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In this paper, we propose full discrete linear schemes for the molecular beam epitaxy 
(MBE) model with slope selection, which are shown to be unconditionally energy stable 
and unique solvable. In details, using the invariant energy quadratization (IEQ) approach, 
along with a regularized technique, the MBE model is first discretized in time using either 
Crank–Nicolson or Adam–Bashforth strategies. The semi-discrete schemes are shown to 
be energy stable and unique solvable. Then we further use Fourier-spectral methods to 
discretize the space, ending with full discrete schemes that are energy-stable and unique 
solvable. In particular, the full discrete schemes are linear such that only a linear algebra 
problem need to be solved at each time step. Through numerical tests, we have shown a 
proper choice of the regularization parameter provides better stability and accuracy, such 
that larger time step is feasible. Afterward, we present several numerical simulations to 
demonstrate the accuracy and efficiency of our newly proposed schemes. The linearizing 
and regularizing strategy used in this paper could be readily applied to solve a class of 
phase field models that are derived from energy variation.

 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Molecular beam epitaxy (MBE) is an epitaxy method for thin-film deposition of single crystals. So far quite a few mathe-

matical models as well as the accompanying numerical simulation tools have been developed to study dynamics of the MBE 
growth process [3,5,16,20,21,36,45]. For the continuum model, there are several approaches developed to model molecular 
beam epitaxy growth. One popular approach is the energy-variational based. In [12], Golubovic introduces the effective free 
energy formation of the MBE growth model (without slope selection); and in [30], Moldovan and Golubovic introduce the 
MBE growth model (with slope selection), where the anisotropic MBE models are also considered (affecting the coarsening 
dynamics). Notice that there are many other cases, where the surface motion could not be generated by an effective free 
energy functional [13,23–27].

Given the effective free energy, we present the MBE growth model and discuss its energy dissipation properties which 
serve as a guideline for us developing numerical schemes. Let φ(x, t) be the epitaxy surface height with x ∈ �, where � is a 

* Corresponding author.
E-mail addresses: lzchen@csrc.ac.cn (L. Chen), jia.zhao@usu.edu (J. Zhao), xfyang@math.sc.edu (X. Yang).

https://doi.org/10.1016/j.apnum.2018.02.004

0168-9274/ 2018 IMACS. Published by Elsevier B.V. All rights reserved.

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apnum
mailto:lzchen@csrc.ac.cn
mailto:jia.zhao@usu.edu
mailto:xfyang@math.sc.edu
https://doi.org/10.1016/j.apnum.2018.02.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apnum.2018.02.004&domain=pdf


140 L. Chen et al. / Applied Numerical Mathematics 128 (2018) 139–156

confined domain in R2 . Under typical conditions for MBE growth, the height (φ) evolution equation is given in a relaxation 
dynamical form of a L2 gradient flow:

φt = −M
δE

δφ
, (1.1)

where M is the mobility coefficient, E is the effective free energy (which represents the kinetic asymmetry in attachment 
and detachment of adatoms to and from terrace boundaries [28]) and δE

δφ
denotes the variational derivative of E with respect 

to φ.
For the effective free energy, two widely used phenomenological expressions are as follows: (1) with slope selection 

expression [30]

E(φ) =

∫

�

(ε2

2
(�φ)2 +

1

4
(|∇φ|2 − 1)2

)

d�, (1.2)

and without slope selection expression [12]

E(φ) =

∫

�

(ε2

2
(�φ)2 −

1

2
ln(1+ |∇φ|2)

)

d�, (1.3)

where ε is a constant (inversely proportional to the size of the system). A detailed discussion of differences between these 
two free energies could be found in [28]. In short, the first term in the free energy represents the surface diffusion effect 
and the second term represents a continuum description of the effect that the adatoms (absorbed atoms) must overcome 
a higher energy barrier to stick to a step from an upper rather than from a lower terrace. After substituting the expression 
of free energy (1.2) and (1.3) into the model (1.1), we obtain the two nonlinear MBE models: (1) MBE model with slope 
selection

∂tφ = −M
(

ε2�2φ − ∇ · ((|∇φ|2 − 1)∇φ)

)

, (1.4)

and (2) MBE model without slope selection

∂tφ = −M
(

ε2�2φ − ∇ · (
∇φ

1+ |∇φ|2
)

)

. (1.5)

A feature of the continuum MBE models considered in this paper, i.e. (1.4) and (1.5), is that it is derived from an 
energy variational approach and thereby satisfies an energy dissipation law (or thermodynamically consistent). The energy 
dissipation law, in fact, serves as a guide for the design of thermodynamically consistent (energy stable) numerical schemes. 
In practice, it is especially desirable in the design of numerical schemes that preserve the energy dissipation property at the 
discrete level. On the one hand, the preservation of the energy law is critical for the numerical schemes to capture correct 
long-time dynamics of the system. On the other hand, the unconditional stability of the energy dissipation preserving 
schemes provides flexibility for dealing with the stiffness issue in the model.

In this paper, we consider numerical approximations to the continuum MBE growth model (1.1) with free energy (1.2), 
which is obtained by minimizing the given free energy where the nonlinear potential is a fourth order Ginzburg–Landau 
double-well potential in terms of the gradient of a height function. Here we give a brief review of available papers in the 
literature on proposing efficient numerical schemes for solving the MBE model. In [46], Wang et al. used convex splitting 
strategy to propose unconditionally energy stable schemes for MBE model. Qiao et al. proposed an adaptive time-stepping 
strategy for the MBE model with slope selection [33], and Qiao et al. proposed energy stable schemes for the MBE model 
without slope selection and its convergence analysis [31]. Chen et al. proposed a linear energy stable scheme for MBE model 
without slope selection using convex splitting strategy [4]. In [28], Li et al. developed a spectral method for solving the MBE 
models. In [52], Xia proposed a full discrete stable scheme for MBE model without slope selection using discontinuous 
Galerkin method. Recently, Feng et al. developed a linearly preconditioned nonlinear conjugate gradient solver [8] and a 
second-order energy-stable BDF scheme for MBE model with slope selection [9]. Some other related papers include [19,22,
29,32,37].

