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Abstract

We analytically compute the observational appearance of an isotropically emitting point source
on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image
moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case.
Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique
signature could serve as a “smoking gun” for a high-spin black hole in nature.
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1 Introduction

Over the last several decades, abundant astronomical evidence for black holes has accumulated from a
variety of sources [1], most notably the recent spectacular observations [2—5] of gravitational waves emitted
from black hole mergers. In all of these observations, the black holes appear as point-like objects, as the
detectors have been far from being able to resolve distances on the scale of the Schwarzschild radius.
The existence of the most striking feature of a black hole—namely, the event horizon—is only indirectly
inferred.

All of this is expected to change dramatically within the coming year, when the Event Horizon
Telescope (EHT) obtains images of black holes comprised of pixels smaller than the Schwarzschild radius.

This opens an exciting new chapter in experimental black hole astrophysics. It also presents a host of
challenges to theorists who need to predict what will be seen by the EHT [6—13]. While the Kerr solution
is itself relatively simple, the nearby environment can contain complex magnetospheres, accretion disks,
and jets that are the origin of the actual observed signal. The predicted signal in general depends on
many a priori undetermined parameters describing this environment.

Universal and sometimes striking predictions are possible for the case of rapidly spinning black holes
[14-24]. At the maximal allowed value of the spin, J = GM?, the region near the horizon of the black hole
acquires an infinite-dimensional conformal symmetry [6,25,26]. This is a precise astrophysical analog of
the universal critical behavior appearing in many condensed matter systems. Not only do the symmetries
supply powerful computational tools, but the universality reduces the dependence of physical predictions
on undetermined parameters. For example, it was found recently that gravitational waves from a near-
horizon orbiting body can end with a slow decay to silence on a single characteristic frequency [21], in
stark contrast to the rapid “chirp” of ordinary black hole binaries.

In this paper, we analyze the signal produced by a “hotspot” (localized emissivity enhancement)
orbiting near a high-spin black hole, and find a very striking signal. The primary image moves along a
line segment (the “NHEKIine” ), which is rotated by 90° relative to the orbital plane, just inside the shadow
from black hole backlighting. Secondary images are generally negligible except for bright caustic flashes
which extend to the whole line segment. These emissions pulsate in a complex periodic manner. This
signature is strongest in the edge-on case, when the observer lies near the equatorial plane (6, ~ 90°), and
disappears entirely when 6, < arctan (4/ 3)1/ 1~ 47°, a critical angle determined by near-horizon physics.
In general, emission signals of this type can only be computed numerically, but the emergent symmetries
at high spin enable us herein to study the problem analytically. We perform a detailed calculation for
a uniformly emitting sphere orbiting in the equatorial plane, but the main conclusions generalize to all
near-horizon sources.

Of course, it would require a fortuitous alignment of circumstances for an EHT target to have both
high spin and a sufficiently long-lived brightness enhancement in the near-horizon region. Nevertheless,
as we move into the era of precision black hole observation, it is not unreasonable to hope that such a
configuration might eventually be observed. With enough resolution, the unique features of the signal
would serve as a “smoking gun” for a high-spin black hole.

The paper is organized as follows. In Sec. 2, we define the problem at any finite, non-extremal value of
spin, and write down the equations to be solved. In Sec. 3, we solve the equations in the high-spin limit,
keeping leading and subleading terms. In Sec. 4, we explore the detailed observational appearance. In
App. A, we discuss the black hole shadow in the high-spin regime. In App. B, we explain the connection of
our computation to near-horizon geometry and argue that the signal persists more generally. We relegate
technical aspects of our calculations to the remaining appendices.
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Figure 1: Observational appearance of a point emitter (“hotspot”) orbiting near a rapidly spinning black
hole. All light appears on a vertical line segment, the so-called NHEKIline, which forms a portion of
the black hole shadow’s edge (dashed line). Over each cycle of the periodic image, the primary image
appears near the center of the NHEKIline before moving downward while blueshifting and spiking in
brightness (right panels). On the right, we display the height of the image on the NHEKline (relative
to the maximum), its flux (relative to a comparable Newtonian problem, with spin-dependence ¢ of the
black hole scaled out), and its redshift factor (ratio of observed to emitted frequency). Notice the net
blueshift (¢ > 1) at peak brightness, reflecting the Doppler boost from the ultrarelativistic near-horizon
orbit overcoming the gravitational redshift. Video animations are available here. Secondary images have
a rich caustic structure shown in Fig. 3 below. (The primary image, depicted here in black, is colored
green in Fig. 3.) The position of the source at the time of emission is shown in Fig. 5 for the primary
image. The spin is a/M = 99.99995% (e = .01) and the viewing angle is nearly edge-on, 6, = 84°.
Complete parameter choices are given in Eq. (4.1). The appearance is qualitatively similar for other
parameter choices.



2 Orbiting emitter

We work in the Kerr spacetime in Boyer-Lindquist coordinates (t,7,6, ¢). The metric is

AY v = sin?
d52:——dt2+xdr2+2dc92+ sin” 6

—
—
—

(d¢ — wdt)?, (2.1)

where

2aMr
w =

- A =712 —2Mr + a?, Y =172+ a?cos? 0, BE= (r2+a2)2—AaQSin20. (2.2)

Our emitter will be a point source orbiting on a circular, equatorial geodesic at radius rs. The angular
velocity is [27]

M1/2

Q=
TR a2

(2.3)

where the upper /lower sign corresponds to prograde/retrograde orbits. Here and hereafter, the subscript s
stands for “source.” The local rest frame of the emitter consists of the four-velocity u* = eé‘t) (uput = —1)
along with three orthogonal unit spacelike vectors,

= A 1
ey = E(at + Q5 0p), ety = 1\/ 5 Or, ew) = 75 9, (2.4a)
= by
e(g) = s\l x5 (O +w0p) + 7\/; 0y, (2.4b)
where!
= + M1/ <r§ F 2aM1/2r;/2 + a2> 1
Vg = (Qs —w) = , v= (2.5)
E\/Z \/Z<T§/2 + aMl/Q) m
We define frame components of four-vectors V# in the usual way,
v — n(a)(b)e?b)vm (2.6)

where n(“)(b) = diag(—1,1,1,1) and summation over repeated indices is implied. We raise and lower
frame indices with 7(®(®),

2.1 Photon conserved quantities and interpretation

The wavelength of light from astrophysically realistic sources is much smaller than the size of the black
hole. This allows us to work in the geometric optics limit, where the emission corresponds to photons
traveling on null geodesics. Each such photon with four-momentum p* possesses four conserved quantities:

1. the invariant mass p,p = 0,
2. the total energy E = —py,

3. the component of angular momentum parallel to the axis of symmetry L = pg, and

Note that v, and v are the velocity and boost factor according to the zero-angular momentum observer with four-velocity
proportional to 0y + w 0.



4. the Carter constant QQ = pg — cos? 9<a2p? — pé csc? 0).

The trajectory of the photon is independent of its energy and may be described by two rescaled quantities,

i- L G= Vo (2.7)

E’ E
We follow the conventions of Refs. [28,29], but put hats over these quantities to distinguish them from
the unhatted A and ¢ that we introduce in Sec. 3. Note that while ) can be negative and therefore ¢
imaginary, only ¢? appears in subsequent formulas. Furthermore, since Q = pg > 0 when 6 = 7/2, any
photon passing through the equatorial plane must have a nonnegative Carter constant, and hence real q.

Since we restrict to photons emitted by an equatorial source, we will always have real ¢ > 0.

The four-momentum may be reconstructed from the conserved quantities up to two choices of sign
corresponding to the direction of travel,

by

Epr = +/R(r), (2.8a)
%p‘) — 1+/600), (2.8b)
by A a A
20— |g—- 2 22 2 _
%P <a sin29> + A(T +a a)\), (2.8¢)
Xy N G L S T
P = —a(asm 60— )\) + A (r +a” — a)\), (2.8d)
where
N\ 2 N 2
R(r) = (1”2 +a* - a)\> —A {@2 + (CL - A) } 5 (2.92)
0(0) = ¢ + a® cos®  — \2 cot? 6. (2.9b)

The functions R(r) and O(f) are generally called the radial and angular “potentials”. Zeros of these
functions correspond to turning points in the trajectories, where the sign + flips in (2.8a) and (2.8b), re-
spectively. The radial potential is quartic in r. The closed-form expression for the roots is not particularly
helpful. On the other hand, the 6 turning points [zeroes of ©] have a simple expression:

42 1 52 1 3\2
0+ = arccos :F\/A0+VA3+ZQ , A9:2<1q :2)\ ) (2.10)

For photons that reach infinity, the conserved quantity F is equal to the energy measured by stationary
observers at infinity. The energy measured in the rest frame of the emitting source is

B, = p = —put = vE\/ ﬁ (1 - QSX). (2.11)

The ratio is the “redshift factor” g, given by

E 1\/E 1 Vs = 3072 & 2a01/2 32 )1
TR TVET T P ean(e ) 212

where again the upper/lower sign corresponds to a prograde/retrograde orbit. Notice that the redshift
depends only on A and not q.



