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Abstract

This paper presents a novel level set-based topology optimization implementation, which addresses two
main problems of design-for-additive manufacturing (AM): the material anisotropy and the self-support
manufacturability constraint. AM material anisotropy is widely recognized and taking it into account
while performing structural topology optimization could more realistically evaluate the structural
performance. Therefore, both build direction and in-plane raster directions are considered by the topology
optimization algorithm, especially for the latter, which are calculated through deposition path planning.
The self-support manufacturability constraint is addressed through a novel multi-level set modeling. The
related optimization problem formulation and solution process are demonstrated in details. It is proved by
several numerical examples that, the manufacturability constraints are always strictly satisfied.
Marginally, the recently popular structural skeleton-based deposition paths are also employed to assist the
structural topology optimization, and its characteristics are discussed.

Keywords: Deposition path planning; Topology optimization; Additive manufacturing; Manufacturability
constraint

1. Introduction

Additive manufacturing (AM), also known as 3D printing, refers to a series of processes which produce
the part through the layer-by-layer material deposition. It has demonstrated the outstanding characteristic
that, the part can be in any geometric complexity and many manufacturability constraints of the
traditional subtractive machining are eliminated. Hence, AM is greatly preferred by the design
community for the extremely enhanced degrees of design freedom.

Therefore, design methodology for AM parts has attracted plenty of attentions. Strategically, several
design for AM (DfAM) frameworks have been proposed. Rosen [1] proposed the process-structure-
property-behavior framework for cellular structures, where the idea of manufacturing planning-assisted
structural performance evaluation was proposed. Ponche [2] proposed a global DfAM framework where
the build direction, the part geometry and the deposition paths are consecutively designed. However, a
drawback of the consecutive process is the reduced design optimality, especially compared to the
concurrent design process. Part consolidation is also an active DfAM research direction, where the



function surface and function volume concepts have been widely explored to realize the function
integration [3,4]. Liu [5] evaluated the structural performance of consolidated AM parts through topology
optimization and accordingly, proposed the guidelines for part consolidation.

More specifically, topology optimization has been widely adopted as the main methodology for
embodiment design of AM parts [6], because it performs the freeform shape and topology evolution, and
thus, produces very complex geometry which fits the characteristic of AM. Several aspects have been
actively investigated about the topology optimization for AM, such as the lattice structure design [7-9],
the multi-material structure design [10,11], the support-free manufacturability constraint [12—14], the
minimum component size issue [15,16], and the design interpretation [17,18], etc. Even so, as
summarized in [15,19,20], a lack of feasible solutions is still the situation for many AM-related problems.

In this work, we intend to address the AM-induced material anisotropy when dealing with the topology
optimization problem, and at the same time, solve the self-support manufacturability constraint.

Material anisotropy is a phenomenon caused by the layer-by-layer deposition process, where the material
properties could be very different along the build direction, the in-layer raster direction, and the in-layer
transverse direction. This phenomenon is widely recognized and extensive experimental studies have
been conducted for disclosure [21-25]. The general conclusion is that, the material properties are stronger
in the in-layer raster direction, and those in the build direction are the weakest, especially for polymer
printing. Moreover, these experimental results have been embedded into finite element programs to
improve the numerical analysis accuracy [26—28], and some [27,29] have utilized the experimental data to
optimize the build direction to enhance the structural performance.

On the other hand, there exists the gap that, the AM induced material anisotropy is rarely addressed by
topology optimization implementations, with the exception, Liu [5] performed the concurrent build
direction and structural topology optimization for 2D cases. However, 3D study would be practically
more meaningful, even though the problem complexity is drastically increased. Especially within each
printing layer, the material properties depend on the planned deposition paths, and the design problem is
transformed into a concurrent multi-layer deposition path planning and structural topology optimization
problem. Recently, Smith and Hoglund [30] explored the raster direction optimization and realized the
optimized printing paths into real parts. However, a limitation is that, the raster directions are treated as
discrete orientation variables but the continuity could be low. Liu and Yu [31] performed the concurrent
raster direction and topology optimization by building the continuous contour-offset printing paths and
additionally, addressed the optimal printing path design for fixed geometry problems through the radial
basis function (RBF) fitting and level set modeling. These two works targeted the planar problems, but to
the best of the authors’ knowledge, there is no extension to 3D. Innovatively, we contribute a multi-level
set-based method to solve the 3D concurrent design problems. Multiple level set functions are employed
to represent the sliced printing layers and facilitate the related deposition path planning. It is worth
noticing that, the build direction is assumed to be fixed for the sake of simplicity.

