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as they permit any number of species of spin 2 particles, are described by a much larger set

of parameters, and are not constrained to satisfy the equivalence principle. We consider

the leading spin 2 couplings to scalars, fermions, and vectors, and systematically study

signal propagation in all these other families of theories. We find that most interactions

directly lead to superluminal propagation of either a spin 2 particle or a matter particle,

and interactions that are subluminal generate other interactions that are superluminal.

Hence, such theories of interacting multiple spin 2 species have superluminality, and by
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from sources satisfying the null energy condition. This pathology persists even if the spin
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1 Introduction

General relativity is beautifully consistent with all current observations over a fantastic

range of scales. Although it is not UV complete, it does represent a consistent effective

theory for energy scales well below the Planck scale. Here we would like to examine

its theoretical underpinning. We are interested in whether there are universal principles
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upon which general relativity is built. Often one appeals to the equivalence principle, or

the principle of minimal coupling, or the diffeomorphism symmetry or general co-ordinate

invariance, or the idea of space-time curvature, or beauty, etc, to motivate the theory.

However such principles do not have universal applicability. For instance, the equivalence

principle evidently does not apply to other sectors of physics, such as electromagnetism

or the strong force, which acts on different particles differently. Minimal coupling is not

universal in that particles such as neutrinos are not minimally coupled to photons, and the

same is anticipated of hidden sector particles.

Nevertheless there are principles that appear universal, at least for energies below the

Planck scale, namely Lorentz symmetry and quantum mechanics. It is known that these

basic principles underpin the structure of the Standard Model of particle physics. There,

the idea is simply to build a theory of a particular collection of particles of different spins

and masses and focus on just the leading operators that survive at low energies, allowing

some particles to be minimally coupled. In the case of gravitation, one might enquire as

to whether only the principles of Lorentz symmetry and quantum mechanics are enough

to uniquely specify the theory as being general relativity. Of course in this case the theory

is non-renormalizable in 3+1 dimensions, but we only demand that we have a consistent

effective theory. In fact it is often said that indeed general relativity is the unique theory

of massless spin 2 particles at low energies. However, as was discussed in a recent paper [1]

by one of us, and introduced in older work [2], there are whole classes of other Lorentz

invariant theories of massless spin 2 particles. Here one couples the linearized Riemann

tensor directly to matter, as it automatically results in a gauge invariant interaction. In

that recent paper [1] the special case of coupling to photons was examined, where it was

shown that there is superluminality of one of the polarizations of the photon.

In this paper we would like to perform a much more systematic analysis of all these

other classes of spin 2 particles. We first demonstrate that by utilizing higher derivative

interactions, one can build theories of an arbitrary number of species of spin 2, which cou-

ple with a large number of parameters. This makes the space of theories vastly greater

than the special case of general relativity, which involves only a single minimally coupled

spin 2 particle. We systematically lay out the various types of leading order interactions

to matter, including coupling to scalars, fermions, and vectors. In each case we carefully

examine whether there is some form of superluminality in either the matter particles or a

spin 2 particle. Our basic findings are: (i) most interactions directly lead to superluminal

propagation of either a spin 2 particle or a matter particle, (ii) interactions that are sub-

luminal generate other interactions that are superluminal, and (iii) interactions that are

subluminal and do not generate other interactions that are superluminal, do not represent

true interacting spin 2 particles at all, but only self interactions in the matter sector. A

summary of the theories considered and our findings is given in table 1.

We contrast these results with the case of spin 1 particles, where the most leading

order higher derivative couplings are perfectly causal. So the properties of spin 2 are

quite distinct from spin 1. We argue that the size of superluminality in all these spin 2

theories can be made sufficiently large to lead to macroscopic time advance and problems

with causality. We also point out that this cannot be readily fixed by the introduction

of other operators. We contrast this to the case of general relativity, which leads only
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to subluminal propagation for matter in the presence of ordinary sources that satisfy the

null energy condition. We also remark on similar problems that emerge in massive spin 2

theories. Finally we comment on self-interactions and operators of much higher dimension

that can be causal, although they tend to be associated with the presence of ghosts.

Our paper is organized as follows: in section 2 we give the basic structure of theories

of spin 2. In section 3 we study interactions involving a single graviton in couplings to

matter. In section 4 we show that these theories have superluminality. In section 5 we

study interactions involving multiple gravitons in couplings to matter. In section 6 we

present a more general proof that these theories have superluminality. In section 7 we

compare these findings of superluminality to general relativity, spin 1, and massive spin 2.

In section 8 we conclude.

2 Space of spin 2 theories

In this work, we primarily focus on massless spin 2 particles; though we will discuss both

spin 1 and massive spin 2 in section 7. Massless spin 2 particles must be comprised of 2

helicities in 3+1 dimensions to be associated with a unitary representation of the Lorentz

group. We embed the particles into a tensor field hµν,I , where µ, ν are Lorentz indices,

and I is a species index, running from I = 1, 2, . . . , N for N species of spin 2 particles.

This is a convenient way of describing local interactions, though it comes at the expense

of introducing too many degrees of freedom. As is well known, this can only be fixed by

the introduction of an identification into the theory.

2.1 Multiple species

At the linear level, we can introduce the following identification

hµν,I ≡ hµν,I + ∂µαν,I + ∂ναµ,I (2.1)

where αµ,I is a set of 4 arbitrary gauge functions for each species I. Upon gauge fixing,

this means that hµν,I is not a good Lorentz tensor, and so utilizing hµν,I directly to build

an interacting theory in a self-consistent manner is generically extremely difficult. We

shall return to this shortly, but for now it is important to mention a possible way around

this issue. By taking two derivatives of hµν,I we can form the following manifestly gauge

invariant and Lorentz covariant 4-tensor

Rµνρσ,I ≡
1

2
(∂ρ∂νhµσ,I + ∂σ∂µhνρ,I − ∂σ∂νhµρ,I − ∂ρ∂µhνσ,I) (2.2)

which is proportional to the linearized Riemann tensor.

The Lorentz invariant theory of free spin 2 particles is of course a unique theory. It

simply describes particles with helicity ±2 satisfying the dispersion relation E = p. At

the level of a local Lagrangian it is therefore also unique (up to boundary terms and field

re-definitions) and takes the form

Lkin =
∑
I

[
1

2
(∂hI)

2 − 1

2
∂hµν,I∂h

µν
I + ∂µh

µν
I ∂νhI − ∂µhρσI ∂ρh

µ
σ,I

]
(2.3)

Note that this is gauge invariant, up to boundary terms.
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Particles Involved Interaction Causal? Real?

One Spin 2

Scalar Rφ2 Yes No

Scalar Gµν∂
µ∂νφ Depends on other sectors No

Scalar Rµναβ∂µ∂αφ∂νφ∂βφ No Yes

Two Scalars Rµναβ∂µφ∂νχ∂αφ∂βχ No Yes

Fermion Rψ̄ψ̄ Yes No

Fermion iRνδψ̄γν∂δψ Depends on other sectors No

Fermion Rµναβψ̄σ
µνψψ̄σαβψ Yes Yes (but generates (?))