In general, the system of equations (2.8) cannot be solved in closed form, and must be approximated
numerically. In Sec. 3, we will find tremendous simplifications in the high-spin limit, which will allow us
to proceed mostly analytically. Moreover, we will see in Sec. 4 that these solutions exhibit a variety of
surprising observable phenomena not previously encountered in numerical studies.

The conserved quantities A and G help connect the angle of emission to the angle of reception or
equivalently, the image position on the screen. We parameterize the emission angle by (©, ®) defined as
the direction cosines in the local rest frame?

b (B/E)VAL -, (1 - w;\)
cos® = = - , cos® =
t) 1— QN

() 7
pr 49
_W —:Frsa (2.13)

3

where the upper/lower sign corresponds to that in Eq. (2.8b). Inverting these relations gives \ and q as
a function of the emission angles,

cos © + vy Q::FTSCOS@ (2.14)

A :
(B/2E)VA + Q, cos D + wu, g

where again the upper/lower sign corresponds to that in Eq. (2.8b) (and ensures ¢ > 0). Photons with
0 — 0, as r — oo correspond to an image of the emitter on the observer’s screen. Here and hereafter,
the subscript o stands for “observer.” The angle of approach to 6, corresponds to the position of the
image on the observer screen. Following Refs. [(], we use “screen coordinates” («, 3) corresponding to
the apparent position on the plane of the sky. As we review in App. E, these are related to the conserved
quantities by

A -
a=-—— B:i\/ch—l—a?cosQHO—)\?cotQQO:i\/G(QO). (2.15)
sin 0,
The sign + is equal to the sign of py (the § component of the photon four-momentum) at the observer,
which determines whether the photon arrives from above or below. The angles on the observer sky are
given by a/r, and /r,, where r, is the distance to the source.

2.2 Image positions

Integrating up Eqgs. (2.8) reduces the geodesic equation to quadratures. That is, the geodesic(s) connecting
a source (ts, 75,05, ¢s) to an observer (to, 7o, 0, @) satisfy’

e dr b dp
S S U 2.16
t —/R(r) ]ﬁ +./600) (2.162)
To . %o Xcsc2 0
Ap=¢p—tpg=4 — 2 —a))d AT g9, 16b
b= o — b ][ WIS (2Mr a) r+]is el (2.16b)
, 0o 2 2
—to—ti=f —— [t a? — 200} © a’cos?d
At =t, —ts ]i :EA\/W{r +a*(r+2M) 2aM)\] dr—i—]i imd& (2.16¢)

The slash notation f indicates that these integrals are to be considered line integrals along a trajectory
connecting the two points, where turning points in 7 or # occur any time the corresponding potential

2That is, we denote by ® the angle that the photon three-velocity in the rest frame of the emitter makes with the direction
of motion (¢-direction), and we denote by © the angle relative to the local azimuth perpendicular to the equatorial plane
(—6-direction).

3In the special case of a completely equatorial geodesic, Eq. (2.16a) must be discarded. The trajectory is instead governed
by Egs. (2.16b)—(2.16¢) without the angular integrals. We do not consider equatorial geodesics in this paper, as they are
only relevant for a measure-zero set of observers.



R(r) or ©(0) vanishes. The signs + in front of \/R(r) and /O(f) are chosen to be the same as that of
dr and d6, respectively. Each solution of Egs. (2.16) corresponds to a null geodesic (labeled by A and q)
connecting the source point to the observer point. For any given pair of points, there may be no solutions,
a single solution, or many solutions.

The problem has an equatorial reflection symmetry. Without loss of generality, we take the observer
to sit in the northern hemisphere 6, € (0,7/2). We exclude the measure-zero (and mathematically
inconvenient) cases of an exactly face-on (6, = 0) or edge-on (6, = 7/2) observation. We place the
observer at angular coordinate ¢, = 0 for all time ¢,, while we place the source at angular coordinate ¢
at the initial time ¢t; = 0. The coordinates of the source and observer are thus chosen and interpreted as
follows:

ts : emission time, t, : reception time, (2.17a)
75 : orbital radius, ro — 00, (2.17b)
0s =7/2, 6, € (0,7/2) : inclination angle, (2.17¢)
b = Quts, o = 0. (2.17d)

The images seen at inclination angle 6, of a source orbiting at r; may thus be determined as follows:
For each observer time ¢,, one makes the choices (2.17) for rg, 05, ¢s, 0,65, ¢o and plugs them into the
basic equations (2.16). This produces a set of three integral equations for three variables ts, 5\,(} in terms
of t,. Each solution then corresponds to an image whose location is fixed by A and ¢ using Eq. (2.15).
(The emission time t; may be computed, but is not of observable interest. We will decouple it from the
equations, so that we solve two equations for the two variables 5\, G.) Solving this problem as a function
of the time ¢, provides the time-dependent positions of the images. The total image will be periodic with
periodicity equal to that of the source (Ts = 27/€,). However, individual images may evolve on longer
timescales (see Fig. 3), with the required periodicity emerging only after the totality of images is summed
over.

We now make the ray-tracing equations (2.16) more explicit by introducing labels to account for the
number of rotations (i.e., increases of ¢ by 27) and librations (i.e., turning points in ). See Ref. [30]
for a similar treatment. For the winding in ¢, we could introduce an integral winding number n, i.e.,
n = modso,A¢. However, we find it more convenient to instead allow the observation point ¢, = 0 to
take on any physically equivalent value, i.e., ¢, = 2r N for an integer N. Using ¢s = Qsts, we then have

2rN = ¢o = AP + s = AP+ Qts = Adp — QAL + Qut, (2.18)
which implies
Ad — Q At = —Qt, + 27N. (2.19)

This form is natural because ¢ — ()t is conjugate to the 0; + 2,04 symmetry of the problem. Note
that the periodicity of the image is manifest in that N — N + 1 absorbs the shift ¢, — ¢, + Ts (with
Ts = 27 /), leaving Eq. (2.19) invariant. To fix the physical meaning of N, we restrict to a single period
to € (0,T5s). Then N tracks the number of extra windings executed by the photon relative to the emitter
between its time of emission and reception.* Note that in the near-horizon, near-extremal limit below, At
and A¢ (and hence the winding number n) separately diverge linearly [Eq. (3.41)], with the combination
A¢p — QsAt and its net winding number N displaying a milder log divergence. This reflects the fact that
photons received at a fixed time can have been emitted arbitrarily far in the past.

For the radial turning points, we note that there are two possibilities for light reaching infinity: “di-
rect” trajectories that are initially outward-bound and have no turning points, and “reflected” trajectories

4The winding number of the photon trajectory is n = moda-A¢. In the time interval [ts,t,], the emitter undergoes
ns = modar Qs At windings. Since t, € (0,7Ts) by assumption, modart, = 0 and therefore Eq. (2.19) implies that N = n—n.



that are initially inward-bound but have one radial turning point. We label these by b = 0 (direct) and
b = 1 (reflected). For the € turning points, we let m > 0 denote the number of turning points and
s € {+1,—1} denote the final sign of py, which is equal to the sign of 8 in Eq. (2.15).