Level set method is a well-established structural topology optimization method. Osher and Sethian [32]
initially proposed the level set to be an interface modeling and propagating method, and later, Wang et al.
[33] and Allaire et al. [34] developed the structural topology optimization method under the level set
framework. It has several advantages compared to other topology optimization methods, such as the clear-
cut interface representation, the always available interface-related information (e.g. curvature), and the
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parameterized [35] and feature-based [36,37] geometry representation, etc. In the past decade, extensive
research efforts have been spent on level set topology optimization [38] subject to diversified physical
disciplines, e.g. solid mechanics [33,34], fluid dynamics [39], and thermal dynamics [40,41] etc. Another
reason for employing the level set method is that, it has been used for tool path planning for traditional
contour machining, which derives the contour-offset tool paths based on the signed distance information
[42,43]. Hence, it is feasible to perform the deposition path planning-integrated structural topology
optimization under the unified level set framework. Other than the contour-offset path pattern, a novel
structural skeleton-based path pattern is realized under the level set framework, which is a highlight of
this paper. Skeleton is a lower dimensional description of the object. As defined by Blum [44], it is the
locus of all the interior maximal circles for 2D or spheres for 3D, and thus, the skeleton points together
with the related interior maximal circles/spheres form a complete description of the geometry. In recent
years, the skeleton concept has been used in topology optimization field to measure and control the
component length scale, under both density-based [45] and level set [46,47] frameworks, because the
interior maximal circles/spheres can effectively measure the local component length scale. In addition, the
structural skeleton has also been used to generate deposition paths for additive manufacturing [48,49].

Another contribution of this work is that, the self-support manufacturability constraint issue is addressed
for 3D structures. This manufacturability constraint arises at surface regions whose angle of inclination is
smaller than the threshold value, which are also known as overhangs. Supports are required to prevent
these overhangs from distortion or even collapse. However, utilization of the support requires additional
design and pre-processing effort, wastes material, and lengthens the printing process. Therefore, self-
support topology optimization has been actively investigated. Hu et al. [S50] slimmed the support through
a shape optimization approach. Mirzendehdel and Suresh [51] transformed the part design into a multi-
objective topology optimization problem with a balanced objective function between the support material
consumption and structural compliance. Bracket et al. [15] proposed a solution to repeatedly linearize the
boundary segments and accordingly, penalize the unbuildable ones; however, this solution remains to be a
conceptual idea. Leary et al. [12] proposed a post-treatment method to add materials to the overhang areas.
This method has been proven effective, but the result optimality is sacrificed. Gaynor [13,52] realized the
overhang-free control through an additional layer of design variable projection. Langelaar [14,53]
proposed another type of density filter which achieved similar overhang free design effects. A limitation
of the density filter-based method is that, the extra-layer of density filter greatly increases the sensitivity-
related computational cost [14,52]. Very recently, Qian [54] developed a Heaviside projection based
integration function to penalize the undercut or overhang areas. Wu et al. [55] explored the self-support
issue of porous infill by using the rhombic cells. In summary, existing methods have partially addressed
the self-support manufacturability constraint but it still deserves more exploration for better
computational efficiency and robustness. Therefore, a multi-level set-based method is contributed in this
work to address this self-support manufacturability issue, about which more details will be specified in
the later sections.

It is noted that, this paper contributes to two topics: the deposition path-integrated design and the self-
support design. For the former, it is useful for the fused deposition modeling (FDM) process; while for
the latter, it employs the general applicability for support-required AM processes.



2. Level set method

Generally, the level set function ®(x, y): R™ + R, describes the geometry as presented in Eq. (1).

®d(x,y) >0, x,y € Q/0Q
®d(x,y) =0, x,y € 0Q (D
®d(x,y) <0, x,y € D/Q

where () represents the material domain, D indicates the entire design domain, and thus D /Q represents
the void.

It provides an implicit approach for geometry description and accordingly, performing the contour-offset
deposition path planning was previously studied and the method is inherited in this work. Moreover, we
propose a novel approach to addressing the self-support constraint based on the multi-level set
interpolation technique. The numerical details will be presented at the rest of this section.

