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Abstract—Emerging non-volatile memory (eNVM) based
synaptic devices are attractive for the replacement of SRAM in
the hardware implementation of artificial neural networks
(ANNs). However, one of the critical challenges for eNVM is the
reliability concerns due to data retention and write endurance
failures. This paper investigates the impact of these two failures
in the multilayer perceptron (MLP) using our developed
NeuroSim+ simulator. For the retention failure in offline
classification, we consider various possible conductance drift
scenarios and the reported physical model based on conductance
variation. The results confirm that faster degradation on the
classification accuracy is highly correlated with larger deviation
in the weighted sum. For the endurance failure in online learning,
the strength of conductance tuning is assumed to become weaker
over write pulse cycles. The analysis suggests that the learning
accuracy is less impacted because the network is able to adapt
itself and activate more synapses to participate in the weight
update when the tuning capability of synapses are degraded.

Index Terms—Emerging non-volatile memory, endurance,
artificial neural network, reliability, retention, synaptic devices

L INTRODUCTION

Neuromorphic computing based on artificial neural
networks (ANNSs) has attracted considerable attention owing to
its great success in various intelligence applications such as
speech and image recognition. Traditional implementation of
ANN relies on CPUs/GPUs and/or FPGAs to speed up matrix
operations by making effective use of their parallel processing
capabilities. However, these platforms are still inadequate for
real-time/low-power training with large-scale dataset that poses
a high requirement on the computation and memory bandwidth.
In recent years, several custom CMOS ASIC hardware
accelerators have been developed (e.g. MIT’s Eyeriss [1]) to
further improve the computation and power efficiency, where
SRAM is used to implement the synapses. But SRAM is area
inefficient (with cell size 100F*~200F2, F is the lithography
feature size) thus part of the weights may have to be stored off-
chip (i.e. in DRAM), introducing the bottleneck of off-chip
memory access. To replace SRAM, emerging non-volatile
memory (eNVM) based resistive synaptic devices, such as
resistive random access memory (RRAM) [2-4] and phase
change memory (PCM) [5, 6], are considered as promising
candidates due to their compact device structure (with cell size
4F?>~12F?) and the ability to store “analog” weight in multi-
level conductance states. At architecture level, the entire weight
matrix is represented by a resistive synaptic array with crossbar
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structure (Fig. 1(b)) that enables the weighted sum (matrix-
vector multiplication) to be performed in a parallel fashion.

Despite that the shift from digital to analog computing
domain offers a significant improvement in the area, power and
computation speed, synaptic devices usually suffer from non-
ideal device effects, including nonlinear and noisy conductance
tuning, limited precision and finite ON/OFF ratio, etc.
Degradation of learning accuracy associated with these
properties has been analyzed thoroughly using NeuroSim+
simulator in our prior work [7], but the reliability issues such as
data retention and write endurance are unexplored. In fact, the
reliability soft errors in HfOx based RRAM caused by its
stochastic nature of oxygen vacancies have been reported to be
harmful to the learning performance in a winner-take-all ANN
[8]. Degradation of learning accuracy is also observed with the
retention-induced conductance variation in HfOx based analog
RRAM with a thermal enhanced layer [9]. Therefore, it is
crucial to perform a comprehensive analysis of the reliability
issues on the learning performance of ANN. In this work, we
aim at investigating the impact of data retention and write
endurance with generic assumptions of all possible failure
mechanisms. The retention model presented in [9] will also be
taken into account and its impact will be re-evaluated with our
NeuroSim+ simulation framework.

II.  NERUOSIM+ SIMULATION FRAMEWORK

To study the feasibility of synaptic devices as analog weights
on ANN, we have developed a simulation framework named
NeuroSim+ for a 2-layer multilayer perceptron (MLP) NN with
synaptic device properties incorporated into the weights [7]. As
shown in Fig. 1(a), we use MNIST handwritten digits [10] as
the training and testing dataset to implement online learning and
offline classification. The MLP network topology is 400(input
layer)-100(hidden layer)-10(output layer). 400 neurons of input
layer correspond to 20x20 MNIST image (converted to
black/white and edge cropped), and 10 neurons of output layer
correspond to 10 classes of digits. Such a simple 2-layer MLP
can achieve 96~97% in the software baseline.

The simulator can emulate hardware by mapping the weight
matrixes to resistive synaptic arrays, as shown in Fig. 1(b). In
this work, each synaptic device model has the conductance (G)
incremental tuning as well as the retention and endurance
properties. It should be noted that the synaptic devices can only
represent positive weights, thus a mapping from the algorithm’s
weight (-1~1) to device’s weight (0~1) is required. In neuron
peripheral circuits, the array’s weighted sum result will be
mapped back to the algorithm’s weighted sum result by
subtracting the sum of input vector elements. For the learning
modes, the simulator can perform online learning and offline
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classification. In online learning, the MLP simulator takes into
account the synaptic device properties in training the network
with images randomly picked from the training dataset (60k
images) and classifying the testing dataset (10k images). In
offline classification, the network is pre-trained by software,
and the MLP simulator only performs the inference with
synaptic device properties.
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Figure 1. (a) The 2-layer multilayer perceptron (MLP) neural network
(NN). The input MNIST images are cropped and encoded into black/white
data for simplification. (b) In the simulator, the weights Wy and Wy are
implemented with resistive synaptic arrays, where each synaptic device
model includes the linear conductance (G) tuning with number of pulses as
well as the retention and endurance properties.