Putting everything together, the basic equations (2.16a) and (2.19) can be re-expressed as the “Kerr
lens equations”

I +bl, = GJ*, (2.20a)

-G - QG
Jr +bJ, + 7 = —Qsto + 27N, (2.20b)

where the factor of M was introduced to make both equations dimensionless, and we defined

G, m =10
G =" . ’ ie{t0, ¢}, 2.21
/ {mGi_sGi oL ieltog) (221)
with
0+
Gog=M i, Gg M/ (2.22a)
0_ \/ 0o
G O+ csc2 0 & / CS(32 9 (2.22h)
o= \ﬁ o=M \ﬁ :
9+ cos2 6 A /2 (cos? 9
Gi=M dé, Gi=M 2.22¢
' o /00 ‘ VO (2.22¢)
and
To dr B Ts
I. =M , I, = 2.23a
" Ts R(T) Tmin \/ ( )
To jr - Ts
J, = / dr, Jp =2 (2.23b)
Ts R(T) Tmin \/
a<2Mr - aS\) - er{r?’ + a2(r 4+ 2M) — 2aM X
TIr = , (2.23¢)

A

where 7, is the largest (real) root of R(r). These equations are valid when 7y, < 75, which is always
true for light that can reach infinity. The G integrals are expressed in terms of elliptic functions in
Ref. [31] and reproduced for convenience in App. D. In general, the I and J integrals can only be
computed numerically, but we will compute them analytically in the near-extremal regime considered in
Sec. 3.

To summarize: for each choice of net winding number N € Z, polar angular turning points m € Z=9,
final vertical orientation s € {+1,—1}, and radial turning point number b € {0,1}, each solution of
Eqgs. (2.20) corresponds to a null geodesic connecting source to observer. The image position («, () is
given by Eq. (2.15) with the sign of § equal to s.

2.3 Image fluxes

Each null geodesic connecting the source to the observer produces an apparent image of the source on
the observer’s screen. The total flux (energy per unit time) of each image depends on the properties of
the source, as well as the lensing effects of gravity. In order to extract only the effects of gravity, we



normalize relative to the comparable “Newtonian flux”: the flux from the same source at a distance r,
in flat spacetime.

Following Ref. [29], we consider a sphere of proper radius p < M emitting steadily and isotropically
with intensity (flux per unit solid angle) I in its rest frame. The Newtonian answer in this case is
Py =1,
The formalism for computing the relativistic flux was developed in Ref. [29] in the special case of an
extremal black hole (a = M). We now generalize to include the case a # M. The intensity of a narrow
bundle of light rays varies as the fourth power of the redshift (see, e.g., Ref. [32]),

I, = ¢*I, (2.25)

where g is the redshift factor defined in Eq. (2.12). The total flux is the integral of the observed intensity
over the solid angle subtended by the bundle of rays when it reaches the observer screen. Noting that
dadjB/r? is the area element of solid angle, the flux is thus

F, = # dadB 4 (2.26)

2
"o

In general, g depends on the angle of emission from the emitter. We consider p < 1 and hence may
consider rays that deviate only infinitesimally from the central one. In this approximation, g is constant
over the image and, as long as we are restricting to a single image, may be pulled out of the integral,
allowing the flux for that image to be written as

F, g
— = —=A, A= dadpg, 2.27
==L fpdaas (2.27)
where A is now the physical area of the apparent image on the plane of the sky, as defined in App. E. The
coordinates (a, ) correspond to the arrival position of each light ray. To compute the area, we instead
change to coordinates (Ys, Zs) that characterize the emergence of the light ray from the source. Equation
(2.4) provides a locally Minkowski coordinate system (7, X,Y, Z) with origin at the center of the emitter,

= /A 1

t—t, =7 E(TJrst), =T, = §X, 0—0,= —EZ, (2.28a)
= /%

¢— =1 E(QST +wusY) + 74/ 2Y, (2.28b)

where 7/ are the coordinates of the point emitter (center of the spherical emitter).

We call the surface T'= X = 0 the “source screen” and denote by (Y, Zs) the position of intersection
of a light ray with the source screen.” In terms of these coordinates, the area of the image takes the form

6(}/3728) a(}/;azs)
where in the second step we note that the Jacobian may be considered constant to leading order, since

the region of integration shrinks to zero size as p — 0. It remains to compute the Jacobian and the area
ng dY,dZ, on the source screen.

# dy, dZ,, (2.29)

dY,dZs; = ‘

®Note that the source screen is the plane passing through the center of the emitter and lying orthogonal to the Boyer-
Lindquist radial direction, at radius r = rs. In particular, it lies inside of the spherical emitter. If one prefers to imagine
light leaving from the surface of the emitter, these rays must be continued back into the emitter to determine their values
of Y, Zs.
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To leading order in p, the bundle of rays forming the image all leave the emitter’s surface in the same
direction as the central geodesic. A unit vector in this direction of propagation is given by

N 1 ~ ~ o
_ ) @ _ ()
k=5 (p X4+p97 _p Z). (2.30)

Here, p(®) / p® and —p(®) / p() are the direction cosines introduced above in Eq. (2.13), and using Egs. (2.4)
and (2.8) we may compute

(r) R(rs)
D Ts

—dgy ) 2.31
20 = TN Sy, 0.)A(rs) (2.31)

where the upper/lower sign corresponds to that in Eq. (2.8a). The rays leave the emitter’s surface in the
hemisphere defined by k. If we follow them backwards into the emitter, they intersect the source screen
X =0 in an ellipse with area mp?/|k - X| (the projection of the hemisphere onto the screen). Thus we
have

_ LpQ Y(rs, 05)A(rs)
g R(rs)

2
# AV, dZ, = L = np? (2.32)

k-X

It remains to compute the Jacobian between («a, 8) and (Ys, Zs) induced by the geodesic equation. It will
be convenient to do so in three stages,

) 0(80.0,)[|2(s.0.) B (e, B) (2.33)

’ 0(, ) |
520 [a(h) | Jo(h)

(Y5, Zs)

Here ¢ = ¢ — Qgt, and (6, q55> refer to the coordinate values at the intersection of the geodesic with the

source screen T'= X = 0. From Eq. (2.28) we have

1 S = >
95 - 0* == —EZ7 (ZSS — ¢* = ’y( E((JJ - QS)US + \/;) Y, (2.34)

which allows the first determinant in (2.33) to be computed as

8(%, 05) 1 \/ r3 — 3Mr2 + 2aM /232

0V Zs) | o, (Tg/z +aMV?) A ’

(2.35)

where the upper/lower sign once again corresponds to a prograde/retrograde orbit. The third determinant
in (2.33) may be computed from Eq. (2.15) as

N, B) | _ q

_ q
8(5\» @) sin 90\/g2 4+ a2cos2f, — A2 cot2 0, sin 90\/%

(2.36)

The middle determinant in (2.33)~involves using the geodesic equation to study the variation of 65 and g?)s
with A and ¢. Recall that 65 and ¢, are the intersection of the geodesic with the source screen T'= X = 0.
We must therefore vary the geodesic equation at fixed source radius rs (to stay on the screen X = 0)°

5The source time ¢, also varies in the manner prescribed by (2.28) with X =T = 0. However, we will not need the
explicit form because we have cast the problem entirely in terms of the special combination ¢ = ¢ — st, which is possible
because of the co-rotation symmetry.
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and at fixed observer position t,, 74, 00, po. We must first generalize Eq. (2.20a) to allow the source to be
outside the equatorial plane, i.e., 85 # 7/2. This gives rise to an extra integral from 65 to 7/2, and we
write the equation

05
A=0, AEIT+bIT—G?’SiM/ (2.37)

de
2 1/0(0)
where the upper/lower sign corresponds to pushing the source above/below the equatorial plane, and
drops out of the final answer for the flux. A change in \ at fixed ¢ induces changes in 6, and ¢;, and
we denote by d/ d) the total derivative including these changes. Similarly, we denote by d/dg the total
derivative at fixed A. It is these total derivatives of A which must vanish,

@ m} + 09, 04 + 09; 94 =0, (2.38a)
d\l;  OA 90X 00s ' OX D¢,
dA OA 00, 0A 9o, 0A
— 2.38b
i)~ 93 9308, 9300, (2.38b)
From the definition of A, we see that
oAy, oA_ M (2.39)
0 005 O(6s)
From Egs. (2.38), we then see that
0A A
00, =3 00, e
00 ! 00

The partial derivatives of s are easier to obtain since [noting Eq. (2.19)] Eq. (2.20b) is just a formula
for Ao,

~ - _ XGZLS _ QSGQG?L,S
$o — ¢s = B=—Qlo+ 27N,  B=J,+bJr+ i : (2.41)

Taking the partial derivative with respect to \ and q directly gives
d¢s OB d¢s OB

A T T T, ~ = — ~. 2.42
O\ ON 9q 9q (2.42)
Thus, we at last obtain the middle determinant in Eq. (2.33),
a(~ N ) 0B 9B
kA BVLCICO P bl 2.43
< o |9taa aa || (2.43)
8(A, q) 0% 04
Putting everything together, the flux is given by
3/2 oB 9B\ |71
Fy g r3 — 3M7r2 £ 2aMV2%% M il % (2.44)
Fn 232 L aa/2 R(r5)0(0,) sin 6, o4 & ’

where again the upper/lower sign corresponds to a prograde/retrograde orbit, and A and B are given in
(2.37) and (2.41).

