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a b s t r a c t

In this paper, we consider numerical approximations for the viscous Cahn–Hilliard equa-
tion with hyperbolic relaxation. This type of equations processes energy-dissipative struc-
ture. The main challenge in solving such a diffusive system numerically is how to develop
high order temporal discretization for the hyperbolic and nonlinear terms, allowing large
time-marching step, while preserving the energy stability, i.e. the energy dissipative
structure at the time-discrete level. We resolve this issue by developing two second-order
time-marching schemes using the recently developed ‘‘Invariant Energy Quadratization’’
approach where all nonlinear terms are discretized semi-explicitly. In each time step, one
only needs to solve a symmetric positive definite (SPD) linear system. All the proposed
schemes are rigorously proven to be unconditionally energy stable, and the second-order
convergence in time has been verified by time step refinement tests numerically. Various
2D and 3D numerical simulations are presented to demonstrate the stability, accuracy, and
efficiency of the proposed schemes.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The classical Cahn–Hilliard (CH) equation dates back to 1958 in Cahn and Hillard’s seminal paper [1]. In the past decades,
it has been well studied and broadly used to investigate the coarsening dynamics of two immersible fluids. Recently,
researchers have devoted tremendous attention on the relaxed CH system, i.e. the viscous Cahn–Hilliard (VCH) system and
its perturbed form with the hyperbolic relaxation (HR) effect (referred to as the perturbed viscous Cahn–Hilliard equation).
Both VCH and VCH-HR have been well-studied theoretically where the topics are mainly focused on the well-posedness,
sharp interface limit or global attractor, etc., see [2–12] and the references therein. Formally, the governing equation of the
VCH-HR system is slightly different from the CH equation by incorporating two extra terms, including a strong damping (or
called ‘‘viscosity’’) term and a hyperbolic relaxation term (or called ‘‘inertia’’). The viscous effect is first proposed by Novick-
Cohen [2] in order to introduce an additional regularity and some parabolic smoothing effects, can be viewed as a singular
limit of the phase field equations for phase transitions [13]. The hyperbolic relaxation term was proposed by Galenko et al.
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in [10], in order to describe strongly non-equilibrium decomposition generated by rapid solidification under supercooling
into the spinodal region occurring in certain materials (e.g., glasses). Since the VCH-HR system combines the hyperbolic
relaxation and the viscosity together, it is mathematically more tractable comparing to the CH or VCH systems [9,12,14].

Before developing efficient numerical schemes to solve the VCH-HR system, we remark that its reduced version, the
classical CH equation, is now widely applied to model the interfacial dynamics in various scientific fields (cf. [1,15–18] and
the references therein). The CH equation and its analogous counterpartmodel, the Allen–Cahn equation, are both categorized
as representative equations of phase field type models. From the numerical point of view, when solving phase field models,
it is desirable to establish efficient numerical schemes that can verify the so-called ‘‘energy stable’’ property at the discrete
level irrespectively of the coarseness of the discretization. In what follows, those algorithms will be called unconditionally

energy stable or thermodynamically consistent. Schemes with this property are especially preferred since it is not only critical
for the numerical scheme to capture the correct long-time dynamics of the system, but also provides sufficient flexibility for
dealing with the stiffness issue. In spite of this, we have to point out a basic fact that larger time step will definitely induce
larger computational errors. In other words, the schemes with unconditional energy stability can allow arbitrary large time
step only for the sake of the stability concern. In practice, the controllable accuracy is one of the most important factors
to measure whether a scheme is reliable or not. Therefore, if one attempts to use the time step as large as possible while
maintaining the desirable accuracy, the only possible choice is to develop more accurate schemes, e.g., the unconditionally
energy stable second order schemes, which is the main focus of this paper.

It is remarkable that, despite a great deal of work done for the numerical solution of the classical CH system, almost all
research related to the VCH or VCH-HR system had been focused on the theoretical PDE analysis with very few numerical
analysis or algorithmdesign. To the best of the authors’ knowledge, no schemes can be claimed to possess the following three
properties, namely, easy-to-implement, unconditionally energy stability and second-order accuracy for the VCH-HR model
since there exist a large number of the numerical difficulties, including the proper discretization for the viscous term and the
hyperbolic inertia, as well as the regular stiffness issue induced by the nonlinear doublewell potential. At the very least, even
for the reduced version, i.e. the CH system, the algorithm design is still challenging. It can be seen clearly from the following
fact that some severe stability restrictions on the time step will occur if the nonlinear term is discretized in some normal
ways like fully explicit type approach. Such a time step constraint can cause very high computational cost in practice [19,20].
Many efforts (primarily for CH system) had beendone in order to remove this constraint and two commonly used techniques
were developed, namely, the nonlinear convex splitting approach [4,21–23], and the linear stabilized approach [20,24–39].
The convex splitting approach is unconditionally energy stable, but it produces nonlinear schemes, thus the implementation
is complicated and the computational cost might be high. The linear stabilized approach is linear so it is efficient and very
easy to implement. But, its stability requests a special property (generalized maximum principle) satisfied by the classical
PDE solution or the numerical solution, which is not trivial to prove. Moreover, it is difficult to extend to second-order while
preserving unconditional energy stability (cf. [20]).

Therefore, in order to develop somemore efficient and accurate timemarching schemes for solving the VCH-HR equation,
we use the Invariant Energy Quadratization (IEQ) approach, which has been successfully applied to solve a variety of phase
field typemodels, see [40–52]). Its idea is very simple but quite different from those traditionalmethods like implicit, explicit,
nonlinear splitting, or other various tricky Taylor expansions to discretize the nonlinear potentials. The essential strategy of
IEQ is tomake the free energy quadratic. To bemore specific, the free energy potential is transformed into the quadratic form
forcefully via the change of variables. Then, upon a simple reformulation, all nonlinear terms are treated by the semi-explicit
way, which in turn yields a linear system. We develop two second-order schemes, in which, one is based on the the Crank–
Nicolson scheme, and the other is based on the Adam-Bashforth scheme (BDF2). The schemes are second order accurate,
easy-to-implement (linear system), and unconditionally energy stable (with a discrete energy dissipation law). Moreover, we
show that the linear operators of all schemes are symmetric positive definite, so that one can solve it using thewell-developed
fast matrix solvers efficiently (CG or other Krylov subspace methods). Through various 2D and 3D numerical simulations,
we demonstrate stability and accuracy of the proposed schemes.

