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STABLE SCHEMES FOR A HYDRODYNAMIC MODEL OF
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Abstract. In this paper, we consider the numerical approximations for a hydrodynamical model
of smectic-A liquid crystals. The model, derived from the variational approach of the modified Oseen–
Frank energy, is a highly nonlinear system that couples the incompressible Navier–Stokes equations
and a constitutive equation for the layer variable. We develop two linear, second order time marching
schemes based on the Invariant Energy Quadratization method for nonlinear terms in the constitutive
equation, the projection method for the Navier–Stokes equations, and some subtle implicit-explicit
treatments for the convective and stress terms. Moreover, we prove the well-posedness of the linear
system and their unconditionally energy stabilities rigorously. Various numerical experiments are
presented to demonstrate the stability and the accuracy of the numerical schemes in simulating the
dynamics under shear flow and the magnetic field.
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1. Introduction. Liquid crystals (LCs) are one important intermediate phase
which exhibits features from both the solid and the fluid state, e.g., it flows like a
liquid, while at the same time displaying an ordering property like a solid. Thus it
is often viewed as the fourth state of matter besides gases, liquids, and solids. There
are two main different phases in thermotropic liquid crystals: nematic and smectic.
In nematic phases, the rod-like molecules self-align to have a long-range directional
order with their long axes roughly parallel. While maintaining long-range directional
order, the molecules are free to flow and their center of mass positions are randomly
distributed as in a liquid; see [6, 7, 13, 17, 21, 22, 23, 24, 43, 50, 66, 71, 74, 75, 76,
77, 84]. In smectic phases, the molecules maintain the general orientational order of
nematics, but also tend to align themselves in layers or planes. Hence, molecules in
this state show a degree of translational order that are not present in the nematic
phase. Motion is restricted to within these planes, and separate planes are observed
to flow past each other; see [5, 7, 10, 11, 14, 24, 25, 26, 30, 39, 43, 48]. Note that there
are many different smectic phases, all characterized by different types and degrees of
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SECOND ORDER SCHEMES FOR SMECTIC-A LC MODEL A2809

positional and orientational order. Here we consider the numerical approximations
for the smectic-A phase, where the directions of molecules are perpendicular to the
smectic plane, and there is no particular positional order inside the layer.

There is a large quantity of studies on modeling and simulation to investigate the
flows of liquid crystal systems. One of the most well-known continuum theories is the
Ericksen–Leslie theory [16, 17, 38], where, to describe this anisotropic structure, a di-
mensionless unit vector, called the director, is introduced to represent the direction of
preferred orientation of molecules in the neighborhood of any point. The corresponded
mathematical model can often be obtained from the energetic variational approach
for the phenomenon-logical Oseen–Frank energy, leading to a well-posed nonlinear
gradient flow system. The first mathematical model for the smectic-A phase is de-
veloped in the pioneering work [13] by deGennes and Prost where the Oseen–Frank
energy is modified by coupling the director field and a complex order parameter that
represents the layer structure. Following the model of de Gennes and Prost, a number
of models for smectic phase have been developed and studied during the last two
decades; see [1, 7, 10, 14, 24, 30, 43, 52]. In this paper, we consider the numerical
approximations for solving a particular hydrodynamics coupled smectic-A model de-
veloped by W. E in [14] since it appears to the minimal model of unknowns, where
the director field is assumed to be strictly equal to the gradient of the layer and thus
the total free energy is reduced to a simplified version with one order parameter. In
addition, rather than imposing nonconvex constraint directly on the gradient of the
layer variable, we use a commonly used technique in liquid crystal theory to modify
the free energy by adding a penalization potential of a Ginzburg–Landau type. Such
a term can efficiently relax the unit norm constraint numerically, while, in the mean-
time, it also introduces a stiffness issue into the system [2, 11, 30, 73, 84], for which
certain numerical methods, like fully implicit or explicit type methods (cf. [20, 55]),
are numerically unstable.

From the numerical point of view, for a stiff PDE system, we expect to establish
schemes that can verify the so-called “energy stable” property at the discrete level
irrespectively of the coarseness of the discretization. Namely, the energy stability
does not impose any limitations on the time step. In what follows, those algorithms
will be called unconditionally energy stable. Schemes with this property are especially
preferred since it is not only critical for the numerical scheme to capture the correct
long time dynamics with large time steps, but also provides sufficient flexibility for
dealing with the stiffness issue. However, it is remarkable that, unlike the enormous
algorithm developments on the nematic models (cf. [12, 37, 42, 45, 46, 47, 57, 85,
87, 88, 89, 90]), very few attempts of developing energy stable schemes had been
made for smectic models in any form. We notice, for solving the particular smectic-A
model of W. E [14], Guillén-González and Tierra developed a linear, second order
scheme in [30], where the nonlinear term induced by the penalization Ginzburg–
Landau potential is approximated by a Hermite quadrature formula. This scheme
can be regarded as one of the limited efforts in the algorithm designs. However, it
is not unconditionally energy stable, i.e., there exists a time step constraint that is
dependent on the penalization parameter, so it is not efficient in practice.

Therefore, in this paper the main purpose is to develop some more efficient and
effective numerical schemes for solving the hydrodynamics coupled smectic-A model
in [14]. We expect that our developed schemes can own the following three desired
properties: (i) accurate (second order in time); (ii) stable (the unconditional energy
dissipation law holds); and (iii) easy to implement and efficient (need only solve
some fully linear equations at each time step). To achieve such a goal, instead of
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A2810 RUI CHEN, XIAOFENG YANG, AND HUI ZHANG

using traditional discretization approaches like simple implicit [20], stabilized explicit
[8, 45, 54, 55, 57, 58, 59, 68, 72, 83, 85], convex splitting [67, 88, 89], or other various
tricky Taylor expansions [30, 63] to discretize the nonlinear potentials, we adopt the
so-called Invariant Energy Quadratization (IEQ) method, which is a novel approach
and had been successfully applied for various gradient flow models in the authors’
recent work (cf. [9, 69, 70, 78, 79, 80, 81, 82, 86, 87]). The essential idea of the IEQ
method is to transform the free energy into a quadratic form (since the nonlinear
potential is usually bounded from below) of a set of new variables via a change of
variables. The new, equivalent system still retains the equivalent energy dissipation
law in terms of the new variables. Through such a reformulation, all nonlinear terms
can be treated semi-explicitly, leading to a well-posed linear system at each time step.

When this IEQ method is applied to the flow coupled model such as the smectic-
A model considered in this paper, there are still new challenges due to the nonlinear
couplings between the multiple variables, namely, the velocity, the director field as
well as the layer, where, in particular, the equation for the velocity is not a gradi-
ent flow model. To this end, we use the projection method to solve Navier–Stokes
equations, and a subtle implicit-explicit treatment to treat the convective and stress
terms. Finally we obtain two efficient schemes that are accurate (second order in
time), easy to implement (linear), and unconditionally energy stable (with a discrete
energy dissipation law). Moreover, we rigorously prove that the well-posedness and
unconditional energy stabilities hold for the two proposed schemes, and demonstrate
the stability and the accuracy of the proposed schemes through a number of classical
benchmark simulation, in particular, the layer motions under shear flow and mag-
netic force. To the best of the authors’ knowledge, the proposed schemes here are
the first second order accurate schemes for the flow coupled smectic-A model with
unconditional energy stabilities.

