ ሺΦ௜ሻ݀Ω௜ܪ
஽

ே

௜ୀଵ

െ ௠ܸ௔௫ሻ 

௞ାଵߤ ൌ ௞ߤߚ ݁ݎ݄݁ݓ 0 ൏ ߚ ൏ 1 

(22)
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in which ߤ is the penalization factor and ߚ is its adjustment parameter. 

The material properties tested by [27] are employed for the numerical examples, as specified in Table 1. 
The orthotropic elastic model is assumed. 

Table 1 3D printing material properties 

Directions Young’s modulus 
(GPa) 

Shear modulus 
(GPa) 

Poisson’s ratio 

In-plain raster direction 1.16 0.51 0.09 
In-plain transverse direction 1.05 0.28 0.37 
Build direction 0.52 0.30 0.31 
 

3.2.1 Case 1 

Boundary conditions (BCs) of the first case are demonstrated in Fig. 6, where the dark blue-colored 
elements are fixed and, the in-plane and out-of-plane point forces of the magnitude 100kN are separately 
applied. The design domain is of size 40cm*20cm*4cm, where four printing layers exist. The objective is 
to minimize the structural compliance under the maximum material volume ratio of 0.4. The starting 
topology for all the layers is shown in Fig. 6c. This starting topology is inherited by all the numerical 
examples in Section 3 and 4, unless otherwise noted. 

  

(a) BC 1 (b) BC 2 

 

(c) Starting topology of all the layers 

Fig. 6 Boundary conditions of case 1 (the build direction is specified by the bolded arrow) 
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Correspondingly, the optimization results are layer-wisely demonstrated in Fig. 7 and Fig. 8, respectively, 
where a smaller index means a lower-level printing layer. 

  

(a) Layer 1 (b) Layer 2 

Fig. 7 Layer-wise optimization results of BC1 (Compliance = 24.89kN·m) 

 

  

(a) Layer 1 (b) Layer 2 

  

(c) Layer 3 (d) Layer 4 

Fig. 8 Layer-wise optimization results of BC2 (Compliance = 421.60kN·m) 

A few conclusions can be drawn from the optimization results that: 
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(i) In the optimization results of BC 1, layer 3 and layer 4 totally disappear while only the first two layers 
remain. In addition, the support-free manufacturability constraints are strictly satisfied. 

(ii) In the optimization results of BC 2, all the layers remain and at the same time, the support-free 
manufacturability constraints are strictly satisfied. In layer 3 and layer 4, foot ribs are generated to bear 
the bending load, which is reasonable.  

The convergence histories are demonstrated in Fig. 9. 

(a) BC1 (b) BC 2 

Fig. 9 Convergence histories (the y-axis has the unit of kN·m) 

For BC1, if we modify the starting topology by changing the interior hole distribution; see Fig. 10a, the 
topology optimization result is updated as presented in Fig. 10(b-c), where the result is slightly different 
as compared to Fig. 7: (i) the layer 3 is not totally removed, and (ii) the structural compliance is slightly 
smaller but no significant improvement has been observed. Therefore, for this example, the optimization 
result is but not strongly dependent on the starting topology. 

 

(a) Modified starting topology of all the layers 
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(b) Layer 2 (c) Layer 3 

 

(d) Layer 4 

Fig. 10 Layer-wise optimization results of BC1 by modifying the starting topology (Compliance = 
24.07kN·m) 

Other than that, the design result of BC1 without considering the self-support requirement is 
demonstrated in Fig. 11. We can see that, the derived structural compliance is reduced by 8.47 percent as 
compared to the result shown in Fig. 7; however, a support volume fraction of 8.37 percent is required, 
which means 20.92 percent of materials consumed by the part. Therefore, whether or not considering the 
self-support requirement depends on the specific need of less material consumption or better structural 
performance. 

