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Abstract—Emerging non-volatile memory (eNVM) based 
synaptic devices are attractive for the replacement of SRAM in 
the hardware implementation of artificial neural networks 
(ANNs). However, one of the critical challenges for eNVM is the 
reliability concerns due to data retention and write endurance 
failures. This paper investigates the impact of these two failures 
in the multilayer perceptron (MLP) using our developed 
NeuroSim+ simulator. For the retention failure in offline 
classification, we consider various possible conductance drift 
scenarios and the reported physical model based on conductance 
variation. The results confirm that faster degradation on the 
classification accuracy is highly correlated with larger deviation 
in the weighted sum. For the endurance failure in online learning, 
the strength of conductance tuning is assumed to become weaker 
over write pulse cycles. The analysis suggests that the learning 
accuracy is less impacted because the network is able to adapt 
itself and activate more synapses to participate in the weight 
update when the tuning capability of synapses are degraded. 

Index Terms—Emerging non-volatile memory, endurance, 
artificial neural network, reliability, retention, synaptic devices 

I. INTRODUCTION 
Neuromorphic computing based on artificial neural 

networks (ANNs) has attracted considerable attention owing to 
its great success in various intelligence applications such as 
speech and image recognition. Traditional implementation of 
ANN relies on CPUs/GPUs and/or FPGAs to speed up matrix 
operations by making effective use of their parallel processing 
capabilities. However, these platforms are still inadequate for 
real-time/low-power training with large-scale dataset that poses 
a high requirement on the computation and memory bandwidth. 
In recent years, several custom CMOS ASIC hardware 
accelerators have been developed (e.g. MIT’s Eyeriss [1]) to 
further improve the computation and power efficiency, where 
SRAM is used to implement the synapses. But SRAM is area 
inefficient (with cell size 100F2~200F2, F is the lithography 
feature size) thus part of the weights may have to be stored off-
chip (i.e. in DRAM), introducing the bottleneck of off-chip 
memory access. To replace SRAM, emerging non-volatile 
memory (eNVM) based resistive synaptic devices, such as 
resistive random access memory (RRAM) [2-4] and phase 
change memory (PCM) [5, 6], are considered as promising 
candidates due to their compact device structure (with cell size 
4F2~12F2) and the ability to store “analog” weight in multi-
level conductance states. At architecture level, the entire weight 
matrix is represented by a resistive synaptic array with crossbar 

structure (Fig. 1(b)) that enables the weighted sum (matrix-
vector multiplication) to be performed in a parallel fashion. 

Despite that the shift from digital to analog computing 
domain offers a significant improvement in the area, power and 
computation speed, synaptic devices usually suffer from non-
ideal device effects, including nonlinear and noisy conductance 
tuning, limited precision and finite ON/OFF ratio, etc. 
Degradation of learning accuracy associated with these 
properties has been analyzed thoroughly using NeuroSim+ 
simulator in our prior work [7], but the reliability issues such as 
data retention and write endurance are unexplored. In fact, the 
reliability soft errors in HfOx based RRAM caused by its 
stochastic nature of oxygen vacancies have been reported to be 
harmful to the learning performance in a winner-take-all ANN 
[8]. Degradation of learning accuracy is also observed with the 
retention-induced conductance variation in HfOx based analog 
RRAM with a thermal enhanced layer [9]. Therefore, it is 
crucial to perform a comprehensive analysis of the reliability 
issues on the learning performance of ANN. In this work, we 
aim at investigating the impact of data retention and write 
endurance with generic assumptions of all possible failure 
mechanisms. The retention model presented in [9] will also be 
taken into account and its impact will be re-evaluated with our 
NeuroSim+ simulation framework. 