Mainly, the strategies for developing energy stable schemes can be generally categorized into two parts. The first part 
named stabilized approach, where the nonlinear terms are treated explicitly, but some linear stabilizing terms are added 
to provide better stability of the scheme. This so-called stabilized approach have been broadly used in phase-field models, 
see [40,42–44,53,62,63,66,67]. Another approach is named “convex splitting”, which was originally proposed in [7] and has 
been exploited by the numerical analysis society [17,46,47,49,50]. The idea of convex splitting is to split the free energy as a 
convex potential minus another convex potential. Then the chemical potential from the first convex part is solved implicitly, 
and the rest is solved explicitly. The advantage of the stabilized approach is its simplicity to implement, as it is linear, but 
it is only first order in time (due to the first-order error introduced in the stabilizing term), and it has to assume/truncate 
the free energy (which should not be ignored in the continuum PDE level). For the convex splitting approach, its existence 
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and uniqueness of solution could be easily seen. However, the convex splitting scheme is usually nonlinear, which requires 
more computational cost. Besides, designing second-order convex splitting schemes is not trivial.

Recently, Yang and his collaborators have proposed a new approach named invariant energy quadratization (IEQ) to 
derive linearly unconditionally energy stable schemes for gradient flow models, which have energy-dissipation structure, 
see [54–60,64,65]. To name a few, in [60], IEQ is used to propose a linear and stable scheme for ternary phase field model; 
in [65], IEQ is used to propose a linear and stable scheme for the Q-tensor hydrodynamic model with Landau–DeGene free 
energy. The idea of IEQ was originated from [1], where the author named it “Lagrangian multiplier”, as they are introducing 
intermediate variables to relax the norm of liquid crystal orientation vector into 1. Later [14,15] have extended this idea 
for Cahn–Hilliard or Allen–Cahn equations with double-well potentials. Yang and his collaborators later realized this idea 
of introducing intermediate variables could be extended to a more general case, and the essential idea of introducing this 
intermediate variable is to reformulate the free energy (Leyaponv functional) into a quadratic form. And this quadratization 
approach is rather general that a broad class PDE models which have the energy dissipation properties could be solved 
[54–60,64,65]. The IEQ idea has later been exploited to develop the SAV approach [38,39].

In our previous work [59], we have proposed first order and second order unconditionally energy stable schemes for 
MBE models (1.1) using the energy quadratization approach. In this paper, new schemes are proposed combining the IEQ 
and stabilization approaches. Mainly, IEQ is used to develop linear schemes, and the regularization parameter is introduced 
to make the proposed scheme more accurate and stable. We have shown that the newly proposed regularized schemes are 
second-order accurate in time, linear, unconditionally energy stable, and uniquely solvable.

The rest of the paper is organized as follows. In Section 2, we present the MBE model and its energy dissipation property. 
In Section 3, we develop the numerical schemes and prove their unconditional energy stability, unique solvability and error 
estimate in the semi-discretized case in time. In Section 4, we present some numerical simulations to demonstrate the 
accuracy and efficiency of the proposed schemes. Finally, some concluding remarks are presented in Section 5.

2. Molecular beam epitaxy model formulation

We consider the MBE model with slope selection, i.e. with the free energy in (1.2)

E(φ) =

∫

�

(ε2

2
(�φ)2 +

1

4
(|∇φ|2 − 1)2

)

d�.

The chemical potential δE
δφ

could be easily calculated as

δE

δφ
= ε2�2φ − ∇ · ((|∇φ|2 − 1)∇φ). (2.1)

After substituting (2.1) into the model (1.1), the governing equation for the Molecular Beam Epitaxial (MBE) model with 
slope selection is given by

φt = −M
(

ε2�2φ − ∇ · ((|∇φ|2 − 1)∇φ)

)

, (2.2)

where φ represents the epitaxy surface height, ε is a model parameter, and M is the mobility coefficient. With the peri-
odic boundary condition or any other proper boundary condition that can satisfy the flux free condition at the boundary 
∂nφ|∂� = 0 and ∂n�φ|∂� = 0, we have the mass conservation property

d

dt

∫

�

φ(x, t)d� = 0, (2.3)

where n is the outward normal on the boundary. And the model is thermodynamically consistent, in the sense that its 
energy is dissipative in time. As a matter of fact, we can calculate the energy dissipation rate

dE

dt
=

∫

�

δE

δφ

δφ

δt
d� = −

∫

�

M
(

ε2�2φ − ∇ · ((|∇φ|2 − 1)∇φ)

)2

d�, (2.4)

with the expression of E as

E(φ) =

∫

�

(ε2

2
(�φ)2 +

1

4
(|∇φ|2 − 1)2

)

d�. (2.5)

Thus, one would like to propose discrete numerical schemes to preserve the properties: (1) mass conservation; (2) energy 
dissipation. And schemes preserving such properties are named energy stable scheme.
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3. Numerical schemes

In this section, we first reformulate the MBE model by introducing an auxiliary variable and show the new form is 
equivalent to the original MBE model. Then we propose time discretization and spatial discretization subsequently to obtain 
linear and stable full discrete numerical approximations.