The rest of the paper is organized as follows. In Section 2, we present the whole system and show the energy law in
the continuous level. In Section 3, we develop the numerical schemes and prove their unconditional energy stabilities. In
Section 4, we present various 2D and 3D numerical experiments to validate the accuracy and efficiency of the proposed
numerical schemes. Finally, some concluding remarks are presented in Section 5.

2. Model equations

First of all, we give a brief description for the model equations. We consider a binary alloy in a bounded domain
Ω ∈ R

d, d = 2, 3 with ∂Ω Lipschitz continuous. For any g1, g2 ∈ L2(Ω), we denote the inner product and L2 norm as

(g1, g2) =
∫

Ω

g1g2dx, ∥g1∥ =
∫

Ω

|g1|2dx. (2.1)

We define φ(x, t) as volume fraction of onematerial component, and J the diffusion flux, then the balance law for volume
fraction gives

φt + ∇ · J = 0. (2.2)
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In order to describe the evolution for φ, we need to introduce a constitutive assumption on J . One case could be

αJt + J = −∇(
δE

δφ
+ βφt ), (2.3)

where α ≥ 0 is the relaxation parameter, β ≥ 0 is the viscosity parameter, and E(φ) is the total free energy that takes the
form as

E(φ) =
∫

Ω

(ϵ2
2

|∇φ|2 + F (φ)
)
dx, (2.4)

where ϵ is a positive constant that measures the interfacial width and F (φ) is a nonlinear bulk potential.
For the choice of nonlinear potential F (φ), we can choose either (i) double well (Ginzburg–Landau) potential where

F (φ) = φ2(φ − 1)2; (2.5)

or (ii) Flory–Huggins potential (cf. [12]) where

F (φ) = (1 − φ) ln(1 − φ) + φ lnφ + θφ(1 − φ), θ > 0. (2.6)

By combining (2.2) and (2.3), the governing PDE reads as follows,

αφtt + φt = λ∆µ, (2.7)

µ = −ϵ2∆φ + f (φ) + βφt , (2.8)

where f (φ) = F ′(φ), i.e., f (φ) = 2φ(φ−1)(2φ−1) for doublewell potential and f (φ) = ln(
φ

1−φ )+θ (1−2φ) for Flory–Huggins

potential. The boundary conditions can be

(i) all variables are periodic; or (ii) ∂nφ|∂Ω = ∂nµ|∂Ω = 0, (2.9)

where n is the unit outward normal on ∂Ω .
When α = β = 0, the system degenerates to the standard CH system that conserves the local mass density. When α ̸= 0,

the volume conservation will only hold provided
∫
Ω
φt (0, x)dx = 0. To see this, by taking the L2 inner product of (2.7) with

1, one can obtain directly

α
d

dt

∫

Ω

φt (t, x)dx +
∫

Ω

φt (t, x)dx = 0. (2.10)

This actually is an ODE system for time, and its solution is∫

Ω

φt (t, x)dx = exp(
−t

α
)

∫

Ω

φt (0, x)dx. (2.11)

Therefore, by setting
∫
Ω
φt (0, x)dx = 0, we obtain

∫

Ω

φt (t, x)dx =
∫

Ω

φtt (t, x)dx = 0. (2.12)

Define the inverse Laplace operator∆−1 such that v = ∆−1u (with
∫
Ω
udx = 0), iff

⎧
⎨
⎩
∆v = u,

∫

Ω

udx = 0,

with the boundary conditions either (i) v is periodic, or (ii) ∂nv|∂Ω = 0.

(2.13)

We now derive that the energy dissipation law for model (2.7)–(2.8). Denote the effective total energy

E =
∫

Ω

(ϵ2
2

|∇φ|2 + F (φ) + α

2
|∇∆−1φt |

2
)
dx. (2.14)

Then, the model (2.7)–(2.8) satisfies the following energy dissipation law

dE

dt
= −∥∇∆−1φt∥2 − β∥φt∥2 ≤ 0. (2.15)

We introduce a new variable ψ = φt . Since
∫
Ω
ψdx =

∫
Ω
ψtdx = 0, using the operator ∆−1, we rewrite the system

(2.7)–(2.8) as follows,

α∆−1ψt +∆−1ψ = −ϵ2∆φ + f (φ) + βφt . (2.16)

By taking the L2 inner product of (2.16) with φt , we have

α(∆−1ψt , ψ) + (∆−1ψ,ψ) − β∥φt∥2 = d

dt

∫

Ω

(ϵ2
2

|∇φ|2 + F (φ)
)
dx. (2.17)
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Since
∫
Ω
ψdx = 0, we can find another auxiliary variable p such that p = ∆−1ψ , i.e.,

∆p = ψ,

∫

Ω

ψdx = 0, (2.18)

with the boundary condition specified in (2.13). By taking the L2 inner product of (2.18) with p, that is

(p, ψ) = −∥∇p∥2 = (∆−1ψ,ψ). (2.19)

We differentiate (2.18) with time t to obtain

∆pt = ψt . (2.20)

By taking the L2 inner product of (2.20) with p, we obtain (ψt , p) = (∆pt , p) = − 1
2
dt∥∇p∥2. Hence, we derive

α(∆−1ψt , ψ) = α(ψt ,∆
−1ψ) = α(ψt , p) = −α

2
dt∥∇p∥2. (2.21)

By combining (2.17)–(2.19)–(2.21), we obtain

d

dt

∫

Ω

(ϵ2
2

|∇φ|2 + F (φ) + α

2
|∇p|2

)
dx = −∥∇p∥2 − β∥φt∥2 ≤ 0, (2.22)

that means the total free energy of the VCH-HR system (2.7)–(2.8) decays in time.