The rest of the paper is organized as follows. In section 2, we present the whole
system and show the energy law in the continuous level. In section 3, we develop the
numerical schemes and prove their well-posedness and unconditional stabilities. In
section 4, we present various two-dimensional (2D) numerical experiments to demon-
strate the stability and the accuracy of the developed numerical schemes in simulating
the dynamics under shear flow and the magnetic field. Finally, some concluding re-
marks are presented in section 5.

2. Model. We now give a brief introduction for the hydrodynamical smectic-A
phase model in [14, 30]. Let Ω ⊂ R

d with d = 2, 3 be the bounded domain occupied
by the LCs with boundary ∂Ω. The standard Oseen–Frank distortional energy for
the bulk free energy takes the following form:

E(d) =

∫

Ω

(K1

2
(∇ · d)2 +

K2

2
(d · (∇ × d))2 +

K3

2
|d × (∇ × d)|2

)
dx,(2.1)

where the unit vector d represents the average orientation of liquid crystal molecules
and K1,K2,K3 are elastic constants for the three canonical distortional modes: splay,
twist, and bending, respectively. For simplicity, we suppress the anisotropic distor-
tional elastic modes by assuming K1 = K2 = K3 = K. Then, the Oseen–Frank
energy density reduces to the Dirichlet functional

E(d) = K

∫

Ω

1

2
|∇d|2dx.(2.2)

For uniaxial smectic LCs, the molecules are aligned in layers with the normal
vector n. More specific, for smectic-A phase, d is strictly perpendicular to the layers,
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and thus d = n. Due to the incompressibility of the layers, we have ∇ · n = 0, and
then there exists a layer function φ(x, t) such that ∇φ = n. In turn, the Dirichlet
functional is reduced to

E(φ) = K

∫

Ω

1

2
(∆φ)2dx with |∇φ| = 1.(2.3)

The norm 1 constraint applied to |∇φ| can bring up some additional numerical
challenges in algorithm designs. A common technique to overcome it is to introduce
a penalty term of the Ginzburg–Landau type F (∇φ) = 1

4ε2
(|∇φ|2 − 1)2 with ε � 1 to

regularize the distortional energy in the cores of topological defects [30, 41, 45, 87, 89,
90], where ε is a penalization parameter that is proportional to the size of the defect
core (or zone). This regularization allows the free energy to be finite at the defect
core, extending the classical Ericksen–Leslie model to handle liquid crystal flows where
defects are created and annihilated in time and space. Then, the regularized elastic
bulk energy density is given by

E(φ) = K

∫

Ω

(1

2
|∆φ|2 +

(|∇φ|2 − 1)2

4ε2

)
dx.(2.4)

Assuming u is the fluid velocity field and applying the generalized Fick’s law that
the mass flux is proportional to the gradient of the chemical potential [3, 4, 44], we
have the following hydrodynamical model for the smectic-A phase LC system [14, 30]:

φt + ∇ · (uφ) = −Mw,(2.5)

w =
δE

δφ
= K

(
∆2φ−

1

ε2
∇ · (|∇φ|2 − 1)∇φ

)
,(2.6)

ut + (u · ∇)u − ∇ · σ(u, φ) + ∇p+ φ∇w = 0,(2.7)

∇ · u = 0,(2.8)

where p is the pressure, M is the elastic relaxation time, σ is the dissipative (sym-
metric) stress tensor given in [14] that reads as

σ(u, φ) = µ1

(
∇φTD(u)∇φ

)
∇φ⊗ ∇φ+ µ4D(u)

+ µ5

(
D(u)∇φ⊗ ∇φ+ ∇φ⊗D(u)∇φ

)
,

(2.9)

where µ1, µ4, µ5 are nonnegative parameters, and D(u) = 1
2 (∇u+∇u

T ) is a deforma-
tion tensor. We set the nonslip boundary condition for u and the following boundary
conditions for φ to remove all boundary integral terms:

u|∂Ω = 0, ∂m(∆φ)|∂Ω = 0, ∂mφ|∂Ω = 0,(2.10)

where m is the outward normal on the boundary. It is easy to see that the equation
(2.5) is mass-conserved for the layer function φ, i.e., d

dt

∫
Ω
φdx = 0.

We can easily derive the PDE energy dissipation law for the above model. Here-
after, for any function f, g ∈ L2(Ω), we use (f, g) =

∫
Ω
f(x)g(x)dx to denote the L2

inner product between functions f(x) and g(x), and ‖f‖2 = (f, f).
By taking the L2 inner product of (2.5) with w, of (2.6) with φt, of (2.7) with u,

and summing up the obtained equalities, we can obtain

d

dt

∫

Ω

(1

2
|u|2 +K

(1

2
|∆φ|2 +

(|∇φ|2 − 1)2

4ε2

))
dx

= −

∫

Ω

(
µ1(∇φ

TD(u)∇φ)2 + µ4|D(u)|2 + 2µ5|D(u)∇φ|2 +M |w|2
)
dx

≤ 0.
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A2812 RUI CHEN, XIAOFENG YANG, AND HUI ZHANG

Even though the above PDE energy law is straightforward, the variable w in-
volves the fourth order derivative of ∆2φ, and it is not convenient to use them as test
functions in numerical approximations. This makes it difficult to prove the energy
dissipation law in the discrete level. To overcome it, we can reformulate the mo-
mentum equation (2.7) to an equivalent form which is more applicable for numerical
approximations.

Define φ̇ = φt + ∇ · (uφ), ψ = −∆φ, and notice that w = − φ̇
M

; then (2.5)–(2.7)
can be rewritten as

φ̇

M
= K∆ψ +

K

ε2
∇ · ((|∇φ|2 − 1)∇φ),(2.12)

ψ = −∆φ,(2.13)

ut + (u · ∇)u − ∇ · σ(u, φ) + ∇p−
1

M
φ∇φ̇ = 0,(2.14)

∇ · u = 0(2.15)

with the boundary conditions as

u|∂Ω = 0, ∂mψ|∂Ω = 0, ∂mφ|∂Ω = 0.(2.16)

This equivalent system (2.12)–(2.15) still admits the similar energy law. We take
the time derivative for (2.13) to obtain

ψt = −∆φt.(2.17)

Thus, by taking the L2 inner product of (2.12) with φt, of (2.17) with Kψ, of (2.14)
with u, using the incompressible condition (2.15), and summing them up, one can
obtain the similar energy law as follows:

d

dt

∫

Ω

(1

2
|u|2 +

K

2
|ψ|2 +

K

4ε2
(|∇φ|2 − 1)2

)
dx

= −

∫

Ω

(
µ1(∇φ

TD(u)∇φ)2 + µ4|D(u)|2 + 2µ5|D(u)∇φ|2 +
1

M
|φ̇|2

)
dx

≤ 0.

