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Abstract

In this paper, we present to learn a novel localized Gen-
erative Adversarial Net (GAN) on the manifold of real da-
ta. Compared with the classic GAN that globally parame-
terizes a manifold, the Localized GAN (LGAN) uses local
coordinate charts to parameterize local geometry of data
transformations across different locations on the manifold.
Specificall , around each point there exists a local gener-
ator to produce diverse data following various patterns of
transformations along the manifold. The locality nature of
LGAN enables it to directly access the local geometry with
no need to invert the generator in the classic GAN to ac-
cess its global coordinates. Furthermore, it can prevent the
manifold from being locally collapsed to be dimensionally
deficien by imposing an orthonormality prior between tan-
gents. This provides a geometric approach to alleviating
mode collapse on the manifold at least locally by prevent-
ing vanishing or dependent data variations along different
coordinates. We will also demonstrate the LGAN can be
applied to train a locally consistent classifie that is robust
against perturbations along the manifold, and the resultant
regularizer is closely related to the Laplace-Beltrami oper-
ator without relying on an approximate graph-based man-
ifold representation. Our experiments show that the pro-
posed LGANs can not only produce diverse image trans-
formations, but also deliver superior classificatio perfor-
mances.

1. Introduction

The classic Generative Adversarial Net (GAN) [?] seek-
s to generate samples with indistinguishable distributions
from real data. For this purpose, it learns a generator G(z)
as a function that maps from input random noises z drawn
from a distribution Pz to output data G(z). A discriminator

is learned to distinguish between real and generated sam-
ples. The generator and discriminator are jointly trained in
an adversarial fashion so that the generator fools the dis-
criminator by improving the quality of generated data.

All the samples produced by the learned generator form
a manifold M = {G(z)|z ~ Pz}, with the input variables
z as its global coordinates. However, a global coordinate
system could be too restrictive to capture various forms of
local transformations on the manifold. For example, a non-
rigid object like human body and a rigid object like a car
admit different forms of variations on their shapes and ap-
pearances, resulting in distinct geometric structures unfi in-
to a single coordinate chart of image transformations.

Indeed, existence of a global coordinate system is a too
strong assumption for many manifolds. For example, there
does not exist a global coordinate chart covering an entire
hyper-sphere embedded in a high dimensional space as it is
even not topologically similar (i.e., homeomorphic) to an
Euclidean space. This prohibits the existence of a glob-
al isomorphism between a single coordinate space and the
hyper-sphere, making it impossible to study the underly-
ing geometry in a global coordinate system. For this rea-
son, mathematicians instead use an atlas of local coordinate
charts located at different points on a manifold to study the
underlying geometry [?].

Even when a global coordinate chart exists, a global
GAN could still suffer two serious challenges. First, a point
x on manifold cannot be directly mapped back to its global
coordinates z, i.e., findin z such as G(z) = x for a given
x. But many applications need the coordinates of a given
point x to access its local geometry such as tangents and
curvatures. Thus, for a global GAN, one has to solve the in-
verse G~! of a generator network (e.g., via an autoencoder
such as VAE [?], ALI [?] and BiGAN [?]) to access the co-
ordinates of a point x and then its local geometry of data
transformations along the manifold.
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Figure 1. Tllustration of a curved manifold M embedded in 3-
dimensional ambient space. At each location x, its tangent space
Tx consists of all tangent vectors to the manifold. These tangent
vectors characterize the geometry of local transformations allowed
to move a point x on M.

The other problem is the manifold generated by a glob-
al GAN could locally collapse. Geometrically, on a N-
dimensional manifold, this occurs if the tangent space T
of a point x is dimensionally deficient i.e., dim 7% < N
when tangents become linearly dependent along some coor-
dinates . In this case, data variations become redundant or
even vanish along some directions on the manifold. More-
over, a locally collapsed tangent space at a point x could be
related with a collapsed mode [?, ?], around which a genera-
tor G(z) would no longer produce diverse data as z changes
in different directions. This provides us with an alternative
geometric insight into mode collapse phenomena observed
in literature [?].