In addition, by comparing the results as shown in Fig. 7 and 11, the material distribution in layer 1 of the 
former is drastically increased because of the self-support constraint. Therefore, to balance the overall 
material consumption, the materials in layer 3 and 4 in Fig. 7 disappear.  
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(a) Layer 1 (b) Layer 2 

  

(c) Layer 3 (d) Layer 4 

Fig. 11 Layer-wise optimization results of BC1 without considering self-support requirement 
(Compliance = 22.78kN·m) 

 

3.2.2 Case 2 

Boundary conditions (BCs) of the second case studied are demonstrated in Fig. 12, where the dark blue-
colored elements are fixed and the in-plane and out-of-plane point forces of the magnitude 100kN are 
separately applied. The design domain is of size 40cm*20cm*4cm, where four printing layers exist. The 
objective is to minimize the structural compliance under the maximum material volume ratio of 0.4. 

  

(a) BC 1 (b) BC 2 

Fig. 12 Boundary conditions of case 2 (the build direction is specified by the bolded arrow) 
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Correspondingly, the optimization results are layer-wisely demonstrated in Fig. 13 and Fig. 14, 
respectively, where a smaller index means a lower-level layer. 

  

(a) Layer 1 (b) Layer 2 

 

(c) Layer 3 

Fig. 13 Layer-wise optimization results of BC1 (Compliance = 4.07kN·m) 

 

  

(a) Layer 1 (b) Layer 2 
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(c) Layer 3 (d) Layer 4 

Fig. 14 Layer-wise optimization results of BC2 (Compliance = 204.19kN·m) 

A few conclusions can be drawn from the optimization results that: 

(i) In the optimization results of BC 1, the layer 4 totally eliminates while the other three layers remain. In 
addition, the support-free manufacturability constraints are strictly satisfied. 

(ii) In the optimization results of BC 2, all the layers remain and at the same time, the support-free 
manufacturability constraints are strictly satisfied. 

Convergence histories are demonstrated in Fig. 15. 

  

(a) BC1 (b) BC 2 

Fig. 15 Convergence histories (the y-axis has the unit of kN·m) 

 

4. Structural skeleton-based path planning 

The medial axis transformation-based deposition paths planning was recently proposed by [48,49], which 
demonstrated outstanding characteristics of producing gap-free cross-section. In fact, the medial axis 
concept is similar to the structural skeleton concept which was previously studied under the level set 
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framework for length scale control [46,47]. Therefore, the structural skeleton-based path planning will be 
adopted in this section to assist the structural topology optimization, and it would be interesting to see if 
the structural performance can be further enhanced. 

4.1 Structural skeleton identification 

The first step is to identify the structural skeleton based on the level set information. The procedures 
previously presented in [47] were utilized, as demonstrate below: 

(1) Identify the full skeleton ܵሺΩሻ based on Eq. (23). 

ܵሺΩሻ ൌ ሼሺݔ, |ሻݕ
,ݔଶΦሺ׏ ሻݕ

min൫׏ଶΦሺݔ, ሻ൯ݕ
൒ ,ݔଵ,Φሺߝ ሻݕ ൐ 0ሽ (23)

in which ߝଵ is a small positive number to guarantee the numerical computation robustness. Laplacian of 
the level set function is calculated according to Eq. (24). 

,ݔଶΦሺ׏ ሻݕ ൌ Φ௜ାଵ,௝ ൅ Φ௜ିଵ,௝ ൅ Φ௜,௝ାଵ ൅ Φ௜,௝ିଵ െ 4Φ௜,௝ 
(24)

(2) Delete the skeleton points belonging to the corner area ܵሺΩሻ, i.e., 

ܵ̅ሺΩሻ ൌ ܵሺΩሻ/ܵሺΩሻ (25)

where,  

ܵሺΩሻ ൌ ሼሺݔ, ሻ|0.5ݕ െ 0.5
,ݔ௕Φሺ׏ ሻݕ ∙ ,ݔ௙Φሺ׏ ሻݕ

,ݔ௕Φሺ׏| |ሻݕ ∙ ,ݔ௙Φሺ׏| |ሻݕ
൏ ,ݔଶ,Φሺߝ ሻݕ ൏  ଷሽߝ

(26)

in which, ܾ and ݂ represent the backward and forward, respectively. 

 ଶ is assigned the value 0.6, which works based on the fact that the backward and forward gradientsߝ
employ opposite signs. ߝଷ is a positive number which determines size of the corner area. The purpose of 
deleting skeleton points among the corner area is to ensure the deposition paths around the skeleton to be 
continuous.  