Vector RµναβFµνFαβ No Yes

Two Spin 2

Scalar f(φ)GB No Yes

Pseudoscalar g(φ)RR̃ No Yes

Fermion ψ̄ψGB No Yes

Fermion (?) ψ̄γ5ψRR̃ No Yes

Two Massive Spin 2

Scalar f(φ)(h2 − hµνhµν) No Yes

Minimally Coupled Spin 2

All General Relativity Yes Yes

One Spin 1

Fermion Fµνψ̄σ
µνψ Yes Yes

Fermion iFµνψ̄γ
µ∂νψ Depends on other sectors No

Two Spin 1

Scalar f(φ)FµνFµν Yes Yes

Pseudoscalar g(φ)Fµν F̃µν Yes Yes

Table 1. Table of the interactions considered in paper. The columns indicate as follows: first

is the particles involved in the interaction; second is the explicit interaction term; third is if the

interaction leads to causality propagation, with the caveat that some depend on other sectors of the

theory; fourth is if the interaction produces a non-zero scattering amplitude and hence is “real”.

By exploiting the linearized Riemann tensor, interactions can be readily written down.

If we consider an interaction involving only one spin 2 particle coupled to matter, it takes

the form

Lint =
∑
I

Rµνρσ,I T̃
µνρσ
I (2.4)

where T̃µνρσI is any 4-index tensor built out of the matter degrees of freedom; ideally one

that is constructed to be ghost free. Note that by integrating by parts, one can also express

this as hµν,I coupled to an identically conserved tensor, but this formulation with Riemann

makes the construction of gauge invariant operators more explicit. For example, this can be

readily generalized to multiple gravitons in interactions by allowing for multiple insertions
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of the linearized Riemann tensor, which we shall return to in section 5 (other work includes

refs. [3, 4]).

This allows for a huge set of theories, since there is tremendous freedom in the choice

of T̃I ; in fact this can be an arbitrary function, containing much more freedom than the

usual coupling constant that specifies how a graviton couples to the matter Lagrangian.

We shall systematically study couplings to scalars, fermions, and vectors in section 3. A

concrete example is the operator

Lint =
1

Λ3

∑
iI

ciI Rµνρσ,IF
µν
i F ρσi + . . . (2.5)

when coupling to vectors (the dots indicate other terms needed for consistency, that will

be discussed in section 3.4). Here the i index runs over vector species and the I index runs

over spin 2 species, so that there is a matrix of couplings ciI . Hence this class of theories is

associated with a huge range of parameters associated with an arbitrary number of species

of spin 2. We have depicted this huge space of theories schematically as the blue region

in figure 1. Note that nothing in this framework demands the universality of couplings

principle, so we allow the couplings to be arbitrary. This poses a severe challenge to derive

the equivalence principle, which we aim to tackle in this work.

2.2 Single species

The above analysis applies to any number N , including the special case of a single species

N = 1. However in this special case, a more relevant interaction is allowed by the Lorentz

symmetry. All of the above interactions involve higher derivatives compared to so-called

minimal coupling, where the hµν,I is directly used. This is a well studied subject, which

we recap only briefly here.

To utilize minimal coupling, we would attempt to couple the spin 2 field directly to

matter as follows

Lint = −1

2

∑
I

κI hµν,IT
µν
I (2.6)

This evidently violates the linear gauge invariance, unless TµνI is conserved. However, there

is no non-trivially conserved tensor. The closest object is the matter energy-momentum

tensor, which is only conserved in the limit in which we ignore this new interaction.

Nevertheless we can proceed order by order in powers of the coupling κ. At second

order in the coupling it is found that there is no consistent way to build the interactions

without introducing an update to the gauge transformation rule. In fact, at all orders the

gauge transformation is necessarily lifted to the full nonlinear diffeomorphism invariance

κhµν(xβ) ≡ (ηρµ + κ ∂ραµ)(ησν + κ ∂σαν)(ηρσ + κhρσ(xβ + καβ))− ηµν (2.7)

Since there are only 4 coordinates, this only acts to remove 4 degrees of freedom, and

hence this only works for a single species of spin 2. This conclusion is compatible with

the traditional no-go theorems dictating the inconsistency of multiple interacting spin 2

fields [5, 6] where minimal, or leading order, couplings are assumed. In contrast, in the
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Figure 1. Space of possible theories of spin 2 particles. If only a single species of spin 2 is included

with minimal coupling (requiring the nonlinear diffeomorphism invariance in its description), then

we are uniquely led to general relativity (GR) at low energies; indicated by the small red circle

on the left. If multiple species of spin 2 are included (requiring the linear gauge invariance in its

description), which must be non-minimally coupled, then we are led to a vast array of possibilities

associated with many parameters; indicated by the large blue circle on the right. In this paper we

show, however, that this much larger class of theories tend to suffer from problems of acausality,

and thus are ultimately excluded from a physical viewpoint.

previous subsection this conclusion is avoided because the linearized Riemann tensor is

used, which is explicitly invariant under the gauge identification.

Furthermore, the entire action is determined to all orders uniquely, up to boundary

terms and field redefinitions, in terms of the single coupling GN = κ2/(16π), giving rise to

the Einstein-Hilbert action [7]

S =

∫
d4x
√
−g
[
R

16πGN
+ LM (ψi, gµν)

]
(2.8)

where the script R is the full non-linear Ricci scalar (and we reserve the straight “R” to

refer to the canonically normalized linearized piece only as in eq. (2.2)). This essentially

unique theory is summarized by the small red circle in figure 1. We do note that we can

add to this action higher dimension operators of the form we summarized in the previous

subsection, by exploiting the (nonlinear) Riemann tensor, and so other sub-leading inter-

actions are allowed. However, since it necessarily only involves a single spin 2 species, it
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Figure 2. The diagrams corresponding to the theories considered in this section. The straight

lines represent matter, and the squiggly lines represent spin 2 particles.

is much more restricted and associated with far fewer parameters than the other set of

theories described above.

Famously, this leads to the 1/r2 force law, the universality of free-fall, and all the

successes of general relativity. At the same time this theory carries various conceptual

puzzles, such as the notorious cosmological constant problem and the black hole information

paradox. In this paper we would like to provide a deeper explanation as to why nature

has nevertheless chosen this special theory, rather than the much bigger space of theories

depicted in figure 1.

3 One spin 2 in the interaction

Our focus in this and the next few sections is to develop and examine the large class of

theories of section 2.1 which may involve any number of spin 2 particles.

We first investigate interactions with matter that only involve one spin 2 particle

in the interaction vertex. We consider explicit interactions with scalars, fermions, and

vectors in turn. The boson interactions will lead to novel, nontrivial theories that prima

facie appear perfectly healthy. However, in section 4 we will show that all of these lead

to superluminal propagation of matter, and ultimately acausality. There appears to be at

least one fermion interaction that evades this problem, but in section 5.3 we will explain

why it too is associated with a form of superluminality.

The Feynman diagrams for the interactions considered here are depicted in figure 2.

Since in this section we shall only make reference to a single spin 2 particle in the inter-

action, we shall suppress the species index I, though the extension to a sum over multiple

species is straightforward.