To summarize: each choice of A and ¢ that solves Egs. (2.20) corresponds to an image of the source
appearing at time t, at position given by (2.15) and flux given by (2.44). The determinant is analytically
intractable in the general case, but in the next section, we will compute it explicitly in the near-extremal
regime.

12



3 Near-extremal expansion

We now specialize to the case of an emitter orbiting on, or near, the (prograde) Innermost Stable Circular
Orbit (ISCO) of a near-extremal (i.e., high-spin) black hole. We will work with a dimensionless radial
coordinate R, simply related to the Boyer-Lindquist radius r by

r—M
i

We introduce a small parameter € to represent the deviation of the black hole from extremality,

a=M1-—e, e 1. (3.2)

The choice of the third power of € in this expression puts the ISCO a coordinate distance ~ ¢ from the
horizon,

R=

(3.1)

Risco = 21/36 + 0(62). (3.3)

Note that the proper distance d from the ISCO to the edge of the throat (defined here as the equatorial
edge of the ergosphere, r = 2M for all spin) is related to € at leading order by

€ —d/M
This implies that corrections are exponentially suppressed in the distance d, which is the expected behav-

ior near a critical point. That is, the proper size d of the throat acts as the diverging correlation length
of the system.

The observer is at coordinate position R, = (r, — M)/M =~ r,/M, while the source orbits on or near
the ISCO,

Ry =eR+0O(?), R>2'3 (3.5)

Photons departing from this source have rather constrained values of the conserved quantities A and q.
Plugging into Eq. (2.14) shows that

< 3M R cos ®

_ 2
)\—2M+1+QCOS(I)6+O(6 ). (3.6)

Thus, apart from the measure-zero cases cos® = —1/2 and cos ® = 0, A approaches 2M with corrections
scaling like €. This means that emissions are constrained to be near the superradiant bound. We can
keep track of the small corrections by working with a new quantity A instead of A,

~

A= 2M(1 —e)). (3.7)
Following Ref. [33], we will also introduce a new quantity ¢ by

q=M\/3—¢. (3.8)

The screen coordinates are then given by

2M
a=— + O(e), B =sM+\/3— ¢+ cos? 6, — 4cot2 6, + O(e). (3.9)

sin 0,

Notice that A does not appear to leading order. The requirement that [ is real (so that photons can
reach infinity) establishes a range of ¢:

q€ [0, V/3 + cos2 6, — 4cot? 6, ). (3.10)
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Equations (3.9) and (3.10) correspond to a vertical line segment we call the NHEKline (App. A). Thus
we see that, as € — 0, all light ends up on the NHEKIline. Note that there is no range of ¢ at all
when 0 < O ~ 47°, corresponding to the disappearance of the NHEKIline (App. A). Interestingly,
the geometry of the submanifold 8 = 6. is precisely 3-dimensional Anti-de Sitter space with radius

(=aM(v3-1)""2

In App. A, we show that all light from near-horizon sources, not just the equatorial near-ISCO emission
considered here, ends up on the NHEKIline. This generalizes and makes precise an old observation of
Bardeen [0].

For later reference, we now expand various formulae in e. The redshift [Eq. (2.12)] and direction
cosines [Egs. (2.13)] are given by

1

V3t R
1 \/§< 1)
cosd = — — + O(e) = —|g— — | +0O(e), 3.12
2 e n PO 9 g) O (312)
—1)ym+1 2
cos@:(l_:z“\s 1—%—%(9(6):(—1)m+1sg\/3—q2+(’)(e). (3.13)
3R

The factor (—1)™*1! arises in relating the final sign of p? (i.e., s) to its initial sign [the & in Eq. (2.8b)].
Note by Eq. (3.12) that g is bounded above,

g< V3, (3.14)

with the largest values of ¢ achieved by photons emitted in a narrow cone around the forward direction
(cos® ~ 1). The orbital frequency and period are

1 2m
Qs = oYYi + O(e), Ts = Q- 47 M + O(e). (3.15)

Precisely extremal problem

Our goal is to determine image positions and fluxes for a nearly extremal black hole (small €). This
involves plugging Eqs. (3.2), (3.5), (3.7), and (3.8) into Eq. (2.20), and expanding to leading order in
¢ (keeping R, ), and ¢ fixed). We note, however, that the results are identical if we just set a = M
rather than use Eq. (3.2). Similarly, the formula below for the flux of each image [Eq. (3.47)] is identical
(to leading order) in the two cases. To be completely explicit, the problem is therefore equivalent to
considering, to leading order in ¢,

a=M, (3.16a)
re = M(1+€R), (3.16b)
A =2M(1—e)), (3.16¢)
G=M+\3—q. (3.16d)

This set of equations corresponds to an emitter orbiting near the event horizon of a precisely extremal
black hole, with ¢ <« 1 playing the role of a scaling parameter. Thus we learn that the image of an
emitter orbiting near the ISCO of a near-extremal black hole is mapped in a simple way to the image of
an emitter orbiting near the horizon of a precisely extremal black hole. The same agreement was noticed
for the gravitational waves emitted by such an emitter [34]. The agreement is likely a consequence of the
infinite-dimensional conformal symmetry that maps extremal to near-extremal black holes [17,26]. Such
maps were previously used to compute gravitational waves from plunging particles [17-19,23].
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3.1 Image positions

The image positions are determined by solving Eqgs. (2.20). As e — 0, both sides of these equations grow
as log e, and the leading term determines the growth of m. In order to determine A, and hence the leading
flux and redshift of each image, we must keep the subleading O(eo) terms in Egs. (2.20). These terms are
also necessary for any quantitative validity at reasonable values of €, for which log e will be numerically
of order a few.

3.1.1 First equation

The first equation to solve is Eq. (2.20a),
I + bfr =mGy — SG@. (3.17)

The G integrals are expressed as elliptic functions in Ref. [31] and reproduced in App. D. The I integrals
may be computed under the approximations (3.16) using the method of matched asymptotic expansions
(App. C). The results are

L= —tloge+ Lo 14K +O(e) (3.18)
r=——loge+ - = €), .
q & q & (¢> 4+ qDo + 2R,) (¢*R + qDs + 4))
= 2
| (PR + qDs + 4))
I.==1 , 1
. og 1= e + O(e) (3.19)

where we introduced

Dy=\/@R2+8\R+4), D, = /@ + 4R, + 2. (3.20)

Note that Dy = 0 corresponds to emission from a radial turning point (see App. C.2), for which I, and
Jyr vanish. The LHS of (3.17) grows logarithmically in €. This can only be compensated on the RHS by
taking m to scale similarly, and it is convenient to define

1
m=———Iloge+m. 3.21
o 18 (3.21)

The first term ensures that (3.17) is satisfied at leading order O(log¢), and m can be viewed as the O(e°)
correction.” Plugging (3.21) into (3.17) yields the subleading part of the equation,

44*R, b 2R+ gDy + 4\)° ]
—log 7 Ho_ + —log (€F +q s ) =G, (3.22)
q (¢> + gD, + 2R,) (¢>R + qDs + 4) q 4(4 — ¢®)A
Exponentiating this equation yields
_ b
AT (@R +qDs + 40" , (3.23)
@R + qDg + 4\ 4(4 — g?)\2 7 '

" If m is considered a continuous parameter, then we may take m to be truly constant (independent of €). However, in
reality m must take integral values, so m must vary with e. We can write m = mo — dm(e), where mo is an integer and
dm(e) = modi[—1/(qGe) log€]. Then each choice of integer mo defines m(e) taking only properly integral values. We may
still regard m(e) as O(e”) since its variation is bounded by unity.
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where we introduced T > 0 defined by

4 . 4 ]
4" Ro a4 et <1>

T e e = e ™o +0(—). 3.24
q*> +qD, + 2R, q+2 R, (3:24)

We now consider the direct (b = 0) and reflected (b = 1) cases separately. For direct images (b = 0),
we can rearrange (3.23) to give