The above challenges inspire us to develop a Localized
GAN (LGAN) by learning local generators G(x, z) associ-
ated with individual points x @ on a manifold. As illustrated
in Figure ??, local generators are located around different
data points so that the pieces of data generated by differ-
ent local generators can be sewed together to cover an en-
tire manifold seamlessly. Different pieces of generated data
are not isolated but could have some overlaps between each
other to form a connected manifold [?].

The advantage of the LGAN is at least twofold. First,
one can directly access the local geometry of transforma-
tions near a point without having to evaluate its global coor-
dinates, as each point is directly localized by a local genera-
tor in the corresponding local coordinate chart. This locality
nature of LGAN makes it straightforward to explore point-
wise geometric properties across a manifold. Moreover, we
will impose an orthonormality prior on the local tangents,
and the resultant orthonormal basis spans a full dimension-
al tangent space, preventing a manifold from being locally

For example, on a 2-D surface, the manifold reduces to an 1-D curve
or a 0-D singularity at some points.

2 At firs glance, the form of a local generator G(x, z) looks like a con-
ditional GAN (cGAN) with x as its condition. However, a local generator
in LGAN intrinsically differs from ¢cGAN in its geometric representation
of a local coordinate chart. Refer to Section ?? for details.

collapsed. It allows the model to explore diverse patterns
of data transformations disentangled in different directions,
leading to a geometric approach at least locally alleviating
the mode collapse problem on a manifold.

We will also demonstrate an application of the LGAN
to train a robust classifie by encouraging a smooth change
of the classificatio decision on the manifold formed by the
LGAN. The classifie is trained with a regularizer that min-
imizes the square norm of the classifier s gradient on the
manifold, which is closely related with Laplace-Beltrami
operator. The local coordinate representation in LGAN
makes it straightforward to train such a classifie with no
need of computing global coordinates of training examples
to access their local geometry of transformations. More-
over, the learned orthonormal tangent basis also allows the
model to effectively explore various forms of independent
transformations allowed on the underlying manifold.

The remainder of this paper is organized as follows. In
the next section, we will review the related works, followed
by Section ?? in which we present the proposed Localized
GAN:S. In Section ??, a semi-supervised learning algorithm
is presented to use LGANS to train a robust classifie that
is locally consistent over the manifold formed by a LGAN
model.

2. Related Works

Global vs. Localized GANs. By different types of coordi-
nate systems used to parameterize their data manifolds, we
can categorize the GANSs into global and local models. Ex-
isting models, including the seminal GAN model proposed
by Goodfellow et al. [?, ?] and many variants [?], are global
GAN:S that use a global coordinate chart to parameterize the
generated data. In contrast, the localized GAN presented in
this paper is a local paradigm, which uses local coordinate
charts centered at different data points to form a manifold
by a collection of local generators.

The distinction between global and local coordinate sys-
tems results in conceptual and algorithmic differences be-
tween global and local GANs. Conceptually, the global
GANSs assume that the manifolds formed by their generators
could be globally parameterized in a way that the manifolds
are topologically similar to an Euclidean coordinate space.
In contrast, the localized paradigm abandons the global pa-
rameterizability assumption, allowing us to use multiple lo-
cal coordinate charts to cover an entire manifold. Algorith-
mically, if a global GAN needs to access local geometric
information underlying its generated manifold, it has to in-
vert the generator function in order to fin the global coor-
dinates corresponding to a given data point. This is usually
performed by learning an auto-encoder network along with
the GAN models, e.g., BIGAN [?] and ALI [?]. On the
contrary, the localized GAN enables direct access to local
geometry without having to invert a global generator, since



the local geometry around a point is directly available from
the corresponding local generator. Moreover, the orthor-
mornality between local tangents could also maximize the
capability of a local GAN in exploring independent local
transformations along different coordinate directions, there-
by preventing the manifold of generated data from being
locally collapsed with deficien dimensions.