2.1 Contour-offset path planning through level set

Under the discrete level set framework, level set values are defined on the finite element mesh nodes and
Eq. (2) is usually solved to initialize the level set field to follow the signed distance convention. Therefore,
level set is effective in offsetting the structural boundary by easily extracting the iso-value level set
contours. This technique was previously applied to generate the tool paths for the traditional contour
machining [42,43], which can be trivially extended to plan the deposition paths for AM; see Fig. 1 for two
examples.
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Fig. 1 Two examples of the level set-based deposition paths of the contour-offset pattern

Given the technical merits, the level set method can effectively and efficiently generate the deposition
paths, regardless of the geometric complexity.



Then, the local deposition orientation can be analytically expressed by Eq. (3) [56].

0= 8 T arct dd/dy
=3 tarcanGGeay

) 3)
According to the classic laminate theory, the elasticity tensor including the in-layer orientation variable 6
is expressed by Eq. (4).

D(0) = K(6)D°K(9)" “

where D is the elasticity tensor given the in-layer deposition orientation 8, and D° is the elasticity tensor
when 6 equals to zero. K(8) stands for the coordinate transformation tensor. The orientation variable 6
is defined in Fig. 2.

Fig. 2 Definition of the orientation variable
2.2 Multi-level set modeling of AM parts

Multi-level set modeling has been widely applied to diversified multi-material topology optimization
problems, such as the ‘color’ level set [S7-60] and the MMLS (Multi-Material Level Set) [61]. But in fact,
multi-level set modeling can have broader applicability, especially for those which involve only a single
material type but still require interpolation of multiple level set functions, e.g. the product family design
as conducted in [62].

Innovatively in this work, multiple level set functions are employed to represent the sliced homogeneous
AM part, and a novel interpolation of the multiple level set functions is proposed to address the self-
support manufacturability constraint.

layer1 w;:®,>0

(1)2:(1)2>0
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(a) Multi-layer modeling (b) Multi-layer modeling subject to the
manufacturability constraint

Fig. 3 Multi-level set based modeling

To be specific, figure 3a presents an example of the multi-level set modeling. There are three printing
layers, each of which is represented by an independent level set function. Therefore, each layer is

expressed by Eq. (5).

w; = {x,y |®;(x,y) > 0}

)

For a step forward, if the self-support manufacturability constraint is considered, the layers cannot be
independently defined and the material domain of a higher layer should be constrained with a maximum

overhang distance of d. Therefore, a modified representation of the layers is presented in Eq. (6); also see

Fig. 3b.

w1 = {(er) |¢1(er) > 0}

w; = {0 y) [P;(x,y) > 0,1 (x,y) +d >0}, i>1

The part o
The inclination angle
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Fig. 4 The inclination angle definition

(6)

Specifically about the d, it is calculated through Eq. (7), based on the layer height h and the threshold

inclination angle y for self-support. Definition of the inclination angle is shown in Fig. 4.

d = h/tan(y)
Printing Overhang
layers area

9§

(a)d # 0and y = 45° b)d=0

Fig. 5. Design space comparison from a 2D view
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In practice, h tends to be small and y varies within the range of [30°, 60°] depending on the specific AM
process. Therefore, d tends to be a small positive value and in case that only a limited number of printing
layers are involved, assuming d = 0 would not have a major impact on the design space size; refer to
Figure 5 for an example. Hence, according to the geometric characteristics of the part, we distinguish the
optimization problem into two types with different levels of solving complexity: (i) if the overall printing
height is much smaller in length scale compared to the other two dimensions, d can be assumed to be zero
which will greatly simplify the later sensitivity analysis, as demonstrated in Section 4; (ii) otherwise, d
cannot be ignored and the regular adjoint sensitivity result has to be post-processed; see the details in
Section 5.

By assuming d = 0 of problem type 1, the material interpolation is realized through Eq. (8).
i

Diey) = | | H (@6 »)DO@) (®)

j=1
where H means the Heaviside function and, i and j are the layer index.