¢R+4\—T) = —¢Ds. (3.25)
Squaring both sides produces a quadratic equation in A,
(4—¢*)A* —=8TA —2Y(¢*R —2Y) =0, (3.26)

whose solutions are

At =

4 — g2

R
2+ 1+ —(4—-¢?)]|. 3.27
a1+ K- >‘ (3.27)
These solutions to the squared equation (3.26) will only solve the original equation (3.25) when its LHS

is negative.® Thus, an additional condition on a valid solution A is

.
R
A <Y — qT (3.28)

However, Eq. (3.27) shows that \; is always larger than T > 0, and hence can never satisfy (3.28). Thus,
only A_ can be a solution. Plugging the formula (3.27) for A_ into (3.28), we find that the condition for
A_ to be valid is

_ 47 2
R e [z, z4], Zy = — (1 + ) 2 0. (3.29)

q Va—¢

However, recall that R > 0 in the extremal case and R > 23 in the near-extremal case. Thus we can
simplify the condition to

R<g 1+L (3.30)
e\ VieE) |

For reflected images with b = 1, we can rearrange (3.23) to produce the analog of (3.25),

_ 4 — 2 )\2
PR+ 4\ — ({?) — 4D, (3.31)
Squaring both sides gives a quartic equation,
4 — 2 )\2 ~
(TqQ) [(4—¢*)A\* —8TA—2Y(¢°R —2T)] = 0. (3.32)

81n the special case that Dy = 0, corresponding to an emitter orbiting precisely at the photon’s radial turning point, the
equation is solved when the LHS is zero. We will consider this measure-zero case in Sec. 4.1, but for the time being we can
exclude it and thereby make Eq. (3.28) a strict inequality.
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The factor in brackets is actually the same quadratic equation as in the direct case (3.26). Thus the
solutions to (3.32) are A = 0 and Ay defined in (3.27). To be a true solution of the original equation
(3.31), the LHS of (3.31) must be strictly negative. Thus A = 0 is inadmissible and A+ must satisfy

27 \/ 2R 27 \/ 2R
— (1 —14/14+ (4 —¢2 1 14+ 2—(4—q? . .
/\i<4—q2< +4T( q)><0 or /\i>4—q2<+ +4T( ) | >0. (3.33)

However, when A > 0, the outermost turning point is inside the horizon [see Eq. (C.11)], meaning there
can be no reflected image in this case. [The lack of a valid trajectory for b = 1 and A > 0 can also be
seen from the failure of .J, to exist—see the 1/A factor in Eq. (2.23¢).] Thus only A_ is admissible and
only the first condition can possibly be satisfied. Plugging in the formula (3.27) for A_, this condition

becomes
S 2
R > ? (1 + ), (3.34)

Vi

which is the opposite inequality of the direct condition (3.30). Both of these inequalities are saturated
for the boundary case of emission precisely from a photon’s radial turning point.

To summarize, for each choice of m, b, s, and ¢, there is either zero or one solution for A. The solution
exists provided

_ 47 2

R< |14+ — if b =0 (direct), 3.35a
- ( ﬂ) (direct) (3.350)

_ 47 2

R>—|14 — if b =1 (reflected), 3.35b
- ( ﬂ) (reflected) (3.35b)

in which case it is given by [repeating Eq. (3.27), choosing the minus branch]

27
4 — g2

A=

2 — q\/l + 5(4 —q¢?) T = qillequ'gn,s (3.36)
27 ’ q+2 ' '

We have included the large-R, expression for T, making the expressions independent of R,. The full
version of T is given above in Eq. (3.24). Note that one may equivalently choose m, s, and ¢, and hence
determine b from Eq. (3.35).

3.1.2 Second equation

The second equation to solve is Eq. (2.20b). We will work with a dimensionless time coordinate #, in
terms of which the emitter has unit periodicity,

P _to to

o= 7 = goar T Ol (3.37)
In terms of this phase, Eq. (2.20b) can be rewritten as
tob=N+G g=—i Jy 4+ 0J, +2Gm’8—1Gm’5 (3.38)
o — ) - m r T ¢ 9 t . .

Without loss of generality, we restrict to the single period £, € [0, 1].
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The G integrals are given as elliptic functions in Ref. [31] and reproduced in App. D. The J integrals
may be computed using the method of matched asymptotic expansions (App. C), giving
7 3R 1 3D
JT_—IT+q<1—>—<D S)—i—log

(q+2)°R
(Do + Ro +2)(Ds + 2R + 2))

9 9 4 9 o — ZT + 0(6), (339)

(D, + 2R +2))?
(4-q¢*)R?

_3Ds
4\

T~
r:_*Ir
J 2

+ log + O(e). (3.40)

Note that this expression for J, is only valid for A < 0. When A > 0, the radial turning point rmi, is
inside the horizon (see App. C.2) and the integral for .J, does not exist [see the 1/A factor in Eq. (2.23¢)].
This corresponds to the fact that all reflected light (b = 1) has A < 0, which shows that A > 0 lies within
the shadow.

For each choice of discrete parameters m, s, b having a non-zero range of g satisfying the condition
(3.35), A(q) is determined by (3.36) and G becomes a function of ¢q. Equation (3.38) then gives the
observation time ¢,(q) for each choice of an integer N. Restricting to 0 < f, < 1 determines N uniquely
for each ¢, and the multivalued inverse q(fo) corresponds to the tracks of images moving along the
NHEKline. That is, if there are p domains [0, 2**] where #,(q) is invertible and lies between 0 and
1, then each corresponding inverse g, (fo), taken over its corresponding range 0 < t_g‘in <t, < f;,“ax < 1,
describes the track of an image over one period (or just a portion thereof). The number of inverses
changes at local maxima and minima of G(q), corresponding to a change in the number of images at
the associated time ¢,. Minima correspond to pair creation of images, while maxima correspond to pair
annihilation. Finding the tracks of all such images for all choices of IV, m, s, b completes the task of finding
the time-dependent locations of the images. We describe a practical approach, along with an example,
in Sec. 4 below.

3.1.3 Winding number around the axis of symmetry

The winding number around the axis of symmetry for a photon trajectory is n = modao;A¢, where A¢ is
computed from Eq. (2.16b). Using the method of matched asymptotic expansions described in App. C,
we find that to leading order in e,

1 (D
Ap = e (R - q> + O(loge). (3.41)

Note that this leading order expression diverges linearly in e.

3.1.4 Scaling with ¢ and R,

It is instructive to examine the scaling of various quantities as ¢ — 0 and R, — oo. Plugging in (3.21)

for m into the definition (3.38) of G, we find
1 ~ 1 1 _ 1 -
=——1J r— —— | 2Gy — = 1 2GT° — —GY . .42
g 5 [J +bJ qG9< Gy 2Gt> oge+2Gy 2Gt ] (3.42)

The integral J, [Eq. (3.40)] is finite for all parameter values, while the integral J, [Eq. (3.39)] diverges
as € —» 0 and as R, — 00,
4¢*

7 _q<1_3R> _ (1_31?5)_710
"2 4\ 8 A 20 ® (q+2) (R + qDs + 4X)

7 R, 1
+ % loge — <2 + log Ro> +0 <Ro> + O(e). (3.43)

(qg+2)°R
2(Ds + 2R + 2))

+lo
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Thus Eq. (3.42) has logarithmic divergences in ¢ — 0 as well as linear and logarithmic divergences in
R, — oo. These signal that the integer N will become asymptotically large. Similarly to Eq. (3.21) for

m, we may define
171 4Gy — Gy R, -
N Bl i loge — | =2 41 o N, 44
e (= (5w ) |+ o

where N can be regarded as O(e®) and O(R)) (see footnote 7). Plugging (3.44) into (3.42) gives an
equation with all terms (’)(60),

.1 3R 3D 7 4g" (PR +qDs+ 40"
SN CTRNET.) RN T A IV SR
2 | 2 4\ 8 A 2q (¢g+2) [4(4 — ¢2)A2]
T, b—1
(¢ +2)* <Ds+2R+2/\)2 S
+ log - + 26T — G Y 3.45
24 — ¢2)° R ¢ — bt (3.45)

Solving this equation is in effect the main step in producing an image, but in practice it is easier to work
directly with (3.38), where the constraint that m and N be integers can be more directly imposed.