3.1 One scalar

The most general interaction Lagrangian linear in the spin 2 field and involving no more

than one derivative on the scalar is

Lint = a1Rf(φ) +
a2

Λ3
R(∂φ)2 +

a3

Λ3
Gµν∂µφ∂νφ (3.1)

In general the coefficients ai can be functions of the scalar, but to lowest order we can take

them to be constant. The first term will not affect the causality properties of the scalar,

since it acts as a potential term and is unimportant in the large momentum limit. The
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other two terms involve derivatives of the scalar, and so can potentially lead to alterations

of the causal structure of the theory. However, these interactions are fictitious.1 This can

be seen by looking at the scattering amplitude for

h+ φ→ h+ φ (3.2)

in the gauge ∂µhµν = hµµ = 0, in which case Gµν = �hµν . In this gauge, the interaction

vertex is proportional to p2ε(p)ijk
i
1k
j
2, and vanishes when the external spin 2 field is placed

on shell, where p2 = 0. Similarly, any scattering built out of this vertex vanishes when one

of the spin 2 fields is on shell. This is a direct consequence of the fact that this interaction

is proportional to the free field equations of motion, which are used to define the Fock

space in the interaction picture. Consequently, this term can be completely removed by a

field redefinition, and so is a ‘redundant operator’. Notice that this removal is exact for our

theories because the Einstein tensor is exactly linear in the spin 2 field. This is in contrast

to general relativity, where the Einstein tensor contains higher order terms, which lead to

couplings that are not removed by the redefinition provided.

So although terms like ∼ Rf(φ) are perfectly causal, they do not actually involve the

spin 2 particle at all. Other terms like R(∂φ)2 are ambiguous in that their (a)causality

depends on other sectors of the theory, but they also do not actually involve the spin 2

particle. This will be an important observation for all of the theories we discuss in this

work, and so we show explicitly how a field redefinition transforms these interactions away

in full generality in the appendix.

In order for the interaction to be nontrivial, then, it must involve the (linearized) Rie-

mann tensor. It is impossible to contract Riemann with a quantity involving first derivatives

of a single scalar field, but if we consider terms involving second derivatives we can write

Lint =
a4

Λ6
Rµναβ ∂µφ∂αφ∂ν∂βφ+ . . . (3.3)

The term written explicitly has fourth (time) derivative equations of motion and so will

contain Ostrogradski ghosts, but if we add terms proportional to the Einstein tensor to

the Lagrangian with the right coefficients the equations can be made second order [8].

Alternatively, we may use the second Bianchi identity to write the divergence of the

Riemann tensor appearing in the equations of motion in terms of the Einstein tensor,

∂γRαβγδ = ∂αRβδ−∂βRαδ, which will vanish on flat backgrounds. The equation of motion

for the scalar field becomes

�φ− a4

Λ6
Rµναβ ∂µ∂αφ∂ν∂βφ+ . . . = 0 (3.4)

Here we have only shown the terms with the most derivatives acting on the scalar field,

which amounts to treating the Riemann field as slowly varying compared to the scalar. In

section 4 we show that this leads to superluminality on nontrivial backgrounds.

1Also, note that the theory contains Ostrogradski ghosts unless a2 = 0 [8].
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3.2 Two scalars

We can also construct an interaction with the Riemann tensor using only first derivatives

if we are willing to introduce a second scalar field. The interaction is:

Lint =
a5

Λ7
Rµναβ ∂µφ∂νχ∂αφ∂βχ (3.5)

As with the interaction (3.3) before, this term does not introduce ghosts in the scalar sector

on flat backgrounds, and the ghosts can be removed completely if terms proportional to

the Einstein tensor are added [9].

The scalar equations of motion for this theory are (again, keeping only the leading

derivative terms), (
ηµν − tµνχχ − tµνχφ
− tµνχφ ηµν − tµνφφ

)
∂µ∂ν

(
φ

χ

)
= 0

Here, we use the notation tµνψ1ψ2
= 2a5/Λ

7Rµανβ∂αψ1∂βψ2. To show that this system

exhibits superluminal motion, it suffices to only take one of these backgrounds to be non-

trivial. In this instance, the kinetic matrix diagonalizes and one of the fields is dictated by

the wave equation. This background is investigated in section 4.

3.3 Fermions

We now ask whether it is possible to couple fermions to the Riemann tensor, or if these

types of couplings lead to superluminality as well. At cubic order in the fields the most

general form of the interactions can be written as

Lint =
1

Λ2

(
b1Rψ̄ψ + b2Rαβγδψ̄σ

αβσγδψ
)

+
1

Λ3

(
ib3Rψ̄γ

µ∂µψ + ib4R
νδψ̄γν∂δψ + ib5Rαβγδψ̄σ

αβγγ∂δψ
)

(3.6)

Here we have neglected parity violating terms involving γ5, but these do not alter our

conclusions. The first line involves no derivatives on the fermion, and so will not alter

the causality structure of the theory. However, both of these terms are trivial. The first

one is proportional to the Einstein tensor, so, as before, can be removed with a field

redefinition. The second potentially benign term involves the Riemann tensor and so

is a genuine interaction, and resembles a mass term for the fermion on a given spin 2

background. However, this term can be shown to vanish. This is because the two sigma

matrices can be replaced with their symmetrization, as a consequence of the index structure

of the Riemann tensor. Then the following gamma matrix identity can be employed:

{σµν , σαβ} = 2i(ηµασνβ − ηµβσνα − εµναβγ5) (3.7)

When contracted with the Riemann tensor, this becomes

Rµναβ{σµν , σαβ} = 4iRνβσνβ − 2iεµναβR
µναβγ5 (3.8)

The first term vanishes because it is a symmetric tensor contracted with an antisymmetric

tensor, and the last vanishes by the Bianchi identity.

– 9 –



J
H
E
P
0
9
(
2
0
1
7
)
1
1
9

The second line of (3.6) involves couplings containing derivatives acting on the spinor

field. The first two terms are proportional to the Einstein tensor, and were shown in [10]

to arise from integrating out heavy gauge bosons in the standard model. There, it was

shown that these can lead to superluminality in particular backgrounds, but these will not

contribute in the absence of a source for the spin 2 field. The last term can also be reduced

to this form as well by employing spinor identities:

∆Lint = i
b5
Λ
Rαβγδψ̄σ

αβγγ∂δψ

=
b5
Λ
Rµνγδψ̄(−ηµγγν + ηνγγµ − εµνγσγσγ5)∂δψ

=
2b5
Λ
Rνδψ̄γν∂δψ (3.9)

Thus, even at the single derivative level, all cubic fermion couplings can be removed with a

field redefinition. If we are willing to consider higher powers of the fields, however, it is pos-

sible to write down nontrivial interacting terms. The first of these is a dimension 9 operator:

Lint =
b5
Λ5
Rµναβψ̄σ

µνψψ̄σαβψ (3.10)

While this term is benign from the standpoint of causality, through loop effects it will

generate dangerous terms that will be considered in section 5.3.

3.4 Vector

We now turn to interactions between a spin 1 and spin 2 field. Of the possible cubic

interactions, there most general (parity-even) Lagrangian is

Lint =
1

Λ3
(c1RF

2 + c2R
µνFµ

λFλν + c3R
µναβFµνFαβ) (3.11)

This was first discussed in the context of the low energy effective theory for quantum

electrodynamics in curved spacetime in [11]. (For a thorough discussion see [12]). As before,

the first two terms do not represent true interactions, and they vanish on backgrounds that

are Ricci flat, so we focus on the last. The equation of motion for the spin 1 field is

∂αF
αβ − 4

c3

Λ3
Rµναβ∂αFµν + . . . = 0 (3.12)

(again we have only shown the terms that dominate when the background field is slowly

varying). The characteristics for the spin 1 field set by this last equation will be analyzed

in the next section, and lead to superluminality.