(2.18)

Note that the above derivation is suitable in a finite-dimensional approximation since
the test functions φt and ψ are both in the same subspaces as φ. Hence, it allows us
to design numerical schemes which satisfy the energy dissipation law in the discrete
level.

Remark 2.1. In [13], de Gennes and Prost presented a total free energy of smectic-
A phase LCs that is described by the director field d and a complex order parameter Ψ
that represents the average direction of molecular alignment and the layer structure,
respectively. The smectic order parameter is written as Ψ(x) = ρ(x)eiqω(x), where
ω(x) is the order parameter to describe the layer structure so that ∇ω is perpendicular
to the layer, and the smectic layer density ρ(x) is the mass density of the layers. Thus
the total free energy proposed by de Gennes and Prost reads as follows:

E(Ψ,d) =

∫

Ω

(
C|∇Ψ − iqdΨ|2 +K|∇d|2 +

g

2

(
|Ψ|2 −

r

g

)2)
dx,(2.19)

where the order parameters C, k, g, r are all fixed positive constants. By assuming the

density ρ(x) = r/g and φ(x) = ω(x)
d

and rescaling other parameters, one can obtain
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the normalized energy as (cf. [24])

E(φ,d) =

∫

Ω

( |∇φ− d|2

2η2
+

|∇d|2

2

)
dx,(2.20)

where η is a constant determined by the domain size and other parameters. Therefore,
the free energy (2.3) can be viewed as the approximation of the de Gennes energy
when η → 0.

3. Numerical schemes. We now construct time marching schemes for solving
the model system (2.12)–(2.15). Our aim is to construct schemes that are not only easy
to implement, but also unconditionally energy stable. Here, by “easy to implement”
we mean linear and decoupled, as opposed to nonlinear and coupled. Thus we use
the IEQ approach to discretize the double well potential since it is an efficient linear
approach, and the projection methods for the Navier–Stokes equation [28, 29, 62]
since it can decouple the calculations of the pressure from the velocity field. The key
point of the IEQ method is to make the nonlinear potential quadratic. More precisely,
we define an auxiliary function U as

U = |∇φ|2 − 1,(3.1)

thus the total energy of (2.4) turns to a new form as

E(φ,U) = K

∫

Ω

(1

2
(∆φ)2 +

1

4ε2
U2

)
dx.(3.2)

Then we obtain an equivalent PDE system by taking the time derivative for the new
variable U :

φ̇

M
= K∆ψ +

K

ε2
∇ · (U∇φ),(3.3)

ψ = −∆φ,(3.4)

Ut = 2∇φ · ∇φt,(3.5)

ut + (u · ∇)u − ∇ · σ(u, φ) + ∇p−
1

M
φ∇φ̇ = 0,(3.6)

∇ · u = 0.(3.7)

The boundary conditions for the new system are still (2.10) since (3.5) for the new
variable U is simply an ODE with time. The initial conditions read as

u|(t=0) = u0, φ|(t=0) = φ0, U |(t=0) = |∇φ0|
2 − 1.(3.8)

It is clear that the new equivalent system (3.3)–(3.7) still retains the similar energy
law. By taking the L2 inner product of (3.3) with φt, taking the time derivative of
(3.4) and the L2 inner product with Kψ, of (3.5) with K

2ε2
U , of (3.6) with u, using

the incompressible condition (3.7), and summing the obtained equalities up, one can
obtain the similar energy law as follows:

d

dt
E(u, ψ, U) = −

∫

Ω

(
µ1(∇φ

TD(u)∇φ)2 + µ4|D(u)|2 + 2µ5|D(u)∇φ|2 +
1

M
|φ̇|2

)
dx

≤ 0,(3.9)

where

E(u, ψ, U) =

∫

Ω

(1

2
|u|2 +

K

2
|ψ|2 +

K

4ε2
U2

)
dx.(3.10)
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Remark 3.1. We emphasize that the new transformed system (3.3)–(3.7) is ex-
actly equivalent to the original system (2.12)–(2.15), since (2.12) can be easily ob-
tained by integrating (3.5) with respect to the time. For the time-continuous case,
the potentials in the new free energy (3.10) are the same as the Lyapunov functional
in the original free energy of (2.11). We will develop unconditionally energy stable
numerical schemes for time stepping of the transformed system (3.3)–(3.7), and the
proposed schemes should formally follow the new energy dissipation law (3.9) in the
discrete sense, instead of the energy law for the originated system (2.11).

3.1. Crank–Nicolson scheme. Let δt > 0 denote the time step size and set
tn = n δt for 0 ≤ n ≤ N with the ending time T = N δt. We first develop a second
order scheme that is based on the Crank–Nicolson, that reads as follows.

Scheme 3.2. Having computed φn, Un,un, pn, we update φn+1, Un+1,un+1, pn+1

as follows (we compute φ1, U1,u1, p1 by assuming φ−1 = φ0, ψ−1 = ψ0 = −∆φ0, U−1 =
U0,u−1 = u

0, p−1 = p0 for the initial step).
Step 1.

1

M
φ̇n+1 = K∆ψn+ 1

2 +
K

ε2
∇ · (Un+ 1

2 ∇φ?,n+ 1
2 ),(3.11)

ψn+1 = −∆φn+1,(3.12)

Un+1 − Un = 2∇φ?,n+ 1
2 · (∇φn+1 − ∇φn),(3.13)

ũ
n+1 − u

n

δt
+ B(u?,n+ 1

2 , ũn+ 1
2 ) − ∇ · σ(ũn+ 1

2 , φ?,n+ 1
2 )(3.14)

+ ∇pn −
1

M
φ?,n+ 1

2 ∇φ̇n+1 = 0,

with the boundary conditions

ũ
n+1|∂Ω = 0, ∂mφn+1 = ∂mψn+1|∂Ω = 0,(3.15)

where




B(u,v) = (u · ∇)v +
1

2
(∇ · u)v,

φ?,n+ 1
2 =

3

2
φn −

1

2
φn−1, u

?,n+ 1
2 =

3

2
u

n −
1

2
u

n−1,

ψn+ 1
2 =

ψn+1 + ψn

2
, ũ

n+ 1
2 =

ũ
n+1 + u

n

2
, Un+ 1

2 =
Un+1 + Un

2
,

φ̇n+1 =
φn+1 − φn

δt
+ ∇ · (ũn+ 1

2φ?,n+ 1
2 ).

(3.16)

Step 2.

u
n+1 − ũ

n+1

δt
+

1

2
∇(pn+1 − pn) = 0,(3.17)

∇ · u
n+1 = 0, u

n+1 · m|∂Ω = 0.(3.18)

Remark 3.3. Here, for solving the Navier–Stokes equation, we use a second order
pressure correction scheme [64] to decouple the computations of pressure from that of
the velocity. These projection methods are analyzed in [53], where it is shown (discrete
time, continuous space) that the schemes are second order accurate for velocity in

D
o
w

n
lo

ad
ed

 1
2
/0

5
/1

7
 t

o
 1

2
9
.2

5
2
.3

3
.9

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SECOND ORDER SCHEMES FOR SMECTIC-A LC MODEL A2815

`2(0, T ;L2(Ω)) but only first order accurate for pressure in `∞(0, T ;L2(Ω)). The loss
of accuracy for pressure is due to the artificial boundary condition (3.17) imposed
on pressure [15, 28]. One can use the rotational projection type schemes to improve
the order of pressure to 3/2. However, how to prove the energy stability for the
corresponding schemes is an open question. We also remark that the Crank–Nicolson
scheme with linear extrapolation is a popular time discretization for the Navier–Stokes
equation. We refer the reader to [28, 36] and references therein for analysis on this
type of discretization.