3. Numerical schemes

We now construct two semi-discrete time marching numerical schemes for solving the model system (2.7)–(2.8)–(2.9)
and prove their energy stabilities based on the Invariant Energy Quadratization (IEQ) approach. The intrinsic idea of the IEQ
method is to transform the nonlinear potential into quadratic form. It is feasible since we notice that the nonlinear potential
F (φ) is always bounded from below, in either the double well form (for the Ginzburg–Landau potential) or logarithmic
form (for the Flory–Huggins potential). Thus, in general, we could rewrite the free energy functional F (φ) into the following
equivalent form

F (φ) = (F (φ) + B) − B, (3.1)

where B is some constant to ensure F (x) + B > 0,∀x ∈ R, and define an auxiliary function U as

U =
√
F (φ) + B. (3.2)

Thus the total energy of (2.4) turns into a new form

E(φ,U) =
∫

Ω

(ϵ2
2

|∇φ|2 + U2 − B
)
dx. (3.3)

Then we obtain an equivalent PDE system by taking the time derivative for the new variable U:

αψt + ψ = ∆µ, (3.4)

µ = −ϵ2∆φ + UH + βφt , (3.5)

Ut = 1

2
Hφt , (3.6)

ψ = φt , (3.7)

where

H(φ) = f (φ)√
F (φ) + B

, f (φ) = F ′(φ). (3.8)

The boundary conditions for the new system are still (2.9) since Eq. (3.6) for the new variable U is simply an ODE with time.
The initial conditions read as

φ|(t=0) = φ0, ψ |(t=0) = 0, (3.9)

U |(t=0) =
√
F (φ0) + B, (3.10)

where we simply set the initial profile of ψ to be zero point-wise.
It is clear that the new transformed system (3.4)–(3.7) still retains a similar energy dissipative law. By applying the inverse

Laplace operator∆−1 to (3.4), taking the L2 inner product of it withφt , of (3.6)with−U , using (2.19) and (2.21), and summing
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them up, we can obtain the energy dissipation law of the new system (3.4)–(3.5). If we denote the transformed (equivalent)
energy as

Ê =
∫

Ω

(ϵ2
2

|∇φ|2 + U2 + α

2
|∇∆−1ψ |2

)
dx (3.11)

the energy law of (3.4)–(3.5) reads

d

dt
= −∥∇∆−1φt∥2 − β∥ψ∥2 ≤ 0. (3.12)

Remark 3.1. We emphasize that the new transformed system (3.4)–(3.7) is exactly equivalent to the original system (2.7)–
(2.8), since (3.2) can be easily obtained by integrating (3.6) with respect to the time. For the time-continuous case, the
potentials in the new free energy (3.3) are the same as the Lyapunov functional in the original free energy of (2.4), and the
new energy law (3.12) for the transformed system is also the same as the energy law (2.15) for the original system as well.
We will develop unconditionally energy stable numerical schemes for time stepping of the transformed system (3.4)–(3.7),
and the proposed schemes should formally follow the new energy dissipation law (3.12) in the discrete sense, instead of the
energy law for the originated system (2.15).

Remark 3.2. If F (φ) = φ2(φ − 1)2, we let B = 0, thus H(φ) = 2φ − 1. At this time, the IEQ method is exactly the same as
the so-called Lagrange multiplier method developed in [53]. We remark that the Lagrange multiplier method in [53] only
works for the fourth order polynomial potential (φ4). This is because the term φ3 (the first order derivative of φ4) can be
decomposed into amultiplication of two factors: λ(φ)φ, where λ(φ) = φ2. In [53], this Lagrangemultiplier term λ(φ) is then
defined as the new auxiliary variable U . However, for other type potentials, e.g., the F-H potential, the new variable U will
take a form as λ(φ) = 1

φ
ln(

φ

1−φ ), this is unworkable for algorithms design.

Remark 3.3. If F (φ) = (1 − φ) log(1 − φ) + φ logφ + θφ(1 − φ), following the work in [54], we regularize the logarithmic
bulk potential by a C2 piecewise function. More precisely, for any 0 < σ ≪ 1, the regularized free energy is

F̂ (φ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ lnφ + (1 − φ)2

2σ
+ (1 − φ) ln σ − σ

2
+ θφ(1 − φ), if φ ≥ 1 − σ ,

φ lnφ + (1 − φ) ln(1 − φ) + θφ(1 − φ), if σ ≤ φ ≤ 1 − σ ,

(1 − φ) ln(1 − φ) + φ2

2σ
+ φ ln σ − σ

2
+ θφ(1 − φ), if φ ≤ σ .

(3.13)

For convenience, we consider the problem formulated with the substitute F̂ (φ), but omit theˆin the notation. Now the
regularized functional F (φ) is defined inR. Small fluctuation of the numerical solution φ near the boundary (0, 1) would not
cause blow up of the numerical solution. In [54], the authors proved the error bound between the regularized PDE and the

original PDE is controlled by σ up to a constant. For this case, we simply take B = 1 that can ensure F̂ (x) + B > 0,∀x ∈ R.

The time marching numerical schemes are developed to solve the new transformed system (3.4)–(3.7). The proof of the
unconditional stability of the schemes follows the similar lines as in the derivation of the energy law (3.12). Let δt > 0
denote the time step size and set tn = n δt for 0 ≤ n ≤ N with the ending time T = N δt .

3.1. Crank–Nicolson scheme

We first develop a second order scheme based on Crank–Nicolson method, that reads as follows.

Scheme 1. Given the initial condition (U0, φ0), compute U1 and φ1 by assuming U−1 = U0 and φ−1 = φ0 for the initial step.