3.1. Equivalent form using energy quadratization approach

Recall the MBE model with slope selection reads

φt = −M
(

ε2�2φ − ∇ · ((|∇φ|2 − 1)∇φ)

)

. (3.1)

For simplicity, we consider periodic boundary condition. We introduce the auxiliary variable

q = |∇φ|2 − (1+ γ ), (3.2)

with γ > 0 constant. Substituting (3.2) into (3.1), we have

φt = −M
(

ε2�2φ − γ �φ − ∇ · (q∇φ)

)

. (3.3)

By taking derivative with respect to time for equation (3.2), we have

qt = 2∇φ · ∇φt, (3.4)

with q|t=0 =

(

|∇φ| − (1 + γ )

)

|t=0 . Therefore, if we combine equation (3.3) with equation (3.4), we obtain the equivalent 

model in a transformed expression:

{

φt = −M
[

ε2�2φ − γ �φ − ∇ · (q∇φ)

]

,

qt = 2∇φ · ∇φt,

(3.5)

with initial conditions
{

φ|t=0 = φ0,

q|t=0 = |∇φ0|
2 − (1+ γ ).

(3.6)

We remark that the transformed expression (3.5) is equivalent with the original model in primitive variables (3.1). And it 
could be easily seen that the transformed model (3.5) have the same property of mass conservation and energy dissipation. 
In particular, by substituting (3.2) into the expression of the energy, we have the energy and its dissipation rate in term of 
(φ, q):

dE(φ,q)

dt
= −

∫

�

M
(

ε2�φ − γ φ − ∇ · (q∇φ)

)2

d�, (3.7)

where

E(φ,q) =

∫

�

(ε2

2
(�φ)2 +

γ

2
|∇φ|2 +

1

4
q2 +

1

4

[

1− (1+ γ )2
])

d�. (3.8)

The energy (3.8) and its dissipation rate (3.7) for the transformed model are equivalent with the original energy (2.5)
and energy dissipation rate (2.4), by simply recognizing (3.2). Therefore, in the following sections, we will propose nu-
merical approximation for the transformed model (3.5), and show the numerical schemes preserve the properties of mass 
conservation and energy dissipations, accordingly.

3.2. Time discretization

First of all, we will present the spatial discretization in this section. The energy stability and unique solvability will be 
presented as well. Here we propose three schemes: the first order Euler type, the second order Crank–Nicolson type, and 
the second order Adam–Bashforth type.

The first-order Euler scheme reads
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Scheme 3.1. Assuming that (φn, qn) are already calculated with n ≥ 1, we then compute (φn+1, qn+1) from the following temporal 
discrete system:

φn+1 − φn

δt
= −M

(

ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φn)

)

, (3.9)

qn+1 − qn

δt
= 2∇φn · ∇

φn+1 − φn

δt
. (3.10)

A second-order scheme based on Crank–Nicolson reads

Scheme 3.2. Assuming that (φn, qn), and (φn−1, qn−1) are already calculated with n ≥ 1, we then compute (φn+1, qn+1) from the 
following temporal discrete system:

φn+1 − φn

δt
= −M

(

ε2�2φn+ 1
2 − γ �φn+ 1

2 − ∇ · (qn+ 1
2 ∇φ

n+ 1
2 )

)

, (3.11)

qn+1 − qn

δt
= 2∇φ

n+ 1
2 · ∇

φn+1 − φn

δt
, (3.12)

where (·)n+ 1
2 = 1

2
(·)n + (·)n+1 , (·)

n+ 1
2 = 3

2
(·)n − 1

2
(·)n−1 .

A second order Adam–Bashforth scheme:

Scheme 3.3. Assuming that (φn, qn), and (φn−1, qn−1) are already calculated with n ≥ 1, we then compute (φn+1, qn+1) from the 
following temporal discrete system:

3φn+1 − 4φn + φn−1

2δt
= −M

(

ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φ
n+1

)

)

, (3.13)

3qn+1 − 4qn + qn−1

2δt
= 2∇φ

n+1
· ∇

3φn+1 − 4φn + φn−1

2δt
, (3.14)

where (·)
n+ 1

2 = 2(·)n − (·)n−1 .

Several remarks are summarized as follow.

Theorem 3.1. The proposed schemes (3.9)–(3.10), (3.11)–(3.12) and (3.13)–(3.14) preserve the total mass.

Proof. For the scheme (3.11)–(3.12), we take inner product of equation (3.11) with δt , we have
∫

�

φn+1dx−

∫

�

φndx = δt

∫

�

−M
(

ε2�2φn+ 1
2 − γ �φn+ 1

2 − ∇ · (qn+ 1
2 ∇φ

n+ 1
2 )

)

dx = 0. (3.15)

Therefore,
∫

�

φn+1dx =

∫

�

φndx. (3.16)

For the scheme (3.9)–(3.10) and (3.13)–(3.14), the proof is similar, we thus omit it. �

Remark 3.1. The Schemes 3.1, 3.2 and 3.3 are similar with the one proposed in [59]. But the novelty of our scheme is the 
introduction of regularization parameter γ , which we will show later that it improves the stability and accuracy significantly.

Remark 3.2. The Schemes 3.1, 3.2 and 3.3 are fully decoupled, i.e. at each time step, one can solve φn+1 and qn+1 subse-

quently.

Theorem 3.2. The scheme (3.9)–(3.10) satisfies the following energy dissipation law

Ẽn+1 + δtM

∫

�

(

ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φn)

)2

dx ≤ Ẽn, (3.17)
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where

Ẽn(φn,qn) =

∫

�

(ε2

2
(�φn)2 +

γ

2
|∇φn|2+

1

4
(qn)2 +

1

4

[

1− (1+ γ )2
]

)

dx. (3.18)

Proof. For the scheme (3.9)–(3.10), we take the L2 inner product of (3.9) with δt(ε2�2φn+1 − γ�φn+1 − ∇ · (qn+1∇φn)), 
we can obtain

− δtM

∫

�

(

ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φn)

)2

dx

=

(

(φn+1 − φn),ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φn)

)

.