4 Signal propagation

The equations of motion for the three interacting theories we have uncovered so

far (3.2), (3.4), and (3.12) all have the same basic form. We will now show that all these

admit superluminal propagation while remaining in the regime of validity of the effective

– 10 –
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field theory. Using the eikonal (geometric optics) approximation to the equations of mo-

tion, where the wavelength of the matter particle is much smaller than the scale at which

the background varies, we get that the characteristics obey

(ηµν −Rµναβχνβ)kµkν = 0 (4.1)

The only difference between the three theories is the form of the tensor χαβ , which for

the various theories we consider is

χνβ =


a5
Λ6∂ν∂βφ̄ scalar

2a6
Λ7 ∂νχ̄∂βχ̄ two scalars

2c3
Λ3 ενεβ vector

(4.2)

In the first case the tensor is the second derivative of a background field, but if this is a

plane wave it becomes χµν = −a5pµpνφp/Λ
6. The pµ vectors are lightlike if the scalar is

massless, and timelike if the scalar is massive. The same holds for the second case, with

φp → χ2
p. In the last case, the polarization vectors are spacelike. Generically, then, we

make the replacement χνβ → qpνpβ .

4.1 Superluminality

We now show that theories of this type exhibit superluminality on certain backgrounds.

Let us take the Riemann tensor to be a plane wave, so that it is a solution to the free field

equations of motion Gµν = 0. Then

Rµανβχαβkµkν = q

(
hkp, kp −

1

2
hkk, pp −

1

2
hpp, kk

)
(4.3)

Where subscripts denote projections, e.g. hkp = hµνk
µpν , and subscripts after commas

denote derivatives.

To be explicit, let’s now specialize to a particular setup: we will take γ to propagate

in the ẑ direction, and will take ~k and ~p to be perpendicular to this direction, say ~p = |p|x̂.

In the case where pµ is null and future directed, then p0 = |p|, and so our characteristic

equation reduces to

− ω2 + k2 + q|p|2
(
ωḧxjkj −

1

2
ḧijkikj −

1

2
ω2ḧxx

)
= 0 (4.4)

This will define a dispersion relation ω(k), which will set the speed of propagation of the

system through ω = vk. For simplicity we specialize further to keeping only the cross

polarization of the spin two field, h× = hxy, arriving at

ω̃2 = (kx ky)

(
1 −κ/2
−κ/2 1 + κ2/4

)(
kx

ky

)

We have introduced the quantity κ = q|p|2γ̈× and shifted the frequency variable by ω̃ =

ω − κky/2, which accounts for the fact that all signals drift uniformly in the y direction.
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From here the speed can be read off by looking at the eigenvalues of this matrix. The trace

and determinant condition give

v2
1 + v2

2 = 2 +
1

4
κ2, v2

1v
2
2 = 1 (4.5)

One of these will necessarily be greater than 1 unless κ = 0, since the determinant is

unchanged.

If the vector pµ is spacelike (relevant to the spin 1 case) the analysis is even easier:

since we took it to be perpendicular to the direction of propagation of the spin 2 field, the

derivatives in equation (4.3) must be contracted with kµ. Then we have

(1 + qχ′2ḧ+)ω2 = k2 (4.6)

so the speed can be either greater than or less than the speed of light, depending on the

sign of ḧ+.

Now, to make the setup more explicit, we imagine we have a source for the spin 2 field,

generating lots of fairly low energy particles. The ultimate strength of this effect will depend

on the intensity of the wave, which can be made arbitrarily high, and the wavelength, which

can be made arbitrarily wide. We wish to send a particle through this wave perpendicularly,

all with the entire setup in a background χ field of very long wavelength. With this setup

the magnitude of the effect can be made as large as desired. Then, in order to create a

paradox, we take several of these systems in the setup of [13], all boosted relative to each

other, and are capable of sending signals backwards in time to a specified location.

4.2 Regime of validity

Let us carefully examine the wave solution we have constructed, to see under what condi-

tions it is capable of giving rise to time travel paradoxes. We restrict our attention to the

spin 1 case here because it is simplest, but our conclusions are identical for all three cases.

The speed of sound in the spin 2 background is

v ∼ 1∓ ḧ

Λ3
∼ 1± ω2h

Λ3
(4.7)

where we have taken the spin two laser to have a pure frequency ω. When we propagate

a short wavelength test particle through this background for a distance L, a net buildup

of time advance can be attained ∆L = ∆vL. The bare minimum required for this to be

useful for constructing a time machine is that the shift in distance be greater than the

wavelength of the photon used, ∆L > ω̄−1 [14, 15]. At first this can seem to be made

arbitrarily large, since the distance L could in principle be taken to infinity. However, we

are stymied by this approach due to the fact that the wave pulse we have chosen oscillates

around zero, giving the effect of a time advance half the time and a time delay the other

half. If a photon is sent through a number of cycles the effect averages to zero, and so the

effect must be confined within a single wavelength, L < ω−1.

Therefore, the ratio of time advance to wavelength of the photon will be

∆L

ω̄−1
∼ ω̄ω2hL

Λ3
∼ L

ω−1

ω̄

ω

ω2h

Λ3
∼ L

ω−1

h

hUV

ω̄

ω
(4.8)
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The last similarity defines the quantity hUV = Λ3/ω2, which is the maximum value of h for

which we can trust the theory. Beyond this, higher order terms in the Lagrangian of the

form RpF 2/Λ3p, which will be induced radiatively by loops, all become equally important,

and the effective description breaks down. Note that since this is the quantity that sets

the change in speed, the speed itself must be very close to 1, but the total effect can be

made large. Then, the first two factors must be below 1 for our theory, but the hierarchy

of photon frequency to spin 2 frequency, ω̄/ω can be made as large as desired.

It is interesting to see how this effect is shielded in the case where the spin 2 field is the

graviton. In general relativity, the Lagrangian contains the additional tower of operators

hkF 2/Mk
p set by the Planck mass. If the graviton becomes larger than Mp, the effective

description breaks down, corresponding in the full theory to the creation of a black hole. Ef-

fectively, then, the upper limit on h becomes hUV = min{Λ3/ω2,Mp}, and cannot be made

arbitrarily large for small ω. Similarly, there is a tower of operators in the photon sector

that scale parametrically as αkF 2k/m4k−4
e and �kF 2/m2k

e , where me is the electron mass.

Frequencies ω̄ above the electron mass are outside the regime of the effective theory, and in

the full theory correspond to the ability for a high energy photon to produce an electron-

positron pair through the Schwinger mechanism. In this case the cutoff scale Λ we have been

discussing is related to these two scales through Λ3 ∼ m2
eMp, and so the maximal ratio is

∆L

ω̄−1
∼ ω̄ω

m2
e

h

Mp
(4.9)

From the arguments above this can never be larger than one while remaining in the regime

of validity of the effective theory, and so any time advance must be much shorter than

the wavelength of the photon used. This is consistent with the conclusions of [14, 15],

who find that it is impossible to construct a time machine using the quantum effects of

electrodynamics in curved space.