III.  RELIABILITY ANALYSIS

For memory application, the data retention and write
endurance are the key metrics for the reliability evaluation of
eNVM. In this section, we incorporate the retention and
endurance models into the developed simulator to study these
two issues. Since the emphasis is on the reliability, we set the
synaptic weight to be 6-bit (64 levels) and assumes linear
conductance tuning without variation in all the simulations.

A. Data Retention

Data retention refers to the ability of memory device to
retain its programmed state over a long period of time. Typical
retention specification for NVM in memory application is more
than 10 years at 85°C. Many binary eNVM devices have been
able to meet this requirement. However, there are no reported
data for analog eNVM that shows such retention, which can be
attributed to the instability of intermediate conductance states
[9]. To be general, we consider four scenarios of conductance
drift for the retention analysis. As shown in Fig. 2(a)-(c), the
conductance can either drift toward its maximum, minimum or
intermediate states. These three scenarios have ever been
reported in the retention measurement of binary eNVMs [3, 11,
12]. In addition, we also consider random conductance drift
towards its maximum or minimum state with equal probability,
as shown in Fig. 2(d). The formula for modeling the
conductance drift behavior is assumed to follow the one that is
widely used in PCM [6, 13], which can be described as

G:GO(%)V (D

where Gy is the initial conductance, ¢ is the retention time, v is
the drift coefficient and ty is the time constant which is assumed
to be 1 second in this work. In the retention analyses, the offline
classification is used with the conductance ON/OFF ratio set to
be 50, which is a sufficiently large ratio, in order to still capture
the conductance drift at the lowest conductance state.
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Figure 2. General assumptions of retention failure modes: conductance
drifting towards its (a) maximum state, (b) minimum state, (c) intermediate
state, or (d) maximum/minimum state with randomness.

Fig. 3(a) shows the degradation of classification accuracy
over retention time at a fixed drift coefficient of 0.01 with
different final weight states that the conductance drifts to. It can
be simply calculated that the conductance change is ~20% over
10 years under such drift coefficient, and it leads to degradation
of accuracy <90% for all final weight states. On the other hand,
the result suggests that the final state either be at the maximum
or minimum conductance has the poorest accuracy. To have a
quantitative comparison between different final weight states,
we measure the maximum drift coefficient of all states that still
give an accuracy >90% at a retention time of 10 years. As
shown in Fig. 3(b), the final weight at 0.6 can tolerate up to a
maximum drift coefficient of ~0.012, which corresponds to
~25% of the conductance change at 10 years.
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Figure 3. (a) Classification accuracy as a function of retention time with
conductance drifting toward different final weight states. (b) The maximum
drift coefficient as a function of final weights for achieving >90% accuracy
at 10 years.
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The reason why intermediate final weight states (Fig. 2(c))
have less accuracy degradation than either the maximum or
minimum ones (Fig. 2(a)-(b)) can be largely attributed to the
deviation of weighted sum after retention degradation. This can
be simply observed from the distribution of the absolute
difference of column conductance sum before and after
retention degradation, as shown in Fig. 4 for the first and second
layer of MLP NN. The difference (AW) is measured between
the array conductance patterns before and after a retention of 10
years, and a small drift coefficient of 0.001 is used to ensure
that most of the conductance have not reached their final states
at 10 years. As all the conductance will drift in the same
direction to the maximum or minimum final weight state, a
larger deviation of weighted sum is expected, and the high
inverse correlation between Fig. 4 and Fig. 3(b) confirms that
the accuracy degradation is strongly affected by the amount of
weighted sum deviation.
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Figure 4. Distribution of the absolute difference of column conductance
sum before and after 10 years (drift coefficient=0.001) in the (a) first and (b)
second layer of MLP NN. Both results are highly correlated with Fig. 3(b).

The above argument can be further substantiated by the
analysis of random conductance drift in Fig. 2(d), where its
impact on the classification accuracy is shown in Fig. 5. With
the same drift coefficient of 0.01, the accuracy degradation is
much less severe than the ones in other drift scenarios (Fig.
3(a)), even we select the worst result in Fig. 5 for comparison.
The reason is because the weighted sum deviation will be
averaged out by this randomness. It can be expected that if
either drifting towards maximum or minimum conductance is
much more probable, the accuracy degradation will be as severe
as that of W=0 or W=1 in Fig. 3(a).
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Figure 5. Monte carlo simulation on the accuracy with conductance

randomly drifting toward its maximum or minimum states. Under the same

drift coefficient, the randomness behavior does not lead to radical change in

weighted sum thus the impact on the accuracy is much smaller compared to
other conductance drift senarios.