Having computed (φn,Un) and (φn−1,Un−1), with n ≥ 1, we update φn+1 and Un+1 as follows:

α
ψn+1 − ψn

δt
+ ψn+1 + ψn

2
= ∆µn+1, (3.14)

µn+1 = −ϵ2∆φ
n+1 + φn

2
+ Un+1 + Un

2
H⋆ + β

φn+1 − φn

δt
, (3.15)

Un+1 − Un = 1

2
H⋆(φn+1 − φn), (3.16)

ψn+1 + ψn

2
= φn+1 − φn

δt
, (3.17)

where

H⋆ = f (φ⋆)√
F (φ⋆) + B

, φ⋆ = 3

2
φn − 1

2
φn−1. (3.18)
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The boundary conditions are either

(i) φn+1, µn+1 are periodic; or (ii) ∂nφn+1|∂Ω = ∂nµ
n+1|∂Ω = 0. (3.19)

Since the nonlinear coefficient H of the new variables U is treated explicitly, we can rewrite Eqs. (3.16) and (3.17) as
follows:

⎧
⎪⎨
⎪⎩

Un+1 = H⋆

2
φn+1 + gn

1 ,

ψn+1 = 2

δt
φn+1 + gn

2 ,

(3.20)

where gn
1 = (Un − H⋆

2
φn), gn

2 = (− 2
δt
φn − ψn). Thus (3.14)–(3.15) can be rewritten as the following linear system

α̂φn+1 = ∆µn+1 + gn
3 , (3.21)

µn+1 = P1(φ
n+1) + gn

4 , (3.22)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̂ = (
α

δt
+ 1

2
)
2

δt
,

P1(φ
n+1) = −ϵ

2

2
∆φn+1 + 1

4
H⋆H⋆φn+1 + β

δt
φn+1,

gn
3 = −(

α

δt
+ 1

2
)gn

2 + (
α

δt
− 1

2
)ψn,

gn
4 = −ϵ2

2
∆φn + 1

2
H⋆(gn

1 + Un) − β

δt
φn.

(3.23)

Therefore,we can solveφn+1 andµn+1 directly from (3.21) and (3.22). Oncewe obtainφn+1, theψn+1,Un+1 are automatically
given in (3.20). Furthermore, we notice

(P1(φ), ψ) = ϵ2

2
(∇φ,∇ψ) + 1

4
(H⋆φ,H⋆ψ) + β

δt
(φ,ψ), (3.24)

if ψ enjoys the same boundary condition as φ in (3.19). Therefore, the linear operator P1(φ) is symmetric (self-adjoint).
Moreover, for any φ with

∫
Ω
φdx = 0, we have

(P1(φ), φ) = ϵ2

2
∥∇φ∥2 + 1

4
∥Hnφ∥2 + β

δt
∥φ∥2 ≥ 0, (3.25)

where ‘‘ = ’’ is valid if and only if φ ≡ 0.
We first show the well-posedness of the linear system (3.14)–(3.17) (or (3.21)–(3.22)) as follows.

Theorem 3.1. The linear system (3.21)–(3.22) admits a unique solution in H1(Ω), and the linear operator is symmetric positive

definite.

Proof. From (3.14), by taking the L2 inner product with 1 and notice ψ0 = 0, we derive

(
α

δt
+ 1

2
)

∫

Ω

ψn+1dx = (
α

δt
− 1

2
)

∫

Ω

ψndx = 0. (3.26)

From (3.17), we have
∫

Ω

φn+1dx =
∫

Ω

φndx = · · · =
∫

Ω

φ0dx. (3.27)

Let Vφ = 1
|Ω|

∫
Ω
φ0dx, Vµ = 1

|Ω|
∫
Ω
µn+1dx, and we define

φ̂n+1 = φn+1 − Vφ, µ̂
n+1 = µn+1 − Vµ. (3.28)

Thus, from (3.21)–(3.22), (̂φn+1, µ̂n+1) are the solutions for the following equations with unknowns (φ,w),

α̂φ −∆w = f n, (3.29)

w + Vµ − P1(φ) = gn, (3.30)

where f n = gn
3 − α̂Vφ ,

∫
Ω
f ndx = 0, gn = gn

4 + 1
4
H⋆H⋆α0 + β

δt
α0,

∫
Ω
φdx = 0 and

∫
Ω
wdx = 0.
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Applying −∆−1 to (3.29) and using (3.30), we obtain

− α̂∆−1φ + P1(φ) − Vµ = −∆−1f n − gn. (3.31)

Let us express the above linear system (3.31) as Aφ = b,
(i) For any φ1 and φ2 in H1(Ω) satisfy the boundary conditions (2.9) and

∫
Ω
φ1dx =

∫
Ω
φ2dx = 0, using integration by

parts, we derive

(A(φ1), φ2) = −α̂(∆−1φ1, φ2) + (P1(φ1), φ2)

≤ C1(∥∇∆−1φ1∥∥∇∆−1φ2∥ + ∥∇φ1∥∥∇φ2∥ + ∥φ1∥∥φ2∥)
≤ C2∥φ1∥H1∥φ2∥H1 .

(3.32)

Therefore, the bilinear form (A(φ1), φ2) is bounded ∀φ1, φ2 ∈ H1(Ω).
(ii) For any φ ∈ H1(Ω), it is easy to derive that,

(A(φ), φ) = α̂∥∇∆−1φ∥2 + ϵ2

2
∥∇φ∥2 + 1

4
∥H⋆φ∥2 + β

δt
∥φ∥2 ≥ C3 ∥φ∥2

H1 , (3.33)

for
∫
Ω
φdx = 0 from Poincare inequality. Thus the bilinear form (A(φ), ψ) is coercive.

Then from the Lax–Milgram theorem, we conclude the linear system (3.31) admits a unique solution in H1(Ω).
For any φ1, φ2 with

∫
Ω
φ1dx = 0 and

∫
Ω
φ2dx = 0, we can easily derive

(Aφ1, φ2) = (φ1,Aφ2). (3.34)

Thus A is self-adjoint. Meanwhile, from (3.33), we derive (Aφ, φ) ≥ 0, where ‘‘=’’ is valid if only if φ = 0. This concludes the
linear operator A is positive definite. □

The energy stability of the scheme (3.14)–(3.17) (or (3.21)–(3.22)) is presented as follows.

Theorem 3.2. The scheme (3.14)–(3.17) (or (3.21)–(3.22)) is unconditionally energy stable satisfying the following discrete
energy dissipation law,

1

δt
(En+1

cn2 − En
cn2) = −

∇(pn+1 + pn)

2


2

− β

φ
n+1 − φn

δt


2

≤ 0, (3.35)

where

Ecn2 = ϵ2

2
∥∇φ∥2 + ∥U∥2 + α

2
∥∇p∥2 − B|Ω|. (3.36)

Proof. First, we combine (3.14) and (3.15) together and apply the∆−1 to obtain

α

δt
∆−1(ψn+1 − ψn) +∆−1ψ

n+1 + ψn

2

= −ϵ2∆φ
n+1 + φn

2
+ Un+1 + Un

2
H⋆ + β

φn+1 − φn

δt
.

