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Abstract. Recently there has been much interest in the spatial distribution of light scalar
dark matter, especially axions, throughout the universe. When the local gravitational inter-
actions between the scalar modes are sufficiently rapid, it can cause the field to re-organize
into a BEC of gravitationally bound clumps. While these clumps are stable when only
gravitation is included, the picture is complicated by the presence of the axion’s attractive
self-interactions, which can potentially cause the clumps to collapse. Here we perform a
detailed stability analysis to determine under what conditions the clumps are stable. In
this paper we focus on spherical configurations, leaving aspherical configurations for future
work. We identify branches of clump solutions of the axion-gravity-self-interacting system
and study their stability properties. We find that clumps that are (spatially) large are stable,
while clumps that are (spatially) small are unstable and may collapse. Furthermore, there is a
maximum number of particles that can be in a clump. We map out the full space of solutions,
which includes quasi-stable axitons, and clarify how a recent claim in the literature of a new
ultra-dense branch of stable solutions rests on an invalid use of the non-relativistic approxi-
mation. We also consider repulsive self-interactions that may arise from a generic scalar dark
matter candidate, finding a single stable branch that extends to arbitrary particle number.
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1 Introduction

The nature of the bulk of the mass in the universe remains one of the biggest mysteries
in modern physics and cosmology. A range of observations, including large scale structure,
CMB, lyman α forrest, galactic rotation curves, are beautifully fit by the inclusion of cold
dark matter. However, its particle physics origin is presently unknown. Among the favored
candidates has traditionally been the WIMP and the axion, both of which have excellent
motivations from considerations of shortcomings in the Standard Model of particle physics;
the heirarchy problem and unification of couplings has often motivated certain kinds of
WIMPs, while the strong CP problem and unification with gravity within string theory has
often motivated the axion. A decades long search for WIMPs in direct detection experiments
and colliders in the most obvious regime of parameter space has so far been unsuccessful
(although interesting parameter space remains available). While the most highly motivated
regime of the QCD axion’s parameter space has yet to be fully probed experimentally, though
a range of interesting experiments are both underway and planned.

In this paper we shall focus on the QCD axion, as well as axion-like-particles or generic
light scalar dark matter, and examine their astrophysical properties. The axion is a field that
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acquires a mass in the early universe, after the QCD phase transition, and can then begin to
act as a form of cold dark matter [1–4]. Its initial momentum distribution is not predicted
uniquely as it is sensitive to the details of inflation (e.g., see ref. [5]). In particular, if the
axion is present during inflation, then the field is driven to be highly homogeneous on large
scales. On the other hand, if the axion is not present during inflation, then the field remains
inhomogeneous from one Hubble patch to the next as suggested by causality. In the latter
case, the large fluctuations already present in the axion field after the QCD phase transition
can allow the field to exhibit strong mode-mode interactions from gravitation and re-organize
into a type of Bose-Einstein condensate (BEC), as orginally discussed in refs. [6, 7]. In the
former case, the fluctuations are initially much smaller, allowing for growth via perturbation
theory in the matter era, and, while it is less clear, it could conceivably form a type of BEC
too in the late universe.

The form of this axion BEC is not a conventional BEC with long range order, but
instead has only short range order as it is a type of localized clump, as explained in ref. [8].
The reason for this is that the ground state is a bound state due to the attractive nature
of gravitation which is driving the BEC formation. Such a bound state is ordinarily well
described by the weak field Newtonian approximation, with a V = −Gm2/r gravitational
potential (though for extreme parameters, one can find a strong gravity regime, see ref. [9]).
Although solving for such a multi-particle system in quantum mechanics is usually quite
difficult, in the high occupancy BEC regime, it is well described by classical field theory,
which accurately captures the properties of the underlying quantum theory when expectation
values are computed appropriately, as shown in ref. [10]. In the classical field theory and
in the non-relativistic limit, one is still solving a non-linear PDE, but approximations are
available and convincingly show that the ground state is stable against collapse under gravity
for any number of axions. This is similar to the fact that the ground state of the hydrogen
atom is well behaved which is also controlled by a ∼ −1/r potential. These gravitationally
bound clumps are also known in the literature by various names, including “Bose stars” [11]
and (especially when gravity is treated relativistically) “oscillatons” [12], and can organize
into “miniclusters”.

A significant complication and potential instability arises from the inclusion of the
axion’s self-interactions in the form of a cosine potential. If expanded for small field values,
the leading interaction is an attractive quartic term −λφ4. Such a term can potentially cause
the axion clump to collapse. In fact in the absence of gravity, such a term is known to give
rise to a collapse instability. In the particle language, it is connected to an attractive delta
function interaction between pairs of axions V ∝ −λ δ3(x). It is known that the ground state
energy is well behaved in 1-dimension (giving rise to a soliton solution), but is unbounded
from below in higher dimensions (this dimensional dependence is studied in ref. [13]). We will
also consider repulsive self-interactions +λφ4, which may arise from a generic scalar particle
with a renormalizable potential.

So when both gravity and self-interactions are included, the situation is less clear and
will be addressed in this work (other work includes refs. [14, 15]). By using a combination
of analytical and numerical methods to study the ground state, we find that for sufficiently
(spatially) large clumps, gravity dominates, and the system is stable. While for sufficiently
(spatially) small clumps, self-interaction dominates, and the system is unstable. And we
identify the boundary between these two phases. We find a maximum number of axions can
be present in the clumps. We also consider repulsive self-interactions, which may be relevant
to a generic scalar dark matter candidate, finding that the maximum number of particle
constraint is relaxed.
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Moreover, we address an intriguing claim in the literature that an entirely new branch
of axion solutions exist involving very dense clumps [16, 17]. We find that the non-relativistic
approximation used in these paper’s treatment of this branch is unjustified. Instead there
do exist quasi-stable relativistic solutions that are highly dense and governed by the cosine
potential (rather than gravity), known as “axitons” [18], which are connected to a certain
limit of the physical solutions we analyze; we clarify their place in phase space.

In a forthcoming paper [19] we will extend the above results to include possible reso-
nant decay into photons, as well as to move beyond the ground state (true BEC) to higher
eigenstates, described by some non-zero angular momentum.

The outline of this paper is as follows: in section 2 we describe the basics of axion
field theory and take the non-relativistic limit. In section 3 we search for and describe
spherically symmetric clump solutions. In section 4 we numerically solve for the full time
evolution of the clumps. In section 5 we compute realistic parameters of clumps for the
QCD-axion. In section 6 we examine the possibility of a very dense branch of solutions. In
section 7 we consider the case of repulsive self-interactions for non-axion scalar dark matter.
In section 8 we present our summary and outlook. Finally, in appendix A we compute the
field’s instability about a homogeneous background.

2 Axion field theory

2.1 Axion basics

The axion is a pseudo-Goldstone boson associated with a spontaneously broken PQ symmetry
U(1)PQ introduced as a solution to the strong CP problem [20–22]. Axions are described in
field theory by a real scalar field φ(x) with the following relativistic Lagrangian density

L =
√−g

[

1

2
gµν∇µφ∇νφ− V (φ)

]

, (2.1)

with potential
V (φ) = Λ4[1− cos(φ/fa)] , (2.2)

where fa is the PQ symmetry breaking scale. In the standard axion “window” its value
is fa . 1012GeV to avoid over-closure of the universe (though higher values of fa may be
allowed depending on the details of inflation). The axion mass is identified from expanding
the above potential, which gives m = Λ2/fa. The overall scale of the potential Λ is of the
order the QCD scale, and more precisely, it is given by

Λ2 =

√
mumd

mu +md
fπmπ ≈ 0.06GeV2 . (2.3)

For definiteness we shall often take the axion mass to bem = 10−5 eV, with fa = 6×1011GeV,
as representative values. The potential V (φ) comes from non-perturbative QCD effects, which
break the initial U(1)PQ symmetry down to its discrete subgroup Z(NDW ) [23].

At the time when the axion mass is comparable with the Hubble time, the axion field
begins to roll down to one of the NDW degenerate minima and domain walls are formed
separating the different vacua. These domain walls then are attached to the axionic cosmic
strings formed in the PQ phase transition [24]. We will focus on the scenario in which the PQ
phase transition happens after inflation, where the initial fluctuations in the axion field are
large from one Hubble patch to the next. Then to avoid the so-called “axionic domain wall
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problem” [23, 25], we focus on models with NDW = 1. For this case, the string-wall network
vanishes quickly by fragmentation and decaying in axions [26]. The large inhomogeneity in
the axion field is ideal for strong mode-mode coupling to lead to BEC and clump formation.