Otherwise, the problem type 2 with the material interpolation as shown Eq. (9) will be explored.
Di(x,y) = H(®i(x, y))H(®i-1(x,y) + DDO(®)),  i>1

)
D,(x,y) = H(®,(x,y))D(0(P)))

3. Optimization problem type 1
3.1 Problem formulation and solution

Subject to Eq. (8), the conventional compliance minimization problem is formulated as shown below:

N i
min. /= || D@@Ne@e)] [#(0,6y)an,

i=1 j=1

s.t. a(u,v,®) = l(v), Vv € Uy

N
V= ;L H(®,)d0; < Vs 0
N i
a(u,v,®) = ) fD D(0(@))e(ew | [ H () da;
i=1 j=1

l(v)=f T-vdl
aQ



in which a( ) is the energy bilinear form and [( ) is the load linear form. The load linear expression
does not include @, because it is assumed that the area applied of boundary traction force T is non-
designable. u;and v; are the deformation vector and the test vector within the i printing layer, and e( )
is the strain. Uyq = {v € H*(Q)%|v = 0 onTp} is the space of kinematically admissible displacement
field. The body forces are ignored in this work.

Material derivative and the adjoint method are employed to perform the shape sensitivity analysis.

To be specific, the Lagrangian is constructed in Eq. (11).
N
L=J+aluw,® — 1)+ A0 [ H@)A% = Vneo) (an
i=1°D

Then, material derivative of the Lagrangian is presented in Eq. (12).

N
L= ]+ aat,w, @) — (W) + A(Z | H®Da0: ~ Vo) (12
where,
N i
r=2 || ple@yewewn [ [#(e,wn)dn
i=1|"P j=1 (13)
N i i
D f D(0(@)e(e@)d(@(x,y) | | H(®;6)Vuilvorlan,
i=1 | k=1 j=1,j#k
N i
dw,®) = ) fD D(6(@))euNew | [ H(@;0x.7))de
i=1 j=1
N i
£y f D(O@))eew) | [ H(@;0c)dey (14)
i=1 |"D j=1
N i i
#21>| pO@)earews(@y) [ #(®6n)valvorlan,
i=1 | k=1 j=1,j%k
I'(v) = Lﬂr -w'dl (15)

(ZNljD H(®;)dq; — Vmax>, = ifD 5((I)i(x,y))Vm-|VcI)i|d_Qi (16)

Substitute Eq. (13-16) into Eq. (12). Collect all the terms including w and the sum is naturally equivalent
to zero; see Eq. (17).
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N i
> j D(o(@))eewy) | [ #(@;0ry))de;| - f T wdl =0 (17)
i=1|"P j=1
Then, collect the terms including u’ and force the sum equivalent to zero, which is:

N i
z || po@erew] [#(o;ey)dn,
N = (18)

+i f D(6(®))e(u;’ )e(wl)HH ®; (x, y))

i=1

By solving Eq. (18), solution of the adjoint variable w = —2u is derived. Then, by collecting the
remaining terms, the sensitivity result is obtained as:

N i i
L= —Z Zf D(6(®)))e(u)e(u;)s(Py(x,y)) l_[ (q> (x, y)) |V, A,
i=1 |k=1"P y =1, f%k 19)

+/12f 8(D;(x, ) )V VD, 1A,
i=1°D

Therefore,

i

N

Ve = =2+ ) [D(O@))epe) | | H(;0e) 20)
i=k j=1,j%k

which guarantees that L' < 0.

3.2 Numerical examples

For all the numerical examples, the finite element analysis is performed based on fixed hexahedral
meshes and the artificial weak material properties are adopted by the voids in order to prevent the
singularity problem; see Eq. (21).

D,=10"%D (21)
in which D, is the elasticity tensor of the void.

The volume constraint is addressed through the Augmented Lagrange method which has the Lagrange
multiplier as:

N
A1 = A + ﬂk(Zf H(®)dQ; — Vingx)
—~ ’/p (22)

Uks1 = Bux where0 < <1



in which u is the penalization factor and £ is its adjustment parameter.

The material properties tested by [27] are employed for the numerical examples, as specified in Table 1.
The orthotropic elastic model is assumed.

Table 1 3D printing material properties

Directions Young’s modulus Shear modulus Poisson’s ratio
(GPa) (GPa)
In-plain raster direction 1.16 0.51 0.09
In-plain transverse direction 1.05 0.28 0.37
Build direction 0.52 0.30 0.31
3.2.1 Case 1

Boundary conditions (BCs) of the first case are demonstrated in Fig. 6, where the dark blue-colored
elements are fixed and, the in-plane and out-of-plane point forces of the magnitude 100kN are separately
applied. The design domain is of size 40cm*20cm*4cm, where four printing layers exist. The objective is
to minimize the structural compliance under the maximum material volume ratio of 0.4. The starting
topology for all the layers is shown in Fig. 6¢. This starting topology is inherited by all the numerical
examples in Section 3 and 4, unless otherwise noted.