(3.19)

And then we take the L2 inner product of (3.10) with 1
2
qn+1 , we can obtain

1

2
(qn+1 − qn,qn+1) = (∇(φn+1 − φn),qn+1∇φn) (3.20)

Adding equations (3.19) and (3.20) will give us the result. �

Theorem 3.3. The proposed scheme (3.11)–(3.12) satisfies the energy dissipation law

En+1 + δtM

∫

�

(

ε2�2φn+ 1
2 − γ �φn+ 1

2 − ∇ · (qn+ 1
2 ∇φ

n+ 1
2 )

)2

dx = En, (3.21)

where

En(φn,qn) =

∫

�

(ε2

2
(�φn)2 +

γ

2
|∇φn|2 +

1

4
(qn)2 +

1

4

[

1− (1+ γ )2
])

dx (3.22)

i.e. it is unconditionally energy stable.

Proof. As a matter of fact, for scheme (3.11)–(3.12), by taking the L2 inner product of (3.11) with δt(ε2�2φn+ 1
2 −γ�φn+ 1

2 −

∇ · (qn+ 1
2 ∇φ

n+ 1
2 )), we will have

− δtM

∫

�

(

ε2�2φn+ 1
2 − γ �φn+ 1

2 − ∇ · (qn+ 1
2 ∇φ

n+ 1
2 )

)2

dx

=

(

φn+1 − φn, (ε2�2φn+ 1
2 − γ �φn+ 1

2 − ∇ · (qn+ 1
2 ∇φ

n+ 1
2 ))

)

=
ε2

2
(|�φn+1|2 − |�φn|2) +

γ

2
(|∇φn+1|2 − |∇φn|2) + (∇(φn+1 − φn),qn+ 1

2 ∇φ
n+ 1

2 ).

(3.23)

Then by taking L2 inner product of (3.12) with 1
2
δtqn+ 1

2 with (3.12), then integrating by parts, we have

1

4
((qn+1)2 − (qn)2,1) = (∇(φn+1 − φn),qn+ 1

2 ∇φ
n+ 1

2 ). (3.24)

Adding equations (3.23) and (3.24), we obtain

En+1 + δtM

∫

�

(

ε2�2φn+ 1
2 − γ �φn+ 1

2 − ∇ · (qn+ 1
2 ∇φ

n+ 1
2 )

)2

dx = En, (3.25)

where En(φn, qn) =
∫

�

(

ε2

2
(�φn)2 +

γ
2
|∇φn|2 + 1

4
(qn)2 + 1

4

[

1 − (1 + γ )2
])

dx. This closes the proof. �

Theorem 3.4. The scheme (3.13)–(3.14) satisfies the following energy dissipation law

Ẽn+1 + δtM

∫

�

(

ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φ
n+ 1

2 )

)2

dx ≤ Ẽn, (3.26)

where
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Ẽn(φn,qn) =

∫

�

(ε2

4
((�φn)2 + (�(2φn − φn−1))2) +

γ

4

(

|∇φn|2 + |∇(2φn − φn−1)2
)

+
1

8

(

(qn)2 + (2qn − qn−1)2) +
1

4

[

1− (1 + γ )2
])

dx.

(3.27)

Proof. The proof is similar, we thus only show the sketch. By the same manner, for the scheme (3.13)–(3.14), we take the 

L2 inner product of (3.13) with δt(ε2�2φn+1 − γ�φn+1 − ∇ · (qn+1∇φ
n+ 1

2 )), we can obtain

− δtM

∫

�

(

ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φ
n+ 1

2 )

)2

dx

=

(1

2
(3φn+1 − 4φn + φn−1),ε2�2φn+1 − γ �φn+1 − ∇ · (qn+1∇φ

n+ 1
2 )

)

.

(3.28)

And then we take the L2 inner product of (3.14) with 1
2
qn+1 , we can obtain

(
1

2
(3qn+1 − 4qn + qn−1,qn+1)) = (∇(3φn+1 − 4φn + φn−1,qn+1∇φ

n+1
). (3.29)

Adding equations (3.28) and (3.29) will give us the result. �

Theorem 3.5. The proposed schemes (3.9)–(3.10), (3.11)–(3.12) and (3.13)–(3.14) are uniquely solvable.

Proof. First of all, let us look at the scheme (3.9)–(3.10), from (3.10), we have

qn+1 = qn + ∇φn · ∇(φn+1 − φn). (3.30)

Replacing qn+1 in (3.9), then the scheme (3.9)–(3.10) is equal to

• Step 1: update φn+1 via

T φn+1 = f (φn, φn−1), (3.31)

where the linear operator is

T φ =
φ

δt
+ Mε2�2φ − Mγ �φ − ∇ · (∇φn · ∇φ)∇φn, (3.32)

and the right-hand-side is

f =
φn

δt
− M∇ · (∇φn · ∇φn∇φn) + M∇ · (qn∇φn). (3.33)

• Step 2: update qn+1 via

qn+1 = qn + 2∇φn · ∇(φn+1 − φn). (3.34)

By the Lax–Milgram theorem, there exists a unique solution for (3.31). Thus the scheme (3.9)–(3.10) is uniquely solvable.
Then we consider the scheme (3.11)–(3.12). As a matter of fact, in scheme (3.11)–(3.12), φn+1 and qn+1 could be decou-

pled, i.e. we solve φn+1 first and then update qn+1 sequentially.