The case in which the PQ phase transition happens before inflation implies an initially
very homogeneous initial axion field. The homogenous configuration can lead to perturba-
tions that undergo parametric resonance, which we address in the appendix. So in this case
the initial axion field could still evolve to clumps, though its efficiency is expected to be
suppressed compared to the former case.

2.2 Non-relativistic limit

Expressing the cosine function as an infinite power series, V (φ) is

V (φ) =
1

2
m2φ2 −m2f2a

∞
∑

n=2

(−1)n

(2n)!

(

φ

fa

)2n

. (2.4)

The non-relativistic field theory approximation for axions is often very well justified (though
we shall later discuss regimes in which it is not). In the non-relativistic regime it is useful to
express the real field φ in terms of a complex scalar field ψ according to

φ(x, t) =
1√
2m

[

e−imtψ(x, t) + eimtψ∗(x, t)
]

, (2.5)

with ψ slowly varying. We then insert this expression into the axion Lagrangian density
eq. (2.1). In the non-relativistic regime, all terms proportional to a power of e−imt or eimt

can be safely dropped since they rapidly oscillate and approximately time average to zero.
The nth term in the power series expansion of the potential is

(

φ

fa

)2n

=
(2n)!

(n!)2

(

ψ∗ψ

2mf2a

)n

(+ rapid oscillations) . (2.6)

Taking |ψ̇|/m� |ψ| in the kinetic term in eq. (2.1), dropping rapidly oscillating terms,
re-summing all residual terms in the potential, and using the weak field Newtonian metric
g00 = 1 + 2φN (ψ∗, ψ), we obtain the following non-relativistic Lagrangian density for ψ

Lnr =
i

2

(

ψ̇ψ∗ − ψψ̇∗
)

− 1

2m
∇ψ∗ ·∇ψ − Vnr(ψ,ψ

∗)−mψ∗ψ φN (ψ∗, ψ) , (2.7)

where the non-relativistic effective potential comes from considering only the leading non-
linearity as follows

Vnr(ψ, ψ
∗) = −ψ

∗2ψ2

16 f2a
, (2.8)

which is valid for small field amplitudes. This is required so that the typical frequency
of oscillation is governed by m, plus small corrections, as is required in a non-relativistic
treatment. In section 6 we will return to the full potential to incorporate relativistic effects.
Note that the Z(NDW ) symmetry present in the original Lagrangian density, eq. (2.1), is lost
when the non-relativistic approximation is applied (we shall return to this issue).

In phase space, ψ and ψ∗ can be treated as independent fields, and are in fact canonically
conjugate to each other with momenta π = i ψ∗. By performing a Legendre transformation,
the total non-relativistic Hamiltonian is expressed by the sum of the following 3 terms

Hnr = Hkin +Hint +Hgrav , (2.9)
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where

Hkin ≡ 1

2m

∫

d3x∇ψ∗ ·∇ψ , (2.10)

Hint ≡
∫

d3xVnr(ψ, ψ
∗) , (2.11)

Hgrav ≡ −Gm
2

2

∫

d3x

∫

d3x′
ψ∗(x)ψ∗(x′)ψ(x)ψ(x′)

|x− x′| , (2.12)

and G is the gravitational constant. Here Hkin, Hint, Hgrav, represent the kinetic en-
ergy, the self-interaction energy, and the gravitational energy, respectively. Note that we
have dropped the overall rest mass energy N m term, which is merely a constant in the
non-relativistic theory.

The full equation of motion is

i ψ̇ = −∇2ψ

2m
−Gm2 ψ

∫

d3x′
ψ∗(x′)ψ(x′)

|x− x′| +
∂

∂ψ∗
Vnr(ψ, ψ

∗) . (2.13)

Note that the final term is ∂Vnr/∂ψ
∗ = −ψ∗ψ2/(8 f2a ).

Finally, we note that in the non-relativistic limit, the local number density of particles,
n(x), and local mass density, ρ(x), are given by n(x) = ψ∗(x)ψ(x) and ρ(x) = mψ∗(x)ψ(x).

3 Ground state at fixed particle number

Now we proceed to analyze the axion system to determine how the three different terms
in the Hamiltonian of eq. (2.9) combine to produce stable solutions such as axion clumps.
(Perturbations around a homogenous background is left to the appendix.) Since there is no
known exact analytical solution for the ground state, we can proceed by using an approximate
variational method to estimate the ground state of the system. We will later solve the
system numerically.

3.1 Spherical symmetry

In this paper we will focus on spherically symmetric configurations. In a forthcoming pa-
per [19] we will consider configurations that are not spherically symmetric. There we will
show explicitly that such states have higher energy than the ground state, associated with
additional energy from angular momentum (and related corrections). (This is similar to
the well known case of the hydrogen atom: the hydrogen atom’s ground state is spherically
symmetric, while eigenstates that are not spherically symmetric, described by some spherical
harmonic Ylm with l > 0, have a higher energy.) Physically this makes sense: the theory
respects rotational invariance and so it is very reasonable to suppose that the ground state is
also spherically symmetric. Moreover, the theory is that of a scalar field (no vector field) and
there is no mechanism here to spontaneously break rotational symmetry in the ground state.
In this paper our primary focus is on describing the true ground state for a fixed number of
axions, it is therefore guaranteed to be spherically symmetric.

We can write the ground state configuration as

ψg(r, t) = Ψ(r) e−i µ t , (3.1)

where the shape is specified by the function Ψ = Ψ(r) which is taken to only be a function
of radius and can be taken to be real, and µ is the chemical potential. It is straightforward
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to insert this into the above Hamiltonian. For the kinetic and self-interaction terms, the
angular integrals are trivial, giving

Hkin =
2π

m

∫ ∞

0
dr r2

(

dΨ

dr

)2

, (3.2)

Hint = 4π

∫ ∞

0
dr r2 Vnr(Ψ,Ψ) . (3.3)

To compute Hgrav it is useful to use the spherical expansion for the inverse distance referred
to a single origin of coordinates according to

1

|x− x′| =
∞
∑

l=0

4π

2l + 1

(

rl<

rl+1
>

)

l
∑

m=−l

Y m∗

l (θ, ϕ)Y m
l (θ′, ϕ′) , (3.4)

where r< is the lesser and r> is the greater of r = |x| and r′ = |x′|. This shows that when
we integrate over angles, only the l = m = 0 terms survive. The gravitational contribution
is then

Hgrav = −Gm
2

2
(4π)2

∫ ∞

0
dr r2

∫ ∞

0
dr′ r′2

Ψ(r)2Ψ(r′)2

r>
. (3.5)

3.2 Simple ansatz

Consider the time independent field equation for a spherically symmetric eigenstate. This
takes the form

µΨ = − 1

2m

(

Ψ′′ +
2

r
Ψ′

)

− 4πGm2Ψ

∫ ∞

0
dr′ r′2

Ψ(r′)2

r>
+

1

2

∂

∂Ψ
Vnr(Ψ) . (3.6)

Let us begin by analyzing the far field region. For a bound state solution, the field must fall
away rapidly at large radius, i.e., Ψ → 0 as r → ∞. Hence at large distances we can ignore the
self-interactions which are non-linear and behave as ∝ Ψ3 for small Ψ. Furthermore, in the
gravitational term we can replace r> → r in the far region, and then factorize for 1/r, leaving
an integral that gives the total number of particles in the clump N = 4π

∫∞

0 dr′ r′2Ψ(r′)2.
Hence

µΨ ≈ − 1

2m

(

Ψ′′ +
2

r
Ψ′

)

− Gm2N

r
Ψ (far region) . (3.7)

This is identical to the structure of the time independent Schrödinger equation for the hydro-
gen atom under replacement Gm2N → e2. The spherically symmetric solutions eigen-modes
are of the form

Ψ(r) = Polyn(r)× e−Gm3N r/n (far region) , (3.8)

where n = 1, 2, 3, . . . and Polyn(r) is a polynomial of degree n.
In the near field region, this obviously fails as the corrections from self-interactions

become important and the structure of the gravitational term is altered. There are no
known full analytical solutions. However, for the purposes of understanding qualitatively,
and semi-quantitatively, the behavior of the system, it suffices to consider a simple ansatz for
Ψ throughout all space. A simple choice is to just use an exponential, with a decay length
scale R that is left free and acts as a variational parameter. We can write this as

ΨR(r) =

√

N

πR3
e−r/R (exponential ansatz) . (3.9)
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This ansatz has the disadvantage that it cannot be correct for small r. In particular, for
small r the field must have its derivative go to zero, i.e., Ψ′ → 0 as r → 0 to ensure the
first derivative term from the Laplacian 2Ψ′/r does not diverge. Hence there do exist more
accurate solutions; we shall return to this in section 3.4. We will find that the exponential
ansatz is nonetheless correct to . 10% in capturing the properties of the system, such as the
ground state energy, etc, and will be used at various times in this paper.