Semi-Supervised Learning. One of the most important ap-
plications of GANSs lies in the classificatio problem, es-
pecially considering their ability of modeling the manifold
structures for both labeled and unlabeled examples [?, 2, ?].
For example, [?] presented variational auto-encoders [?] by
combining deep generative models and approximate varia-
tional inference to explore both labeled and unlabeled data.
[?] treated the samples from the GAN generator as a fake
class, and explore unlabeled examples by assigning them to
areal class different from the fake one. [?] proposed to train
a ladder network [?] by minimizing the sum of supervised
and unsupervised cost functions through back-propagation,
which avoids the conventional layer-wise pre-training ap-
proach. [?] presented an approach to learning a discrimi-
native classifie by trading-off mutual information between
observed examples and their predicted classes against an
adversarial generative model. [?] sought to jointly distin-
guish between not only real and generated samples but also
their latent variables in an adversarial fashion. [?] presented
to train a semi-supervised classifie by exploring the areas
where real samples are unlikely to appear.

In this paper, we will explore the LGAN’s ability of mod-
eling the data distribution and its manifold geometry to train
a robust classifie , which can make locally consistent classi-
ficatio decisions in presence of small perturbations on da-
ta. The idea of training a locally consistent classifie could
trace back almost two decades ago to TangentProp [?] that
pursued classificatio invariance against image rotation and
translation manually performed in an ad-hoc fashion. Ku-
mar et al. [?] extended the TangentProp by training an aug-
mented form of BiGAN to explore the underlying data dis-
tributions, but it still relied on a global GAN to indirect-
ly access the local tangents by learning a separate encoder
network. On the contrary, the local coordinates will en-
able the LGAN to directly access the geometry of image
transformations to train a locally consistent classifie , along
with the orthonormality between local tangents allowing the
learned classifie to explore its local consistency against in-
dependent image transformations along different local co-
ordinates on the manifold.

3. Localized GANs

We present the proposed Localized GANs (LGANSs).
Before that, we firs briefl review the classic GANSs in the
context of differentiable manifolds.

3.1. Classic GAN and Global Coordinates

A Generative Adversarial Net (GAN) seeks to train a
generator G(z) by transforming a random noise z € RY
drawn from Pz to a data sample G(z) € R”. Such a clas-
sic GAN uses a global N-dimensional coordinate system
7z to represent its generated samples G(z) residing in an
ambient space R”. Then all the generated samples form
a N-dimensional manifold M = {G(z)|z € RV} that is
embedded in RP.

In a global coordinate system, the local structure (e.g.,
tangent vectors and space) of a given data point x is not di-
rectly accessible, since one has to compute its correspond-
ing coordinates z to localize the point on the manifold. One
often has to resort to an inverse of the generator (e.g., via
ALI and BiGAN) to fin the mapping from x back to z.

Even worse, the tangent space T could locally collapse
at a point x if it is dimensionally deficien (i.e., dim Ty <
N). Actually, if dim Ty is extremely low (i.e., << N), a lo-
cally collapsed point x could become a collapsed mode on
the manifold, around which G(z) would no longer produce
significan data variations even though z changes in differ-
ent directions. For example, if dim 7, = 1, there is only
a curve of data variations passing through x. In an extreme
case dim 7x = 0, the data variations would completely van-
ish as x becomes a singular point on the manifold.

3.2. Local Generators and Tangent Spaces

Unlike the classic GAN, we propose a Localized GAN
(LGAN) model equipped with a local generator G(x, z)
that can produce various examples in the neighborhood of a
point x € R on the manifold.

This forms a local coordinate chart {G(x,z)|z C RY ~
Pz} around x, with its local coordinates z drawn from a
random distribution Pz over an Euclidean space RY. In
this manner, an atlas of local coordinate charts can cover
an entire manifold M by a collection of local generators
G(x,z) located at different points on M.

In particular, for G(x,z), we assume that the origin of
the local coordinates z should be located at the given point
X, i.e., G(x,0) = x, where 0 € R" is an all-zero vector.

To study the local geometry near a point x, we need
tangent vectors located at x on the manifold. By chang-
ing the value of a coordinate z’ while fixin the others, the
points generated by G(x, z) form a coordinate curve pass-
ing through x on the manifold. Then, the vector tangent to
this coordinate curve at x is

i o 0G(x,2)

X 8Zj |z=0 S RD- (1)

-

All such N tangent vectors 77,5 = 1,---, N for-
m a basis spanning a linear tangent space Ty =
Span(7L, .-, 7Y) at x. This tangent space consists of al-
1 vectors tangent to some curves passing through x on the



manifold. Each tangent 7 € 7x characterizes some local
transformation in the direction of this tangent vector.