(3.37)

Secondly, by taking the L2 inner product of (3.37) with φn+1 − φn, we obtain

α

δt
(∆−1(ψn+1 − ψn), φn+1 − φn) + 1

2
(∆−1(ψn+1 + ψn), φn+1 − φn)

= ϵ2

2
(∥∇φn+1∥2 − ∥φn∥2) + (

Un+1 + Un

2
H⋆, φn+1 − φn) + β

δt
∥φn+1 − φn∥2.

(3.38)

Thirdly, by taking the L2 inner product of (3.16) with −(Un+1 + Un), we obtain

−(∥Un+1∥2 − ∥Un∥2) = −(
1

2
H⋆(φn+1 − φn),Un+1 + Un). (3.39)

Fourthly, define pn+1 = ∆−1ψn+1. By subtracting with the n-step, we obtain

∆(pn+1 − pn) = ψn+1 − ψn. (3.40)

From (3.17) and (3.40), we derive

α

δt
(∆−1(ψn+1 − ψn), φn+1 − φn) = α

2
(pn+1 − pn, ψn+1 + ψn)

= α

2
(pn+1 − pn,∆(pn+1 + pn))

= −(
α

2
∥∇pn+1∥2 − α

2
∥∇pn∥2),

(3.41)
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and

1

2
(∆−1(ψn+1 + ψn), φn+1 − φn) = δt

4
(pn+1 + pn, ψn+1 + ψn)

= δt

4
(pn+1 + pn,∆(pn+1 + pn))

= −δt
4

∥∇(pn+1 + pn)∥2.

(3.42)

Finally, by combining (3.38), (3.39), (3.41) and (3.42), we obtain

ϵ2

2
(∥∇φn+1∥2 − ∥∇φn∥2) + ∥Un+1∥2 − ∥Un∥2 + α

2
(∥∇pn+1∥2 − ∥∇pn∥2)

= −δt
4

∥∇(pn+1 + pn)∥2 − β

δt
∥φn+1 − φn∥2,

(3.43)

that concludes the theorem. □

Remark3.4. The proposed scheme (3.14)–(3.17) follows the newenergy dissipation law (3.12) formally instead of the energy

law for the originated system (2.15). In the time-discrete case, the energy E(φn+1,Un+1) (defined in (3.36)) can be rewritten

as a second order approximation to the Lyapunov functionals in E(φn+1) (defined in (2.15)), that can be observed from the

following facts, heuristically. Assuming the case for double well potential, from (3.16), we have

Un+1 − (
√
F (φn+1) + B) = Un − (

√
F (φn) + B) + Rn+1, (3.44)

where Rn+1 = O((φn+1 − φn)(φn+1 − 2φn + φn−1)). Since Rk = O(δt3) for 0 ≤ k ≤ n + 1 and U0 = (
√
F (φ0) + B), by

mathematical induction we can easily get

Un+1 =
√
F (φn+1) + B + O(δt2). (3.45)

3.2. Adam–Bashforth scheme

Next, for the completion of the development of second order schemes, we further develop a scheme based on the Adam–

Bashforth backward differentiation formula (BDF2). It provides an alternative second order scheme with the unconditional

energy stability that is beneficial for the scheme development. Since the stability proof of the BDF2 scheme is quite different

from the Crank–Nicolson scheme, we give its details as well.

Scheme 2. Given the initial condition (φ0,U0), compute U1 and φ1 by assuming U−1 = U0 and φ−1 = φ0 for the initial step.

Having computed (φn,Un) and (φn−1,Un−1), with n ≥ 1, we solve φn+1,Un+1 as follows:

α
3ψn+1 − 4ψn + ψn−1

2δt
+ ψn+1 = ∆µn+1, (3.46)

µn+1 = −ϵ2∆φn+1 + Un+1H† + β
3φn+1 − 4φn + φn−1

2δt
, (3.47)

3Un+1 − 4Un + Un−1 = 1

2
H†(3φn+1 − 4φn + φn−1), (3.48)

ψn+1 = 3φn+1 − 4φn + φn−1

2δt
, (3.49)

where

H† = f (φ†)√
F (φ†) + B

, φ† = 2φn − φn−1. (3.50)

The boundary conditions are

(i) φn+1, µn+1 are periodic; or (ii) ∂nφn+1|∂Ω = ∂nµ
n+1|∂Ω = 0. (3.51)

Similar to the Crank–Nicolson scheme, we can rewrite Eqs. (3.48) and (3.49) as follows:
⎧
⎪⎨
⎪⎩

Un+1 = H†

2
φn+1 + hn

1,

ψn+1 = 3

2δt
φn+1 + hn

2,

(3.52)
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where hn
1 = (U± − H†

2
φ±), hn

2 = 3
2δt
φ± with S± = 4Sn−Sn−1

3
for any variable S. Thus (3.46)–(3.47) can be rewritten as the

following linear system

α̃φn+1 = ∆µn+1 + hn
3, (3.53)

µn+1 = P2(φ
n+1) + hn

4, (3.54)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P2(φ
n+1) = −ϵ2∆φn+1 + 1

2
H†H†φn+1 + 3β

2δt
φn+1,

hn
3 = −(

3α

2δt
+ 1)hn

2 + 3α

2δt
ψ±,

hn
4 = 1

2
H†hn

1 − 3β

2δt
φ±,

α̃ = (
3α

2δt
+ 1)

3

2δt
.

(3.55)

Actually, we can solve φn+1 and µn+1 directly from (3.53) and (3.54). Once we obtain φn+1, the ψn+1,Un+1 is automatically

given in (3.52). Furthermore, we notice

(P2(φ), ψ) = ϵ2(∇φ,∇ψ) + 1

2
(H†φ,H†ψ) + 3β

2δt
(φ,ψ), (3.56)

if ψ enjoys the same boundary condition as φ in (3.51). Therefore, the linear operator P2(φ) is symmetric (self-adjoint).