The total number of particles, N =
∫

d3xn(x), is ensured by the prefactor of eq. (3.9)
and is assumed to be fixed as we perform our variation. Inserting the ansatz into eqs. (3.2),
(3.3), (3.5), allows us to analytically obtain the value of the Hamiltonian within this ansatz.
The kinetic Hkin and gravitational Hgrav terms are readily evaluated, and so too is the self-
interaction having replaced the cosine potential by its leading contributions (we shall return
to the full potential in section 6). The total Hamiltonian is readily obtained as

Hnr(R) =
N

2mR2
− 5Gm2N2

16R
− N2

128πf2a R
3
. (3.10)

It is useful to identify dimensionless quantities to simplify the analysis. We can define
a dimensionless clump size R̃, a dimensionless particle number Ñ (we note that in classical
field theory, without setting ~ = 1, N =

∫

d3x |ψ|2 actually has units of energy-time), and a
dimensionless energy H̃ as follows

R̃ ≡ mfa
√
GR (re-scaled clump size) , (3.11)

Ñ ≡ m2
√
G

fa
N (re-scaled particle number) , (3.12)

H̃ ≡ m

f3a
√
G
Hnr (re-scaled energy) . (3.13)

The dimensionless version of the Hamiltonian is then

H̃(R̃) =
Ñ

2R̃2
− 5Ñ2

16R̃
− Ñ2

128π R̃3
. (3.14)

3.3 Stable and unstable branches

Extremizing the Hamiltonian H̃ with respect to R̃, we obtain the condition for stationary
solutions

R̃− 5

16
ÑR̃2 − 3

128π
Ñ = 0 , (3.15)

whose solutions are simple

R̃ =
8

5Ñ
±
√

512π − 15Ñ2

10
√
2π Ñ

. (3.16)

In figure 1 we plot these solutions. We have introduced a re-scaled value of R̃, called
R̃90, which is defined as the radius at which 90% of the mass is enclosed, i.e.,

0.9N = 4π

∫ R90

0
dr′ r′2Ψ(r′)2 . (3.17)

For the exponential ansatz, one finds R90 ≈ 2.661R.
There are two branches of solutions: the stable one (blue line) is given by the dominance

of gravity over the self-interaction and the unstable one (red line) is given by the opposite
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Figure 1. Two branches of solutions when the system is treated in the non-relativistic regime for
dimensionless radius R̃90 (defined as the radius that encloses 90% of the mass) versus dimensionless
particle number Ñ . The upper blue curve corresponds to stable solutions, while the lower red curve
corresponds to unstable solutions. Solid curve is the exponential approximation, dotted curve is the
sech approximation, and the individual dots are the exact numerical values. The condition for validity
of the non-relativistic treatment is that one stays above the dashed curve (see ahead to eq. (6.2)) this
is valid for almost all points here, except in the very far left lower corner, which shall be treated in
section 6, whose zoomed in behavior can be seen in figure 7.

situation. This dominance is parametrically more pronounced as Ñ decreases. By contrast,
when Ñ increases the gravitating and self-interacting terms become comparable.

The solutions are restricted to the region

Ñ < Ñmax =

√

512π

15
≈ 10.36 , (3.18)

because for larger values of Ñ , the square root in eq. (3.16) becomes imaginary.

In figure 1 we have labelled the upper (blue) curve as stable and the lower (red) curve as
unstable. This is because the upper one corresponds to a local minimum of the Hamiltonian
as a function of radius (at fixed particle number), while the lower one corresponds to a local
maximum of the Hamiltonian. This is shown in figure 2, where we plot H̃ = H̃(R̃) with Ñ
fixed at Ñ = 9.

3.4 Other ansatzes

The above analysis used an exponential ansatz for the radial profile, which of course is not
exact. Although an exponential fall off is correct at large r (albeit with a modified fall-off
rate), it is not true at small r. In the small r regime, we can replace r> → r′ in eq. (3.6),
which changes the structure of this term to modify the effective chemical potential. For ease of

– 8 –
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Figure 2. A plot of the dimensionless energy H̃ versus variational parameter (clump radius) R̃ for
a fixed value of particle number Ñ = 9, within the exponential ansatz (other ansatzes look similar).
The local maximum is associated with an unstable solution and corresponds to a point on the red
curve of figure 1, while the local minimum is associated with a stable solution and corresponds to a
point on the blue curve of figure 1.

presentation, let’s ignore the self-interaction term temporarily, and then the equation becomes

µeff Ψ ≈ − 1

2m

(

Ψ′′ +
2

r
Ψ′

)

(near region, ignoring Vnr) , (3.19)

where

µeff = µ+ 4πGm2

∫ ∞

0
dr′ r′Ψ(r′)2 . (3.20)

It is anticipated that this µeff is positive and then the solutions of eq. (3.19) are spherical
Bessel functions. The ground state is the Bessel function of order 0

Ψ(r) ∝ j0(
√

2mµeff r) =
sin(

√
2mµeff r)√

2mµeff r
(near region, ignoring Vnr) . (3.21)

Including self-interactions, this shape is corrected, but the salient feature that survives is
that the solution is an inverted parabola centered at r = 0, plus higher order corrections

Ψ(r) = Ψ0 −
1

2
Ψ2 r

2 + . . . (near region) , (3.22)

where the values of Ψ0 and Ψ2 are actually sensitive to the full shape of the potential and
so are not easily obtained.

A better ansatz than the above exponential is one that carries both of these features:
exponential decay at large r and inverted parabola around r = 0. A couple of neat examples
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that still only carry a single variational parameter R and satisfies these properties are

ΨR(r) =

√

3N

π3R3
sech(r/R) (sech ansatz) , (3.23)

ΨR(r) =

√

N

7πR3
(1 + r/R) e−r/R (exponential × linear ansatz) . (3.24)

Inserting this into the Hamiltonian eqs. (3.2), (3.3), (3.5) and using dimensionless variables,
we obtain a modified version of eq. (3.14)

H̃(R̃) = a
Ñ

R̃2
− b

Ñ2

R̃
− c

Ñ2

R̃3
, (3.25)

where

a =
12 + π2

6π2
, b =

6(12 ζ(3)− π2)

π4
, c =

π2 − 6

8π5
(sech ansatz) , (3.26)

a =
3

14
, b =

5373

25088
, c =

437

200704π
(exponential × linear ansatz) , (3.27)

for the sech and exponential × linear ansatzes, respectively. In fact any localized ansatz of a
single variational parameter R can be put into this general form, with only the values of the
coefficients (a, b, c) sensitive to the ansatz’s details. For any values of (a, b, c) there is still
a stable branch for large R̃ and an unstable branch for low R̃, given by a generalization of
eq. (3.16) to

R̃ =
a±

√

a2 − 3bcÑ2

bÑ
. (3.28)

For the sech ansatz, this is given as the dotted blue and red curves in figure 1 (the exponential
× linear is not plotted, but is found to be very slightly more accurate than the sech). Note
that for the sech function, the radius that encloses 90% of the mass is R90 ≈ 2.799R, while for
the exponential × linear function, it is R90 ≈ 3.610R. The Hamiltonian looks qualitatively
similar to figure 2. By extremizing the Hamiltonian, the maximum value of Ñ is

Ñ < Ñmax =
a√
3bc

, (3.29)

giving Ñmax ≈ 10.12 for the sech and Ñmax ≈ 10.15 for the exponential × linear, and so both
are within ∼ 2% of the result of the exponential ansatz of eq. (3.18).