3.2 Image fluxes

We now expand formula (2.44) for the flux of an individual image to leading order in e. Noting that

Q:_ 1 @:_7M det % %7? :7\’3_Q2det ?‘le %7? (3.46)
O\ 2Me’ o4 gM os % 2qM>e S %)l
we have
_ ~1
Fo 3 0B 9B
To o ;ﬁ 19 det (gg o)l (3.47)
N S sinfoy/1— L /G0 (6,) 2N
where g and Dy are given in Egs. (3.11) and (3.20), respectively, and [see Eq. (3.9)]
5\2
O0(8,) = O(0,)|r=0 = 3 — ¢* + cos® O, — 4cot®f, = (M) : (3.48)

Recall that A and B are defined in terms of the various integrals I, J, and G by Egs. (2.37) and (2.41).
To leading order in €, the determinant is

oB 0B m,s
S 5 ) N[O -\ OG)
det| 2% 3‘1>‘: —(J.+bJ [ I, 4+ bl ) — =2 } (3.49)
dA  9A T T r r
(5 8)| - |5 0m) [0 00) - 25
B |0 -\ 0GE”
_ a <L~ + bL«) laq (Jr + bJr) + Tq + O(E log 6),
where we introduced
ms MG —Qa*Gl
G = . (3.50)

to M
Notice that the 0\Gy"* and 0,G7}” terms do not contribute in (3.49); these terms are subleading on

account of the factor of € in the Jacobian O\ [see Eq. (3.46)]. The log e scaling of m makes them part of
the O(eloge) error.
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The expressions for the G integrals are given at the end of App. D. The unhatted integrals scale as log e
on account of the log e scaling of m, while the hatted integrals are (’)(60), and therefore subleading. The
derivatives of the I and J integrals may be computed for small ¢ by the method of matched asymptotic
expansions, and the results are listed in Eqs. (C.15) of App C. Using these expressions, the remaining
terms in (3.50) are given by

0 - 1 R 1
(I +0bI) = —~|(2b—1)—~— + ~ |, 51
w( +b ) /\[(b )Ds+q} (3.51a)
d I, +bl, 1 ) R 1 2 4\ 2R,
— (I, +0bl,) = — - 2b—1)— — — + = 20— 1) = — :
8q< " ) ¢ qa—q) [(8 ! )<( )Ds Do+Q> o )Ds D,
(3.51b)
0 =y 1 4R+X 7 3(2b—1)Ds+qR
5(& +bJr> = o [(21;— D=5t s , (3.51c)
0 - 7 - 1 3 (26—1)Ds+qR 11
—(Jp+bJy) = — (L + b ) + = — — - = 51d
aq<‘]+‘]> 2q( + )+2 8q A ¢ (8.51d)
1 (2 1)(32—5q2)R+(16—q2)/\ (7—4*) (8 —¢* +2R,) LU
2(](4_(]2) Ds Do q '

In these expressions, we kept both the leading O(log€) and subleading O(€) contributions. It follows that
the determinant (3.49) scales as loge with subleading O(eo) corrections included. Putting everything
together, the flux (3.47) scales as €/ log ¢ with subleading O(e) contributions included. These subleading
corrections are numerically important at reasonable values of e.

4 Observational appearance

We now describe our practical approach to implementing the method described above and discuss details
of the results. We implemented this procedure in a MATHEMATICA notebook, which is included with the
arXiv version of this submission.

The image depends on four parameters: ¢, R, R,, and ,. One must choose ¢ < 1 and R, > 1 for
our approximations to be accurate. The radius R must satisfy R > 21/3 for the emitter to be on a stable
orbit of a near-extremal black hole. The observer inclination , must satisfy arctan (4/3)/4 < 6, < w/2
for there to be any flux at all (under our approximations). Here we will focus on the following example:

T 1 0 2 5B 1/3
R, =100, 0o = 5 19 84.27°, e=10"%, R = Rigco = 27/°. (4.1)
This describes an emitter (or hotspot) on the ISCO of a near-extremal black hole with spin a/M =
99.99995%, viewed from a nearly edge-on inclination.

As described below Eq. (3.40), each image is labeled by discrete parameters m,s,b, N as well as an
additional label if the function G(¢) has maxima or minima. In practice, it is easiest to choose m, s, b first
and then determine what range of IV is allowed and whether there are any extra images due to maxima
or minima. For each choice of integers m, b, s, the condition (3.35) determines the allowed values of ¢ by
the condition (3.35). We can then determine A(¢) [Eq. 3.36] and hence G(q) [Eq. (3.38)] over the allowed
domain. The range of G(gq) over this domain determines the allowed values of N by the requirement
that t, = G + N lies between 0 and 1. (In practice we impose a small-¢q cutoff, as explained in Fig. 2.)
For each allowed value of N we invert fo(q), labeling the inverses ¢; (fo) by a discrete integer i. These
functions q(fo) correspond to segments of an image track; each such track segment is uniquely labeled
by (m,b, s, N,i). An example is shown in Fig. 2.
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Figure 2: Determining track segments for m = 2, b = 0, s = +1 with the parameter choices of (4.1).
The condition (3.35) allows the whole range of g. On the left, we plot G(q) with color-coding explained
below. In the middle, we plot the tracks ¢(t) of the images over the single period 0 < t, < 1. The
yellow, magenta, and cyan curves have N = —6, —7, —8, respectively, and no extra label i, while the red,
green, and blue curves have N = —9 and i = 1,2, 3, respectively. The function G(q) actually extends to
negatively infinite values near ¢ = 0, corresponding formally to infinitely many images (values of N) near
the ends of the NHEKIline. However, these images are negligibly faint (rightmost plot). The complete
image is formed by stitching together all track segments (labeled by m,b, s, N, ).

For each track segment q(fo), we may determine )\(fo) by (3.36). From these two conserved quantities,
we may then compute the main observables for the segment: image position («, ) [Eq. (3.9)], image
redshift g [Eq. 3.11], and image flux F, [Eq. (3.47)]. The complete observable information is built up by
including all such track segments (all choices of m, b, s, N,i). Formally, there are infinitely many segments
since m and —N can become arbitrarily large, but in practice the flux is vanishingly small for all but a
few values of m and N (see Sec. 4.1 below and Fig. 2 for details). We find that the track segments line up
into continuous tracks that begin and end either at the endpoints of the NHEKIine with vanishing flux
or as part of a pair creation/annihilation event with infinite flux (a geometrical caustic). More generally,
caustics appear when different tracks intersect. The infinite flux can be traced to the vanishing of the
derivatives 005/ 0¢ and 0¢%/ 04, indicating that the image extends in the vertical direction. That is, the
whole NHEKIine flashes at caustics.

Figure 3 shows the main observables for three different values of spin. In each case, there is a
bright primary image (green) together with secondary images that are important only near caustics. The
primary image is a combination of direct (b = 0) and reflected (b = 1) light, with the transition occurring
near peak flux. These photons are emitted near the forward direction (equivalently g near v/3) and orbit
the black hole (9(6’1) times, while crossing the equatorial plane O(loge) times, before emerging from the
throat. For example, at ¢ = .01, the primary image is composed of segments with two and three equatorial
crossings (i.e., m = 2 and 3), and with winding number around the axis of symmetry [Eq. (3.41)] ranging
between 17 and 23. The peak redshift factor of g ~ 1.6 corresponds to light emitted in a cone of 27°
around the forward direction. For the secondary images, we have included a representative selection to
illustrate the structure. The typical redshift in this case is g = 1/v/3 (corresponding to A ~ 0). As the
spin is increased, the typical position and redshift of the images do not change, while the typical flux
scales as €/ loge.

We see that the light emerges with typical redshift factor of either g = v/3 (blueshifted primary image)
or g = 1/4/3 (redshifted secondary images). These factors will shift the iron line at Ep.xa = 6.4 keV to
11.1 keV and 3.7 keV, respectively. Astronomical observation of spectral lines at such frequencies could
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be an indication of high-spin black holes. This is tantalizingly close to the observed peak at 3.5 keV [35].
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Figure 3: Positions, fluxes, and redshift factors of the brightest few images for three different values of
near-extremal spin. Left to right, we have ¢ = .15 (Thorne limit), ¢ = .01, and ¢ = .001. We have
color-coded by continuous image tracks, each of which may be composed of multiple track segments in
our accounting (different values of m,b, N, s,i). For example, the primary image (green) is composed of
3, 4, and 5 segments in the e = .15, .01, .001 cases respectively.