Scheme (3.11)–(3.15) is a totally linear scheme since we handle the convective
and stress term by compositions of implicit (Crank–Nicolson) and explicit (second
order extrapolation) discretization. Apparently, the new variable U brings up some
extra computational cost. But actually, we do not need to calculate Un+1 explicitly
in every step. By rewriting (3.13), we obtain

Un+ 1
2 = Sn + ∇φ?,n+ 1

2 · ∇φn+1,(3.19)

where Sn = Un − ∇φ?,n+ 1
2 · ∇φn. Then (3.11) and (3.15) can be written as the

following system with unknowns (φ,u), where φn+1 and ũ
n+1 are its solutions:

φ+
δt

2
∇ · (uφ?,n+ 1

2 ) +
KMδt

2
∆2φ−

KMδt

ε2
∇ · (∇φ?,n+ 1

2 · ∇φ)∇φ?,n+ 1
2 )(3.20)

= f1,

δtM

2
u +

δt2M

4
B(u?,n+ 1

2 ,u) −
Mδt2

4
∇ · σ(u, φ?,n+ 1

2 )(3.21)

−
δt

2
∇

(
φ+

δt

2
∇ · (uφ?,n+ 1

2 )
)
φ?,n+ 1

2 = f2,

where f1 and f2 are given from previous time steps that read as





f1 = φn −
δt

2
∇ · (unφ?,n+ 1

2 ) +
KMδt

2
ψn +

KMδt

ε2
∇ · (Sn∇φ?,n+ 1

2 ),

f2 =
Mδt

2
u

n−
Mδt2

4
B(u?,n+ 1

2 ,un)+
δt2M

4
∇ · σ(un,∇φ?,n+ 1

2 )−
Mδt2

2
∇pn

−
δt

2
φ?,n+ 1

2 ∇
(
φn −

δt

2
∇ · (unφ?,n+ 1

2 )
)
.

(3.22)

We first show the well-posedness of the above linear system (3.21)–(3.21) as fol-
lows.

Theorem 3.4. The linear system (3.21)–(3.21) (or (3.11)–(3.15)) admits a unique
solution in (φ,u) ∈ (H2, H1)(Ω).

Proof. By taking the L2 inner product of (3.11) with 1, we obtain

∫

Ω

φn+1dx =

∫

Ω

φndx = · · · =

∫

Ω

φ0dx.(3.23)

Let vφ = 1
|Ω|

∫
Ω
φ0dx, and we define φ̂ = φ − vφ. Then

∫
Ω
φ̂dx = 0 and (φ̂,u) is

the solution of the following linear system with unknowns denoted by (φ,u):

φ+
δt

2
∇ · (uφ?,n+ 1

2 ) +
KMδt

2
∆2φ−

KMδt

ε2
∇ · (∇φ?,n+ 1

2 · ∇φ)∇φ?,n+ 1
2 )(3.24)

= f1 − vφ,
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δtM

2
u +

δt2M

4
B(u?,n+ 1

2 ,u) −
Mδt2

4
∇ · σ(u, φ?,n+ 1

2 )(3.25)

−
δt

2
∇

(
φ+

δt

2
∇ · (uφ?,n+ 1

2 )
)
φ?,n+ 1

2 = f2.

We denote the above linear system (3.25)–(3.25) as

AX = B,(3.26)

with X = (φ,u)T and B = (f1 − vφ, f2)
T .

For any X1 = (φ1,u1)
T and X2 = (φ2,u2)

T with
∫
Ω
φ1dx =

∫
Ω
φ2dx = 0 with

the boundary conditions (3.15), we have

X
T
1 AX2 ≤ C1(‖φ1‖H2 + ‖u1‖H1)(‖φ2‖H2 + ‖u2‖H1),(3.27)

where C1 = C(δt,M, ε2,K,u?,n+ 1
2 , φ?,n+ 1

2 , φn, µ1, µ4, µ5).
For any X = (φ,u)T with

∫
Ω
φdx = 0, we derive

(3.28)

X
T

AX =
∥∥∥φ+

δt

2
u∇φ?,n+ 1

2

∥∥∥
2

+
KMδt

2
‖∆φ‖2 +

KMδt

ε2
‖∇φ?,n+ 1

2 ∇φ‖2 +
δtM

2
‖u‖2

+
Mδt2

4

(
µ1‖(∇φ?,n+ 1

2 )TD(u)∇φ?,n+ 1
2 ‖2 + µ4‖D(u)‖2 + 2µ5‖D(u)∇φ?,n+ 1

2 ‖2
)

≥ C2(‖φ‖2
H2 + ‖u‖2

H1),

where C2 = C(δt,M, ε2,K,u?,n+ 1
2 , φ?,n+ 1

2 , φn, µ4). Then from the Lax–Milgram
theorem, we conclude the linear system (3.26) admits a unique solution (φ,u) ∈
(H2, H1)(Ω).

The energy stability of the scheme (3.11)–(3.18) is presented as follows.

Theorem 3.5. The scheme (3.11)–(3.18) is unconditionally energy stable satis-
fying the following discrete energy dissipation law:

En+1
tot−cn2 = En

tot−cn2 −
δt

M
‖φ̇n+1‖2− δt

(
µ1‖(∇φ?,n+ 1

2 )TD(ũn+ 1
2 )∇φ?,n+ 1

2 ‖2

+ µ4‖D(ũn+ 1
2 )‖2 + µ5‖D(ũn+ 1

2 )∇φ?,n+ 1
2 ‖2

)
,(3.29)

where

En
tot−cn2 =

1

2
‖u

n‖2 +
K

2
‖ψn‖2 +

K

4ε2
‖Un‖2 +

δt2

8
‖∇pn‖2.(3.30)

Proof. By taking the L2 inner product of (3.11) with φn+1−φn

δt
and using integra-

tion by parts, we obtain

1

M
‖φ̇n+1‖2 +

1

M
(∇φ̇n+1, ũn+ 1

2φ?,n+ 1
2 ) =

K

δt
(∆ψn+ 1

2 , φn+1 − φn)

−
K

δtε2

(
Un+ 1

2 ∇φ?,n+ 1
2 ,∇(φn+1 − φn)

)
.

(3.31)

We take the subtraction between step n+ 1 and step n step for (3.12) to obtain

ψn+1 − ψn = −∆(φn+1 − φn).(3.32)
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By taking the L2 inner product of (3.32) with K
δt
ψn+ 1

2 and using integration by parts,
we obtain

K

2δt
(‖ψn+1‖2 − ‖ψn‖2) = −

K

δt
(∆(φn+1 − φn), ψn+ 1

2 )

= −
K

δt
(φn+1 − φn,∆ψn+ 1

2 ).