II. NERUOSIM+ SIMULATION FRAMEWORK 
To study the feasibility of synaptic devices as analog weights 

on ANN, we have developed a simulation framework named 
NeuroSim+ for a 2-layer multilayer perceptron (MLP) NN with 
synaptic device properties incorporated into the weights [7]. As 
shown in Fig. 1(a), we use MNIST handwritten digits [10] as 
the training and testing dataset to implement online learning and 
offline classification. The MLP network topology is 400(input 
layer)-100(hidden layer)-10(output layer). 400 neurons of input 
layer correspond to 20×20 MNIST image (converted to 
black/white and edge cropped), and 10 neurons of output layer 
correspond to 10 classes of digits. Such a simple 2-layer MLP 
can achieve 96~97% in the software baseline.  

The simulator can emulate hardware by mapping the weight 
matrixes to resistive synaptic arrays, as shown in Fig. 1(b). In 
this work, each synaptic device model has the conductance (G) 
incremental tuning as well as the retention and endurance 
properties. It should be noted that the synaptic devices can only 
represent positive weights, thus a mapping from the algorithm’s 
weight (-1~1) to device’s weight (0~1) is required. In neuron 
peripheral circuits, the array’s weighted sum result will be 
mapped back to the algorithm’s weighted sum result by 
subtracting the sum of input vector elements. For the learning 
modes, the simulator can perform online learning and offline 
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classification. In online learning, the MLP simulator takes into 
account the synaptic device properties in training the network 
with images randomly picked from the training dataset (60k 
images) and classifying the testing dataset (10k images). In 
offline classification, the network is pre-trained by software, 
and the MLP simulator only performs the inference with 
synaptic device properties. 

 
Figure 1.  (a) The 2-layer multilayer perceptron (MLP) neural network 

(NN). The input MNIST images are cropped and encoded into black/white 
data for simplification. (b) In the simulator, the weights WIH and WHO are 
implemented with resistive synaptic arrays, where each synaptic device 

model includes the linear conductance (G) tuning with number of pulses as 
well as the retention and endurance properties. 

III. RELIABILITY ANALYSIS 
For memory application, the data retention and write 

endurance are the key metrics for the reliability evaluation of 
eNVM. In this section, we incorporate the retention and 
endurance models into the developed simulator to study these 
two issues. Since the emphasis is on the reliability, we set the 
synaptic weight to be 6-bit (64 levels) and assumes linear 
conductance tuning without variation in all the simulations. 

A. Data Retention 
Data retention refers to the ability of memory device to 

retain its programmed state over a long period of time. Typical 
retention specification for NVM in memory application is more 
than 10 years at 85oC. Many binary eNVM devices have been 
able to meet this requirement. However, there are no reported 
data for analog eNVM that shows such retention, which can be 
attributed to the instability of intermediate conductance states 
[9]. To be general, we consider four scenarios of conductance 
drift for the retention analysis. As shown in Fig. 2(a)-(c), the 
conductance can either drift toward its maximum, minimum or 
intermediate states. These three scenarios have ever been 
reported in the retention measurement of binary eNVMs [3, 11, 
12]. In addition, we also consider random conductance drift 
towards its maximum or minimum state with equal probability, 
as shown in Fig. 2(d). The formula for modeling the 
conductance drift behavior is assumed to follow the one that is 
widely used in PCM [6, 13], which can be described as 

G=G0
t
t0

 (1) 

where G0 is the initial conductance, t is the retention time, v is 
the drift coefficient and t0 is the time constant which is assumed 
to be 1 second in this work. In the retention analyses, the offline 
classification is used with the conductance ON/OFF ratio set to 
be 50, which is a sufficiently large ratio, in order to still capture 
the conductance drift at the lowest conductance state. 

 
Figure 2.  General assumptions of retention failure modes: conductance 

drifting towards its (a) maximum state, (b) minimum state, (c) intermediate 
state, or (d) maximum/minimum state with randomness. 