4.1 Peak flux

The complete image is assembled from all the track segments (m,b, s, N,i). The parameters b, s, N,i
have finite ranges, while in principle m can take any value m > 0. However, according to the discussion
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surrounding Eq. (3.21), we expect that only values of m ~ —1/(¢Gy) log € should matter. Our numerical
analysis confirms this suspicion and reveals that the precise value of the maximum flux is the special value
mg such that the radius of emission R precisely coincides with the radial turning point zm [Eq. (C.11)] of
the photon trajectory. This is determined by plugging R = &y, (equivalently Dy = 0) into the geodesic
equation (3.17),

L gy, = moGoy — sG. (4.2)

Note that the dependence on b has dropped out because I, vanishes when Dy = 0. Explicitly, we have

Gy 1 4q? 2 R,
mo = s—— + lo 1+ — . 4.3
TGy " qGo & q* +qD, + 2R, Vd—q? ) eR (4:3)
This special value of m also corresponds to the boundary between direct (b = 0) and reflected (b = 1)
light. Indeed, using 16" = €995 | the conditions (3.35) can be expressed as
m < myg if b = 0 (direct), (4.4a)
m > myg if b =1 (reflected). (4.4b)

Figures 4 and 5 demonstrate the peak flux and its properties. In Fig. 4, we show the dependence of flux
on m at fixed ¢, showing the peak at m = mg and exponential falloff on either side. In Fig. 5, we show the
peak flux in the time domain along with the winding number A¢/27. The cusp in the winding number
is associated with Dg = 0 [see Eq. (3.41)], showing that peak flux is indeed Dg = 0 (i.e., m = my).
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10 10 10
w1 , 0w, 10
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Figure 4: Left to right: plots of F,/Fy for e = .15 (Thorne limit), ¢ = .01, and € = .001, with parameters
otherwise as in Eq. (4.1). We set ¢ = 3/2 and let m vary. Blue and red correspond to direct (b = 0) and
reflected (b = 1), respectively. At each value of m and b, there are two images, corresponding to s = +1,
except for the special case m = 0, which has only one sign of s. The vertical lines are at the predicted
peak value of flux, m = my for each value of s € {1,—1}.

Finally, we derive simple formulae for the flux, redshift factor, and winding number at peak flux.
Since m must be an integer, m = myg forces ¢ to take specific values found by solving Eq. (4.3). Of the
several such solutions for ¢, we find numerically that the peak flux corresponds to the largest value of
¢ in the allowed range (A.12). (We also find that as e — 0, the other solutions for ¢ correspond to the
fluxes of secondary images at the same moment.) When m = mg and R = Zmin, we have

_ _ 2
A=-PR, Y=(1-P)PR, PEl*\/l*qzzo, (4.5)
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Figure 5: The flux (black) and winding number (gray) of the primary image for the parameters (4.1).
The position of the source at the time of emission is given by mods,;A¢. Notice that the single peak in
observed flux corresponds to several orbits of the source.

We may now plug m = myg (i.e., Eq. (4.5) and therefore Ds; = 0) into Egs. (3.11), (3.41), and (3.47) to
determine the flux, redshift, and winding number at the moment of peak flux. We find

Fo _ R 99° VS B 4.6a
Fy Xsin90@m7 g \/g—%P’ ¢ 2P eR’ ( )
B 0B
X = 2D, det<§g gg) (4.6b)
X 9q
:‘<1£>8G—Zw+36(;$ 1+¥<1q2_2R°_8E>+<1+§>—IT|R:M“ (4.6¢)
P) 9q¢ P 0q 4 —q¢? qD, q? P g |

Note that the dependence on the parameter b € {0, 1}, which is undefined at the transition between direct
and reflected light, has again dropped out, this time because it only entered through an overall factor of
|2b — 1| = 1 multiplying X. We see from Eq. (4.6a) that the redshift factor at peak flux is bounded below
by 1/ V3, so a redshift factor of at least 1 / V3 will always be reached by at least one image over each
period. Numerically, we also find that the redshift factor is always maximized at peak flux, so Eq. (4.6a)
gives an upper bound on the redshift factor over the image period.

To summarize: The peak flux, as well as the associated redshift factor and winding number, are given
by Eq. (4.6a), using the largest value of ¢ [in the allowed range (A.12)] such that mg [Eq. (4.3)] is an
integer.
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A Shadow and NHEKIline

A useful reference for understanding images from light near a black hole is the black hole “shadow,”
defined as the portion of the image that would be dark if the black hole were uniformly backlit [0].
We now briefly review the basics and present the extremal limit. The edge of the shadow is set by the
threshold between captured and escaping photons, which corresponds to unstable massless geodesics with
fixed r = 7. These “spherical photon orbits” satisfy

R(F) = R'() = 0, (A1)

where prime denotes derivative. Provided 0 < a < M, these equations imply

72 (7 — 3M) + a®(F + M) 73/

oG D) T M\/éla?M — (7 — 3M)%. (A.2)

§o_

As noted following (2.7), orbits crossing the equatorial plane have real §. Thus there is a spherical photon
orbit only when the quantity under the square root (A.2) is positive. This entails a condition on the
radius 7

2
T E[F_,T4], 7+ =2M [1 + COS(3 arccos :I:;&)} . (A.3)

The shadow edge is the curve (a(7), B(7)) obtained by plugging Egs. (A.2) for ¢ and X into Eq. (2.15).
The parameter 7 ranges over the region where (A.3) is satisfied and f is real. (The latter condition is
equivalent to the requirement that photons near to the unstable orbit can reach asymptotic infinity at
the desired inclination.) It is possible to express the precise range of 7 in closed form as the solution to
a quartic, but the expression is not particularly helpful.

A.1 Extremal limit

The extremal limit of the shadow is slightly subtle. Letting a — M in Eqs. (A.2) and (A.3) gives

M)\ = —(7* — M? — 2M7), (A.4a)
MG = #/2V/AM — 7, (A.4D)
(Fo,74) = (M,4M). (A.4c)
The shadow edge is then the curve traced by
Ma(F) = (7 — M? — 2MF) cscb,, (A.5a)
MPB(T) = j:\/f3(4M —7) + M4 cos? 0, — (72 — M2 — 2M7)? cot2 6,. (A.5b)

However, this curve is not in general closed: it takes the shape shown in the dotted line in Fig. 1, with
the two endpoints at

(Qend, Bend) = (@, B)|7=nr = (—2M csc Oy, EM /3 + cos2 0, — 4 cot? 90>. (A.6)

When the quantity under the square root is negative, there are no endpoints and the curve is closed. The
condition for an open curve is thus 0.yt < 0, < ™ — O4t, Where

Ocrit = arctan[(4/3)1/4} ~ 47°. (A.7)
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Since the curve does close for all a < M, our a — M limit has missed an important piece. This piece
comes from parameter values 7 arbitrarily near M. To recover it, we use an alternative parameter R
defined by

a=My1- 52 f:M(1+6R>. (A.8)

Now Egs. (A.2) and (A.3) give

A =2M + O(6), (A.9a)

. 4
0= My f3- = +00), (A.9D)
o M<1 + \%5 +0(8?), (A.9¢)
7y = 4M + 0(8?), (A.9d)

and now the shadow edge is the curve traced by

M« (R) = —2M?csch, + O(0), (A.10a)
Mﬁ(]:%) :iMQ\/S—i-COSQOO—ZlcotZHO— ];;—FO((S). (A.10Db)

The allowed range of R can now be determined from the twin requirements that 7 € [f_,74+] and 5 € R.
The result is

2
\/3+005290—4cot290’

R e

oo) +0O(5). (A.11)

As § — 0, this precisely covers the missing line in Fig. 1. We name this segment the NHEKline in light of
the fact that emission near the line originates from the NHEK region of the spacetime (App. B below).

We can determine the ranges of the conserved quantities A and § by plugging Eq. (A.11) into
Eqgs. (A.9a)—(A.9b), and from these we can obtain the ranges of the alternative A\ and ¢. Putting every-
thing together, the NHEKIline can be characterized in three equivalent ways:

Screen coordinates : a = —2M cscb,, 18] < M\/3 4 cos? 0, — 4 cot? b, (A.12a)
Conserved quantities <;\, (j) : A =2M, M cos0,\/3 + 4cot2 0, = Gumin < § < V3M, (A.12Db)
Conserved quantities (A, q) : A=0, 0 < ¢ < Gmax = V/3 + cos2 0, — 4 cot? 0. (A.12¢)

This line exists provided Ogpit < 0, < T — Ocrit.

To summarize: the extremal limit of the Kerr shadow is given by the union of the curve (A.5) and
the NHEKline (A.12). This reflects two separate extremal limits of the Kerr spacetime.