(3.33)

By taking the L2 inner product of (3.13) with K
2ε2δt

Un+ 1
2 , we obtain

K

4ε2δt
(‖Un+1‖2 − ‖Un‖2) =

K

ε2δt

(
∇φ?,n+ 1

2 (∇φn+1 − ∇φn), Un+ 1
2

)
.(3.34)

By taking the L2 inner product of (3.15) with ũ
n+ 1

2 , we obtain

1

2δt
(‖ũ

n+1‖2 − ‖u
n‖2) +

(
σ(ũn+ 1

2 ,∇φ?,n+ 1
2 ),∇ũ

n+ 1
2

)
+ (∇pn, ũn+ 1

2 )

−
1

M

(
φ?,n+ 1

2 ∇φ̇n+1, ũn+ 1
2

)
= 0.

(3.35)

By taking the L2 inner product of (3.17) with u
n+1 and performing integration by

parts, we have

1

2δt
(‖u

n+1‖2 − ‖ũ
n+1‖2 + ‖u

n+1 − ũ
n+1‖2) = 0,(3.36)

where we use explicitly the divergence-free condition for u
n+1 as

(∇(pn+1 − pn),un+1) = −((pn+1 − pn),∇ · u
n+1) = 0.(3.37)

We rewrite the projection step (3.17) as

1

δt
(un+1 + u

n − 2ũ
n+ 1

2 ) +
1

2
∇(pn+1 − pn) = 0.(3.38)

By taking the inner product of the above equation with δt
2 ∇pn, one arrives at

δt

8

(
‖∇pn+1‖2 − ‖∇pn‖2 − ‖∇(pn+1 − pn)‖2

)
=

(
∇pn, ũn+ 1

2

)
.(3.39)

On the other hand, it follows directly from (3.17) that

δt

8
‖∇(pn+1 − pn)‖2 =

1

2δt
‖u

n+1 − ũ
n+1‖2.(3.40)

Finally, by combining (3.31), (3.33), (3.34)–(3.36), (3.39), and (3.40), we obtain

1

M
‖φ̇n+1‖2 +

K

2δt
(‖ψn+1‖2 − ‖ψn‖2) +

K

4ε2δt
(‖Un+1‖2 − ‖Un‖2)

+
δt

8
(‖∇pn+1‖2 − ‖∇pn‖2) +

1

2δt
(‖u

n+1‖2 − ‖u
n‖2)

+
(
σ(ũn+ 1

2 ,∇φ?,n+ 1
2 ),∇ũ

n+ 1
2

)
= 0.

(3.41)

This completes the proof.
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A2818 RUI CHEN, XIAOFENG YANG, AND HUI ZHANG

Remark 3.6. One can formally verify that the energy law (3.29) is a second order

approximation of the continuous energy law (3.9) at time level tn+ 1
2 .

Remark 3.7. We notice that the idea of the IEQ approach is very simple but
quite different from the traditional time marching schemes. For example, it does not
require the convexity as the convex splitting approach (cf. [18]) or the boundness
for the second order derivative as the linear stabilization approach (cf. [55, 56, 65]).
Through a simple substitution of new variables, the complicated nonlinear poten-
tials are transformed into quadratic forms. We summarize the great advantages of
this quadratic transformations as follows: (i) this quadratization method works well
for various complex nonlinear terms as long as the corresponding nonlinear poten-
tials are bounded from below; (ii) the complicated nonlinear potential is transferred
to a quadratic polynomial form which is much easier to handle; (iii) the derivative
of the quadratic polynomial is linear, which provides the fundamental support for
linearization method; (iv) the quadratic formulation in terms of new variables can
automatically maintain this property of positivity (or bounded from below) of the
nonlinear potentials.

Remark 3.8. We remark that when the nonlinear potential takes the fourth order
polynomial type, e.g., F (ψ) = (ψ2 − 1)2, where ψ = φ for the Cahn–Hilliard equation
and ψ = |∇φ| for the smectic model in this paper or the molecular beam epitaxial
model [81], this IEQ method is exactly the same as the Lagrange multiplier method
in [31, 63]. But the Lagrange multiplier method will only work for the fourth order
polynomial type potential since its derivative ψ3 can be decomposed into λ(ψ)ψ with
λ(ψ) = |ψ|2 which can be viewed as a Lagrange multiplier term. However, for other
type potentials, the Lagrange multiplier method is not applicable. Concerning the
application of the IEQ approach to handle other type of nonlinear potentials, e.g., the
logarithmic Flory–Huggins potential, or anisotropic gradient entropy, etc., we refer
the reader to the authors’ other work in [69, 78, 79, 81, 86, 87].

3.2. Adam–Bashforth scheme. We further develop another second order ver-
sion scheme based on the backward differentiation formula with the Adam–Bashforth
explicit interpolation (BDF2), that reads as follows.

Scheme 3.9. Having computed the numerical solutions of (φ,U,u, p) at tn and
tn−1, we update φn+1, Un+1,un+1, pn+1 as follows:

Step 1.

1

M
φ̇n+1 = K∆ψn+1 +

K

ε2
∇ · (Un+1∇φ∗,n+1)(3.42)

ψn+1 = −∆φn+1,(3.43)

3Un+1 − 4Un + Un−1 = 2∇φ∗,n+1 · (3∇φn+1 − 4∇φn + ∇φn−1),(3.44)

3ũ
n+1 − 4u

n + u
n−1

2δt
+B(u∗,n+1, ũn+1) − ∇ · σ(ũn+1, φ∗,n+1) + ∇pn(3.45)

−
1

M
φ∗,n+1∇φ̇n+1 = 0,

with the boundary conditions

ũ
n+1|∂Ω = 0, ∂mφn+1|∂Ω = ∂mψn+1|∂Ω = 0,(3.46)
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where




u
∗,n+1 = 2u

n − u
n−1, φ∗,n+1 = 2φn − φn−1,

φ̇n+1 =
3φn+1 − 4φn + φn−1

2δt
+ ∇ · (ũn+1φ∗,n+1).

(3.47)

Step 2.

3
u

n+1 − ũ
n+1

2δt
+ ∇(pn+1 − pn) = 0,(3.48)

∇ · u
n+1 = 0, u

n+1 · m|∂Ω = 0.(3.49)

Similar to the Crank–Nicolson scheme, one can rewrite (3.5) as follows:

Un+1 = Zn + 2∇φ∗,n+1 · ∇φn+1,(3.50)

where Zn = 4Un−Un−1

3 − 2∇φ∗,n+1 · 4∇φn−∇φn−1

3 . Then φn+1 and ũ
n+1 are the

solutions for the following system with unknowns (φ,u):

φ+
2δt

3
∇ · (uφ∗,n+1) +

2KMδt

3
∆2φ−

4KMδt

3ε2
∇ · ((∇φ∗,n+1 · ∇φ)∇φ∗,n+1)(3.51)

= g1,

2δtM

3
u +

4δt2M

9
u

∗,n+1 · ∇u −
4Mδt2

9
∇ · σ(u, φ∗,n+1)(3.52)

−
2δt

3
φ∗,n+1∇

(
φ+

2δt

3
∇ · (uφ∗,n+1)

)
= g2,

where




g1 =
4φn − φn−1

3
+

2KMδt

3ε2
∇ · (Zn∇φ∗,n+1),

g2 =
2Mδt

9
(4u

n − u
n−1) −

4Mδt2

9
∇pn −

2δt

9
φ∗,n+1∇(4φn − φn−1).