A Jacobian matrix J, € RP*¥ can also be define by
stacking all N tangent vectors 7, in its columns.

3.3. Regularity: Locality and Orthonormality

However, there exists a challenge that the tangent space
Tx would collapse if it is dimensionally deficient i.e, its
dimension dim7 is smaller than the manifold dimension
N. Ifthis occurs, the N tangents in (??) could reduce to de-
pendent transformations that would even vanish along some
coordinates z.

To prevent the collapse of the tangent space, we need to
impose a regularity condition that the N basis {77, =
1,--+, N} of 7Tx should be linearly independent of each
other. This guarantees the manifold be locally “simi-
lar” (diffeomorphic mathematically) to a N-dimensional
Euclidean space, rather than being collapsed to a lower-
dimensional subspace having dependent local coordinates.

As a linearly independent basis can always be trans-
formed to an orthonormal counterpart by a proper transfor-
mation, one can set the orthonormal condition on the tan-

gent vectors 77, i.e.,
(T T%) = 04 (2)

where d;; = 0 for 7 # j and §;; = 1 otherwise. The resul-
tant orthonormal basis of tangent vectors capture the inde-
pendent components of local transformations near individ-
ual data points on the manifold.

In summary, the local generator G(x,z) should satisfy
the following two conditions:
(i) locality: G(x,0) = x, i.e., the origin of the local coor-
dinates z should be located at x;
(ii) orthonormality: J zJ < = I, which is a matrix form
of (??) with Iy being the identity matrix of size V.

One can minimize the following regularizer on G(x, z)
to penalize the violation of these two conditions E,

Qa(x) = u|G(x,0) — x| +7llIIx — In[I* ()

where ¢ and 7 are nonnegative weighting coefficient for
the two terms. By using a deep network for computing
G(x,z), this regularizer can be minimized by backpropa-
gation algorithm.

3.4. Training G(x, z)

Now the learning problem for the localized GANs boil-
s down to train a G(x,z). Like the GANs, we will train
a discriminator D(x) to distinguish between real samples

3 Alternatively, we can parameterize G(x, z) as x+ B(x, z) — B(x, 0)
with a network B modeling a perturbation on x. Such a parameterization
of local generator directly satisfie the locality constraint G(x,0) = x.

drawn from a data distribution Py and generated samples
by G(x,z) with x ~ Py and z ~ Pz as follows.

mDaXIEXNpX log D(x) 4+ Ex~py z~ps l0g(1 — D(G(x,2))

where D(x) is the probability of x being real, and the maxi-
mization is performed wrt the model parameters of discrim-
inator D.

On the other hand, the generator can be trained by maxi-
mizing the likelihood that the generated samples by G(x, z)
are real as well as minimizing the regularization term (??).

mén —Ex~py zops log D(G(x,2)) + ExpyQa (%)

where the minimization is performed wrt the model param-
eters of local generator G, and the regularization enforces
the locality and orthonormality conditions on G.

Then D and G can be alternately optimized by stochastic
gradient descent via a backpropagation algorithm.

4. Semi-Supervised LGANs

In this section, we will show that the LGAN can help us
train a locally consistent classifie by exploring the mani-
fold geometry. First we will discuss the functional gradient
on a manifold in Section ??, and show its connection with
Laplace-Beltrami operator that generalizes the graph Lapla-
cian in Section ??. Finally, we will present the proposed
LGAN-based classifie in detail in Section ??.

4.1. Functional Gradient along Manifold

First let us discuss how to calculate the derive of a func-
tion on the manifold.

Consider a function f(x) define on the manifold. Ata
given point x, its neighborhood on the manifold is depicted
by G(x, z) with the local coordinates z. By viewing f as a
function of z, we can compute the derivative of f when it is
restricted on the manifold.