Fig. 3(a) shows the degradation of classification accuracy 
over retention time at a fixed drift coefficient of 0.01 with 
different final weight states that the conductance drifts to. It can 
be simply calculated that the conductance change is ~20% over 
10 years under such drift coefficient, and it leads to degradation 
of accuracy <90% for all final weight states. On the other hand, 
the result suggests that the final state either be at the maximum 
or minimum conductance has the poorest accuracy. To have a 
quantitative comparison between different final weight states, 
we measure the maximum drift coefficient of all states that still 
give an accuracy >90% at a retention time of 10 years. As 
shown in Fig. 3(b), the final weight at 0.6 can tolerate up to a 
maximum drift coefficient of ~0.012, which corresponds to 
~25% of the conductance change at 10 years. 

Figure 3.  (a) Classification accuracy as a function of retention time with 
conductance drifting toward different final weight states. (b) The maximum 
drift coefficient as a function of final weights for achieving >90% accuracy 

at 10 years. 
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The reason why intermediate final weight states (Fig. 2(c)) 
have less accuracy degradation than either the maximum or 
minimum ones (Fig. 2(a)-(b)) can be largely attributed to the 
deviation of weighted sum after retention degradation. This can 
be simply observed from the distribution of the absolute 
difference of column conductance sum before and after 
retention degradation, as shown in Fig. 4 for the first and second 
layer of MLP NN. The difference ( W) is measured between 
the array conductance patterns before and after a retention of 10 
years, and a small drift coefficient of 0.001 is used to ensure 
that most of the conductance have not reached their final states 
at 10 years. As all the conductance will drift in the same 
direction to the maximum or minimum final weight state, a 
larger deviation of weighted sum is expected, and the high 
inverse correlation between Fig. 4 and Fig. 3(b) confirms that 
the accuracy degradation is strongly affected by the amount of 
weighted sum deviation.  

Figure 4.  Distribution of the absolute difference of column conductance 
sum before and after 10 years (drift coefficient=0.001) in the (a) first and (b) 
second layer of MLP NN. Both results are highly correlated with Fig. 3(b). 

The above argument can be further substantiated by the 
analysis of random conductance drift in Fig. 2(d), where its 
impact on the classification accuracy is shown in Fig. 5. With 
the same drift coefficient of 0.01, the accuracy degradation is 
much less severe than the ones in other drift scenarios (Fig. 
3(a)), even we select the worst result in Fig. 5 for comparison. 
The reason is because the weighted sum deviation will be 
averaged out by this randomness. It can be expected that if 
either drifting towards maximum or minimum conductance is 
much more probable, the accuracy degradation will be as severe 
as that of W=0 or W=1 in Fig. 3(a). 

 
Figure 5.  Monte carlo simulation on the accuracy with conductance 

randomly drifting toward its maximum or minimum states. Under the same 
drift coefficient, the randomness behavior does not lead to radical change in 
weighted sum thus the impact on the accuracy is much smaller compared to 

other conductance drift senarios. 

In fact, the only experimental work so far that reported the 
retention properties in analog RRAM suggests that its behavior 
can be due to multiple hops of oxygen vacancies over long 
retention time [9], which is analogous to Brownian Motion. It 
also shows that the read current distribution of each 
conductance level follows a normal distribution, where its 
standard deviation ( ) increases with retention time. In other 
words, the retention behavior can be modeled as an increasing 
conductance variation over time, which is illustrated in Fig. 6(a). 
From [9], its  is described as 

= t+  (2) 

where  and  are fitting parameters. Since these fitting 
parameters can vary in different devices, conductance states 
and even temperatures, we rather evaluate the impact of this 
retention behavior based on . As shown in Fig. 6(b), a  of 
~0.2 will lead to a significant degradation on the accuracy. It 
can be calculated that given =0,  should be smaller than ~7e-
6 for the accuracy to remain >90% at 10 years.  

Figure 6.  (a) The retention model proposed in [9] suggesting the an 
increasing conductance variation over time. (b) The impact of conductance 

variation on the classification accuracy. 