In this case, it is the fact that this nonminimal term is generated from extra degrees

of freedom running through loops that shields the theory from superluminality. There is

no limit in which the theories of the previous section can be recovered from this theory,

since the limit Mp → ∞, Λ fixed entails that me → 0. Here, the curative degrees of

freedom (electrons) are explicitly part of the low energy theory, and cannot be removed

from the analysis. This is just the simplest example of how extra degrees of freedom may

enter the theory to cure this pathology. Note, however, that it requires the addition of the

minimal coupling of general relativity, rendering it disconnected from the theories we were

discussing before. Those theories, as they have been written, cannot be cured without this

standard coupling included to bound the amplitude of the spin 2 wave.

5 Two spin 2 in the interaction

We now study the interactions involving several spin 2 particles, focussing on the case of two

spin 2 particles at each vertex, and show that these lead to acausality as well. The Feynman

diagram for the types of interactions we are considering is depicted in figure 3 below.
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Figure 3. A diagram with two spin 2 particles and an arbitrary number of matter particles, of the

type studied in this section.

5.1 Gauss-Bonnet coupling

We can also ask whether the Gauss-Bonnet term leads to superluminal propagation if we

couple it to matter, along the lines of [16–18] (we note that without coupling to matter,

the Gauss-Bonnet term is only a boundary term). The matter sector remains luminal if

we only use a potential function (not involving derivatives), which is also the only coupling

possible without introducing ghosts (in four dimensions) [8]. Then the theory we choose is

Lint =
∑
IJ

fIJ
(
φ, ψ̄ψ

) (
RI

µναβRJµναβ − 4RI
µνRJµν +RIRJ

)
(5.1)

Though we have explicitly shown that this interaction can involve multiple spin 2 fields to

highlight the disconnectedness of this theory from general relativity, we now specialize to

the case of a single spin 2 field for simplicity. The equations of motion are

Gµα−Rµναβ∂β∂νf+Gµα�f−G
µ
β∂

β∂αf−Gβα∂µ∂βf+Gνβ∂
β∂νfδ

µ
α−

1

2
R (∂µ∂αf −�fδµα) = 0

(5.2)

These equations can be simplified considerably if we use an appropriate generalization of the

de Donder gauge, Kαµ(∂αhµν−∂νhαµ/2) = 0, with Kαµ = (ηαµ+∂α∂µf)−1 ≈ ηαµ−∂α∂µf .

These then reduce to

Kµν∂µ∂ν h̄αβ = 0 (5.3)

With h̄αβ = hαβ−KµνhµνKαβ/2. If we denote k|| and k⊥ as the components of momentum

parallel and perpendicular to ∇f , the dispersion relations are then set by

(1 + f̈)ω2 + 2ḟ ′ωk|| = (1− f ′′)k2
|| + k2

⊥ (5.4)

The cross term can be eliminated by using a shifted frequency variable, ω̃ = ω+ḟ ′/(1+f̈)k||,

and the dispersion relations yield the speeds of propagation

v2
|| =

(1− f ′′)(1 + f̈) + ḟ ′

(1 + f̈)2
, v2

⊥ =
1

1 + f̈
(5.5)

For instance, if we take f to be a function of x+ t, then f̈ = f ′′ = ḟ ′, and the sound speed

in both directions becomes, to linear order, v2 = 1− f̈ . Since there is no preferred sign for

the second derivative of this function, the speed can be either faster or slower than luminal.
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5.2 Gravitational Chern-Simons term

One may also wonder about a coupling between a scalar and the gravitational Chern-Simons

term of the form considered in [19, 20]:

Lint =
1

4
g(φ, iψ̄γ5ψ)εαβγδRαβµνR

µν
γδ (5.6)

This theory has a similar status to the Gauss-Bonnet term, since it only alters the prop-

agation of the graviton, and is a total derivative in the limit that the function g becomes

constant. The equations of motion for this theory are

Eνβ ≡ Gνβ + εµνρσ∂α

(
∂µgRρσ

αβ
)

+ (ν ↔ β) = 0 (5.7)

On a generic background, the function g(φ, iψ̄γ5ψ) can depend on both time and space,

and the equations of motion will not factorize to separate equations for each helicity. This

makes the analysis complicated, but if we make the assumption that g is a small per-

turbation on an otherwise flat background we can still probe whether signals propagate

superluminally. The dispersion relations can still be obtained from solutions to the equa-

tions of motion for a Fourier mode, where, since there are multiple propagating degrees

of freedom, a determinant must be taken to account for all solutions. If we abstractly

represent the equations as

(Aabη
µν −Bµν

ab )kµkν = 0 (5.8)

To lowest order Aab = δab, and the determinant can be expanded in powers of B. Unfor-

tunately this case is somewhat complicated by the fact that the trace of B vanishes, but

the equation can be expanded to second order to yield

(kµk
µ)2 +

1

2
Tr(BµνBαβ)kµkνkαkβ +O(g3) = 0 (5.9)

and it remains to evaluate the trace of the matrix squared. In our setting, this can be done

by taking a second variation of the equations of motion, which yields

Bνβσδ =
δ∆Eνβ

δhσδ
= −εµνρσ∂α∂µg kρ(ηδβkα − ηαδkβ) + (ν ↔ β, σ ↔ δ) +O(k3) (5.10)

Here we have ignored higher powers of the momentum, as on backgrounds with spatial

dependence these will only introduce spurious poles with a mass proportional to m ∼ 1/g′,

outside the regime of validity of our theory. This matrix must be projected onto physical

degrees of freedom before the trace is taken, for which we use the flat space projector

Pijkl = δ̂ikδ̂jl + δ̂ilδ̂jk − δ̂ij δ̂kl, with δ̂ij = δij − k̂ik̂j . At this point the computation can be

performed, yielding

(ω2 − k2)2 +
∣∣∣ωg̈~k − k · ∇g~k − ω2~∇ġ + ω k · ∇~∇g

∣∣∣2 +O(g3) = 0 (5.11)

This generalizes earlier work of ref. [21] to spatially dependent backgrounds. The dispersion

relations set by solutions to this equation will still retain their complex sound speeds, but

we remain agnostic as to whether this in itself is a problem. The pathology we are more
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Figure 4. While the theory given by equation (3.10) is not itself unhealthy, pathological terms are

generated through the above two loop diagram, leading it to induce theories of the type studied in

section 5.2.

interested in is whether there are backgrounds for which the real part of the propagation

speed is greater than one, signalling superluminal motion. We solve this quartic equation

for ω(k) to second order to obtain

Re{v} = 1− 1

8

(
β2

1 − 4β1β2 + β2
2 + 2β1β3

)
+O(g3) (5.12)

where we have defined the angle-dependent quantities β1 = g̈, β2 = k̂ ·∇ġ, β3 = k̂ ·∇k̂ ·∇g.

To explicitly show that this dispersion relation leads to superluminal motion, we specialize

to a setup where we have a long wavelength mode for g propagating in the z direction.

Then the speed becomes

Re{v} = 1− g′′2

8

(
1− 4 cos θ + 3 cos2 θ

)
(5.13)

which is indeed greater than 1 for angles between 0 < cos θ < 1/3. Thus on spatially de-

pendent backgrounds the gravitational Chern-Simons theory can give rise to superluminal

propagation.