(aBC1 (b) BC 2

25 T T T T T T T T

(c) Starting topology of all the layers

Fig. 6 Boundary conditions of case 1 (the build direction is specified by the bolded arrow)
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Correspondingly, the optimization results are layer-wisely demonstrated in Fig. 7 and Fig. 8, respectively,
where a smaller index means a lower-level printing layer.

(a) Layer 1 (b) Layer 2

Fig. 7 Layer-wise optimization results of BC1 (Compliance = 24.89kN-m)

0 1 1 L 1 1 1 1 1

(a) Layer 1 (b) Layer 2

(c) Layer 3 (d) Layer 4
Fig. 8 Layer-wise optimization results of BC2 (Compliance = 421.60kN-m)

A few conclusions can be drawn from the optimization results that:



(i) In the optimization results of BC 1, layer 3 and layer 4 totally disappear while only the first two layers
remain. In addition, the support-free manufacturability constraints are strictly satisfied.

(i1) In the optimization results of BC 2, all the layers remain and at the same time, the support-free
manufacturability constraints are strictly satisfied. In layer 3 and layer 4, foot ribs are generated to bear
the bending load, which is reasonable.

The convergence histories are demonstrated in Fig. 9.
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Fig. 9 Convergence histories (the y-axis has the unit of kN-m)
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For BCl1, if we modify the starting topology by changing the interior hole distribution; see Fig. 10a, the
topology optimization result is updated as presented in Fig. 10(b-c), where the result is slightly different
as compared to Fig. 7: (i) the layer 3 is not totally removed, and (ii) the structural compliance is slightly
smaller but no significant improvement has been observed. Therefore, for this example, the optimization
result is but not strongly dependent on the starting topology.

25 T T T
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10F
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00

(a) Modified starting topology of all the layers
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(b) Layer 2 (c) Layer 3

25 T T T T T T T T

20F

(d) Layer 4

Fig. 10 Layer-wise optimization results of BC1 by modifying the starting topology (Compliance =
24.07kN-m)

Other than that, the design result of BC1 without considering the self-support requirement is
demonstrated in Fig. 11. We can see that, the derived structural compliance is reduced by 8.47 percent as
compared to the result shown in Fig. 7; however, a support volume fraction of 8.37 percent is required,
which means 20.92 percent of materials consumed by the part. Therefore, whether or not considering the
self-support requirement depends on the specific need of less material consumption or better structural
performance.

In addition, by comparing the results as shown in Fig. 7 and 11, the material distribution in layer 1 of the
former is drastically increased because of the self-support constraint. Therefore, to balance the overall
material consumption, the materials in layer 3 and 4 in Fig. 7 disappear.
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Fig. 11 Layer-wise optimization results of BC1 without considering self-support requirement
(Compliance = 22.78kN-m)
3.2.2 Case 2

Boundary conditions (BCs) of the second case studied are demonstrated in Fig. 12, where the dark blue-
colored elements are fixed and the in-plane and out-of-plane point forces of the magnitude 100kN are
separately applied. The design domain is of size 40cm*20cm*4cm, where four printing layers exist. The
objective is to minimize the structural compliance under the maximum material volume ratio of 0.4.

(a) BC 1

(b) BC 2

Fig. 12 Boundary conditions of case 2 (the build direction is specified by the bolded arrow)
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Correspondingly, the optimization results are layer-wisely demonstrated in Fig. 13 and Fig. 14,
respectively, where a smaller index means a lower-level layer.

25 T T T T T T T T 25 T T T T T T T T

20

15+

10F

(a) Layer 1 (b) Layer 2

25 T T T T T T T T

20+

151

101

0 1 1 1 1 1 1 1 1
(c) Layer 3

Fig. 13 Layer-wise optimization results of BC1 (Compliance = 4.07kN-m)

(a) Layer 1 (b) Layer 2
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25 T T T T T T T T 25 T T T T T T T T

(c) Layer 3 (d) Layer 4
Fig. 14 Layer-wise optimization results of BC2 (Compliance = 204.19kN-m)

A few conclusions can be drawn from the optimization results that:

(1) In the optimization results of BC 1, the layer 4 totally eliminates while the other three layers remain. In
addition, the support-free manufacturability constraints are strictly satisfied.

(i1) In the optimization results of BC 2, all the layers remain and at the same time, the support-free
manufacturability constraints are strictly satisfied.