B. Write Endurance 
In memory application, the write endurance specifies the 

number of times that a memory device can be programmed 
(written) before the write failure occurs. Typical binary eNVM 
devices can achieve >106 write cycles (between the highest and 
lowest conductance states). However, the analog eNVM 
endurance definition should be different as it has only 
incremental conductance change by each write pulse. So far, 
there is no prior work discussing the endurance behavior of 
analog eNVM for neuromorphic computing. To study the 
endurance effect in this work, we assume that the strength of 
conductance tuning ( G) decreases over write pulse cycles, 
which is expressed as 

G= G0 1-r #pulses  (3) 

where G0 is the ideal conductance change without considering 
endurance degradation, r is the reduction ratio, #pulses means 
the cumulative number of pulses that has been applied to the 
device. As illustrated in Fig. 7(a), the conductance will be 
eventually unchangeable after an excessive number of cycles. 
To analyze its impact, we apply the endurance property in the 
online learning of the MLP NN. As shown in Fig. 7(b), the 
learning accuracy degradation begins to be noticeable as we 
gradually increase r to be >0.01. We also apply variations of 
10% and 20% on the ratio, and it does not really either 
significantly alleviate or worsen the degradation. 

Sqrt(t)

G

G variation 
increases over time
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In the endurance analysis, we assume the maximum 
conductance of the device is 100 nS. It can be calculated that 
the required cumulative number of pulses to reduce the strength 
of conductance tuning by 50% and 90% are ~70 and ~230 under 
r=0.01, respectively. Fig. 8(a)-(b) shows the distribution of the 
sum of absolute conductance change in the first and second 
layer of MLP NN without endurance effect to achieve the 
targeted learning accuracy. The conductance changes with 70 
and 230 write pulses are also labeled. Given only the results of 
Fig. 8(a)-(b), we may easily conclude that r=0.01 is too large 
thus there will be a significant accuracy degradation, because 
most of the devices require far more pulses than these two 
numbers to achieve >90% accuracy. However, the accuracy 
with r=0.01 in Fig. 7(b) disproves this argument. 

Figure 7.  (a) Endurance degradation in weight update of synaptic devices. 
Strength of conductance tuning decreases over pulse cycles. (b) The impact 

of G reduction ratio (with 10% and 20% variation) on the learning 
accuracy. 10 device samples are measured for each data point. 

In fact, the network has the ability to adapt itself to this 
endurance degradation by relying on other devices whose 
conductance is still tunable. As shown in Fig. 8(c)-(d), the 
conductance cannot be further tuned beyond a certain amount 
of total conductance change (~150 nS), and the network will 
keep activating other inactive devices to take over the 
responsibility of learning during the entire learning process. 
Besides, analog eNVM devices with >103 write pulses of 
conductance tuning were also demonstrated [2, 5]. Therefore, 
the endurance issue may not be as critical as estimated. 

Figure 8.  Distribution of the sum of absolute conductance change in the (a) 
first and (b) second layer without endurance effect, and (c) first and (d) 

second layer of MLP NN with endurance effect (r=0.01). The network can 
adapt itself to this endurance degradation by activating other synaptic devices 

whose conductance are still tunable. 

IV. CONCLUSION 
Data retention and write endurance are important reliability 

properties of synaptic devices. We have investigated the impact 
of these two properties on a 2-layer MLP NN using our 
developed NeuroSim+ simulation framework. It is observed 
that there is a strong correlation between the degradation of 
offline classification accuracy and the weighted sum deviation, 
thus retention behaviors which causes less deviation will have 
smaller impact on the accuracy. The analysis also includes the 
existing retention model based on conductance variation, 
enabling estimation of the model parameters based on targeted 
performance. In contrast, the endurance issue defined in this 
work is considered to be less critical than estimated because the 
network is able to alleviate it during online learning by making 
use of other devices whose conductance are still tunable. 
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