5.3 Quantum corrections for fermions

We now discuss that the seemingly healthy term in equation (3.10) generates the Chern-

Simons term through loop effects. The loop under discussion is depicted in figure 4. This

term involves four fermions and a single spin 2 field and was a dimension 9 operator. It

will lead to the Chern-Simons operator involving two fermions and two spin 2 fields, which

is also dimension 9, and so can potentially play the leading role for the dynamics of the

theory. It is generated through two loop diagrams, but we refrain from going into too much

detail about the calculation, as it is quite beside the main topic of this paper. Suffice to

say, the effect can be encapsulated with the following terms in the effective Lagrangian:

Leff =
1

Λ10
RαβγδRµνρσ

(
m3I2 +mI4

)
ψ̄
(
Jαβγδµνρσ1 + Jαβγδµνρσ2

)
ψ (5.14)

where I2 and I4 are quadratically and quartically divergent integrals, respectively, m is the

mass of the fermion running through the loops, and J1 and J2 involve the index structure

of the σ matrices coming from the two possible Wick contractions of the two loop diagram.

Explicitly, we have Jαβγδµνρσ1 = σαβσµνσγδσρσ and Jαβγδµνρσ2 = σαβσρσtr(σγδσµν). Where
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these multiply the quartic divergence, the sigma matrices are accompanied by another pair

of gamma matrices contracted among themselves, inserted at appropriate locations.

Using the gamma matrix identities [σµν , σγδ] =

2i
(
ηµγσνδ − ηνγσµδ − ηµδσνγ + ηνδσµγ

)
and equation (3.7) for the anticommutator,

the sigma matrices in these expressions can be eliminated in favor of ηµν and εαβγδγ5. In

all cases two commutators and one anticommutator are used, ultimately introducing only

a single ε tensor, which contracts to form the Chern-Simons combination.

The fact that only the Chern-Simons combination is generated, as opposed to the

Gauss-Bonnet of the same dimension, can be seen because only this term retains the

symmetry of the original term ψR → iψL, ψL → iψR. The actual coefficient of the Chern-

Simons term is ambiguous in the effective field theory framework since it is proportional

to a power-law divergent integral, but in the absence of any motivation otherwise we take

the ultimate coefficient to be the same scale as the original term in the Lagrangian, Λ−5.

In this case the original term will not affect the causality properties of the theory, but the

term it generates through loops will induce superluminality.

6 General analysis

The interactions we have presented to this point are by no means an exhaustive list. There

is no limit to the number of operators one may write down that represent a nonminimal

coupling of a spin 2 field to other matter representations. For instance, one may contem-

plate all possible quartic interactions between two spin 2 fields and two spin 1 fields. These

will all have ghosts in four dimensions, as their equations of motion will be third order. If

one is willing to consider six dimensions, however, a combination employing the Levi-Civita

symbols can be written, which is ghost free. Similarly, in [22] cubic self interactions of spin

2 particles were analyzed, such as ∆L ∝ RµνσδRσδργRµνργ + . . ., where it was shown that it

generically gives rise to superluminality. Faced with this never ending panoply of possible

couplings, we are motivated to provide a more general analysis that lays out the conditions

that will lead to superluminality.

6.1 Conditions for superluminality

We now formulate a statement that a generic coupling of matter to the Riemann tensor

induces superluminality on some background. This is necessary, as otherwise there are in

principle an infinite number of couplings that could be chosen, and each would potentially

represent a healthy theory. This proof eliminates that worry.

In all cases we consider, the equations of motion for the test particle in the slowly

varying spin 2 background reduces to

(ηµν −Bµν(h))kµkν = 0 (6.1)

This form is essential for the consistency of a theory. While generic couplings would

yield equations of motion with higher powers of momenta, these would all have ghostlike

roots. If the mass of the ghost is field dependent it can be made arbitrarily small for some

backgrounds, and the theory would have a vanishing regime of validity. Alternatively, if the
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mass of the ghost is heavy we ignore those branches as artefacts of the effective field theory

description, and focus on the quadraticized version of the equations of motion describing

the healthy modes.2

Granted that the theory we consider prepares this dispersion relation, our requirement

that it be subluminal reduces to Re{v} < 1, where ω2 = v2|k|2 and the speed may depend

on the particular direction of travel. Note that in these theories we need not make the

distinction between group velocity, phase velocity, and signal velocity, since the dispersion

relation is exactly quadratic. The speed can be found from this equation as

− (1 +B00)ω2 − 2B0iωki + (δij −Bij)kikj = 0 (6.2)

or, in terms of the shifted frequency ω̃ = ω +B0iki/(1 +B00),

ω̃2 =
1

1 +B00

(
δij −Bij +

B0iB0j

1 +B00

)
kikj (6.3)

which gives the propagation speed as

v2 =
1

1 +B00

(
1−Bij +

B0iB0j

1 +B00

)
k̂ik̂j (6.4)

If we take the matrix B to be a perturbation we can ignore the last term, as it is higher

order. Then the sound speed attains a maximum at

v2
max =

1− bmin

1 +B00
(6.5)

where bmin is the smallest eigenvalue of Bij . Requiring that this be no greater than one

implies that B00+bmin ≥ 0. This is equivalent to a null energy condition for the matrix Bµν .

Including the time-space components only increases the speed, so that if this equation

is not satisfied for the regime it can be neglected, then it will only get worse for the regime

where it cannot. In fact, this stipulation can be avoided by noting that the null energy

condition is independent of Lorentz frame, so that if we can find a frame in which the time-

space components vanish, the equivalence is exact. However, the conditions for such a frame

to exist are precisely the null energy condition, leading us to the general statement that

v2 < 1 ⇐⇒ Bµνkµkν ≥ 0 ∀ k2 = 0 (6.6)

2The one exception to this reasoning would be if the extra terms were only spatial, so that additional

roots to the dispersion relations are not introduced. This can only occur for a single Lorentz frame, but

nevertheless if the background breaks Lorentz invariance then it may occur. In this case there are three

possible behaviors: the speed can either become imaginary, superluminal, or neither for large momenta.

The first would arise in dispersion relations of the form ω2 = k2 −αk4, which exhibits gradient instabilities

for large k. The second is present for theories like ω2 = k2 + αk4, which are ruled out by superluminality

considerations. The last are present for theories like ω2 = k tanh(αk), such as water waves. These types of

theories necessarily require an infinite number of operators to give such a result, and so are not of the form

we consider in effective field theory. Let us note that the R4 theories that arise in low energy descriptions of

string theories are of this last type [23, 24]: subluminal, but with spurious poles that can only be removed

by an infinite tower of operators coming from a more complete theory.
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But from here it becomes easy to see that theories of the type we consider will always

lead to superluminalities, because they are linear in the spin 2 field. So, if we find one wave

solution that has subluminal propagation, the solution with Rµναβ → −Rµναβ will have

superluminal propagation. Since there is nothing in the theory that sets a preferred sign

for the spin 2 field, generically faster than light travel will exist in the matter sector. This

holds for arbitrary Lagrangians of the form ∆L = RµναβT
µναβ , where T contains derivative

terms. However, one may also be concerned with interactions involving two powers of the

Riemann curvature, and so on. These will lead to superluminalities for the exact same

reason if we consider backgrounds with a superposition of multiple spin 2 modes. For

instance, if we take one to be extremely large wavelength so that it is effectively a constant

background for the scales we are interested in, we can set up a scenario on top of this

that will operate in exactly the same manner as above. We need not worry about any

nonlinearities in the spin 2 field equations because we are free to take the frequency of

the long mode to be arbitrarily small, and compensate this suppression by increasing the

amplitude of the shorter wavelength mode.