Moreover, for any φ with
∫
Ω
φdx = 0, we have

(P2(φ), φ) = ϵ2∥∇φ∥2 + 1

2
∥H†φ∥2 ≥ 0, (3.57)

where ‘‘ = ’’ is valid if and only if φ ≡ 0.

Remark 3.5. One can show the well-posedness of the linear system (3.46)–(3.49) (or (3.53)–(3.54)). Likewise, when we

rewrite (3.53)–(3.54) into a linear equation using the inverse Laplace operator, we can show the linear operator is symmetric

(self-adjoint) and positive definite.

The energy stability of the scheme (3.46)–(3.49) (or (3.53)–(3.54)) is presented as follows.

Theorem 3.3. The scheme (3.46)–(3.49) (or (3.53)–(3.54)) is unconditionally energy stable satisfying the following discrete

energy dissipation law,

1

δt
(En+1

bdf 2 − En
bdf 2) ≤ −∥∇pn+1∥2 − β

3φn+1 − 4φn + φn−1

2δt


2

≤ 0, (3.58)

where

En+1
bdf 2 =ϵ

2

2

(∥∇φn+1∥2 + ∥2∇φn+1 − ∇φn∥2

2

)
+ ∥Un+1∥2 + ∥2Un+1 − Un∥2

2

+ α

2

∥∇pn+1∥2 + ∥2∇pn+1 − ∇pn∥2

2
− B|Ω|.

(3.59)

Proof. First, from (3.46), by taking the L2 inner product with 1 and notice ψ0 = 0, we derive

(
3α

2δt
+ 1)

∫

Ω

ψn+1dx = 4α

2δt

∫

Ω

ψndx − α

2δt

∫

Ω

ψn−1dx = 0 (3.60)

where we use
∫
Ω
ψ1dx = 0, this is valid since ψ1 can be obtained using the Crank–Nicolson scheme.

Second, we combine (3.46) and (3.47) together and applying the∆−1 to obtain

α∆−1(
3ψn+1 − 4ψn + ψn−1

2δt
) +∆−1ψn+1

= −ϵ2∆φn+1 + Un+1H† + β
3φn+1 − 4φn + φn−1

2δt
.

(3.61)

Third, by taking the L2 inner product of (3.37) with 3φn+1 − 4φn + φn−1, and applying the following identity

(3a − 4b + c, 2a) = a2 − b2 + (2a − b)2 − (2b − c)2 + (a − 2b + c)2, (3.62)
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we obtain
α

2δt
(∆−1(3ψn+1 − 4ψn + ψn−1), 3φn+1 − 4φn + φn−1) + (∆−1ψn+1, 3φn+1 − 4φn + φn−1)

= ϵ2

2

(
∥∇φn+1∥2 − ∥∇φn∥2 + ∥2∇φn+1 − ∇φn∥2 − ∥2∇φn − ∇φn−1∥2

+ ∥3∇φn+1 − 4∇φn − ∇φn−1∥2
)

+ (Un+1H†, 3φn+1 − 4φn + φn−1) + β

2δt
∥3φn+1 − 4φn + φn−1∥2.

(3.63)

Third, by taking the L2 inner product of (3.16) with −2Un+1, we obtain

− (∥Un+1∥2 − ∥Un∥2 + ∥2Un+1 − Un∥2 − ∥2Un − Un−1∥2 + ∥Un+1 − 2Un + Un−1∥2)

= −(H†(3φn+1 − 4φn + φn−1),Un+1).
(3.64)

Fourth, define pn+1 = ∆−1ψn+1, by subtracting with the n and n − 1-step, we obtain

∆(3pn+1 − 4pn + pn−1) = 3ψn+1 − 4ψn + ψn−1. (3.65)

From (3.49) and (3.65), we derive

α

2δt
(∆−1(3ψn+1 − 4ψn + φn−1), 3φn+1 − 4φn + φn−1)

= α(3pn+1 − 4pn + pn−1, ψn+1)

= α(3pn+1 − 4pn + pn−1,∆pn+1)

= −α
2
(∥∇pn+1∥2 − ∥∇pn∥2 + ∥2∇pn+1 − ∇pn∥2 − ∥2∇pn − ∇pn−1∥2

+ ∥∇pn+1 − 2∇pn + ∇pn−1∥2),

(3.66)

and

(∆−1ψn+1, 3φn+1 − 4φn + φn−1) = 2δt(pn+1, ψn+1)

= 2δt(pn+1,∆pn+1)

= −2δt∥∇pn+1∥2.

(3.67)

Finally, by combining (3.63), (3.64), (3.66) and (3.67), we obtain

ϵ2

2
(∥∇φn+1∥2 − ∥∇φn∥2 + ∥2∇φn+1 − ∇φn∥2 − ∥2∇φn − ∇φn−1∥2 + ∥∇φn+1 − 2∇φn + ∇φn−1∥2)

+ ∥Un+1∥2 − ∥Un∥2 + ∥2Un+1 − Un∥2 − ∥2Un − Un−1∥2 + ∥Un+1 − 2Un + Un−1∥2

+ α

2
(∥∇pn+1∥2 − ∥∇pn∥2 + ∥2∇pn+1 − ∇pn∥2 − ∥2∇pn − ∇pn−1∥2 + ∥∇pn+1 − 2∇pn + ∇pn−1∥2)

= −2δt∥∇pn+1∥2 − β

2δt
∥3φn+1 − 4φn + φn−1∥2.

That concludes the theorem. □

Remark 3.6. Heuristically, the 1
δt
(En+1

bdf 2 − En
bdf 2) is a second order approximation of d

dt
E(φ,U) at t = tn+1. For instance, for

any smooth variable S with time, one can write

(∥Sn+1∥2 + ∥2Sn+1 − Sn∥2

2δt

)
−

(∥Sn∥2 + ∥2Sn − Sn−1∥2

2δt

)

∼=
(∥Sn+2∥2 − ∥Sn∥2

2δt

)
+ O(δt2) ∼=

d

dt
∥S(tn+1)∥2 + O(δt2).