It is not hard to obtain the derivative of f(G(x,z)) with
respect to a coordinate z7 by the chain rule,

9f(G(x,2))
0zJ

where V f (x) is the gradient of f atx, and (-, -) is the inner
product between two vectors. It depicts how fast f changes
as a point moves away from x along the coordinate z’ on
the manifold.

Then, the gradient of f at x when f is restricted on the
manifold G(x, z) can be written as

lz=0 = (7%, V[ (x))

VAV (G(X,2)|za=0 =TV f(x) (4

Geometrically, it shows the gradient of f along the manifold
can be obtained by projecting the regular gradient V « f onto



the tangent space 7Ty with the Jacobian matrix Jx. Here
we denote the resultant gradient along manifold by V & f to
highlight its dependency on G(x, z)

4.2. Connection with Laplace-Beltrami Operator

If f is a classifie, V,f(G(x,z)) depicts the change
of the classificatio decision on the manifold formed by
G(x,2z). At x, the change of f restricted on G(x,z) can
be written as

[F(G(x,2+02) — f(G(x,2))]” = |V f|*z (5

It shows that penalizing ||V$ f||? can train a robust clas-
sific that is resilient against a small perturbation z on a
manifold. It is supposed to deliver locally consistent classi-
ficatio results in presence of noises.

The functional gradient is closely related with the
Laplace-Beltrami operator, the one that is widely used as
a regularizer on the graph-based semi-supervised learning
[2,2,2,2].

It is well known that the divergence operator
—div and the gradient V are formally adjoint, i.e.,
SV, V$ f)dPy = [,,div(V)fdPx. Thus we have

/ VS f|2dPy = / JAV(VEf)dPy  (6)
M M

where Af £ div(V$ f) is the Laplace-Beltrami operator.

In graph-based semi-supervised learning, one constructs
a graph representation of data points to approximate the un-
derlying data manifold [?], and then use a Laplacian matrix
to approximate the Laplace-Beltrami operator A f.

In contrast, with the help of LGAN, we can directly ob-
tain A f on G(x, z) without having to resort to a graph rep-
resentation. Actually, as the tangent space at a point x has
an orthonormal basis, we can write

N

Af=div(VEf) =)

j=1

PiGxa)
d(z")?

In the following, we will learn a locally consistent clas-
sifie on the manifold by penalizing a sudden change of it-
s classificatio function f in the neighborhood of a point.
We can implement it by minimizing either the square nor-
m of the gradient or the related Laplace-Beltrami opera-
tor. For simplicity, we will choose to penalize the gradi-
ent of the classifie as it only involves computing the first
order derivatives of a function compared with the Laplace-
Beltrami operator having the higher-order derivatives.

4.3. Locally Consistent Semi-Supervised Classifie

We consider a semi-supervised learning problem with a
set of training examples (x;,y;) drawn from a distribution
P, of labeled data. We also have some unlabeled examples

X, drawn from the data distribution Py of real samples.
The amount of unlabeled examples is often much larger
than their labeled counterparts, and thus can provide useful
information for training G to capture the manifold structure
of real data.

Suppose that there are K classes, and we attempt to train
a classifie P(y|x) fory € {1,2,---, K + 1} that outputs
the probability of x being assigned to a class y [?]. The firs
K are real classes and the last one is a fake class denoting
x is a generated example.

This probabilistic classifie can be trained by the follow-
ing objective function

max B, )~ pe 108 P(yifx1) + Ex,~py 108 P(yu < Klxu)

+Ex~py zops log Py = K + 1|G(x,2))
K
=D Exern ||V log Py = k|x)|®
k=1
(®)
where V$ log P(y = k|x) of the last term is the gradient of
the log-likelihood along the manifold G(x,z) at x, that is
V. log P(y = k|G(x,2))|z—0- Let us explain the objective
(??) in detail below.

e The firs term maximizes the log-likelihood that a la-
beled training example drawn from the distribution P,
of labeled examples is correctly classifie by P(y|x).

e The second term maximizes the log-likelihood that an
unlabeled example x,, drawn from the data distribution
Py is assigned to one of K real classes (i.e., y, < K).

e The third term enforces P(y|x) to classify a generated
sample by G(x, z) as fake (i.e.,y = K + 1).

e The last term penalizes a sudden change of classifica
tion function on the manifold, thus yielding a locally
consistent classifie as expected. This can be seen by
viewing log P(y|x) as f in (??).