4.2 Structural skeleton-based path generation 

After identification of the skeletons, the points of the skeleton area ܵ̅ሺߗሻ are assigned the level set value 
of zero. Then, by solving Eq. (2), the signed distance field is reinitialized and the structural skeleton-
based deposition paths are generated. A few examples are demonstrated in Fig. 16, from which we can 
see that, an interior gap exists in the contour-offset path pattern, but not the structural skeleton-based 
paths. In addition, a bigger ߝଷ will make more paths to be continuous.  
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(a) Contour-offset deposition paths (b) Structural skeleton-based deposition paths 
ଷߝ) ൌ 0) 

  

(c) Structural skeleton-based deposition paths (ߝଷ ൌ
5) 

(d) Structural skeleton-based deposition paths 
ଷߝ) ൌ 10) 

Fig. 16 Examples of the structural skeleton-based deposition paths (ߝଵ ൌ ଶߝ ,0.2 ൌ 0.6, and the identified 
skeleton area is filled in red color) 

4.3 Deposition path-integrated structural topology optimization 

In this sub-section, BC 1 of case 1 and case 2 in Section 3 is re-studied based on the structural skeleton-
based deposition path pattern. The optimization results are layer-wisely demonstrated in Fig. 17 and Fig. 
18, respectively, where a smaller index means a lower-level layer. In these examples, the parameters of 
ଵߝ ൌ 0.1, ଶߝ ൌ 0.6, and	ߝଷ ൌ 1.5 are employed. The numbers in the contour lines represent the signed 
distance values.  The compliances obtained for these two cases are 24.86kN·m and 3.72kN·m. 

By comparing with the results in Section 5, the structural skeleton-based deposition paths lead to better 
structural performance for the BC 1 of case 2, but the improvement of the BC 1 of case 1 is not that 
obvious. Therefore, it is hard to draw a general conclusion which should be case-specific.  

Figure 19 demonstrates the related convergence histories. 
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(a) Layer 1 (b) Layer 2 

Fig. 17 Layer-wise optimization results of BC1 of case 1 (Compliance = 24.86kN·m) 

 

(a) Layer 1 (b) Layer 2 

(c) Layer 3 

Fig. 18 Layer-wise optimization results of BC1 of case 2 (Compliance = 3.72kN·m)  
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(a) BC1 of case 1 (b) BC1 of case 2 

Fig. 19 Convergences histories (the y-axis has the unit of kN·m) 

 

5. Optimization problem type 2: the general 3D self-support design 

5.1 Problem formulation and solution 

For the more general case where a positive ݀ is involved, solving the related optimization problem is 
complicated, and the details are presented in this section. For the sake of simplicity, the isotropic material 
model is assumed where the related deposition paths are not considered. 

The multi-level set modeling is realized through Eq. (27). 

௜ࡰ ൌ ሺΦ௜ିଵܪሺΦ୧ሻܪ ൅ ݀ሻࡰ, ݅ ൐ 1 

ଵࡰ ൌ  ࡰሺΦଵሻܪ
(27) 

Then, the compliance minimization problem is re-formulated as shown below: 

min.			 ܬ ൌ 	෍ቈන ሺΦ௜ିଵܪሺΦ௜ሻܪሺ࢛௜ሻࢋሺ࢛௜ሻࢋࡰ ൅ ݀ሻ݀Ω௜
஽೔

቉

ே

௜ୀଶ

 

൅	න ሺΦଵሻ݀Ωଵܪሺ࢛ଵሻࢋሺ࢛ଵሻࢋࡰ
஽భ

 

.ݏ ,ሺ࢛ܽ			.ݐ ࢜,઴ሻ ൌ ݈ሺ࢜ሻ, ∀࢜ ∈ ܷ௔ௗ 

ܸ ൌ 	෍න ሺΦ௜ሻ݀Ω௜ܪ
஽೔

ே

௜ୀଵ

൑ ௠ܸ௔௫	 

ܽሺ࢛, ࢜,઴ሻ ൌ 	෍ቈන ሺΦ௜ିଵܪሺΦ௜ሻܪሺ࢜௜ሻࢋሺ࢛௜ሻࢋࡰ ൅ ݀ሻ݀Ω௜
஽೔

቉

ே

௜ୀଶ

 