Furthermore, we find that the (binding) energy of the ground state is lowered in this
sech ansatz; as expected as it improves the physical behavior for small r. The energy is in
general a slightly complicated function of R̃, however at the critical point, where the two
branches meet, it is

H̃crit = − a2
√
b

9
√
3 c3/2

, (3.30)

which lowers the energy of the ground state by ∼ 2% from the exponential ansatz.
For a specific value of Ñ (namely Ñ = 3.565), we plot the field Ψ(r) in figure 3 on the

stable branch, with the exponential ansatz in green, the sech ansatz in orange, and we have
also solved the equation of motion numerically to find the exact result in blue. We find that
the sech tends to always be within a percent or so of the true energy, while the exponential
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Figure 3. Field Ψ̃ versus radius r̃ for the ground state at a fixed number of particles (Ñ = 3.565) on
the stable (blue) branch of figure 1 in the non-relativistic theory. Blue is the exact numerical result,
green is the exponential approximation, and orange is the sech approximation.

can be a few percent worse. The exact numerical result for the phase diagram is indicated by
the individual dots in figure 1. For the blue stable branch, the sech does considerably better
than the exponential; while on the red unstable branch, the exponential does marginally
better than the sech. In section 6, we will study the lower left corner of the phase diagram,
and exploit the exponential ansatz to obtain some understanding of its behavior.

4 Numerical solution for time evolution

In this section we would like to compute the full nonlinear evolution of the axion field numeri-
cally (within the spherically symmetric phase space). We will demonstrate that by perturbing
away from the above clump solutions, there is indeed a “stable” branch and an “unstable”
branch, in agreement with the above descriptions.

4.1 Numerical recipe

We would like to solve the full equation of motion for the axion field, eq. (2.13), within the
spherically symmetric ansatz. For gravitation it is useful to make use of the Poisson equation
for the Newtonian potential. Working with dimensionless variables, this pair of equations is
given by

i
∂ψ̃

∂t̃
= − 1

2r̃

∂2

∂r̃2

(

r̃ ψ̃
)

+ φ̃N ψ̃ − 1

8
|ψ̃|2ψ̃ , (4.1)

1

r̃

∂2

∂r̃2

(

r̃ φ̃N

)

= 4π|ψ̃|2 , (4.2)

where ψ̃(r̃, t̃) and φ̃N (r̃, t̃) are the axion field and the Newtonian potential, respectively, and
r̃ and t̃ are the radial and time coordinates, respectively, all in dimensionless variables.
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Lets define the spatial domain as [r̃start, r̃end], and the time domain as [t̃initial, t̃final].
For numerical purposes, we discretize these domains as r̃l = r̃start + l∆r for l = 0, . . . , nr,
and t̃j = t̃initial + j∆t for j = 0, . . . , nt. Here ∆r and ∆t correspond to the radial and
time step-sizes, respectively. The boundary conditions are taken to be ∂ψ̃(r̃start, t̃)/∂r̃ =
∂φ̃N (r̃start, t̃)/∂r̃ = 0, with r̃start close to 0, and ψ̃(r̃end, t̃) = φ̃N (r̃end, t̃) = 0, with r̃end much
greater than the characteristic radius of the profile of the axion field to prevent unphysical
reflection at the boundary.

In order for the time evolution to be sufficiently stable, we use the Crank-Nicolson
method (this method was used in ref. [27], although no self-interactions were included in
that work). In this method one splits the time derivative of the axion evolution equation by
finite difference in the usual way, but specifies the right hand side as an average of the value
at the j time step and the j + 1 time step, which schematically appears as follows

i
ψ̃j+1
l − ψ̃j

l

∆t
=

1

2

[

F j+1
l

(

φ̃N , ψ̃, r̃, t̃,
∂ψ̃

∂r̃
,
∂2ψ̃

∂r̃2

)

+ F j
l

(

φ̃N , ψ̃, r̃, t̃,
∂ψ̃

∂r̃
,
∂2ψ̃

∂r̃2

)]

, (4.3)

where the F ’s are implicitly defined by eq. (4.1). For all spatial derivatives, both in the
axion ψ and Newtonian potential φN , we use a standard central difference method. Now the
crucial point is that the right hand side has terms F j+1

l , which includes terms proportional to

aj+1
l ≡ φ̃j+1

N,l ψ̃
j+1
l and bj+1

l ≡ |ψ̃j+1
l |2ψ̃j+1

l , which are to be solved for. We apply an iterative

method to find ψ̃j+1 by solving alternately eqs. (4.1), (4.2). We write ψ̃j+1,q
l and φ̃j+1,q

N,l for
the iterates, where q is an index specifying the iteration step. We then use the following
algorithm at each time step:

(a) Take φ̃j+1
N,l = φ̃jN,l in a

j+1
l and ψ̃j+1

l = ψ̃j
l in bj+1

l to obtain an updated value for the axion

field, ψ̃j+1,0
l , by solving eq. (4.3).

(b) Use ψ̃j+1,0
l in eq. (4.2) to obtain φ̃j+1,1

N,l .

(c) Use φ̃j+1,1
N,l in aj+1

l and ψ̃j+1,0
l in bj+1

l to obtain ψ̃j+1,1
l by solving eq. (4.3).

(d) Repeat steps (b) and (c) as many times as needed until the desired degree of convergence
is reached by satisfying |ψ̃j+1,q+1

l − ψ̃j+1,q
l | < T , where T is the desired tolerance.

(e) If the desired tolerance is not reached at a defined number of maximum iterations, start
from (a), but decrease the time step-size appropriately.

4.2 Stable and unstable branches

Using the above numerical recipe, we have solved for the time evolution of the axion system
for both stable and unstable solutions. In figure 4 we plot the time evolution of a clump
that lives exactly on the stable branch solution. We show both the real and imaginary and
absolute values of the (re-scaled) field ψ̃. Clearly the field is oscillating periodically, as a
ground state solution should. Note that we only plot the stable branch here. In principle
we can also plot a clump exactly sitting on the unstable branch, which is in principle is also
periodic. However, any tiny numerical perturbations causes the solution to depart after some
finite time, as we now discuss more systematically.

It is important to perturb these solutions by a finite amount and track its time evolution.
As an explicit type of perturbation, we consider the following initial condition

ψinitial(r) = (1 + ε)Ψ(r) , (4.4)
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Figure 4. Field ψ̃ at a fixed radius r̃ = 0.03 as a function of time t̃ for a given number of particles
(Ñ = 3.565) on the stable (blue) branch of figure 1. We have chosen initial conditions so that the
field is real. Red is real part Re[ψ̃], yellow is imaginary part of Im[ψ̃], blue is the absolute value. We
see that the field is periodic in time.

where Ψ(r) is the (real) spherically symmetric clump solution. Here ε is taken to be a
constant parameter that measures how far from the exact clump solution we begin. We are
focussing here only on spherically symmetric perturbations for the following reasons: as we
explained at the start of section 3.1, the true ground state should be spherically symmetric
and so will be stable against all perturbations. So we focus only on spherical perturbations,
as aspherical perturbations provide additional energy from angular momentum, moving the
state away from a global minimum in energy. Furthermore, the subject of aspherical axion
configurations will be studied in our forthcoming paper [19].

In figure 5 we show ψ(r, t) at different snapshots in time from perturbing by ±2% away
from an exact stable (blue) branch solution, while in figure 6 we show ψ(r, t) at different
snapshots in time from perturbing by ±2% away from an exact unstable (red) branch solu-
tion. In the upper plots the perturbation is −2% (ε = −0.02) and in the upper plots the
perturbation is +2% (ε = +0.02).

Figure 5 shows that no matter how we perturb away from a blue branch solution,
whether by increasing ψ or decreasing ψ the solution merely oscillates; indicative of a stable
solution. This is to be expected from our effective Hamiltonian, formed within some simple
ansatz, plotted earlier in figure 2. That plot predicted that by perturbing to larger or smaller
radius, the solution would just oscillate back towards equilibrium.