Finally, we briefly comment on the generalization of (6.6) to the case of multiple

species, as we needed for our analysis in section 5.2. In this case Bµν will be a matrix, and

the determinant of equation (6.1) will yield roots corresponding to all dispersion relations

of the theory. If B is treated as a perturbation this can be expanded to first order, and

the condition for superluminality is simply TrBµνkµkν ≥ 0 for null kµ. Should the scenario

arise where the trace of this matrix vanishes, as in the Chern-Simons case discussed above,

then the condition is Tr(B00Bµν)kµkν ≥ 0.

7 Comparison to other theories

7.1 General relativity

It is worth asking how general relativity manages to always satisfy this constraint, since

gravity modifies the propagation of light rays in exactly this way, yet retains a notion of

causality. We consider two scenarios, that when the metric is set by a weak field source,

and the case of a gravitational wave.

If the Einstein tensor is sourced by matter, then, following [25], the induced nondy-

namical graviton profile is

hµν =
κ

2

∫
d4y Gret(x, y)

(
Tµν(y)− 1

2
T λλ(y)ηµν

)
(7.1)

where we have expanded around flat space in Lorentz gauge, and used the retarded solution

to the wave equation that has support only within the past light cone. Then Bµν = hµν

and from (6.5) the speed is given by

v2 =
1− 〈Tmin〉+ 1

2〈T
µ
µ〉

1 + 〈T 00〉+ 1
2〈Tµµ〉

(7.2)

where Tmin is the minimum eigenvalue of the spatial part of the stress tensor and we intro-

duced the bracket notation to denote convolution with the retarded Green’s function Gret.
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Keeping in mind that the Green’s function is positive semidefinite, the condition for this to

be subluminal is T 00 + Tmin ≥ 0, which is the null energy condition. Using the additional

stipulation that the energy is positive, this shows that our criterion reproduces the standard

result [26, 27] that the weak energy condition must hold to avoid superluminal motion.

Let us draw to the reader’s attention that this condition is a requirement for causality

in the purely classical theory. This will not be satisfied when treated as a quantum field

theory, in generic quantum states. However, this does not immediately imply a violation of

causality, as any amount of negative energy must necessarily be localized to a small region

of spacetime [28]. The requirement for causality is then replaced with the averaged weak

energy condition [29], in which the contribution from every point on the particle’s path is

integrated over. While this stricter criterion is technically the requirement for acausality,

it is of no interest in the nonminimally coupled cases, where causality is violated even in

the classical theory, not to mention the quantum version.

The case for a gravitational wave is equally instructive. Here we are free to take the

transverse traceless gauge,3 in which the dispersion relation for a test particle becomes

ω2 = (δij + hij)kikj (7.3)

The speeds can be read off as v2 = {1, 1 ±
√
h2

+ + h2
×}. From this it appears that one

of the directions does in fact become superluminal. However, one should be careful in

this case, because there are number of subtleties. First of all, because of the equivalence

principle, the term superluminal is a misnomer, as now all null curves will be affected

in exactly the same manner. Secondly, in diffeomorphism invariant theories we need to

make sure this does not just represent a rescaling of the coordinates, either globally or

locally. However, the presence of a graviton is not something that can be gauged away

with a coordinate transformation, and so represents a physical effect. What is nontrivial

is the fact that even though passing through a graviton induces superluminality, it cannot

lead to a time machine in general relativity because gravity is necessarily self interacting

due to the equivalence principle. Then, if one tries to engineer a setup where a photon

is passed through a boosted graviton and sent back through another boosted graviton to

send future-directed signals back in time, one finds that the presence of the first graviton

automatically induces an equal shift in the location of the second to completely cancel

the net effect, as found in [14, 31]. Thus, causality is preserved in general relativity. On

the other hand, acausality can be present in the much larger class of derivative theories

examined earlier, because there the spin 2 field does not interact with itself (at the classical

level), and so two waves can pass by each other by superposition.

7.2 Spin 1

We briefly consider nonminimal couplings of a spin 1 field to matter to highlight some of

the differences between this and the spin 2 case. If we take the coupling to scalars, the

3This coordinate system will not be geodesically complete in the interacting theory [30], which we could

use as a prompt to go to the pp spacetime gauge. However, we are free to choose a setup that staves off

this incompleteness to arbitrarily far distances, and so this will not affect our analysis.
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couplings with the lowest number of derivatives are

Lint = f(φ)FµνF
µν + g(φ)εµναβFµνFαβ (7.4)

These will not alter the causal structure of the scalar, but will affect the spin 1 field. The

first ‘dilaton type’ coupling only serves to multiply the eikonal equation by (1 + f(φ)). As

long as this is positive, the theory is healthy. The second ‘axion type’ coupling is a bit

more subtle, since on a time dependent φ background the dispersion relation for the spin

1 field becomes [32]

(1 + f)
(
ω2 − k2

)
= ±ġk (7.5)

This term violates parity, but, in contrast to the gravitational Chern-Simons case we dis-

cussed in section 5.2, the effects only occur at low energies as opposed to high energies.

Thus, one of the modes will become a tachyon for k < ġ, and the other will appear su-

perluminal. But this apparent superluminality is not real, as the high momentum limit

recovers the Lorentz invariant dispersion relation, guaranteeing that signals propagate on

the light cone.

An analog for the Riemann coupling to fermions can be found in the case of electro-

magnetism. We are free to write down a term of the form

Lint,1 =
1

Λ
ψ̄(e1F

µν + ie2F̃
µνγ5)σµνψ (7.6)

Lint,2 =
i

Λ2
ψ̄(e3F

µν + ie4F̃
µνγ5)γµ∂νψ (7.7)

The first Lint,1 are dipole moment interactions and the second Lint,2 are anapole moment

interactions as discussed in [33–36]. As far as its derivative structure is concerned, the

first is a kind of complicated mass term for the fermion in the presence of a background

electromagnetic field, and hence is causal.

The second will alter the kinetic term to leading order. We have written down a gen-

eral combination of the field strength and its dual. The limit e3 = 0 reproduces the term

responsible for the Velo-Zwanziger pathology [37]. For a massive charged spin 3/2 mini-

mally coupled to electromagnetism, it is well known that in the presence of a background

magnetic field, the longitudinal mode exhibits superluminal propagation [38–40]. If one

introduces the Stueckelberg mode and takes the decoupling limit of the Lagrangian, a term

exactly of the form of (7.7) is present [41]. There it was shown to be removable with a field

redefinition, at the expense of introducing fermion self couplings. So though it exhibits

superluminality, this does not represent a real interaction with the spin 1 particle.