(28)
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൅	න ሺΦଵሻ݀Ωଵܪሺ࢜ଵሻࢋሺ࢛ଵሻࢋࡰ
஽భ

 

݈ሺ࢜ሻ ൌ න ࣎ ∙ ࢜݀Γ
డஐ

 

Following a similar process as conducted in Section 3, the adjoint sensitivity analysis is performed on the 
updated problem and the result is shown below: 

ᇱܮ ൌ െ෍ቈන ሺΦ௜ିଵܪሺΦ௜ሻߜሺ࢛௜ሻࢋሺ࢛௜ሻࢋࡰ ൅ ݀ሻΦ௜′݀Ω௜
஽೔

቉

ே

௜ୀଶ

 

െ෍ቈන ሺΦ௜ିଵߜሺΦ௜ሻܪሺ࢛௜ሻࢋሺ࢛௜ሻࢋࡰ ൅ ݀ሻΦ௜ିଵ′݀Ω௜
஽೔

቉

ே

௜ୀଶ

 

െ	න ሺΦଵሻΦଵ′݀Ωଵߜሺ࢛ଵሻࢋሺ࢛ଵሻࢋࡰ
஽భ

 

൅ߣ෍න ሺΦ௜ሻΦ௜′݀Ω௜ߜ
஽

ே

௜ୀଵ

 

(29) 

In Eq. (29), the second term is a contour integral at Φ௜ିଵ ൌ െ݀. However, as well known, only the zero-
value level set contour can be effectively updated through solving the Hamilton-Jacobi equation, but not 
the others. Therefore, it is necessary to transform the second term into an equivalent integral expression 
but acts on the zero-value level set contour.  

To be specific, the following relationship is used to transform the velocity location, referring to [63,64].  

න ݂ሺ܆ሻ݀Ω
ஐ

ൌ න ሺන ݂ሺ܈ሻሾ1 െ ܈ሻሿ݀܇ሺߢሻ܈ሺݏ݅݀
௥௔௬ങಈሺ܇ሻ∩ஐ

ሻ݀Γ
డஐ

 (30) 

where ܆ indicates any point located inside the design domain, and ݂ሺ܆ሻ is the integration function; ܇ is 
the boundary point, and ߢሺ܇ሻ is the curvature; ܈ is the point located on ݕܽݎడஐሺ܇ሻ with the distance 
  .Refer to the following two definitions and Fig. 19 for further details .܇ ሻ from܈ሺݏ݅݀

Definition 1. For any ܆ ∈ ܴ௡, Πడஐሺ܆ሻ ≔ ሼ܇଴ ∈ ߲Ω, ܆| െ |଴܇ ൌ ݅݊ ܆|డஐ∋܇݂ െ  is the set of projections	ሽ|܇
of ܆ on ߲Ω. When Πడஐሺ܆ሻ reduces to a single point, it is called the projection ܲడஐሺ܆ሻ of ࢄ onto ߲Ω. 

Definition 2. For any ܇ ∈ ߲Ω, ݕܽݎడஐሺ܇ሻ ≔ ሼ܈ ∈ ܴ௡, ሻ܈ܲபஐሺ	and	܈	ݐܽ	݈ܾ݁ܽ݅ݐ݊݁ݎ݂݂݁݅݀	ݏ݅	ሻ܈ሺݏ݅݀ ൌ  ሽ܇
is the ray emerging from ܇. 
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Fig. 20 Schematic plot of the Equation 30 [64] 

Based on Eq. (30), the following relationship is derived, as shown in Eq. (31). 

න ሺΦ௜ିଵሻΦ௜ିଵ′݀Ω௜ߜሻ܆ሺܨ
஽೔

ൌ න ሺΦ௜ିଵܪ′ሺΦ௜ିଵሻΦ௜ିଵߜሻ܆ሺܨ ൅ ݀ሻ݀Ω௜
஽೔

 

ൌ න ൥න ሺΦ௜ିଵሻΦ௜ିଵߜሻ܈ሺܨ
ᇱ ሺ1 െ ሺΦ௜ିଵ ൅ ݀ሻ ∗ ݇ሻ݀܈

௥௔௬ങಈሺ܇ሻ∩ஐ
൩ ሺΦ௜ିଵߜ ൅ ݀ሻ݀Ω௜

஽೔

 