(3.53)

Theorem 3.10. The linear system (3.42)–(3.45) (or (3.52)–(3.52)) admits a unique
solution in (φ,u) ∈ (H2, H1)(Ω).

Proof. The proof of well-posedness is similar to Theorem 3.4, thus we omit the
details here.

Theorem 3.11. The scheme (3.42)–(3.49) is unconditionally energy stable satis-
fying the following discrete energy dissipation law:

En+1
tot−bdf2 ≤ En

tot−bdf2 −
δt

M
‖φ̇n+1‖2 − δt

(
µ1‖(∇φ∗,n+1)TD(ũn+1)∇φ∗,n+1‖2

+ µ4‖D(ũn+1)‖2 + µ5‖D(ũn+1)∇φ∗,n+1‖2
)
,(3.54)

where

En+1
tot−bdf2 =

1

2

(‖u
n+1‖2

2
+

‖2u
n+1 − u

n‖2

2

)
+
K

2

(‖ψn+1‖2

2
+

‖2ψn+1 − ψn‖2

2

)

+
K

4ε2

(‖Un+1‖2

2
+

‖2Un+1 − Un‖2

2

)
+
δt2

3
‖∇pn+1‖2.(3.55)
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Proof. By taking the L2 inner product of (3.42) with 3φn+1−4φn+φn−1

2δt
, we obtain

1

M
‖φ̇n+1‖2 +

1

M

(
∇φ̇n+1, ũn+1φ∗,n+1

)
=

K

2δt
(∆ψn+1, 3φn+1 − 4φn + φn−1)

−
K

2δtε2

(
Un+1∇φ∗,n+1,∇(3φn+1 − 4φn + φn−1)

)
.(3.56)

We take the subtraction of (3.43) with n and n− 1 step to obtain

3ψn+1 − 4ψn + ψn−1 = −∆(3φn+1 − 4φn + φn−1).(3.57)

By taking the L2 inner product of (3.57) with K
2δt
ψn+1, using integration by parts

and the identity

2(3a− 4b+ c, a) = |a|2 − |b|2 + |2a− b|2 − |2b− c|2 + |a− 2b+ c|2,(3.58)

we obtain

K

4δt
(‖ψn+1‖2 − ‖ψn‖2 + ‖2ψn+1 − ψn‖2 − ‖2ψn − ψn−1‖2 + ‖ψn+1 + 2ψn − ψn−1‖2)

= −
K

2δt
(3φn+1 − 4φn + φn−1,∆ψn+1).(3.59)

By taking the L2 inner product of (3.44) with K
4δtε2

Un+1 and applying (3.58), we
obtain

K

8ε2δt

(
‖Un+1‖2−‖Un‖2+‖2Un+1−Un‖2−‖2Un−Un−1‖2+‖Un+1−2Un+Un−1‖2

)

=
K

2δtε2
(∇φ∗,n+1(3∇φn+1 − 4∇φn + ∇φn−1), Un+1).(3.60)

By taking the L2 inner product of (3.15) with ũ
n+1, we obtain

(3ũ
n+1 − 4u

n + u
n−1

2δt
, ũn+1

)
+

(
σ(ũn+1,∇φ∗,n+1),∇ũ

n+1
)

+ (∇pn, ũn+1)

−
1

M

(
φ∗,n+1∇φ̇n+1, ũn+1

)
= 0.(3.61)

From (3.48), for any function v with ∇ · v = 0, we can derive

(un+1,v) = (ũn+1,v).(3.62)

Then for the first term in (3.61), we have

1

2δt
(3ũ

n+1 − 4u
n + u

n−1, ũn+1)

=
1

2δt
(3ũ

n+1 − 3u
n+1, ũn+1) +

1

2δt
(3u

n+1 − 4u
n + u

n+1, ũn+1)

=
1

2δt
(3ũ

n+1 − 3u
n+1, ũn+1) +

1

2δt
(3u

n+1 − 4u
n + u

n+1,un+1)

=
1

2δt
(3ũ

n+1 − 3u
n+1, ũn+1 + u

n+1) +
1

2δt
(3u

n+1 − 4u
n + u

n−1,un+1)

=
3

2δt
(‖ũ

n+1‖2 − ‖u
n+1‖2) +

1

4δt

(
‖u

n+1‖2 − ‖u
n‖2

+ ‖2u
n+1 − u

n‖2 − ‖2u
n − u

n−1‖2 + ‖u
n+1 − 2u

n + u
n−1‖2

)
.

(3.63)
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For the projection step, we rewrite (3.17) as

3

2δt
u

n+1 + ∇pn+1 =
3

2δt
ũ

n+1 + ∇pn.(3.64)

By squaring both sides of the above equality, we obtain

9

4δt2
‖u

n+1‖2 + ‖∇pn+1‖2 =
9

4δt2
‖ũ

n+1‖2 + ‖∇pn‖2 +
3

δt
(ũn+1,∇pn),(3.65)

namely, we have

3

4δt
(‖u

n+1‖2 − ‖ũ
n+1‖2) +

δt

3
(‖∇pn+1‖2 − ‖∇pn‖2) = (ũn+1,∇pn).(3.66)

By taking the L2 inner product of (3.48) with u
n+1, we have

3

4δt

(
‖u

n+1‖2 − ‖ũ
n+1‖2 + ‖u

n+1 − ũ
n+1‖2

)
= 0.(3.67)

Finally, by combining (3.56), (3.57), (3.60), (3.61), (3.63), (3.66), and (3.67), we
obtain

1

M
‖φ̇n+1‖2 +

3

4δt
‖u

n+1 − ũ
n+1‖2 +

δt

3
(‖∇pn+1‖2 − ‖∇pn‖2)

+
K

4δt

(
‖ψn+1‖2−‖ψn‖2+‖2ψn+1−ψn‖2−‖2ψn−ψn−1‖2+‖ψn+1−2ψn+ψn−1‖2

)

+
K

8ε2δt

(
‖Un+1‖2−‖Un‖2+‖2Un+1−Un‖2−‖2Un−Un−1‖2+‖Un+1−2Un+Un−1‖2

)

+
1

4δt

(
‖u

n+1‖2−‖un‖2+‖2u
n+1−u

n‖2−‖2u
n−u

n−1‖2+‖u
n+1−2u

n+u
n−1‖2

)

+ (σ(ũn+1,∇φ∗,n+1),∇ũ
n+1) = 0,

which concludes the theorem.

Remark 3.12. Heuristically, the 1
δt

(En+1
tot−bdf2 − En

tot−bdf2) is a second order ap-

proximation of d
dt
E(φ,U) at t = tn+1. For instance, for any smooth variable S with

time, one can write

(‖Sn+1‖2 + ‖2Sn+1 − Sn‖2

2δt

)
−

(‖Sn‖2 + ‖2Sn − Sn−1‖2

2δt

)

∼=
(‖Sn+2‖2 − ‖Sn‖2

2δt

)
+O(δt2) ∼=

d

dt
‖S(tn+1)‖2

+O(δt2).