On the other hand, figure 6 shows that when we perturb away from a red branch
solution, the solution runs away. If we (i) decrease ψ (upper plot) the solution begins to
expand in size over time. Conversely, if we (ii) increase ψ (lower plot) the solution begins to
shrink in size over time, leading to a catastrophic collapse instability. This again is expected
from the effective Hamiltonian of figure 2 as follows: by (i) decreasing ψ, but maintaining the
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Figure 5. Magnitude of field |ψ̃| as a function of radius r̃ at different times t̃ for a given number of
particles. Upper: we have perturbed ψ̃ away from the stable (blue) branch of figure 1 with Ñ = 3.565
by −2%, giving Ñ = 3.424. Lower: we have perturbed ψ̃ away from the stable (blue) branch of
figure 1 with Ñ = 3.565 by +2%, giving Ñ = 3.709. We see that the field is indeed stable, since it
merely oscillates in time.

shape and hence the radius, figure 1 shows that we have effectively moved to the left of the
red curve; this can be equivalently viewed as being above the red curve, and hence having
a radius that is too large for a given number of particles. Then the effective Hamiltonian of
figure 2 indicates that we have moved to the right of the local maximum and so we should
continue to expand over time; and presumably head towards the stable branch at the local
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Figure 6. Magnitude of field |ψ̃| as a function of radius r̃ at different times t̃ for a given number of
particles. Upper: we have perturbed ψ̃ away from the unstable (red) branch of figure 1 with Ñ = 3.565
by −2%, giving Ñ = 3.424. Lower: we have perturbed ψ̃ away from the unstable (red) branch of
figure 1 with Ñ = 3.565 by +2%, giving Ñ = 3.709. We see that the field is indeed unstable, since it
expands outwards in upper and collapses inwards in lower.

minimum. Conversely, by (ii) increasing ψ, the same chain of reasoning says that we have
moved to the right, or equivalently below, the red curve of figure 1, and hence having a radius
that is too small for a given number of particles. This means we have moved to the left of
the local maximum and so we should continue to collapse over time.
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5 Physical parameters for axions

Having established the stability of a class of solutions, it is useful to convert our results back
to ordinary dimensionful variables. In terms of the axion mass m and the PQ scale fa, we
can express the maximum number of particles Nmax, the maximum mass Mmax, and the
minimum clump size R90,min, for the stable (blue) branch as follows

Nmax =
fa

m2
√
G
Ñmax ∼ 8× 1059 (m̃−2f̃a) , (5.1)

Mmax = Nmaxm ∼ 1.4× 1019 kg (m̃−1f̃a) , (5.2)

R90,min =
a (R̃90/R̃)

bNmaxGm3
∼ 130 km (m̃−1f̃−1

a ) , (5.3)

Q where f̃a ≡ fa/(6×1011GeV) and m̃ ≡ m/(10−5 eV). These values agree roughly with the
results reported by ref. [28]. However, ref. [28] incorrectly identifies the stable and unstable
branches, where they claim the spatially smaller clumps are stable and the spatially larger
clumps are unstable, when the correct behavior is the exact opposite, as shown here.

The above maximum number of axions that can be in a clump should be compared
to the typical number of axions in inhomogeneous patches in the early universe. Before
the QCD phase transition, the axion is effectively massless and its correlation length is
of the horizon size due to causality ξ ∼ 1/HQCD ∼ MP l/T

2
QCD (assuming PQ symme-

try breaking is after inflation). Furthermore, the number density of axions at this time
is n = ρ/m ∼ (Teq/TQCD)ρQCD/m ∼ (TeqT

3
QCD)/m, where Teq is the temperature at matter-

radiation equality ∼ 0.1 eV. This gives the number of axions within a typical correlation
length Nξ ∼ ξ3 n as [8]

Nξ ∼
TeqM

3
P l

T 3
QCDm

∼ 1061 m̃−1 . (5.4)

Note that this value is a factor of ∼ 10 larger than the maximum number of axions that
can be within a clump from eq. (5.1). Since there are fluctuations on a range of scales, one
anticipates there are an appreciable number of configurations that can allow a fraction of the
axions to eventually re-organize into the above clumps once the gravitational mode-mode
interactions becomes faster than Hubble damping.

Note that if we consider ultra-light axions, as may be inspired by string theory, the size
and mass of these stable clumps becomes much larger as they scale as ∝ 1/m. At the same
time, the rate of formation of the BEC due to gravitational mode-mode interactions have a
rate Γk ∼ 8πGmρ/k2 [6, 7]. If we write k = mv and treat v as roughly fixed by galactic
dynamics (say a typical virial velocity), then the rate naively scales as Γ ∝ 1/m in the galaxy,
which could be quite large leading to rapid formation of such objects.

We end this section by mentioning that the ground state is well described by the weak
field gravitational approximation. The stable branch in figure 1 always maintains values
much higher than the Schwarzschild radius RS = 2GM . To show this, we consider the ratio

R

RS
>

Rmin

2GMmax
=

R̃min

2 δ Ñmax

≈ 4× 1012 f̃−2
a , (5.5)

which demonstrates that there is no possibility for black hole formation of these low density
objects when fa �MP l. Furthermore, these objects will not exhibit strong lensing and may
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be hard to detect even with micro-lensing. On the other hand, strong field effects can emerge
if one were to move away from the traditional QCD axion and investigate extremely high
values of fa, approaching the Planck scale [9].

6 Dense branch and axitons

We mentioned before that the Lagrangian density in the non-relativistic limit does not show
its original invariance under the transformation φ → φ + 2πfa. Then to trust the non-
relativistic approximation, we have to be sure that the axion field satisfies the condition

φ0
2πfa

=
Ψ0

πfa
√
2m

=

√

δ Ñ

2π3R̃3
� 1 , (6.1)

where φ0 is the amplitude of the field’s oscillations and Ψ0 =
√

N/(πR3) for the exponential
ansatz. This condition can be re-expressed as a condition on solutions of eq. (3.15) that the
radius is bounded from below for the non-relativistic analysis to be self consistent

R̃� R̃?(Ñ) =

(

δ Ñ

2π3

)1/3

, (6.2)

where
δ ≡ Gf2a , (6.3)

is the residual parameter in the problem. Note that for the parameters of interest here,
δ � 1; for example, for fa = 6× 1011GeV, it is δ ≈ 2.5× 10−15.

For the blue stable branch this condition is always satisfied. For the red unstable branch
this condition is satisfied for most of the branch, except when Ñ becomes very small. The
low Ñ asymptotic behavior of the red branch in the non-relativistic approximation is given
by R̃ = 3c Ñ/(2a), which violates this condition at Ñ . O(10−5) for δ = 2.5 × 10−15. For
these small values of Ñ and R̃ we need to return to the relativistic theory.

In this corner of phase space, we know that the self-interactions are entirely dominant
over gravity, so we can ignore the gravitational corrections. We are interested in periodic
clump solutions, which in general can have a tower of harmonics, but will simplify the analysis
by allowing only a single frequency ω. This will provide a very rough and only qualitative
description of the system. But will be sufficient to convey the qualitative idea for now, and
we leave a more precise treatment for future work. A spherically symmetric approximate
solution then takes the form

φ(r, t) = Φ(r) cos(ω t) . (6.4)

We insert this into the Hamiltonian and average over a period of oscillation T = 2π/ω as

〈H〉 = 1

T

∫ T

0
dtH . (6.5)

Carrying out this time average in the relativistic Hamiltonian (ignoring gravity, but including
the full cosine potential) readily gives

〈H〉 = 4π

∫ ∞

0
dr r2

[

ω2

4
Φ2 +

1

4
Φ′2 +m2f2a [1− J0(Φ/fa)]

]

, (6.6)

where J0 is the Bessel function of order 0.
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We also need to specify the condition for ω. Consider the equation of motion

φ̈−∇2φ+m2fa sin(φ/fa) = 0 . (6.7)

To extract the fundamental frequency, we insert eq. (6.4) into this, multiply by cos(ω t), time
average over a period, and integrate over space to obtain the approximate value

ω2 ≈ 2m2

[
∫ ∞

0
dr r2 J1(Φ/fa)

]

/

[
∫ ∞

0
dr r2 (Φ/fa)

]

, (6.8)

where we have used the fact that the Laplacian term ∇2φ is a total derivative and so it
integrates over space to zero.

We will continue to use the exponential ansatz for the radial profile for simplicity. We
parameterize it as

ΦR(r) = 2π ε fa e
−r/R , (6.9)

where the amplitude is specified by ε that lives in the domain 0 < ε < 1 to ensure that
|φ| < 2π fa always. Note that these approximations give a frequency that is independent of
width R and only depends on its amplitude ε in eq. (6.8). By evaluating ω(ε) we find that the
frequency of oscillation is lowered at finite amplitude from the zero-amplitude ω = m value.

To evaluate the Hamiltonian with this exponential profile, we use the power series
expansion of the Bessel functions

J0(x) =
∞
∑

l=0

(−1)l

(l!)2

(x

2

)2l
, J1(x) =

∞
∑

l=1

(−1)l−1

l!(l − 1)!