Remark 3.7. The new variable U is introduced in order to handle the nonlinear bulk potential F (φ). Since the discrete
energy still includes the gradient term of φ, therefore, due to the Poincare inequality and mass conservation property for
Cahn–Hilliard equation

∫
Ω
φn+1dx =

∫
Ω
φ0dx, theH1 stability for the variable φ is still valid for the proposed scheme, which

makes it possible to implement the rigorous error analysis. About the complete error analysis of the IEQ type schemes for
solving the classical CH equation with general nonlinear bulk potentials, we refer to a recent article [55], in which, some
reasonable sufficient conditions about boundedness and continuity for the nonlinear potential are given and optimal error
estimates are obtained. Similar work can be performed for the VCH-HR system as well with no essential difficulties. About
the error estimates for semi-discrete schemes, as well as the fully discrete schemes in the context of finite element method
or spectral method can be derived in the similar way, see [56–71].
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(a) L2 error for the phase variable φ. (b) L2 error for the auxiliary variable U .

Fig. 1. Convergence test for the L2 errors for φ and U computed by the second order schemes CN2 and BDF2 using different temporal resolutions at t = 4.

The time step is δt = 0.01( 1
2
)k for k = 0, 1, 2, 3, 4, 5, 6 and the numerical errors are calculated as the difference between the solution of the coarse time

step and that of the adjacent finner time step.

Fig. 2. Time evolution of the drop in 2D when β = 0 and α = 0. Snapshots are taken at t = 0, 1, 2, 10, 200.

4. Numerical tests

In this section, we present various numerical experiments to validate the theories derived in the previous section and
demonstrate the efficiency, energy stability and accuracy of the proposed numerical schemes. In all examples, we set the
domainΩ = [0, 1]d, d = 2, 3 unless elaborated. We use the second order central finite difference method to discretize the
space operators in the semi-discretized model. In all simulations, we set ϵ = 0.01, and α, β will be chosen accordingly. For
double well potential case, we set B = 0 and U = φ(1 − φ). For Flory–Huggins case, we set B = 1, σ = 0.001 and χ = 2.5.

4.1. Convergence test

We first test the convergence rates of the two proposed schemes, the second-order Crank–Nicolson scheme (CN2) (3.14)–
(3.17) and the second-order Backward-Difference scheme (BDF2) (3.46)–(3.49). Use the following initial condition

φ = 0.5
(
1 + max(tanh

0.2 − R1

ε
, tanh

0.2 − R2

ε
)
)
, (4.1)

with R1 =
√
(x − 0.71)2 + (y − 0.5)2 and R2 =

√
(x − 0.29)2 + (y − 0.5)2. The initial profile of φ is shown in the first panel

of Fig. 2. The spacial mesh is 256 × 256. We perform the time-step refinement test to obtain the order of convergence in
time by taking a linear refinement path for time step δt = 0.01

2k
, k = 0, 1, . . . , 6. The numerical errors are calculated as the

difference between the solution of coarse time step and that of the adjacent finner time step. We plot the Cauchy sequence
of L2 errors at t = 4 with different time step sizes in Fig. 1 and the convergence rate is shown to be second order for both
schemes.

4.2. The viscous and hyperbolic relaxation effects for the coalescence of two kissing bubbles

In this example, we study the coalescence dynamics of two kissing bubbles by varying the viscous and hyperbolic
relaxation parameters α and β . The computational domain Ω is still [0, 1]2 and the initial profile is given in (4.1), and we
use the CN2 scheme and 1282 grid points to discretize the domain.

We start with the classical Cahn–Hilliard equation by setting α = β = 0. In Fig. 2, the two bubbles coalesce into one big
bubble (in a lower free energy state) due to the combination of the surface tension effect. Then, we further set the hyperbolic



X. Yang et al. / Journal of Computational and Applied Mathematics 343 (2018) 80–97 91

Fig. 3. Time evolution of the drop in 2D when β = 0 and α = 1. Snapshots are taken at t = 0, 1, 2, 10, 200.

Fig. 4. Time evolution of the drop in 2D when β = 1 and α = 0. Snapshots are taken at t = 0, 1, 2, 10, 200.

Fig. 5. Time evolution of the free energy functional for the coalescence of two kissing bubbles for nine choices of order parameters α = 0, 0.5, 1, and

β = 0, 0.5, 1. (A) energy plot of (3.11) using Scheme 1; (B) energy plot of (3.11) using Scheme 2.

relaxation parameter α = 1 while keeping viscous parameter of β = 0. The numerical result in shown in Fig. 3. At t = 1
and 2, the interface of the circle shows some sawtooth profile and eventually forms a circle, i.e. the Cahn–Hilliard equation
with hyperbolic relaxation term predicts different dynamics, but the same final steady state. Thenwe investigate the viscous
effect by setting β = 1 and α = 0. The numerical results are illustrated in Fig. 4. We observe that the coalesce speed is
much slower than the two cases where β = 0.

We plot the evolution of energy curves for nine cases in Fig. 5 when both α and β take the three values of 0, 0.5.1. We
find that β can dramatically affect the speed of coalescence than α. Both the results from Schemes 1 and 2 are shown, and
they predict the same dynamics.

4.3. Energy

Since the two developed schemes follow amodified energy lawwith the new energy (3.11) instead of the original energy
(2.14). In the continuous level, these are energies that are equivalent. However, when they are discretized, the new energy
(3.11) is a second-order approximation of the original one (2.14), as stated in Remarks 3.4 and 3.6. To verify this statement,
we perform the following simulations. We use the initial condition φ = 0.5(1 + cos(2πz) cos(2πy)) and periodic boundary
conditions. Without the loss of generality, we choose α = β = 0.5. Since we do not have the analytical solution, the original
energy (2.14) is calculated byusing the fully implicit schemewith the time step δt = 2−12 as the benchmark solution. In Fig. 6,
the second-order convergence of the transformed energy (3.11) that is computed by Scheme 1 to the original energy (2.14) is
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(a) Energy error with CN scheme. (b) Energy error with BDF2 scheme.