Remark 3.13. Although we consider only time discrete schemes in this paper, the
results here can be carried over to any consistent finite-dimensional Galerkin type
approximations since the analyses are based on the variational formulation with all
test functions in the same space as the space of the trial functions. The details for
the fully discrete scheme will be left to the interested readers.

Remark 3.14. For the numerical schemes proposed in this paper, the energy sta-
bility is formally derived. The error estimates for the second order scheme for the
layer variable is straightforward when the velocity field is null. This is because the H2

bound exists for φ from the Poincaré inequality, and the corresponding convergence
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analysis can be further carried out. For the hydrodynamics coupled model, we have
combined the analysis work for the projection method (see [53, 64]) and follow the
same lines as [19] to handle the nonlinear convective and stress terms where the basic
tool is to use Sobolev embeddings among various Banach spaces. We will implement
the rigorous error analysis in future work.

4. Numerical simulations. We now present various numerical experiments to
validate the theoretical results derived in the previous sections and demonstrate the
stability and accuracy of the proposed numerical schemes. In all examples, we use
the inf-sup stable Iso-P2/P1 element [61] for the velocity and pressure, and linear
element for the phase function φ and ψ. As for as the stable element for the Navier–
Stokes variables (u, p), one can read the related literatures in [32, 33, 34, 35, 40]. If
not explicitly specified, the model parameters take default values given below:

ε = 0.05, µ4 = 0.02, µ1 = µ5 = 0, M = 1 × 10−6, K = 0.01.(4.1)

4.1. Accuracy test. We first perform numerical simulations to test the conver-
gence rates of the two proposed schemes (3.11)–(3.18) (denoted by CN2) and (3.42)–
(3.49) (denoted by BDF2).

4.1.1. Presumed exact solution. In the first example, we set the computed
domain to be Ω = [0, 2]2 and assume the functions





u(t, x, y) = π sin(2πy) sin2(πx) sin t,
v(t, x, y) = −π sin(2πx) sin2(πy) sin t,
φ(t, x, y) = 2 + cos(πx) cos(πy) sin t,
p(t, x, y) = cos(πx) sin(πy) sin t

(4.2)

to be the exact solution, and we impose some suitable force fields such that the given
solution can satisfy the system. We use 10145 nodes and 19968 triangle elements for
the discretization of the space. In Tables 1 and 2, we list the L2 errors of the velocity
field u = (u, v), the phase variable φ and the pressure p between the numerically
simulated solution and the exact solution at t = 1 with different time step sizes,
for the schemes CN2 and BDF2, respectively. We observe that the schemes CN2
and BDF2 achieve almost perfect second order accuracy for u and φ, and first order
accuracy for p in time as expected, respectively.

4.1.2. Mesh refinement in time. We now perform more refinement tests for
temporal convergence. We set the initial conditions as follows:

φ0 = 2, u0 = (u0, v0) = 0, p0 = 0.(4.3)

We perform the refinement test of the time step size. Since the exact solutions are
not known, we choose the solution obtained by the scheme CN2 with the time step
size δt = 1 × 10−6 as the benchmark solution for computing errors. We present the
L2 of the variables between the numerical solution and the exact solution at t = 1
with different time step sizes in Tables 3 and 4 for the schemes CN2 and BDF2,
respectively. As in the previous tests, we observe that the schemes CN2 and BDF2
achieve almost perfect second order accuracy for u and φ, and the first order accuracy
for p, respectively.

4.2. Layer motion. In this example, we consider the layer motion using the
second order scheme CN2. The following initial conditions are taken as follows:

φ0 = sinx cos2 y, u0 = (u0, v0) = 0, p0 = 0,(4.4)
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Table 1

The L2 errors for the velocity field u = (u, v), the phase variable φ, and the pressure p at t = 1
for the scheme CN2 using different temporal resolutions with the exact solution of (4.2).

δt Erroru Order Errorv Order Errorp Order Errorφ Order

1 × 10−2 4.61 × 10−4
− 4.75 × 10−4

− 1.18 × 10−1
− 1.81 × 10−4

−

5 × 10−3 1.15 × 10−4 2.003 1.19 × 10−4 1.997 5.87 × 10−2 1.007 4.53 × 10−5 1.998

2.5 × 10−3 2.88 × 10−5 1.997 2.97 × 10−5 2.002 2.94 × 10−2 0.997 1.13 × 10−5 2.003

1.25 × 10−3 7.21 × 10−6 1.998 7.43 × 10−6 1.999 1.47 × 10−2 1.000 2.83 × 10−6 1.997

6.25 × 10−4 1.80 × 10−6 2.002 1.86 × 10−6 1.998 7.30 × 10−3 1.009 7.08 × 10−7 1.999

Table 2

The L2 errors for the velocity field u = (u, v), the phase variable φ, and the pressure p at t = 1
for the scheme BDF2 using different temporal resolutions with the exact solution of (4.2).

δt Erroru Order Errorv Order Errorp Order Errorφ Order

1 × 10−2 4.00 × 10−3
− 4.12 × 10−3

− 3.92 × 10−1
− 1.57 × 10−3

−

5 × 10−3 9.62 × 10−4 2.055 9.91 × 10−4 2.055 1.96 × 10−1 1.000 3.78 × 10−4 2.054

2.5 × 10−3 2.36 × 10−4 2.027 2.43 × 10−4 2.027 9.92 × 10−2 0.982 9.26 × 10−5 2.029

1.25 × 10−3 5.83 × 10−5 2.017 6.00 × 10−5 2.017 4.91 × 10−2 1.014 2.29 × 10−5 2.015

6.25 × 10−4 1.45 × 10−5 2.007 1.49 × 10−5 2.009 2.46 × 10−2 0.997 5.69 × 10−6 2.008

Table 3

The L2 numerical errors at t = 1 that are computed by the scheme CN2 using various temporal
resolutions with the initial conditions of (4.3), for mesh refinement test in time.

δt Erroru Order Errorv Order Errorp Order Errorφ Order

1 × 10−2 4.61 × 10−4
− 4.75 × 10−4

− 1.18 × 10−1
− 2.01 × 10−4

−

5 × 10−3 1.18 × 10−4 1.966 1.21 × 10−4 1.972 5.87 × 10−2 1.007 5.12 × 10−5 1.973

2.5 × 10−3 3.12 × 10−5 1.919 3.21 × 10−5 1.914 2.94 × 10−2 0.997 1.23 × 10−5 2.057

1.25 × 10−3 8.14 × 10−6 1.938 8.21 × 10−6 1.967 1.47 × 10−2 1.000 2.97 × 10−6 2.050

6.25 × 10−4 2.09 × 10−6 1.961 2.16 × 10−6 1.926 7.33 × 10−3 1.003 7.92 × 10−7 1.901

Table 4

The L2 numerical errors at t = 1 that are computed by the scheme BDF2 using various temporal
resolutions with the initial conditions of (4.3), for mesh refinement test in time.