(x

2

)2l−1
, (6.10)

and find that the Hamiltonian is given in terms of generalized hypergeometric functions as
follows

〈H〉 = f2aπ
3Rε2

(

1 +m2R2 g(ε)
)

, (6.11)

where

g(ε) ≡ 3F4

(

1/2, 1/2, 1/2

3/2, 3/2, 3/2, 2
;−π2ε2

)

+ 4F5

(

1, 1, 1, 1

2, 2, 2, 2, 2
;−π2ε2

)

. (6.12)

We would like to extremize the Hamiltonian as we did earlier at fixed particular number.
Strictly speaking the particle number is not conserved in an interacting relativistic theory,
but again by time averaging over a period, we have

〈N〉 =
∫

d3xω〈φ2〉 = 2π3f2aR
3ω(ε)ε2 . (6.13)

Using this to eliminate ε and expressing 〈H〉 in terms of 〈N〉 and R we can find the extrema
numerically. By re-scaling to the same dimensionless variables we used earlier (despite the
awkward fact that it now introduces G, so the result now depends on our choice of δ =
Gf2a ) we find the result given in figure 7. We see that it matches the previous small field
result in the upper red branch. Indeed one can check that for large R the Hamiltonian in
eq. (6.11) becomes

〈H〉 = 〈N〉m+
〈N〉
2mR2

− 〈N〉2
128πf2a R

3
+ . . . (large R) , (6.14)

matching the non-relativistic Hamiltonian derived earlier in eq. (3.10) with an overall shift
in energy of 〈N〉m and without gravity.
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Figure 7. Relativistic branch of solutions which break the condition given by eq. (6.2). This is
computed within the single frequency, exponential profile ansatz, which is only a very rough approx-
imation to the true behavior. The upper red curve are unstable solutions, which, when extrapolated
to higher Ñ and R̃90, connect to the non-relativistic result of figure 1. The lower green curve are
quasi-stable solutions, known as “axitons”, which persist only down to the green diamond. We have
set δ = 2.5× 10−15 to normalize the number Ñ and radius R̃90.

While the upper red branch is unstable, as we saw in the non-relativistic limit, the lower
green branch is stable. These are truly relativistic solutions with frequencies of oscillations
significantly far from m; such solutions are known as “axitons” [18]. It turns out such
solutions are only quasi-stable as they radiate relativistic axions at an appreciable rate. As
they do so, they move on an upper left trajectory in figure 7 until they reach the critical
point at which the two branches meet, then implode. Note that these quasi-stable axitons
exist in a rather narrow regime of phase space, as their particle number is both bounded
above (by the requirement that the field φ0 < 2πfa, indicated by the green diamond) and
bounded below (by the requirement that it is stable, indicated by the point at which it meets
the red curve). Both the upper and lower bounds are of the same order, given roughly by
N ∼ f2a/m

2, with R ∼ 1/m. On the other hand, the stable gravitational solutions found in
the previous subsection have only an upper bound on N (and only a lower bound on R) and
therefore occupy a much larger portion of phase space.

We would like to contrast these results to the work of refs. [16, 17], where the authors
claim there exist a stable dense branch that extends to arbitrarily large particle number
Ñ , all within the non-relativistic framework. However, such a result is erroneous, as it is
an artifact of improper usage of the non-relativistic theory in a regime of arbitrarily large
amplitude, which breaks the condition of eq. (6.1) and does not enforce periodicity of the
field. Instead this dense branch requires the above relativistic treatment and exhibits a final
endpoint of the green curve as indicated here.

7 Repulsive self-interactions

Another class of behavior occurs if we move away from the QCD axion, which is organized
by an attractive −λφ4 interaction from expanding the cosine potential, to a generic light
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scalar dark matter candidate, that may be described by a repulsive +λr φ
4 interaction (with

λr > 0). A simple (renormalizable) potential is

V (φ) =
1

2
m2φ2 +

λr
4!
φ4 . (7.1)

So long as the particle is sufficiently light such that the number density, and hence occu-
pancy number, is large to comprise the dark matter, we can again study this within classical
field theory.

In the non-relativistic regime, this leads to exactly the same set of equations as we
described earlier, with only the sign of the quartic self-interaction changed

Vnr(ψ, ψ
∗) = λr

ψ∗2ψ2

16m2
. (7.2)

We again pass to the dimensionless variables of eqs. (3.11), (3.12), (3.13), with the replace-
ment fa → m/

√
λr. For any localized clump ansatz of a single length scale R̃, we have an

obvious modification in the Hamiltonian from eq. (3.25) to

H̃(R̃) ≈ a
Ñ

R̃2
− b

Ñ2

R̃
+ c

Ñ2

R̃3
, (7.3)

where the sign of the final (self-interaction) term is flipped. Unlike the previous case of
attractive interactions, where there were two branches of extrema, here there is only one

branch of extrema, which is stable, and given by

R̃ =
a+

√

a2 + 3bcÑ2

bÑ
, (7.4)

(the other branch would correspond to an unphysical negative radius). For the exponential
and sech ansatzes described in the earlier sections, we plot this result in figure 8, along with
the exact numerical result given by the individual dots. Evidently, this branch extends to
arbitrarily large particle number N , unlike the previous attractive case where there was an
Nmax. In the N → ∞ limit, these simple analytical ansatzes predict that the radius of the
clump becomes a fixed value

R̃→ 2a

b
(large N) . (7.5)

Numerical studies indicate while the radius is almost constant at large N , there may still
be a slow decrease in R as we increase N , in a fashion that is not fully captured by these
simple ansatzes.

8 Summary and outlook

In this paper we have mapped out the basic solutions of the axion-gravity-self-interacting
system. We established two branches of solutions that exist primarily in the non-relativistic
regime, whose relationship between clump size and particle number is given in figure 1, with
the upper branch stable and the lower one unstable to collapse. We also showed that the
lower (unstable) branch connects to a relativistic branch given in figure 7, which is quasi-
stable since it can steadily emit relativistic axions. This quasi-stable “axiton” branch is
to be contrasted with the claims of a dense branch of arbitrary particle number that has
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Figure 8. Single (stable) solution branch for repulsive self-interactions for generic scalar dark matter.
The system is treated in the non-relativistic regime. We have plotted the dimensionless radius R̃90

(defined as the radius that encloses 90% of the mass) versus dimensionless particle number Ñ . Solid
curve is the exponential approximation, dotted curve is the sech approximation, and the individual
dots are the exact numerical values.

appeared in the literature recently [16, 17], where the axion’s field range was erroneously
allowed to be arbitrarily large within the non-relativistic treatment. In any case, the stable
(blue) branch of figure 1 is perhaps of most importance; it is primarily organized by gravity
and could comprise an important component of axion dark matter in the galaxy. (In the
literature, such clumps are sometimes called “Bose stars” or “oscillatons” and can organize
into “miniclusters”).

We found that the typical number of axions in a clump is comparable to the typical
number of axions in one coherence length in the early universe in the scenario in which the PQ
phase transition occurs after inflation. These clumps may potentially also form in the scenario
in which the PQ phase transition occurs before inflation, even though the axion field then
begins with much less power on small scales, but this can grow appreciably over cosmic time.

We have made use of a simple ansatz for the shape of the clump, wherein its shape
is controlled by a single length scale R. We primarily exploited the exponential ansatz for
simplicity, though we compared to a sech ansatz, finding similar results. We then proceeded
to compute the shape of these clumps numerically and computed their exact time evolution;
establishing conclusively that the stable branch is well behaved when perturbed about equi-
librium, while the unstable branch either collapses or expands depending on the form of the
perturbation. A future direction is to analytically determine the exact shape of these clumps
using a systematic expansion. (Some work to establish a series expansion in the pure gravity
case is in ref. [29]).

It is important to compute the actual abundance and distribution of these clumps in
the universe and within the galaxy. To do so properly, it would be important to perform
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numerical simulations, including FRW expansion. Although our estimates suggest that such
clumps are stable and are built out of an axion number that seems to appear naturally, it
would be important to see this play out in simulations. It would also be interesting to see if
the field primarily organizes into ground state clumps, as suggested by BEC arguments [8],
or if higher angular momentum eigenstates that break the spherical symmetry assumption
survive over time, which will be addressed in a further study [19].