On the other hand, with a fi ed classifie P(y|x), the
local generator G is trained by the following objective:

mén Ka + Lo 4 Exwpy Qa(x) 9

where

e The firs term is label preservation term

Ka = —Ex, y)~Pz z~pPz 10g P(y1|G(x1,2))

which enforces generated samples should not change
the labels of their original examples. This label preser-
vation term can help explore intra-class variance by
generating new variants of training examples without
changing their labels.



Figure 4. Handwritten digits generated by LGAN on the MNITS
dataset. The middle column in a red bounding box represents the
image at the origin z = 0 of a local coordinate chart. In each row,
the images are generated in one direction of a local coordinate.

prior when training a local generator in its local coordinate
chart.

We used Adam solver to update the network parameter-
s where the learning rate is set to 5 x 10~° and 10~ for
training discriminator and generator networks respectively.
The two hyperparameters 1 and 7 imposing locality and or-
thonormality priors in the regularizer were chosen based on
an independent validation set held out from the training set.

5.2. Image Generation with Diversity

Figure ?? illustrates the generated images on the CelebA
dataset. In this task, 32-D local coordinates were used in the
LGAN, and each row was generated by varying one of 32
local coordinates while fixin the others. In other worlds,
each row represents image transformations in one coordi-
nate direction. The middle column in a red bounding box
corresponds to the original image at the origin of local coor-
dinates. The figur shows how a face transforms as it moves
away from the origin along different coordinate directions
on the manifold. The results demonstrate LGAN can gener-
ate sharp-looking faces with various patterns of transforma-
tions, including the variations in facial expressions, beards,
skin colors, haircuts and poses. This also illustrates the L-
GAN was able to disentangle different patterns of image
transformations in its local coordinate charts on CelebA be-
cause of the orthonormality imposed on local tangent basis.

Moreover, we note that a face generated by LGAN could
transform to the face of a different person in Figure ??. For
example, in the firs and the sixth row of the left figure
we can see that a female face transforms to a male face.
Similarly, in the forth and the fift row of the right figure
the male face gradually becomes more female. This shows
that local generators can not only manipulate attributes of
input images, but are also able to extrapolate these inputs to
generate very different output images.

We also illustrate the image generation results on the M-
NIST dataset in Figure ??. Again, we notice the factorized
transformations in different tangent directions — across d-



Figure 5. Network architecture for local generators on SVHN and
CIFAR-10.

coordinates were used on CIFAR-10 as natural scene im-
ages could contain more patterns of image transformations
than street view house numbers. To reduce computation-
al cost, in each minibatch, ten coordinates were randomly
chosen when computing the back-propagated errors on the
orthonormal prior between local tangents. We also tested
by sampling more coordinates but did not observe any sig-
nifican improvement on the accuracy. So we only sampled
ten coordinates in a minibatch iteration to make a balance
between cost and performance.

Table ?? reports the experiment results on both SVHN
and CIFAR-10. On SVHN, we used 500 and 1, 000 labeled
images to train the semi-supervised LGAN, which is 50 and
100 labeled examples per class, and the remaining training
examples were left unlabeled when they were used to train
the model. Similarly, on CIFAR-10, we used 1,000 and
4,000 labeled examples with the remaining training exam-
ples being left unlabeled. The results show that on both
datasets, the proposed semi-supervised LGAN outperforms
the other compared GAN-based semi-supervised methods.



(b) CIFAR-10

Figure 6. Tangent images generated by LGAN along ten randomly chosen coordinates on SVHN and CIFAR-10 datasets. The firs column
in the red bounding box shows the original images, followed by their tangent images in each row.

Furthermore, we illustrate tangent images in Figure ??
on SVHN and CIFAR-10 datasets. The firs column in the
red bounding box shows the original images, followed by
their tangent images generated by the learned local gener-
ators along ten randomly chosen coordinates in each row.
These tangent images visualize the local variations captured
by LGAN along different coordinate directions. This shows
how the model is able to learn a locally consistent classifie
by exploring the geometry of image transformations along
these tangent directions in a neighborhood of the underlying
manifold.