Fig. 6. The energy difference between the original energy formulation (2.14) and the approximated energy (3.11) that is computed by Scheme 1 with

different time steps. This figure shows the approximated energy (3.11) is definitely a second-order approximation of the original energy (2.14).

(a) Energy error with Scheme 1. (b) Energy error with Scheme 2.

Fig. 7. The time evolution of the energy (3.11) using various time step sizes δt = 0.00625, 0.01235, 0.25, 0.5 and 1.

observed via the time-step refinement test. To further demonstrate the effectiveness of our proposed unconditionally energy
stable schemes, we further plot the time evolution of the modified energy (3.11) using progressively larger time steps with
δt = 0.00625, 0.01235, 0.25, 0.5 and 1. Fig. 7 demonstrates the energy decays even with very larger time steps like δt = 1,
which means the schemes behave truly as the theory indicates, i.e., they are stable for progressively large time steps.

4.4. Spinodal decomposition in 3D

In this example, we study the phase separation dynamics in 3D that is called ‘‘spinodal decomposition’’. The process of
the phase separation can be studied by considering a homogeneous binary mixture, which is quenched into the unstable
part of its miscibility gap. In this case, the spinodal decomposition takes place, which manifests in the spontaneous growth
of the concentration fluctuations that leads the system from the homogeneous to the two-phase state. Shortly after the
phase separation starts, the domains of the binary components are formed and the interface between the two phases can be
specified.

The initial conditions are taken as the randomly perturbed concentration fields as follows,

φ0(x, y, z) = φ0 + 0.001rand(x, y, z), (4.2)

where the rand(x, y) represents the random number in [0, 1] and has zero mean. The computational domain is [0, 2π ]3 and
we use the scheme CN2 and 1283 grid points to discretize the domain, the time step is δt = 0.001 for all 3D simulations.

From the 2D tests, we know the viscous parameter β can have more effects on the dynamics than the hyperbolic
parameter α. Thus in the following 3D simulations, we simply set β = 0.9 and α = 0. The red domain, corresponding
to the larger values of φ = 1, indicates the concentrated polymer segments [72], and the blue region, corresponding to the
smaller values of φ = −1, indicates the macromolecular microspheres (MMs). In Fig. 8, we perform numerical simulations
for the initial profile φ0 = 0.5, that means the volume fraction of the polymer segments is almost same as the surrounding
MMs. The final steady state forms the uniform two layer structure around t = 1800. Fig. 9 shows the dynamical behaviors
of the phase separation for the initial value φ0 = 0.3 which means the volume of the MMs is much more than that of the
polymer segments. We observe that the MMs finally accumulate together to the cylindrical shape.

Note the boundary conditions of the governing system can be the periodic or no-flux, in Fig. 10, we perform numerical
simulations for the initial profile of φ0 = 0.3 and α = β = 0 for these two boundary conditions. For both cases, we
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Fig. 8. 3D spinodal decomposition for random initial data with φ0 = 0.5. Snapshots of the phase variables φ are taken at t = 20, 40, 60, 120, 160, 240, 700,

and 1800. The order parameter is α = 0 and β = 0.9. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 9. 3D spinodal decomposition for random initial data with φ0 = 0.3. Snapshots of the phase variables φ are taken at t = 20, 40, 60, 120, 160, 240, 700

and 1800. The order parameter is α = 0 and β = 0.9.

observe that theMMs finally accumulate together to the spherical shape, where the final shape is 1/8 spherical segment at a

corner for no-flux condition, and a sphere for the period boundary condition (with parts at each corner of the cube). We plot

the evolution of energy curves for both cases in Fig. 11. And we observe the energy of the spherical segment with no-flux

boundary condition is smaller than that of the sphere in the period boundary condition.

Here we also conducted several numerical tests using the Flory–Huggins potential in (3.13). The numerical results are

shown in Fig. 12. By using different initial value of φ0, the predicted dynamics are dramatically different, and the steady

states are distinct as well. A detailed discussion on the correlations of initial values and final steady state is out of the scope

for current paper. Interested readers are encouraged to conduct the numerical studies using our proposed schemes.

5. Concluding remarks

In this paper, we develop two second-order in time schemes to solve the viscous Cahn–Hilliard equation with hyperbolic

relaxation terms, by utilizing the novel IEQ approach. It is effective and efficient, and particularly suitable to discretize the
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(a) The case with no-flux boundary condition.

(b) The case with periodic boundary condition.

Fig. 10. 3D spinodal decomposition for random initial data with φ0 = 0.3 for no-flux and periodic boundary conditions. Snapshots are taken at

t = 1, 2, 5, 50. And the order parameters are α = β = 0 for both cases.

Fig. 11. Time evolution of the free energy functional for spinodal decomposition for no-flux and periodic boundary conditions with φ0 = 0.3, α = β = 0.

complicated nonlinear potential with lower bound. Compared to the prevalent nonlinear schemes based on the convex
splitting approaches or other nonlinear schemes, the IEQ approach can easily conquer the inconvenience from nonlinearities
by linearizing the nonlinear terms in the newway. The developed schemes (i) are accurate (ready for second or higher order
in time); (ii) are stable (unconditional energy dissipation law holds); and (iii) are easy to implement (only need to solve linear
equations at each time step). Furthermore, the induced linear system is symmetric positive definite, thus one can apply
any Krylov subspace methods with mass lumping as pre-conditioners for solving such system efficiently. We emphasize
that, to the best of the authors’ knowledge, the schemes to solve the case of logarithmic potential are the first such linear
and accurate schemes with provable energy stabilities. Finally, the method is general enough to be extended to develop
linear schemes for a large class of gradient flow problems with complex nonlinearities in the free energy density. Although
we consider only time discrete schemes in this study, the results can be carried over to any consistent finite-dimensional
Galerkin approximations since the proofs are all based on a variational formulation with all test functions in the same space
as the space of the trial functions.
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(a) φ0 = 0.5.

(b) φ0 = 0.3.

Fig. 12. 3D Spinodal decomposition with Flory–Huggins free energy. Here we choose α = β = 0.5 and the initial condition as (4.2) with (a) φ0 = 0.5 and

(b) φ0 = 0.3. The plot of φ at time t = 100, 200, 500, 4000 is shown respectively.
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