In details, from (3.12), we have

qn+ 1
2 = qn + ∇φ

n+ 1
2 · ∇(φn+1 − φn). (3.35)

Replacing qn+ 1
2 in (3.11), then the scheme (3.11)–(3.12) is equal to

• Step 1: update φn+1 via

T φn+1 = f (φn, φn−1), (3.36)

where the linear operator is

T φ =
φ

δt
+

Mε2

2
�2φ −

Mγ

2
�φ − ∇ · (∇φ

n+ 1
2 · ∇φ)∇φ

n+ 1
2 , (3.37)
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and the right-hand-side is

f =
φn

δt
− M∇ · (∇φ

n+ 1
2 · ∇φn∇φ

n+ 1
2 ) + M∇ · (qn∇φ

n+ 1
2 ) +

Mε2

2
�2φn −

Mγ

2
�φn. (3.38)

• Step 2: update qn+1 via

qn+1 = qn + 2∇φ
n+ 1

2 · ∇(φn+1 − φn). (3.39)

It could be easily shown that there exists a unique solution for (3.36) using the Lax–Milgram theorem. Thus the scheme 
(3.11)–(3.12) is uniquely solvable.

In a similar manner, for the scheme (3.13)–(3.14), we can reformulate it into a decoupled scheme by substituting qn+1

of (3.14) into (3.13). In details, from (3.14), we have

qn+1 =
4

3
qn −

1

3
qn−1 + 2∇φ

n+ 1
2 · ∇(φn+1 −

4

3
φn +

1

3
φn−1). (3.40)

Then substituting the expression of qn+1 into equation (3.13), we have the scheme

• Step 1: update φn+1 via

T φn+1 = f (φn, φn−1), (3.41)

where the linear operator is

T φ =
3

2δt
φ + Mε2�2φ − Mγ �φ − M∇ · (2∇φ

n+1
· ∇φn+1∇φ

n+1
), (3.42)

and the right-hand-side is

f =
4φn − φn−1

2δt
+ M · (

4qn

3
−

qn−1

3
+ 2∇φ

n+1
· ∇(φn+1 −

4φn

3
+

φn−1

3
)∇φ

n+1
). (3.43)

• Step 2: update qn+1 via

qn+1 =
4

3
qn −

1

3
qn−1 + 2∇φ

n+1
· ∇(φn+1 −

4

3
φn +

1

3
φn−1). (3.44)

Similarly, the scheme (3.41) could be easily shown to exist a unique solution by Lax–Milgram theory. Then, the scheme 
(3.13)–(3.14) is uniquely solvable. �

Remark 3.3. The difference of the regularized schemes compared with the schemes in [59] lies in the extra term in the 
linear operator, i.e., −Mγ

2
�φ of equation (3.37) in the CN scheme, and −Mγ�φ of equation (3.32) and (3.42) in the BDF 

scheme. These two terms would regularize the linear operator. Thus we name this strategy regularized IEQ approach.

3.3. Error analysis

To simplify the notations, without loss of generality, in the below, we let M = ε = 1. We use x � y to denote there exists 
a constant C that is independent of δt and n such that x ≤ C y. We let Lp(�) denote the usual Lebesgue space on � with 
the norm ‖ · ‖Lp . The inner product and norm in L2(�) are denoted by (·, ·) and ‖ · ‖, respectively. W k,p(�) stands for the 
standard Sobolev spaces equipped with the standard Sobolev norms ‖ · ‖k,p . For p = 2, we write Hk(�) for W k,2(�), and 
the corresponding norm is ‖ · ‖k .

We now focus on the error estimates for the first order scheme (3.9)–(3.10). We formulate the PDE system (3.5) as a 
truncation form:

φ(tn+1) − φ(tn)

δt
= −(�2φ(tn+1) − γ �φ(tn+1) − ∇ · (q(tn+1)∇φ(tn)) + Rn+1

φ , (3.45)

q(tn+1) − q(tn) = 2∇φ(tn) · ∇(φ(tn+1) − φ(tn)) + δtRn+1
q , (3.46)

where
⎧

⎪

⎨

⎪

⎩

Rn+1
φ =

φ(tn+1) − φ(tn)

δt
− φt(tn+1) + ∇ · (q(tn+1)∇φ(tn)) − ∇ · (q(tn+1)∇φ(tn+1)),

Rn+1
q =

q(tn+1) − q(tn)

δt
− qt(tn+1) + 2∇φ(tn+1) · ∇φt(tn+1) − 2∇(φ(tn)) · ∇(

φ(tn+1) − φ(tn)

δt
).

(3.47)
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We assume the exact solution φ, q of the system (3.5) possesses the following regularity conditions,
{

φ ∈ L∞(0, T ; H2(�)),q ∈ L∞(0, T ;W 1,∞(�)),

φt ∈ L2(0, T ; L2(�)) ∩ L∞(0, T ; H2(�)),φtt ,qtt ∈ L2(0, T ; L2(�)).
(3.48)

One can easily establish the following estimates for the truncation errors, provided that the exact solutions of the system 
(3.5) satisfy the regularity conditions (3.48).

Lemma 3.1. Under the regularity conditions (3.48), the truncation errors satisfy

δt

[ T
δt

]
∑

n=0

(‖Rn+1
φ ‖2 + ‖Rn+1

q ‖2) � δt2. (3.49)

Since the proof for Lemma 3.1 is rather straightforward, we leave this to the interested readers.
To derive the error estimates, we denote the error functions as

enφ = φ(tn) − φn, enq = q(tn) − qn. (3.50)

By subtracting (3.45)–(3.46) from (3.9)–(3.10), we derive the error equations:

en+1
φ − enφ

δt
+ �2en+1

φ − γ �en+1
φ − ∇ · (∇enφq(tn+1) − ∇enφe

n+1
q + ∇φ(tn)e

n+1
q ) = Rn+1

φ , (3.51)

en+1
q − enq = 2(∇φ(tn) · ∇(en+1

φ − enφ) − ∇enφ · ∇(en+1
φ − enφ) + ∇enφ · ∇(φ(tn+1) − φ(tn))) + δtRn+1

q . (3.52)