Convergence histories are demonstrated in Fig. 15.
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Fig. 15 Convergence histories (the y-axis has the unit of kN-m)

4. Structural skeleton-based path planning

The medial axis transformation-based deposition paths planning was recently proposed by [48,49], which
demonstrated outstanding characteristics of producing gap-free cross-section. In fact, the medial axis
concept is similar to the structural skeleton concept which was previously studied under the level set
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framework for length scale control [46,47]. Therefore, the structural skeleton-based path planning will be
adopted in this section to assist the structural topology optimization, and it would be interesting to see if
the structural performance can be further enhanced.

4.1 Structural skeleton identification

The first step is to identify the structural skeleton based on the level set information. The procedures
previously presented in [47] were utilized, as demonstrate below:

(1) Identify the full skeleton S(£2) based on Eq. (23).

V2P (x,
VoY) . oty >0 (23)
mm(VZCD(x, y))
in which &; is a small positive number to guarantee the numerical computation robustness. Laplacian of
the level set function is calculated according to Eq. (24).

S(Q) = {(x, )|

V2D(x,y) = Dpyyj+ Ppgj+ @y jyg + Dy jg — 4D 24)
(2) Delete the skeleton points belonging to the corner area S(Q), i.e.,
S(@) = S@/S@) )
where,
VPo(x,y) V& (x,y) (26)

S(Q) = ()05 - 0.5

<&, P(x,y)<e
VP (x, )| [V (x, )] ~ &2 P) <3l

in which, b and f represent the backward and forward, respectively.

&, is assigned the value 0.6, which works based on the fact that the backward and forward gradients
employ opposite signs. €5 is a positive number which determines size of the corner area. The purpose of
deleting skeleton points among the corner area is to ensure the deposition paths around the skeleton to be
continuous.

4.2 Structural skeleton-based path generation

After identification of the skeletons, the points of the skeleton area S({2) are assigned the level set value
of zero. Then, by solving Eq. (2), the signed distance field is reinitialized and the structural skeleton-
based deposition paths are generated. A few examples are demonstrated in Fig. 16, from which we can
see that, an interior gap exists in the contour-offset path pattern, but not the structural skeleton-based
paths. In addition, a bigger 5 will make more paths to be continuous.
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Fig. 16 Examples of the structural skeleton-based deposition paths (¢; = 0.2, &, = 0.6, and the identified
skeleton area is filled in red color)

4.3 Deposition path-integrated structural topology optimization

In this sub-section, BC 1 of case 1 and case 2 in Section 3 is re-studied based on the structural skeleton-
based deposition path pattern. The optimization results are layer-wisely demonstrated in Fig. 17 and Fig.
18, respectively, where a smaller index means a lower-level layer. In these examples, the parameters of
& =0.1,&, = 0.6,and g5 = 1.5 are employed. The numbers in the contour lines represent the signed
distance values. The compliances obtained for these two cases are 24.86kN-m and 3.72kN-m.

By comparing with the results in Section 5, the structural skeleton-based deposition paths lead to better
structural performance for the BC 1 of case 2, but the improvement of the BC 1 of case 1 is not that
obvious. Therefore, it is hard to draw a general conclusion which should be case-specific.

Figure 19 demonstrates the related convergence histories.
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Fig. 17 Layer-wise optimization results of BC1 of case 1 (Compliance = 24.86kN-m)

(c) Layer 3

Fig. 18 Layer-wise optimization results of BC1 of case 2 (Compliance = 3.72kN-m)
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Fig. 19 Convergences histories (the y-axis has the unit of kN-m)

5. Optimization problem type 2: the general 3D self-support design

5.1 Problem formulation and solution

For the more general case where a positive d is involved, solving the related optimization problem is
complicated, and the details are presented in this section. For the sake of simplicity, the isotropic material

model is assumed where the related deposition paths are not considered.
The multi-level set modeling is realized through Eq. (27).
D; = H(®;)H(®;_; + d)D, i>1
D, =H(®,)D

Then, the compliance minimization problem is re-formulated as shown below:

N
min, J = ZU De(u)e(u)H(®)H(®;_; + d)dQ;
i=2 LDi

+ f De(u,)e(u,)H(P,)dQ,
D

1
s.t. alu,v,®) = 1l(v), Vv € Uy

N

V= Z f H(®)dOy < Vo
i=1"Di

N
a(u, v, ®) = Z [ f De(u)e(w)H(®)H(®,_, + d)dQ;
i=2 " Di

27)