These findings could have implications for direct detection strategies: if the axion orga-
nizes primarily into bound clumps, then it may reduce the probability of dark matter axions
passing through earth based detectors. This may invite alternative search strategies, such as
femtolensing/picolensing [30], or to explore possible resonant coupling to photons from these
clumps, which will also be addressed in a further study [19].

We also examined more generic scalar dark matter, allowing for repulsive self-
interactions, which has only a stable clump solution branch that extends to arbitrarily large
particle number and is rather compact. This may have interesting astrophysical consequences.
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A Instability from homogeneous field

Let us consider the case in which the scalar field is initially homogeneous. This can arise from
having the field arise from a phase transition after inflation. We would like to analytically
compute the behavior of perturbations. For completeness, we will perform a fully relativistic
analysis here.

Recall the full relativistic Lagrangian density, of eq. (2.1). We will work in the weak
field limit, and write the Newtonian metric as g00 = 1+2φN , gij = −(1−2φN )δij , g0i = 0. By
varying the action and working to linear order in the Newtonian potential φN , the equations
of motion are

d2φ

dt2
−∇2φ− 2φN

d2φ

dt2
− 2φN∇2φ− 4

dφN
dt

dφ

dt
+
dV (φ)

dφ
= 0 , (A.1)

∇2φN = 4πG

[

1

2

(

dφ

dt

)2

+ V (φ)

]

, (A.2)

where we have dropped corrections on the right hand side of eq. (A.2) as they are suppressed
in the weak field regime.

A.1 Background

Let us denote the background field φ0, which we take to be a function of time only. The
equation of motion for φ0 is simply

d2φ0
dt2

+
dV (φ0)

dφ0
= 0 , (A.3)

where the potential V (φ) is given by eq. (A.4). The mass term in V (φ) dominates the os-
cillatory behavior of the background field, φ0(t), leading to almost harmonic motion. The
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self-interacting terms will give rise to anharmonic behavior and eventually could drive reso-
nance in perturbations.

To make progress, we take small field values and expand the potential V (φ) as follows

V (φ) =
1

2
m2φ2 − λ

4!
φ4 +

g

6!
φ6 + . . . . (A.4)

Here the dots indicate terms of O(φ8). For convenience we will often write g ≡ g′λ2/m2. For
axions, we have λ ≡ (Λ/fa)

4 > 0 and g′ = 1. For generic scalar dark matter, we can consider
λ = −λr < 0 and/or consider g′ 6= 1.

The background field can be considered in a small amplitude expansion as

φ0 = εφ1 + ε3φ3 + ε5φ5 . . . , (A.5)

where ε is a small dimensionless constant. As we will see, replacing this expansion into the
equation of motion and naively matching powers of ε would lead to an undesired secular be-
havior (when the driving terms match the natural frequency defined by the harmonic terms).

To avoid this problem, we introduce a new time variable τ ≡
√
1− ε2 t to describe the

shifted frequency, since the attractive self-interaction diminishes the fundamental oscillation
frequency. (Note that we are describing the effects for λ > 0, but one can easily send λ→ −λr
and ε→ iε to obtain the results for repulsive scalar dark matter.) Then eq. (A.3) becomes

φ′′0
(

1− ε2
)

+m2φ0 −
λ

6
φ30 +

g

120
φ50 + . . . = 0 , (A.6)

where the prime means derivatives with respect to τ . Replacing the expansion of eq. (A.5)
into this equation and matching terms until first order in ε, we obtain

φ′′1 +m2φ1 = 0 , (A.7)

whose solution (up to a phase) is given by

φ1 = φ1a cos(mτ) . (A.8)

Here the value for the amplitude φ1a has to be determined. Replacing again eq. (A.5) into
eq. (A.6), but now working to O(ε3), we obtain

φ′′3 +m2φ1a cos(mτ) +m2φ3 −
λ

24
φ31a [cos(3mτ) + 3 cos(mτ)] = 0 . (A.9)

To avoid secular behavior, we have to eliminate the factor proportional to cos(mτ) which
selects a unique value for the amplitude φ1a. This procedure, explained in detailed in
refs. [31, 32], can be extended as many orders in ε as we want. Until O(ε3), the background
solution is given by

φ0 = εφ1a cos(mτ) + ε3 [φ3a cos(mτ)− φ3b cos(3mτ)] , (A.10)

where

φ1a =

√

8m2

λ
, φ3a =

φ31a
384

λ

m2
(1 + 8g′), φ3b =

φ1a
24

. (A.11)
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A.2 Perturbations

Now that we have determined the background to the order of interest, we expand the axion
field around this classical background as

φ(x, t) = φ0(t) + δφ(x, t) . (A.12)

Here we will treat δφ(x, t) as a classical perturbation (though it could be generated by
quantum fluctuations). We work to first order in δφ(x, t) and φN (x, t). Their equations of
motion can be easily diagonalized by Fourier transforming to k-space variables δφk(t) and
φNk(t), respectively. We then obtain the following pair of coupled equations for δφk and φNk

d2

dt2
δφk + k2δφk − 2

d2φ0
dt2

φNk − 4
dφ0
dt

d

dt
φNk +

d2V (φ)

dφ2
δφk = 0 , (A.13)

φNk = −4πG

k2

(

dφ0
dt

d

dt
δφk +

dV (φ0)

dφ0
δφk

)

. (A.14)

We can analyze the late time behavior of the system using Floquet theory. Floquet expo-
nents rule any possible exponential growth of perturbations around a background which is
oscillating periodically. This is a very reasonable approximation in the limit when the os-
cillation period (which is of the order of 2π/m) is short compared to the Hubble time. The
Floquet theory still involves only numerical solutions; here we will provide analytical results
at small amplitudes.

By eliminating φNk, the equation of motion for the perturbation δφk can be expressed
in the following form

h1(τ) δφ
′′
k
+ h2(τ) δφ

′
k
+ h3(τ) δφk = 0 , (A.15)

where h1,2,3 are all periodic functions of the re-scaled time variable τ .

A.3 First instability band

Working to O(ε2), which involves only needing the background solution to O(ε), we obtain
the following expression for each of these 3 coefficients

h1(τ) = A+B cos(2mτ), (A.16)

h2(τ) = C sin(2mτ), (A.17)

h3(τ) = D + E cos(2mτ) . (A.18)

Here A,B,C,D and E are given by

A = 1 +
8πGφ21am

2ε2

k2
, (A.19)

B = −8πGφ21am
2ε2

k2
, (A.20)

C =
4πGφ21am

3ε2

k2
, (A.21)

D = k2 +m2 −m2ε2 +
4πGφ21am

4ε2

k2
, (A.22)

E = −2m2ε2 − 12πGφ21am
4ε2

k2
. (A.23)

We have kept terms until O(ε2) taking into account that k ∼ O(ε) and G ∼ O(ε).
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To solve for the time evolution, lets express the solutions for perturbations as a harmonic
expansion over integer multiplies of the fundamental frequency m as follows

δφk =
+∞
∑

ω=−∞

eiωτfω(τ) . (A.24)

Assuming that functions fω(τ) are slowly varying, we drop second derivative terms f ′′ω , to
obtain the following infinite system of coupled ordinary differential equations

2iAωf ′ω(τ)+i
[

B(ω+2m)+
c

2

]

f ′ω+2m(τ)+i
[

B(ω−2m)− c

2

]

f ′ω−2m(τ)+(−ω2A+D)fω(τ)

−
[

B(ω+2m)2+C(ω+2m)−E

2

]

fω+2m(τ)−
[

B(ω−2m)2−C(ω−2m)−E

2

]

fω−2m(τ)= 0 . (A.25)

Note that only odd (even) harmonics couple with odd (even) harmonics.
The fundamental frequencies, ω = ±m, give us information about the first instability

band. To leading order, we can drop higher harmonics in eq. (A.25), f±3m(τ), to obtain the
following pair of coupled ordinary differential equations for f±m(τ)

[

f ′m(τ)
f ′−m(τ)

]

= M1

[

fm(τ)
f−m(τ)

]

, (A.26)

where the matrix M1 is given by

M1≡
i

(2mA)2−
(

mB+ c
2

)2

[

−2mA mB+ c
2

−
(

mB+ c
2

)

2mA

]

×
[

m2A−D (m2B+cm−E)
2

(m2B+cm−E)
2 m2A−D

]

. (A.27)