In fact, the only experimental work so far that reported the
retention properties in analog RRAM suggests that its behavior
can be due to multiple hops of oxygen vacancies over long
retention time [9], which is analogous to Brownian Motion. It
also shows that the read current distribution of each
conductance level follows a normal distribution, where its
standard deviation (o) increases with retention time. In other
words, the retention behavior can be modeled as an increasing
conductance variation over time, which is illustrated in Fig. 6(a).
From [9], its o is described as

o=M/t+0 2)

where A and 0 are fitting parameters. Since these fitting
parameters can vary in different devices, conductance states
and even temperatures, we rather evaluate the impact of this
retention behavior based on 6. As shown in Fig. 6(b), a ¢ of
~0.2 will lead to a significant degradation on the accuracy. It
can be calculated that given 6=0, A should be smaller than ~7e-
6 for the accuracy to remain >90% at 10 years.
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Figure 6. (a) The retention model proposed in [9] suggesting the an
increasing conductance variation over time. (b) The impact of conductance
variation on the classification accuracy.
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B. Write Endurance

In memory application, the write endurance specifies the
number of times that a memory device can be programmed
(written) before the write failure occurs. Typical binary eNVM
devices can achieve >10° write cycles (between the highest and
lowest conductance states). However, the analog eNVM
endurance definition should be different as it has only
incremental conductance change by each write pulse. So far,
there is no prior work discussing the endurance behavior of
analog eNVM for neuromorphic computing. To study the
endurance effect in this work, we assume that the strength of
conductance tuning (AG) decreases over write pulse cycles,
which is expressed as

AG=AG(1-r)Fpulses) 3)

where AGy is the ideal conductance change without considering
endurance degradation, r is the reduction ratio, #pulses means
the cumulative number of pulses that has been applied to the
device. As illustrated in Fig. 7(a), the conductance will be
eventually unchangeable after an excessive number of cycles.
To analyze its impact, we apply the endurance property in the
online learning of the MLP NN. As shown in Fig. 7(b), the
learning accuracy degradation begins to be noticeable as we
gradually increase r to be >0.01. We also apply variations of
10% and 20% on the ratio, and it does not really either
significantly alleviate or worsen the degradation.
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In the endurance analysis, we assume the maximum
conductance of the device is 100 nS. It can be calculated that
the required cumulative number of pulses to reduce the strength
of conductance tuning by 50% and 90% are ~70 and ~230 under
r=0.01, respectively. Fig. 8(a)-(b) shows the distribution of the
sum of absolute conductance change in the first and second
layer of MLP NN without endurance effect to achieve the
targeted learning accuracy. The conductance changes with 70
and 230 write pulses are also labeled. Given only the results of
Fig. 8(a)-(b), we may easily conclude that r=0.01 is too large
thus there will be a significant accuracy degradation, because
most of the devices require far more pulses than these two
numbers to achieve >90% accuracy. However, the accuracy
with r=0.01 in Fig. 7(b) disproves this argument.
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Figure 7. (a) Endurance degradation in weight update of synaptic devices.
Strength of conductance tuning decreases over pulse cycles. (b) The impact
of AG reduction ratio (with 10% and 20% variation) on the learning
accuracy. 10 device samples are measured for each data point.

In fact, the network has the ability to adapt itself to this
endurance degradation by relying on other devices whose
conductance is still tunable. As shown in Fig. 8(c)-(d), the
conductance cannot be further tuned beyond a certain amount
of total conductance change (~150 nS), and the network will
keep activating other inactive devices to take over the
responsibility of learning during the entire learning process.
Besides, analog eNVM devices with >103 write pulses of
conductance tuning were also demonstrated [2, 5]. Therefore,
the endurance issue may not be as critical as estimated.
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Figure 8. Distribution of the sum of absolute conductance change in the (a)
first and (b) second layer without endurance effect, and (c) first and (d)
second layer of MLP NN with endurance effect (r=0.01). The network can
adapt itself to this endurance degradation by activating other synaptic devices
whose conductance are still tunable.

IV. CONCLUSION

Data retention and write endurance are important reliability
properties of synaptic devices. We have investigated the impact
of these two properties on a 2-layer MLP NN using our
developed NeuroSim+ simulation framework. It is observed
that there is a strong correlation between the degradation of
offline classification accuracy and the weighted sum deviation,
thus retention behaviors which causes less deviation will have
smaller impact on the accuracy. The analysis also includes the
existing retention model based on conductance variation,
enabling estimation of the model parameters based on targeted
performance. In contrast, the endurance issue defined in this
work is considered to be less critical than estimated because the
network is able to alleviate it during online learning by making
use of other devices whose conductance are still tunable.
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