(28)
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D

1
l(v)zf T-vdl
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Following a similar process as conducted in Section 3, the adjoint sensitivity analysis is performed on the
updated problem and the result is shown below:

N
L'= _2 UD De(u;)e(u;)6(®)H(P;_; + d)CIDi’in]

i=2 t

J

i= i

N
- De(u;)e(u;)H(®;)5(P;_; + d)q)i—lldﬂi]
~ (29)

- f De(uy)e(u)8(d1) Py d0,
D

1

N
+AZ f 8(D,)D;'de
i=1°D

In Eq. (29), the second term is a contour integral at ®;_; = —d. However, as well known, only the zero-
value level set contour can be effectively updated through solving the Hamilton-Jacobi equation, but not
the others. Therefore, it is necessary to transform the second term into an equivalent integral expression
but acts on the zero-value level set contour.

To be specific, the following relationship is used to transform the velocity location, referring to [63,64].

f FX)d0 = f ( F@[1 - dis(Z)x(Y)]dZ)dT (30)
[o) 0Q Jrayza(Y)nQ

where X indicates any point located inside the design domain, and f(X) is the integration function; Y is
the boundary point, and x(Y) is the curvature; Z is the point located on rayyq(Y) with the distance
dis(Z) from Y. Refer to the following two definitions and Fig. 19 for further details.

Definition 1. For any X € R™, I3 (X) = {Y, € 0Q, |X — Yy| = infyegq|X — Y|} is the set of projections
of X on 9Q. When I3 (X) reduces to a single point, it is called the projection Pyq (X) of X onto 0Q.

Definition 2. For any Y € 0Q, rayyq(Y) = {Z € R™,dis(Z) is dif ferentiable at Z and Py (Z) = Y}
is the ray emerging from Y.
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Fig. 20 Schematic plot of the Equation 30 [64]

Based on Eq. (30), the following relationship is derived, as shown in Eq. (31).

| Foos@ D0 a0 = | FOOS@ )% H@ + )0y
D

i D;

-| [ [ F@s@ )R- @+ d) £ 2| 6@, + Dy G1)
D; ray;g(Y)nQ

= f FX)®!_(1—d *k)§(P;_q + d)dQ
D

i

where Q represents the material domain of the level set field (®;_; +d) , and F(X) =
De(u;)e(u;)H(®;) at P,(X). Therefore, the second term in Eq. (29) can be transformed into:

[ o8y + oy, an

i=2 L' Di

’ (32)
FX)

=- o m5(¢i—1)¢i—1 dﬂi]

=

i=2 "

In summary, the sensitivity result is adapted into:

N
- z U De(u;)e(u;)5(®)H(P;_; + d)q’i'dﬂi]
4 D;
(33)

_FX) 4
ZU d—d+% (@) P Qi]

22



- f De(u,)e (1) 8(d1) P, d0,
D

1

N
1y f 5(®,)D;'d
i=1"D

Now, the sensitivity result is completely composed of integrals on the zero-value level set contours. The
boundary velocity fields can be trivially derived based on the principle of decreasing the Lagrangian, and
thus the level set fields can be updated through solving the Hamilton Jacobi equation. The design update
method is well-established and interested readers can refer to [33,34,65] for the details.

5.2 Numerical examples

Two numerical examples are studied to demonstrate the effectiveness of the self-support design with the
positive d value.

Figure 21 presents the input design domain (L40cm*W20cm*H30cm) and the attached boundary
conditions. A set of forces are loaded at the left bottom edge of the magnitude SkN/cm, and the right side
face is fixed. The solid material employs a Young’s modulus value of 1GPa and Poisson ratio value of 0.3.
The optimization problem is to minimize the structural compliance under the maximum material volume
fraction of 0.5.

Fig. 21 The cantilever problem

Correspondingly, the optimization results with and without considering the self-support requirement are
demonstrated in Fig. 22 and Fig. 23, respectively. For the former, the maximally-allowable overhang
distance d = 1 is assumed, which also means the threshold inclination angle of 45 degree. It can be
clearly observed from the results that, the smallest inclination angle in Fig. 22 is constrained above 45
degree, while that in Fig. 23 is much smaller than 45 degree.
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Fig. 22 The optimization result with considering the self-support requirement (measured minimum
inclination angle of 45.11 degree and the structural compliance of 1.64kN-m)

Fig. 23 The optimization result without considering the self-support requirement (measured minimum
inclination angle of 34.76 degree and the structural compliance of 1.59kN-m)



Figure 24 presents the input design domain (L80cm*W20cm*H15¢cm) and the attached boundary
conditions. A set of forces are loaded at the top center of magnitude S5kN/cm, and the two bottom edges
are fixed. The solid material employs a Young’s modulus value of 1GPa and Poisson ratio value of 0.3 by
assumption. The optimization problem is to minimize the structural compliance under the maximum
material volume faction of 0.5.