ൌ න ሻΦ௜ିଵ܆ሺܨ
ᇱ ሺ1 െ ݀ ∗ ݇ሻߜሺΦ௜ିଵ ൅ ݀ሻ݀Ω௜

஽೔

 

(31) 

where Ω  represents the material domain of the level set field ሺΦ௜ିଵ ൅ ݀ሻ , and ܨሺ܆ሻ ൌ
 :ሻ. Therefore, the second term in Eq. (29) can be transformed into܆ሺΦ௜ሻ at ܲడஐሺܪሺ࢛௜ሻࢋሺ࢛௜ሻࢋࡰ

െ෍ቈන ሺΦ௜ିଵߜሻ܆ሺܨ ൅ ݀ሻΦ௜ିଵ′݀Ω௜
஽೔

቉

ே

௜ୀଶ

 

ൌ െ෍ቈන
ሻ܆ሺܨ

ሺ1 െ ݀ ∗ ݇ሻ
ሺΦ௜ିଵሻΦ௜ିଵ′݀Ω௜ߜ

஽೔

቉

ே

௜ୀଶ

 

(32) 

In summary, the sensitivity result is adapted into: 

ᇱܮ ൌ െ෍ቈන ሺΦ௜ିଵܪሺΦ௜ሻߜሺ࢛௜ሻࢋሺ࢛௜ሻࢋࡰ ൅ ݀ሻΦ௜′݀Ω௜
஽೔

቉

ே

௜ୀଶ

 

െ෍ቈන
ሻ܆ሺܨ

ሺ1 െ ݀ ∗ ݇ሻ
ሺΦ௜ିଵሻΦ௜ିଵ′݀Ω௜ߜ

஽೔

቉

ே

௜ୀଶ

 

(33) 
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െ	න ሺΦଵሻΦଵ′݀Ωଵߜሺ࢛ଵሻࢋሺ࢛ଵሻࢋࡰ
஽భ

 

൅ߣ෍න ሺΦ௜ሻΦ௜′݀Ω௜ߜ
஽

ே

௜ୀଵ

 

Now, the sensitivity result is completely composed of integrals on the zero-value level set contours. The 
boundary velocity fields can be trivially derived based on the principle of decreasing the Lagrangian, and 
thus the level set fields can be updated through solving the Hamilton Jacobi equation. The design update 
method is well-established and interested readers can refer to [33,34,65] for the details. 

5.2 Numerical examples 

Two numerical examples are studied to demonstrate the effectiveness of the self-support design with the 
positive ݀ value. 

Figure 21 presents the input design domain (L40cm*W20cm*H30cm) and the attached boundary 
conditions. A set of forces are loaded at the left bottom edge of the magnitude 5kN/cm, and the right side 
face is fixed. The solid material employs a Young’s modulus value of 1GPa and Poisson ratio value of 0.3. 
The optimization problem is to minimize the structural compliance under the maximum material volume 
fraction of 0.5. 

 

Fig. 21 The cantilever problem 

Correspondingly, the optimization results with and without considering the self-support requirement are 
demonstrated in Fig. 22 and Fig. 23, respectively. For the former, the maximally-allowable overhang 
distance ݀ ൌ 1 is assumed, which also means the threshold inclination angle of 45 degree. It can be 
clearly observed from the results that, the smallest inclination angle in Fig. 22 is constrained above 45 
degree, while that in Fig. 23 is much smaller than 45 degree. 
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Fig. 22 The optimization result with considering the self-support requirement (measured minimum 
inclination angle of 45.11 degree and the structural compliance of 1.64kN·m) 

 
 

Fig. 23 The optimization result without considering the self-support requirement (measured minimum 
inclination angle of 34.76 degree and the structural compliance of 1.59kN·m) 
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Figure 24 presents the input design domain (L80cm*W20cm*H15cm) and the attached boundary 
conditions. A set of forces are loaded at the top center of magnitude 5kN/cm, and the two bottom edges 
are fixed. The solid material employs a Young’s modulus value of 1GPa and Poisson ratio value of 0.3 by 
assumption. The optimization problem is to minimize the structural compliance under the maximum 
material volume faction of 0.5. 