6. Conclusion

This paper presents a novel paradigm of localized
GAN (LGAN) model along with its application in semi-
supervised learning tasks. The model uses an atlas of local

coordinate charts and associated local generators to cover
an entire manifold, allowing it to capture distinct geome-
try of local transformations across the manifold. It also en-
ables a direct access to manifold structures from local coor-
dinates, tangents to Jacobian matrices without having to in-
vert the global generator in the classic GAN. Moreover, by
enforcing orthonormality between tangents, it can prevent
the manifold from being locally collapsed to a dimension-
ally deficien subspace, which provides a geometric insight
into alleviating mode collapse problem encountered in lit-
erature. Its application to semi-supervised learning reveals
the connection with Laplace-Beltrami operator on the man-
ifold, yielding a locally consistent classifie resilient against
perturbations in different tangent directions. Experimen-
t results on both image generation and classificatio tasks
demonstrate its superior performances to the other state-of-



the-art models.

A. More Results on Semi-supervised Learning

This section describes more experiment results on the
semi-supervised learning using LGAN. Besides the small
discriminator structure employed in Section 5.3, we further
test LGAN with a larger CNN architecture, which is the
same one as the “Conv-Large” used in [?]. For convenience,
we will refer this larger discriminator as Conv-Large, while
the one used in Section 5.3 as “Conv-Small” in the follow-
ing. We compare the Conv-Large LGAN with the state-
of-the-art semi-supervised learning methods (which are not
necessarily the GAN-based) and report the results on both
CIFAR-10 and CIFAR-100 datasets in this section. The ar-
chitecture of the generator will keep the same as that used
in Conv-Small experiments.

A.1. Discriminator Architectures

Table ?? and ?? summarize the architecture of Conv-
Small and Conv-Large, respectively. We also apply the
weight normalization [?] to all convolutional and dense lay-
ers in both architectures.

A.2. Training Details for Conv-Large

Like in training the Conv-Small, we adopt Adam opti-
mizer to train both the discriminator and generator. The
learning rate is set to 4 x 10~*, and the maximal training
epoch is 1,200. We gradually anneal the learning rates to
zero during the last 400 epochs. The other settings are kep-
t as same as those for training Conv-Small (Section 5.3).
For CIFAR-100, which consists of 50,000 32 x 32 train-
ing images and 10, 000 test images in a hundred classes, we

Name  Description

Input 32 x 32 RGB image
dropl Dropout p = 0.2

convla 96,3 x 3, pad=1, stride=1, LReLU
convlb 96, 3 x 3, pad=1, stride=1, LReLU
convlc 96,3 x 3, pad=1, stride=2, LReLU

drop2  Dropout p = 0.5

conv2a 192,3 x 3, pad=l, stride=1, LReLU
conv2b 192, 3 x 3, pad=l, stride=1, LReLU
conv2e 192, 3 x 3, pad=l, stride=2, LReLU

drop3  Dropoutp = 0.5

convda 192, 3 x 3, pad=0, stride=1, LReLU
convib 192,1 x 1, LReLU
convic 192,1 x 1,LRelLU

pooll Global mean pooling6 x 6 — 1 x 1
dense Fully connected 192 — 10
output  Softmax

Table 2. The network architectures of Conv-Small

change the dropout rate of drop1 layer from 0.2 to 0.1 and
the output dimension of the last layer to 100. We also adopt
early stopping — the training is terminated if the validation
error stops decreasing over 100 consecutive epochs after the
600th epoch. The two hyper-parameters p and 7 are chosen
based on a separate validation set.

A.3. Experimental Results for Conv-Large

We compare the LGAN using Conv-Large discriminator
with state-of-the-art semi-supervised baselines. The result-
s are reported in Table ??. Note that we used 4,000 and
10,000 labeled training examples for CIFAR-10 (400 im-
ages per class) and CIFAR-100 (100 images per class) re-
spectively and the rest of training data unlabeled. From the
table, we can see that LGAN with Conv-Large outperforms
the other compared methods on both datasets.
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