The general solutions for f take on the form

f± = c1 e
µkτ + c2 e

−µkτ (A.28)

where the exponents, ±µk, are the eigenvalues of the above matrix. A non-zero real part
of µk leads to an exponential growth of perturbations. By contrast, a purely imaginary
Floquet exponent produces an oscillatory behavior of perturbations (stable time evolution).
The (positive) eigenvalue of the matrix in eq. (A.26) are

µk =

√
Cm− E − 2D + 2Am2 +Bm2

√
2D − E + Cm− 2Am2 +Bm2

√
4Am− C − 2Bm

√
4Am+ C + 2Bm

. (A.29)

Defining φa ≡ εφ1a as the physical amplitude and replacing values for A,B,C,D and E from
eqs. (A.19)–(A.23) into this expression for µk, we obtain at this order

µk =
k

2m

√

φ2aλ

4
− k2 +

8πGφ2am
4

k2
. (A.30)

So there is an instability band with edges given by values for k at which the Floquet exponent
becomes zero. The left (kl,edge) and right (kl,edge) hand edges are calculated to be

kl,edge = 0 , (A.31)

kr,edge =
φa
√

λ+
√
512πGm4 + λ2

2
√
2

. (A.32)
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As a result, we expect a dominant thick band that extends to k = 0 with an exponent that
is linear in k in the long wavelength regime. We note that the shut-off of the instability at
kr,edge defines a type of Jeans wavenumber.

Note that the results in eqs. (A.30), (A.31), (A.32) are true for both λ > 0 and λ =
−λr < 0. In the axion case of λ > 0 we can go further and see there is a non-zero wavenumber
k∗ = (φa

√
λ)/(2

√
2) that maximizes the exponential growth of perturbations as

µ∗ =
φ2aλ

16m

√

1 +
512πGm4

λ2φ2a
. (A.33)

While if λ = −λr < 0 the growth is maximal as k → 0 with value µ∗ =
√
2πGφam.

A.4 Second instability band

To study the second instability band, we repeat the above procedure but work to O(ε4),
which involves needing the background solution to O(ε3). We find h1,2,3 in eq. (A.15) are

h1(τ) = A+B cos(2mτ) + C cos(4mτ) , (A.34)

h2(τ) = D sin(2mτ) + E sin(4mτ) , (A.35)

h3(τ) = F + J cos(2mτ) +H cos(4mτ) , (A.36)

where A,B,C,D, F, J , and H are given by

A = 1 +
8πGφ21am

2

k2
ε2 −

(

8πGφ21am
2

k2
− gπGφ41am

2

3k2λ
− πGφ41aλ

24k2

)

ε4 , (A.37)

B = −8πGφ21am
2

k2
ε2 +

(

6πGφ21am
2

k2
− gπGφ41am

2

3λk2
− πGφ41aλ

24k2

)

ε4 , (A.38)

C =
2πGφ21am

2

k2
ε4 , (A.39)

D =
4πGφ21am

3

k2
ε2 −

(

3πGφ21am
3

k2
− gπGφ41am

3

6λk2
− πGφ41aλm

48k2

)

ε4 , (A.40)

E = −2πGφ21am
3

k2
ε4 , (A.41)

F = k2 +m2 +

(

k2 +m2 +
4πGφ21am

4

k2
− φ21aλ

4

)

ε2+

+

(

k2 +m2 − 23πGφ41aλm
2

48k2
+
gπGφ41am

4

6λk2
+
gφ41a
192

− φ21aλ

4
− φ41aλ

2

768m2

)

ε4 , (A.42)

J =

(

−12πGφ21am
4

k2
− φ21aλ

4

)

ε2+

(

−πGφ
2
1am

4

3k2
+

29πGφ41aλm
2

48k2
− gπGφ41am

4

2λk2
+
gφ41a
96

− 11φ21aλ

48
− φ41aλ

2

768m2

)

ε4 , (A.43)

H =

(

11πGφ21am
4

3k2
+

7πGφ41aλm
2

6k2
+
λφ21a
48

+
gφ41a
192

)

ε4 . (A.44)
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We replace the harmonic expansion of eq. (A.24) into the equation of motion for perturba-
tions, dropping second derivatives as before, to obtain

2iAωf ′ω+i
[

D

2
+B(ω+2m)

]

f ′ω+2m+i
[

E

2
+C(ω+4m)

]

f ′ω+4m

−i
[

D

2
−B(ω−2m)

]

f ′ω−2m−i
[

E

2
−C(ω−4m)

]

f ′ω−4m

+

[

J+D(ω−2m)−B(ω−2m)2

2

]

fω−2m+

[

J−D(ω+2m)−B(ω+2m)2

2

]

fω+2m

+

[

H−E(ω+4m)−C(ω+4m)2

2

]

fω+4m

+(F−Aω2)fω+

[

H+E(ω−4m)−C(ω−4m)2

2

]

fω−4m=0 . (A.45)

Now the frequencies ω = −2m, 0,+2m give us information about the second instability band.
To leading order, we can drop higher harmonics in eq. (A.45), f±4m(τ) , f±6m(τ). We then
solve for f0(τ) in terms of f±2m(τ) to obtain the following coupled pair of ordinary differential
equations for f±2m(τ)

[

f ′2m(τ)
f ′−2m(τ)

]

= M2

[

f2m(τ)
f−2m(τ)

]

, (A.46)

where the matrix M2 is given by

M2 ≡
i

(X)2 − (Y )2

[

−X Y
−Y X

]

×
[

W Z
Z W

]

, (A.47)

with

X = 4Am− DBm2

F
− D2m

2F
− JBm

F
, (A.48)

Y = 2mC +
DBm2

F
+
D2m

2F
− DJ

2F
− JBm

F
+
E

2
, (A.49)

W = 4Am2 − F − JBm2

F
− JDm

2F
+
J2

4F
, (A.50)

Z = 2Cm2 + Em− JBm2

F
− JDm

2F
+
J2

4F
− H

2
. (A.51)

The evolution of the system is governed by the eigenvalues of this matrix ±µk. We find them
to be

µk =

√
µk,1

√
µk,2

√
µk,3√

µk,4
√
µk,5

, (A.52)

where

µk,1 = F , (A.53)

µk,2 = 2F −H + 2Em− 8Am2 + 4Cm2 , (A.54)

µk,3 = −2F 2 + J2 − FH + 2EFm− 2DJm+ 8AFm2 + 4CFm2 − 4BJm2 , (A.55)

µk,4 = EF −DJ + 8AFm+ 4CFm− 4BJm , (A.56)

µk,5 = −EF +DJ − 2D2m+ 8AFm− 4CFm− 4BDm2 . (A.57)
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The exponent becomes zero when
√
µk,1

√
µk,2

√
µk,3 = 0. Replacing expressions for

A,B,C,D, E,F, J and H from eqs. (A.37)–(A.41), and working to O(ε4), we find that the
left and right hand edge of the instability band are given by

kl,edge =
√
3m−

√
3

24m
(λφ2a)−

(

1 + g′

2

)
√
3

1152m3
(λφ2a)

2 +
14π

3
√
3
(Gmφ2a) , (A.58)

kr,edge =
√
3m−

√
3

24m
(λφ2a) +

(

1− 3g′

2

)
√
3

1152m3
(λφ2a)

2 +
14π

3
√
3
(Gmφ2a) , (A.59)

where we have used the physical amplitude, φa, and g = g′(λ2/m2). Here the definition
of left and right hand edge is arbitrary because it depends on the sign of 1 − g′. In the
relativistic theory, since the homogeneous background is a dense condensate of bosons, quartic
interactions can lead to annihilations (4φ → 2φ). For kinematics, in the small amplitude
limit, we expect outgoing particles with a wavenumber given by

√
3m, the value at which

the second instability starts at the limit when φa → 0, eqs. (A.58), (A.59).
Now the width of the second instability band is

∆k = |kr,edge − kl,edge| = |1− g′|
√
3

1152m3
(λφ2a)

2 . (A.60)

For axions, since g′ = 1, we have ∆k = 0 and there is no second instability band. By
contrast, for generic scalar dark matter with g′ 6= 1 there can be a second instability band.
If we parameterize moving through the band as k = kl,edge + δk (with |δk| < ∆k) there is a
nonzero real value for µ to induce exponential growth given by

µ =

√

δk
[

(1− g′)m− 6
√
3 δk

]

128
√
2 31/4m4

(

λφ2a
)2
. (A.61)
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