Fig. 24 The double-clamped beam problem

Correspondingly, the optimization results with and without considering the self-support requirement are
demonstrated in Fig. 25 and Fig. 27, respectively. For the former, the maximally-allowable overhang
distance d = 1 is assumed, and in Fig. 26, the major overhang areas have been measured from different
view angles. It is concluded that the inclination angles have been constrained above 45 degree, while
some minor violations exist because of the post-treatment process (smoothing) into a STL model. On the
other hand, without considering the self-support requirement, the overhang areas with the inclination
angle below 45 degree are marked out in Fig. 28. Therefore, effectiveness of the proposed method is
proved. It is noted that, only the left half of the structure is demonstrated because of symmetry.

25



Fig. 25 The optimization result with considering the self-support requirement (the structural compliance
of 3.39kN-m)

Fig. 26 Measurement of the overhang inclination angles (The red line indicates the angle of 45 degree)



Fig. 27 The optimization result with considering the self-support requirement (the structural compliance
of 3.19kN-m)

Fig. 28 Overhang areas with the inclination angle below 45 degree (marked out by the red circles)

The convergence histories of the cantilever and beam examples are shown in Fig. 29.
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Fig. 29 Convergence histories

.3. A combined case study

Yolume Ratio

It is straight-forward to extend the general support-free problem formulation in Eq. (28) to consider the
deposition path-induced material anisotropy, and a related problem is studied in this sub-section.

As shown in Fig. 30, the top surface of the cube is imposed of uniform pressure forces with the magnitude
of 1kN/cm? and the four bottom corners are fixed. The cube size is 30cm*30cm*20cm, and its boundary
frame is non-designable, which therefore, belongs to a problem of self-support enclosed void design. The
optimization problem is still compliance minimization and 15 percent of materials will be removed. The
material properties as shown in Table 1 is used. The part is sliced into 15 layers and the threshold self-

support inclination angle is 45 degree.

Fig. 30 Boundary conditions of the cube problem

The optimization result is demonstrated in Fig. 31 and the deposition paths at selected layers are shown in
Fig. 32, where the void area in each layer is filled in grey color. It can be observed from Fig. 31 that, the
enclosed void forms the shape of a pyramid and one of the inclined surface is measured about the
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inclination angle. Referring to the 45 degree reference line (in red color), the inclined surface can be self-
support and because of being symmetric, the whole enclosed void can be self-support.

Fig. 31 Self-support enclosed void design (the structural compliance of 11.79 kN-m)
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Fig. 32 Contour-offset deposition paths at selected layers
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6. Conclusion

In this paper, deposition path planning is concurrently performed when doing topology optimization, and
thus, the AM-induced anisotropic material properties are well addressed for realistic structural
performance evaluation. Two deposition path patterns are studied, e.g. the contour-offset and the
structural skeleton-based.

Moreover, the support-free manufacturability constraint is tackled. Multiple level set functions are used to
represent the sliced AM part and a novel multi-level set interpolation has been proposed to address the
support-free manufacturability constraint. It is proven by several numerical examples that effective
overhang-free design can be generated. It is noted that, the proposed approach shows the advantage that
the sensitivity analysis is computationally efficient, where it consumes less than 2 percent of the time
taken by the FEA. Specifically, the sensitivity analysis takes 0.77, 0.38, 0.44 seconds on average and the
FEA takes 117.39, 29.53, 103.59 seconds for the cantilever, beam, and cube problems, respectively,
where the sensitivity costs are only 0.66%, 1.28%, and 0.42% of the FEA costs. Noted that, the program
is run in Matlab 2011a with Intel Xeon CPU E5-1600 at 3.00GHz.

For future work, there is still room to further modify the structure skeleton-based deposition path
planning algorithm, through which the structural performance can be more accurately evaluated. The
numerical stability and computational efficiency of the 3D problems will also be focused.
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