 

Fig. 24 The double-clamped beam problem 

Correspondingly, the optimization results with and without considering the self-support requirement are 
demonstrated in Fig. 25 and Fig. 27, respectively. For the former, the maximally-allowable overhang 
distance ݀ ൌ 1 is assumed, and in Fig. 26, the major overhang areas have been measured from different 
view angles. It is concluded that the inclination angles have been constrained above 45 degree, while 
some minor violations exist because of the post-treatment process (smoothing) into a STL model. On the 
other hand, without considering the self-support requirement, the overhang areas with the inclination 
angle below 45 degree are marked out in Fig. 28. Therefore, effectiveness of the proposed method is 
proved. It is noted that, only the left half of the structure is demonstrated because of symmetry. 
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Fig. 25 The optimization result with considering the self-support requirement (the structural compliance 
of 3.39kN·m) 

  

  

Fig. 26 Measurement of the overhang inclination angles (The red line indicates the angle of 45 degree) 
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Fig. 27 The optimization result with considering the self-support requirement (the structural compliance 
of 3.19kN·m) 

 
 

Fig. 28 Overhang areas with the inclination angle below 45 degree (marked out by the red circles) 

The convergence histories of the cantilever and beam examples are shown in Fig. 29. 
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(a) cantilever example (b) beam example 

Fig. 29 Convergence histories 

 

5.3. A combined case study 

It is straight-forward to extend the general support-free problem formulation in Eq. (28) to consider the 
deposition path-induced material anisotropy, and a related problem is studied in this sub-section. 

As shown in Fig. 30, the top surface of the cube is imposed of uniform pressure forces with the magnitude 
of 1kN/cm2 and the four bottom corners are fixed. The cube size is 30cm*30cm*20cm, and its boundary 
frame is non-designable, which therefore, belongs to a problem of self-support enclosed void design. The 
optimization problem is still compliance minimization and 15 percent of materials will be removed. The 
material properties as shown in Table 1 is used. The part is sliced into 15 layers and the threshold self-
support inclination angle is 45 degree. 

 

Fig. 30 Boundary conditions of the cube problem 

The optimization result is demonstrated in Fig. 31 and the deposition paths at selected layers are shown in 
Fig. 32, where the void area in each layer is filled in grey color. It can be observed from Fig. 31 that, the 
enclosed void forms the shape of a pyramid and one of the inclined surface is measured about the 
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inclination angle. Referring to the 45 degree reference line (in red color), the inclined surface can be self-
support and because of being symmetric, the whole enclosed void can be self-support.    

 

Fig. 31 Self-support enclosed void design (the structural compliance of 11.79 kN·m) 

(a) Layer 1 (b) Layer 3 (c) Layer 5 (d) Layer 7 

(e) Layer 9 (f) Layer 11 (g) Layer 13 (h) Layer 15 

Fig. 32 Contour-offset deposition paths at selected layers 
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6. Conclusion 

In this paper, deposition path planning is concurrently performed when doing topology optimization, and 
thus, the AM-induced anisotropic material properties are well addressed for realistic structural 
performance evaluation. Two deposition path patterns are studied, e.g. the contour-offset and the 
structural skeleton-based.  

Moreover, the support-free manufacturability constraint is tackled. Multiple level set functions are used to 
represent the sliced AM part and a novel multi-level set interpolation has been proposed to address the 
support-free manufacturability constraint. It is proven by several numerical examples that effective 
overhang-free design can be generated. It is noted that, the proposed approach shows the advantage that 
the sensitivity analysis is computationally efficient, where it consumes less than 2 percent of the time 
taken by the FEA. Specifically, the sensitivity analysis takes 0.77, 0.38, 0.44 seconds on average and the 
FEA takes 117.39, 29.53, 103.59 seconds for the cantilever, beam, and cube problems, respectively, 
where the sensitivity costs are only 0.66%, 1.28%, and 0.42% of the FEA costs. Noted that, the program 
is run in Matlab 2011a with Intel Xeon CPU E5-1600 at 3.00GHz. 

For future work, there is still room to further modify the structure skeleton-based deposition path 
planning algorithm, through which the structural performance can be more accurately evaluated. The 
numerical stability and computational efficiency of the 3D problems will also be focused. 
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