7.3 Massive spin 2

In previous sections, our analysis focused on the case of massless spin 2 particles, but it

is not hard to generalize our results to the case of massive particles. Generically, these

theories were shown to exhibit faster than light propagation [42, 43], and this behavior

can be expected to hold in the case of nontrivial coupling as well. We will show that this

expectation is indeed borne out.
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Generically, a mass term can be expected to break the symmetry that eliminates

the lower spin components from the kinetic term. These will acquire dynamics, as is

most easily seen by employing the Stueckelberg trick of restoring the gauge symmetry by

explicitly adding fields representing the longitudinal modes into the Lagrangian description.

Since the purely longitudinal mode contains two derivatives, a generic mass term for the

spin two field will lead to equations of motion that are fourth order in derivatives. The

only combination capable of evading this is the Fierz-Pauli mass, ∆L = 1
2m

2(h2−hµνhµν),

where the potentially dangerous terms assemble into a total derivative. Let us now consider

coupling this massive field to matter. We can choose any of the interactions discussed earlier

which make use of the linearized Riemann tensor. These all lead to superluminality in the

same way for the massless case; so we will not repeat that analysis here.

Moreoever, there are new types of interactions allowed for massive spin 2 that make

use of the field hµν itself. We focus on coupling to scalar matter for simplicity. The simplest

possible nonminimal coupling is

∆L =
1

2
f(φ)

(
h2 − hµνhµν

)
(7.8)

This resembles a part of quasi-dilaton massive gravity [44], where it was showed that this

coupling is ghost free. Isolating the longitudinal mode by performing the usual Stueckelberg

replacement

hµν → hµν +
1√
3

(
1

f
∂µ∂νπ + πηµν

)
, (7.9)

we find that the longitudinal mode now propagates according to(
ηµν +

1

3
�f−1ηµν − 1

3
∂µ∂νf−1

)
∂µ∂νπ = 0 (7.10)

This is of the form (6.1), and so gives rise to superluminal motion on some backgrounds.

The most familiar possibility is to minimally coupling hµν to matter, which takes

the form ∆L = −κhµνTµνM /2 at leading order in the coupling κ. The need to couple

to the matter energy momentum here arises from the need to avoid the 6th degree of

freedom, which is a ghost. However, as is well known, this theory is only ghost free at O(κ)

and requires an infinite tower of corrections to build a truly ghost free theory including

self interactions; as laid out in ref. [45]. However such theories involve non-trivial self

interactions of the scalar mode of the graviton of the Galileon form ∝ �π(∂π)2, which are

again associated with superluminality.

8 Conclusions

In summary, we find that all the leading order couplings of spin 2 particles to matter

are acausal, except in the special case of general relativity. This appears then to be the

universal principle that selects general relativity as the correct theory of spin 2 at low

energies, and in particular selects the number of species of spin 2 to be just one.

This extends the results of previous uniqueness proofs that relied on the leading interac-

tion being that of a minimally coupled field, strengthening this to more general momentum
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dependence of the interaction. Since causality is usually regarded as necessary for a theory

to avoid pathologies and is also closely related to unitarity in a quantum field theory, no

additional input is needed to derive general relativity’s primacy among the possible space

of spin 2 theories.

Though the style of our analysis was to analyze example theories one by one and

explicitly show that they all contain this pathology, the subtleties we encountered in this

exercise allowed us to formalize the conditions for any theory to be superluminal: as long

as the dispersion relations reduce to a quadratic function of the four-momentum and there

is some background for which the corrections to the dispersion relation can have either

sign, the theory will be superluminal.

In principle there could be causal sub-leading interactions at sufficiently high mass di-

mension which violate the conditions for our no-go theorem. An example is to take some of

the operators mentioned here and squaring them, such as ∼ (RF 2)2 or ∼ (RIRJ)2, and as-

signing positive coefficients in the Lagrangian (though this tends to introduces ghosts). But

our focus here has primarily been on the most leading order interactions, which ordinarily

dominate at low energies.

We note that in the case of general relativity, plus non-minimal corrections, the situa-

tion with regards to causality is fundamentally different. In this case, the leading effects at

low energies is provided by the usual general relativistic time delay for any ordinary source

(Shapiro time delay). Then the non-minimal coupling adds a secondary correction that

can involve time advance, which is irrelevant at low energies and is more relevant at higher

energies. Then the scale at which these two effects balance each other defines a cutoff on

the effective field theory, because above this scale there would be acausality; this demands

new physics at or below this scale.

However, in this much larger class of theories we are studying with multiple species

of spin 2, which prevents the inclusion of minimal coupling (or a single species of spin

2 with GN = 0), these non-minimal effects are the leading effects. So we immediately

have acausality even at arbitrarily low energies. This cannot be fixed by introducing new

physics at some finite energy scale. Hence such theories cannot be UV completed in any

conventional Wilsonian sense; it strongly suggests a fundamentally pathological theory.

It is striking that of the entire possible space of spin 2 theories studied, only a single one

appears internally consistent, and represents the physics that we observe in our world. This,

along with the prior results that causality can restrict derivative self interactions [46, 47],

establishes that causality can be an extremely powerful constraint. Also striking is the stark

contrast between these considerations for spin 1 theories: generic nonminimal couplings

between spin 1 fields and matter are healthy. This makes the spin 2 case very special, and

leaves general relativity as especially unique.
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A A field redefinitions and decoupling

We will prove here that any interaction among the spin 2 field and matter proportional to

the Einstein tensor can be removed with a field redefinition, so that the theory becomes

that of a free spin two field and a more complicated matter sector. Any theory of this form

can be cast as

L = hµνGµν +GµνSµν (A.1)

where Sµν is a general function of the matter fields, and we have integrated the spin 2

kinetic term by parts. For example, in the scalar Lagrangian (3.1) we consider first, we

would write

Sµν ≡ −
(
a1f(φ) + a2∂φ

2
)
ηµν + a3∂µφ∂νφ (A.2)

To track how the Einstein tensor changes under field redefinition, we use the expression

Gµα = εµνρσεανβγ∂ρ∂
βhγσ (A.3)

This form makes it manifest that this tensor is conserved, and reproduces the kinetic

term (2.3), up to boundary terms. The Lagrangian can be rewritten as

L = εαβγδεαµνρ

(
hµβ + Sµβ

)
∂γ∂

νhρδ (A.4)

Now, if we redefine the spin 2 field as

hµν → h̃µν = hµν −
1

2
Sµν , (A.5)

we affect a decoupling of the two sectors. Then, the Lagrangian is recast as

L = εαβγδεαµνρ

(
h̃µβ∂γ∂

ν h̃ρδ −
1

4
Sµβ∂γ∂

νSρδ

)
= h̃µνG̃µν +

1

8

(
Sβδ(�Sβδ − 2∂β∂

γSγδ) + S(2∂µ∂νSµν −�S)
)

(A.6)

Hence, instead of there being an interaction between the spin 2 field and matter, which

could potentially be causal, there is in fact only self interactions in the matter sector. Some

self interactions of this nature have been studied in previous works [46], and these results

have recently been systematically extended in [47]. This holds completely generally, even

with multiple species of matter or spin 2 fields, and allows us to focus our attention on

couplings to the Riemann tensor, which represent true interactions that cannot be removed

in this way.

Let us contrast this procedure to the one done ubiquitously in gravitational theories:

because the kinetic term is quadratic and the interaction term is linear, this decoupling is

exact. In gravitational theories this is not the case because the theory is nonlinear, and

the field redefinition we have given only serves to stave off interactions to higher orders in

the fields.
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