Theorem 3.6. Under the regularity conditions of (3.48), for 0 ≤m ≤ [ T
δt

] − 1, it holds

‖�em+1
φ ‖2 + γ ‖∇em+1

φ ‖2 + ‖em+1
q ‖2 � δt2. (3.53)

Proof. By taking the L2 inner product of (3.51) with en+1
φ − enφ , we obtain

1

δt
‖en+1

φ − enφ‖2 +
1

2

(

‖�en+1
φ ‖2 − ‖�enφ‖2 + ‖�en+1

φ − �enφ‖2
)

+
γ

2

(

‖∇en+1
φ ‖2 − ‖∇enφ‖2 + ‖∇en+1

φ − ∇enφ‖2
)

= (Rn+1
φ , en+1

φ − enφ) − (∇enφq(tn+1),∇en+1
φ − ∇enφ)

+ (∇enφe
n+1
q ,∇en+1

φ − ∇enφ)

− (∇φ(tn)e
n+1
q ,∇en+1

φ − ∇enφ).

(3.54)

By taking the L2 inner product of (3.52) with 1
2
en+1
q , we obtain

1
4
(‖en+1

q ‖2 − ‖enq‖
2 + ‖en+1

q − enq‖
2) = 1

2
δt(Rn+1

q , en+1
q ) + (∇enφ · ∇(φ(tn+1) − φ(tn)), e

n+1
q )

− (∇enφ · ∇(en+1
φ − enφ), en+1

q ) + (∇φ(tn) · ∇(en+1
φ − enφ), en+1

q ).
(3.55)

By combining (3.54) and (3.55) and multiplying with δt , we obtain

‖en+1
φ − enφ‖2 +

δt

2

(

‖�en+1
φ ‖2 − ‖�enφ‖2 + ‖�en+1

φ − �enφ‖2
)

+
γ δt

2

(

‖∇en+1
φ ‖2 − ‖∇enφ‖2 + ‖∇en+1

φ − ∇enφ‖2
)

+
δt

4
(‖en+1

q ‖2 − ‖enq‖
2 + ‖en+1

q − enq‖
2)

= − δt(∇enφq(tn+1),∇en+1
φ − ∇enφ)

+ δt(∇enφ · ∇(φ(tn+1) − φ(tn)), e
n+1
q )

+ δt(Rn+1
φ , en+1

φ − enφ)

+
1

2
δt2(Rn+1

q , en+1
q ).

(3.56)

We estimate the terms on the right hand side one by one as follows.
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δt|(∇enφq(tn+1),∇en+1
φ − ∇enφ)| ≤ δt|(�enφq(tn+1), e

n+1
φ − enφ)| + δt|(∇enφ · ∇q(tn+1), e

n+1
φ − enφ)|

� δt2‖�enφ‖2 + δt2‖∇enφ‖2 +
1

2
‖en+1

φ − enφ‖2;
(3.57)

δt|(∇enφ · ∇(φ(tn+1) − φ(tn)), e
n+1
q )|� δt‖∇enφ‖L4‖∇(φ(tn+1) − φ(tn))‖L4‖e

n+1
q ‖

� δt2‖�enφ‖‖en+1
q ‖

� δt2‖�enφ‖2 + δt2‖en+1
q ‖2;

(3.58)

δt|(Rn+1
φ , en+1

φ − enφ)| �
1

2
‖en+1

φ − enφ‖2 + δt2‖Rn+1
φ ‖2; (3.59)

1

2
δt2(Rn+1

q , en+1
q )� δt2‖Rn+1

q ‖2 + δt2‖en+1
q ‖2. (3.60)

By combining the above estimates with (3.56), we obtain

1

2

(

‖�en+1
φ ‖2 − ‖�enφ‖2 + ‖�en+1

φ − �enφ‖2
)

+
γ

2

(

‖∇en+1
φ ‖2 − ‖∇enφ‖2 + ‖∇en+1

φ − ∇enφ‖2
)

+
1

4
(‖en+1

q ‖2 − ‖enq‖
2 + ‖en+1

q − enq‖
2)

� δt‖�enφ‖2 + δt‖∇enφ‖2 + δt‖en+1
q ‖2 + δt‖Rn+1

φ ‖2 + δt‖Rn+1
q ‖2.

(3.61)

Summing up the above inequality from n = 0 to m ≤ [ T
δt

] − 1, using Lemma 3.1 and dropping some unnecessary terms, we 
obtain

‖�em+1
φ ‖2 + γ ‖∇em+1

φ ‖2 + ‖em+1
q ‖2 � δt

m
∑

n=0

(‖�en+1
φ ‖2 + γ ‖∇en+1

φ ‖2 + ‖en+1
q ‖2) + δt2. (3.62)

By applying the discrete Gronwall Lemma to the above inequality, we have

‖�em+1
φ ‖2 + γ ‖∇em+1

φ ‖2 + ‖em+1
q ‖2 � δt2, (3.63)

which concludes the theorem. �

The error estimates for the second order schemes, as well as the fully discrete schemes in the context of finite element 
method or spectral method, can be derived in a similar way, see [2,6,10,11,18,34,35,41,48,51,61].

3.4. Spatial discretization using spectral methods

Fourier spectral method is employed to handle the spatial discretization, since it is one of the most suitable spatial 
approximation methods for periodic problems. We use the following Fourier basis functions:

PM = span{1, sinnx, cosnx,n = 1,2, . . . ,N} × span{1, sinmy, cosmy,m = 1,2, . . . ,M}, (3.64)

where N is the number of the Fourier mode.