δt Erroru Order Errorv Order Errorp Order Errorφ Order

1 × 10−2 4.00 × 10−3
− 4.12 × 10−3

− 3.93 × 10−1
− 1.56 × 10−3

−

5 × 10−3 9.64 × 10−4 2.052 9.93 × 10−4 2.052 1.96 × 10−1 1.003 3.71 × 10−4 2.072

2.5 × 10−3 2.39 × 10−4 2.012 2.46 × 10−4 2.013 9.82 × 10−2 0.997 9.95 × 10−5 1.898

1.25 × 10−3 5.74 × 10−5 2.057 5.94 × 10−5 2.050 4.91 × 10−2 1.000 2.60 × 10−5 1.936

6.25 × 10−4 1.49 × 10−5 1.945 1.57 × 10−5 1.919 2.46 × 10−2 0.997 6.42 × 10−6 2.017

that had been studied in [30]. We set the computed domain to be Ω = [−1, 1]2 and
the space is discretized by using 10145 nodes and 19968 triangle elements. The model
parameters are from (4.1).

We emphasize that any time step size δt is allowable for the computations from
the stability concern since all developed schemes are unconditionally energy stable.
But larger time steps will definitely induce large numerical errors. Therefore, we need
to discover the rough range of the allowable maximum time step size in order to obtain
good accuracy and to consume as low computational cost as possible. This time step
range could be estimated through the energy evolution curve plots, shown in Figure 1,
where we compare the time evolution of the free energy for five different time step
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Fig. 1. Time evolution of the free energy functional until t = 200 for five different time steps
of δt = 0.01, 0.005, 0.001, 0.0005, and 0.0001 using the scheme CN2. The energy curves show the
decays for all time steps, which confirms that our algorithm is unconditionally stable. The small
differences in the energy evolution for all five time steps are shown as well.

Fig. 2. The dynamical evolution of the layer function φ for the layer motion example with the
time step δt = 0.01. Snapshots of the numerical approximation are taken at t = 1, 10, 20, 30, 50,
100, 190, and 200.

sizes until t = 200 using the second order scheme CN2. We observe that all five energy
curves show decays monotonically for all time step sizes, which numerically confirms
that our algorithms are unconditionally energy stable. For smaller time steps of
δt = 0.0001, 0.0005, 0.001, 0.005, 0.01, all five energy curves coincide very well, which
means we can just use the maximum allowable time step δt = 0.01 without worrying
about the accuracy.

In Figures 2 and 3, we show the dynamical evolution of the layer function φ, and
the velocity field u until the simulation reaches the steady state, respectively. The
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Fig. 3. The profiles of the velocity field u for the layer motion example with the time step
δt = 0.01. Snapshots of the numerical approximation of u are taken at t = 1, 10, 20, 30, 50, 100,
190, and 200.

D
o
w

n
lo

ad
ed

 1
2
/0

5
/1

7
 t

o
 1

2
9
.2

5
2
.3

3
.9

2
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A2826 RUI CHEN, XIAOFENG YANG, AND HUI ZHANG

Fig. 4. The dynamical evolution of the layer function φ for the layer undulations under the
shear flow with the time step δt = 0.01. Snapshots of the numerical approximation are taken at
t = 1, 3, 4, 6, 10, 30, 100, 200.

obtained results show qualitatively consistent features with the numerical examples
in [30].

4.3. Layer undulation under shear flow. In this example, we consider the
numerical simulations of the layer undulation under shear flow using the second order
scheme CN2. We set the computed domain to be Ω = [−1, 1] × [−0.5, 0.5] and the
space is discretized by using 10145 nodes and 19968 triangle elements. The initial
condition reads as follows:

φ0 = y, u0 = (0.4y, 0), p0 = 0,(4.5)

and the boundary condition for the velocity field are set to be

u|y=0.5 = (0.2, 0), u|y=−0.5 = (−0.2, 0), u|x=±1 = (0, 0).(4.6)

The model parameters are still from (4.1).
In Figures 4 and 5, we show the dynamical evolution of the layer function φ,

and the velocity field u until the simulation reaches the steady state, respectively.
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Fig. 5. The dynamical evolution of the velocity field u for the layer undulations under the shear
flow with the time step δt = 0.01. Snapshots of the numerical approximation are taken at t = 1, 3,
4, 6, 10, 30, 100, 200.

The obtained profiles of undulational layers are consistent with the theoretical results
predicted in [48] and the numerical results using the molecular dynamics approach
in [60].

4.4. The sawtooth feature under external magnetic field. Applying an
external magnetic field is one of the most efficient approaches to the control and pro-
duction of various nano-structured materials, and had been well studied in a number
of experimental, modeling, and numerical literatures; see [25, 27, 49, 51]. In the last
numerical example, we consider the dynamical behaviors of the smectic-A LCs in the
presence of an applied magnetic field. When an external magnetic field is applied, an
additional term contributed by it is added to the free energy of the model system,
which reads as follows:

E(φ,u) =

∫

Ω

(1

2
|u|2 +

K

2
|∆φ|2 +K

(|∇φ|2 − 1)2

4ε2
− τ(∇φ · h)2

)
dx,(4.7)

where h is a given unit vector representing the direction of the magnetic field, and τ
is a nonnegative parameter denoting the strength of the applied magnetic field.
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Fig. 6. The dynamical evolution of the layer function φ under external the magnetic field with
the time step δt = 0.01. Snapshots of the numerical approximation are taken at t = 1, 17, 18, 19,
20, 30, 150, 200.

Thus the new equation for the layer function φ reads as follows:

φt + ∇ · (uφ) = −Mw,(4.8)

w =
δE

δφ
= K

(
∆2φ−

1

ε2
∇ · (|∇φ|2 − 1)∇φ

)
+ τ∇ · (∇φ · h)h,(4.9)

and the equations for the fluid velocity are still (2.7)–(2.8). The magnetic field term
can be viewed as an imposed external force, i.e., we treat this term by the second
order extrapolations.

We let h = (1, 0) and τ = 10 and choose the same initial conditions, computed
domain, and space discretizations as the previous shear flow example. In Figure 6,
we present that the dynamical motion of the layer variable φ, the undulation profile,
is formed from t = 2.1 to t = 3. This sawtooth feature is qualitatively consistent
with the numerical simulation in [27] using the de Gennes smectic-A model. The
final equilibrium solution is obtained after t = 150. We present the snapshots of the
velocity field in Figure 7 as well.
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Fig. 7. The dynamical evolution of the velocity field u under external the magnetic field with
the time step δt = 0.01. Snapshots of the numerical approximation are taken at t = 1, 17, 18, 19,
20, 30, 150, 200.

5. Conclusions and remarks. In this paper, we have constructed a set of effi-
cient numerical schemes for solving the hydrodynamics coupled smectic-A LC model.
The schemes are (i) second order accurate in time; (ii) unconditional energy stable;
and (iii) linear and easy to implement. Various numerical results are presented to
validate the accuracy of our schemes. We have also presented a number of numerical
simulations to show the morphological evolutions, in particular, the layer undulation
under shear flow as well as the sawtooth profile induced by the external magnetic
field.
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