Then the weak formulation of scheme (3.1) can be written as follows:

Scheme 3.4. Give the initial condition
{

φ0
N = φ0,

q0N = |∇φ0|
2 − (1+ γ ).

(3.65)

After calculated (φn
N , qnN), find φn+1

N ∈ PM such that

(φn+1
N − φn

N

δt
,ϕN

)

= −M
(

ε2�2φn+1
N − γ �φn+1

N − ∇ · (qn+1
N ∇φn

N),ϕN

)

,∀ϕN ∈ PM ,

(qn+1
N − qnN

δt
,ψN

)

=

(

2∇φn+1
N · ∇

φn+1
N − φn

N

δt
,ψN

)

,∀ψN ∈ PM .

(3.66)

And the weak formulation of scheme (3.2) can be written as follows:
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Scheme 3.5. Give the initial condition
{

φ0
N = φ0,

q0N = |∇φ0|
2 − (1+ γ ).

(3.67)

After calculated (φn
N , qnN) and (φn−1

N , qn−1
N ), find φn+1

N ∈ PM such that

(φn+1
N − φn

N

δt
,ϕN

)

= −M
(

ε2�2φ
n+ 1

2
N − γ �φ

n+ 1
2

N − ∇ · (q
n+ 1

2
N ∇φ

n+ 1
2

N ),ϕN

)

,∀ϕN ∈ PM ,

(qn+1
N − qnN

δt
,ψN

)

=

(

2∇φ
n+ 1

2
N · ∇

φn+1
N − φn

N

δt
,ψN

)

,∀ψN ∈ PM .

(3.68)

Similarly, the weak formulation of scheme (3.3) can be written as follows:

Scheme 3.6. Give the initial condition
{

φ0
N = φ0,

q0N = |∇φ0|
2 − (1+ γ ).

(3.69)

After calculating (φn
N , qnN) and (φn−1

N , qn−1
N ), find φn+1

N ∈ PM such that

(3φn+1
N − 4φn

N + φn−1
N

2δt
,ϕN

)

= −M
(

ε2�2φn+1
N − γ �φn+1

N − ∇ · (qn+1
N ∇φ

n+1
N ),ϕN

)

,∀ϕN ∈ PM ,

(3qn+1
N − 4qnN + qn−1

N

2δt
,ψN

)

=

(

2∇φ
n+1
N · ∇

3φn+1
N − 4φn

N + φn−1
N

2δt
,ψN

)

,∀ψN ∈ PM .

(3.70)

It could be easily shown that the full discrete linear scheme is uniquely solvable, and it also preserves the mass conser-
vation and energy dissipation properties in the full discrete sense. The proves are similar. We thus omit them for simplicity.

4. Numerical results

In this section, we will give several numerical simulations of the MBE model by the two schemes: Scheme 3.5 and 
Scheme 3.6, i.e. equations (3.68) and (3.70). Also the efficiency and accuracy of the proposed numerical schemes by adding 
the regularization parameter γ will be demonstrated. In the rest of the paper, we chose periodic boundary conditions in 
the square domain [0, L]2 , and employ the second order schemes since the second order schemes are more accurate.

4.1. Convergence rate test

First of all, consider MBE model (2.2) with the initial condition as follows:

φ(x, y, t = 0) = 0.1(sin3x sin2y + sin5x sin5y). (4.1)

The computational domain is [0, 2π ]2 . The space is discretize by 128 × 128 grid points by the Fourier spectral method.

Define the roughness measure function W (t) as follows:

W (t) =

√

√

√

√

1

|�|

∫

�

(

φ(x, y, t) − φ(x, y, t)
)2

d�, (4.2)

where φ(x, y, t) =
∫

�
φ(x, y, t)d�. We begin with time accuracy for the two schemes (3.68) and (3.70). We use numerical 

results of scheme (3.68) with γ = 0, δt = 0.00001 and N = 512 as the exact solution since the exact solution for MBE 
growth model is unknown. Taking ε = 1 and the numerical errors are computed at t = 1. Fig. 4.1 shows the L2-errors 
versus time step δt for the MBE growth model using second order Adam–Bashforth scheme (3.70) (left) and Crank–Nicolson 
scheme (3.68) (right). With different regularization parameter γ = 0, 1, the expected second order convergence rate in time 
is obtained.

From Fig. 4.1, we observe the two schemes, i.e. Adam–Bashforth scheme (3.70) and Crank–Nicolson scheme (3.68) provide 
similar accuracy/error. In the later discussion, we thus only use Crank–Nicolson scheme (3.68) without loss of generality.
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Fig. 4.1. Time accuracy convergence test. In the figures, the error versus time step δt for the MBE growth model are shown using second order Adam–

Bashforth scheme (3.70) (left) and Crank–Nicolson scheme (3.68), with ε2 = 1 and different regularization parameter γ = 0, 1.

Fig. 4.2. The error of numerical solution φN versus γ using scheme (3.68) with different δt and ε.

4.2. Choices of the regularization parameter γ

Then, in this section, we investigate the choice of the regularization parameter γ that would provide better stability and 
accuracy. Fig. 4.2 plots the error of numerical solution φN versus γ using scheme (3.68) with different δt and ε. It shows 
that for a fixed δt and ε, the error decreasing as increasing γ , but it reaches the minimum then it increases as γ increases. 
In anther word, there exist some choices of regularization parameter γ such that the scheme is more stable and accurate. 
However, the optimal choice of γ is not known theoretically. In particular, we can easily observe γ = 0 (i.e. the scheme 
proposed in [59]) is not optimal.
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Fig. 4.3. The isolines of numerical solutions of the height function φ for the MBE growth model using Crank–Nicolson scheme (3.2). With ε2 = 0.1, γ = 20

and time step δt = 0.001. Snapshots are taken at t = 0, 0.05, 2.5, 5.5, 8, 30, respectively.

Fig. 4.4. Time evolution of the energy for the MBE growth model using Crank–Nicolson scheme (3.2) when t ∈ [0, 30]. The time step is set at δt = 10−3 and 
γ = 20.

In Fig. 4.3, we show the contour lines of the numerical solutions φ up to the steady state (t = 30) by the Crank–Nicolson 
scheme (3.68). The evolution of energy curves and the roughness are plotted in Fig. 4.4 and Fig. 4.5 respectively. These 
computational results quite agree with the published results in [59].

In the meanwhile, we give the time evolution of the energy when t ∈ [0, 15] with different time step δt and regulariza-
tion parameter γ , shown in Fig. 4.6. Also, we enlarge time evolution of the energy with different time step and γ at time 
region [0, 0.012] (left) and [4, 12] (right) respectively (shown in Fig. 4.7), since the energy are decaying rapidly between 
this two time intervals. From Fig. 4.6 and Fig. 4.7, we observe the energy evolution is very close to the exact one with 
time step δt = 10−4 , and δt = 10−3 by adding regularization parameter γ = 20.0. But the results with δt = 10−3 by adding 
regularization parameter γ = 1.0 and γ = 10.0 is not accurate enough. Therefore, the regularization parameter γ is crucial 
to the accuracy of the energy evolution. In particular, with δt = 10−3 , we observe the energy curve is getting closer to 
the exact one, when increasing the regularization parameter γ from 0 to 20, i.e. adding a proper regularization parameter 
would allow the scheme to predict accurate solution with relative bigger time step.



152 L. Chen et al. / Applied Numerical Mathematics 128 (2018) 139–156

Fig. 4.5. Time evolution of the roughness for the MBE growth model using Crank–Nicolson scheme (3.2). The time step is set at δt = 10−3 and γ = 20.

Fig. 4.6. Time evolution of the energy for the MBE growth model using Crank–Nicolson scheme (3.2) when t ∈ [0, 15] with different time step δt and 
regularization parameter γ .

Fig. 4.7. Zoomed plots of time evolution of the energy for the MBE growth model using Crank–Nicolson scheme (3.2) with different time step δt and 
regularization parameter γ at time region [0, 0.012] (left) and [4, 12] (right) respectively.
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Table 4.1

δc with different γ for the MBE growth model using Crank–Nicolson scheme (3.2).

γ 0.0 1.0 2.0

δtc 0.0006 < δtc < 0.0007 0.005 < δtc < 0.006 0.01 < δtc < 0.02

γ 3.0 4.0 5.0

δtc 0.05 < δtc < 0.06 0.9 < δtc < 1.0 δtc > 1

Fig. 4.8. Time evolution of the energy (left) and roughness (right) for the MBE growth model using Crank–Nicolson scheme (3.2) with random number 
condition when t ∈ [0.1, 100] respectively.

Fig. 4.9. Time evolution of the energy for the MBE growth model using Crank–Nicolson scheme (3.2) with random number condition when t ∈ [0,0.5].

4.3. Coarsening dynamics

In this example, we perform numerical simulations of coarsening dynamics in the domain [0, 12.8] ×[0, 12.8]. The initial 
condition is a random state by assigning a random number which varying from −0.001 to 0.001 to each grid points.

The numerical schemes we have proposed are unconditionally stable, which means any time step δt is allowable for the 
computations of the stability concern. But the global error accumulated in time evolution will lead to the wrong solution, 
especially with the non-smooth initial condition. However, we will show in this section that the unstable property can be 
improved by adding the regularization parameter γ . Define δc as the largest possible time step which allows stable numeri-

cal computation. That is to say, if the time step is greater than δc , then the numerical solution will blow up. In Table 4.1, we 
list the values of δc for the MBE growth model using Crank–Nicolson scheme (3.68) with different regularization parame-

ter γ . The semi-discrete scheme (3.2) is approximated by the Fourier spectral methods in space with Fourier mode number 
N = 512. Table 4.1 demonstrate that the improvement on stability and accuracy with the use of γ is significant and the 
scheme is more accurate when γ is sufficiently large.

In Fig. 4.8, time evolution of the energy (left) and roughness (right) with random number condition when t ∈ [0.1, 100]
are plotted respectively. We observe that the energy decrease approximately like t−

1
3 and the growth rate of the roughness 

function is t
1
3 , which is consistent with the result in [28,30]. Also the accuracy of the scheme by adding γ can be checked 

by Fig. 4.9 which enlarge the energy evolution when t ∈ [0, 0.5].
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Fig. 4.10. The isolines of numerical solutions of the height function φ and its Laplacian �φ for the MBE growth model with random initial condition. The 
time step is δt = 0.0001. Snapshots are taken at t = 0, 1, 10, 50, 100, 500, respectively.

The contour lines of numerical solutions of the height function φ and its Laplacian �φ for the MBE growth model with 
random initial condition are shown in Fig. 4.10. The time step is δt = 0.0001. Snapshots are taken at t = 0, 1, 10, 50, 100, 500, 
respectively.

5. Conclusion

In this paper, we have proposed two second-order-in-time, spectral-order-in-space full discrete numerical schemes to 
solve the MBE model. The new schemes are linear, unconditionally energy stable and unique solvable. Thus, it is robust for 
long time simulations with larger time step and coarser spatial resolution. Several numerical tests are taken to verify our 
theoretical results. Besides, one novelty in our new scheme is our introducing the regularization parameter. Via numerical 
comparison, we have shown that, by introducing the regularization parameter, larger time step can also guarantee stability 
and accuracy. This newly proposed regularized IEQ strategy is also applicable to propose energy stable numerical schemes 
for a broad class of gradient flow models and/or energy-based thermodynamic consistent models.
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