B NHEK sources

In the presentation given in the main body, the distinctive feature of the calculation—all light appear-
ing on the NHEKIline—simply emerged from the detailed calculations. We now explain the spacetime-
geometrical origin of this feature and thereby establish that it persists for near-horizon sources more
generally. The key observation is that source and observer are adapted to two distinct extremal limits
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that have a singular relationship, forcing generic light from the source to appear in a special location on
the observer screen.

The variety of extremal limits and their physical consequences are discussed in Refs. [18,20, 34, 30].
We can discuss the different limits in terms of barred coordinates defined by
R ~ ~ t

f e —_——_— e K2
©=0, o=9 5L a=MV1-—kK? (B.1)

~ Kpt ~

T=onr =
Letting k — 0 at fixed barred coordinates, different choices of p give rise to different limits. The choice
p = 0 is the usual limit to the extremal Kerr exterior, while any choice 0 < p < 1 gives a patch of the
NHEK metric. When 0 < p < 1 it is the Poincaré patch, while the special case p = 1 gives a smaller,
“near-NHEK” patch. For p > 1 the limit is singular.

When a tensor field has a finite, non-zero extremal limit with p > 0, we say that it has a good near-
horizon limit. We will show that any photon whose four-momentum p* has a good near-horizon limit
arrives on the NHEKIine. First, note that

Do = 05y O+ ——0y= 1 0. (B.2)

¢ — Yo 3 2M ¢ = oM T '
Now fix a value p > 0. A particle whose four-momentum p* has a good near-horizon limit (i.e., finite
extremal limit with p > 0) will have a finite “energy” —p, 8;. However, given p > 0, Eq. (B.2) shows that

the usual energy E = —p,, 9;' and angular momentum L = p, 6(‘; will satisfy A=2M as k — 0. (Recall

the definition A = L/E.) This reproduces Eq. (3.7) as e — 0, and the same arguments then given in the
text prove that the photon ends up on the NHEKIine. Similar arguments were given by Bardeen [(] in
the special case of an extremal black hole and an equatorial observer and in Ref. [33] more generally.

Our observer sits at infinity and hence is adapated to the usual extremal limit (p = 0), which pre-
serves the asymptotically flat region. Mathematically, the observer four-velocity u4 has a finite, non-zero
extremal limit when p = 0. On the other hand, our source is on/near the ISCO and hence is adapted
to p = 2/3 [see Egs. (3.2) and (3.5)]. Mathematically, the source four-velocity u4 has a finite, non-zero
extremal limit when p = 2/3. Any photons emitted by the source will similarly have four-momenta
p* with finite, non-zero extremal limits when p = 2/3, and hence arrive on the NHEKline. Thus the
appearance of the light on the NHEKIline can be attributed to the fact that we consider a near-horizon
source, the p = 2/3 ISCO.

The ISCO is not the only physically interesting near-horizon orbit. For example, the innermost bound
circular orbit (IBCO) has a finite limit with p = 1 (see, e.g., Ref. [30]), and there are also out-of-equatorial
orbits that are similarly adapted to near-horizon limits. Most models of accretion disks terminate with
orbits lying somewhere between the ISCO and IBCO [37]. The plunging portion of the accretion flow is
slightly perturbed from the inner edge of the disk and hence will also be near-horizon adapted. (In fact, it
should be possible to calculate the flux from a plunging emitter by mapping our circular-orbit calculation
using the techniques of Ref. [18].) In summary, a wide variety of physical processes will generate p > 0
photons, which therefore end up on the NHEKIline. We also expect that the general features of the light
curves and redshifts seen in our calculation will persist more generally, as these are determined essentially
by the near-horizon geometry shared by more general sources.

C Radial integrals

We now describe the computation of the various radial integrals in the limit ¢ — 0. This generalizes the
extremal case computations in Ref. [33]. We discuss two representative examples in detail and then quote
results for the remainder.
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C.1 Matched asymptotic expansion example: I,

We are interested in computing the integral

Todr o\ 2 )\ 2
I:M/ —_—, R(r):<r2—|—a2—a)\) — (r* —2Mr + a? [(jQ+<a—)\)]. (C.1)
r s /R(T) ( )
This is an elliptic integral at any value of spin a, but the closed-form expression is intractable because
it requires the roots of the quartic polynomial R(r). However, the integral may be approximated using
matched asymptotic expansions under the regime of relevance to the paper. This regime is ¢ — 0 with
[copying Egs. (3.2), (3.5), (3.7), (3.8)]

~

a=MV1-6, rg=M(14+€eR), A=2M(1—-€\), G§=M/3-¢. (C.2)
We may equivalently use Eq. (3.16).

We will use the radial coordinate R given in Eq. (3.1). We introduce constants 0 < p < 1 and C' > 0
and split the integral into two pieces,

“CdR Ro dR

Ir:Mz/ +M2/ —. (C.3)
eR \/773« erC \/ﬁ

There is no approximation at this stage. However, the scaling of ¢ (with 0 < p < 1) introduces a

separation of scales € < €? < 1 as ¢ — 0. Given the limits of integration, we may approximate the first

integral using R ~ € and the second integral using R ~ 1. The constants p and C' will of course cancel
out of the final answer.

To compute the first integral, we make the change of variables x = R/e and expand in € at fixed x.
The answer is:

A2 /Epc AR _ e /ﬁp_lc ! +0(e) | da (C.4)
& VR R VP22 +4X(2z + N) '

e
= ]og —
q *R + qDs + 4\

1
) - 510ge+ log C] + O(eP), (C.5)

where Dy was defined in (3.20). We determined the O(eP) error scaling in (C.5) by keeping subleading
terms in (C.4). To compute the second integral we expand in € at fixed R. The answer is:

(C.6)

R R
° dR o dR
M2/ — =M - ~+O(e)
eCc VR e \ R\/¢* +4R+ R

1 2¢*R, 1
=2 — —loge—1 P '
Q[Og<q2 +qDo+2Ro> 9 08¢ Ogc} +0("), (C.7)

where D, was defined in (3.20). Again, the error scaling in (C.7) was determined by keeping subleading
terms in (C.6). Adding Eqgs. (C.5) and (C.7) gives the complete integral:

44*R,
(¢> 4+ qDo + 2R,) (¢>R + qDs + 4))

1 1
I. = 4 loge + —log + O(e). (C.8)

q

Once again, the O(e) scaling of the error term was determined by keeping subleading terms (i.e., per-
forming the matched asymptotic expansion to the next non-trivial order). The coefficients of O(eP) terms
all properly cancel out, leaving corrections scaling like e. We have verified (C.8) numerically against the
exact integral (C.1).
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C.2 Second example: I,

We are also interested in computing the integral

I, =2M r:n \/%, R(r) = (7“2 +a? — aj\)Q — (r* = 2Mr +a?) [(f + (a - 5\>2] (C.9)

Again, the “exact” expression is intractable and we instead compute as € — 0 given (C.2). Here rpin
is the largest root of R(r) such that ryi, < rs. The requirement ryi, < rs means that ryi, must (like
rs) also approach the horizon as ¢ — 0. We find that there are only roots for R ~ € (rather than, say
R~ € 2). This means that the integral takes place entirely in the NHEK region R ~ ¢ (as opposed to
having a piece in the near-NHEK region R ~ €/2). Introducing z = R/e, we have

VR = eM?\/q222 + X2z + \) + O(€2). (C.10)
The larger root is
2
Tain = (—2>\ PNV q2) +O(e). (C.11)

(For A > 0, the turning point is inside the horizon, but we may still compute the integral. The non-
existence of J, precludes the existence of a valid geodesic trajectory.) We may now compute the integral
as

I, = 2M2 /R de +0(e) (C.12a)
" zmin \ V@222 + 4N(27 + N) .
1 (¢*R + qDs + 41)*
= glog 11— + O(e). (C.12b)

We have determined the O(e) scaling of the errors by keeping subleading terms in (C.11) and (C.12a).

C.3 List of results

We now list the results of using these methods to compute the radial integrals that appear in the Kerr
lens equations (2.20) in the regime (C.2). We find:

To dr 1 1 4q4Ro
I, =M ——— =——loge+ —1o — + O(e), C.13a
re A/ R(r) q 8 q s (¢®> +qD, + 2R,) (qu +qDs + 4)\) (€) ( )
5 2
- T dr 1. | (®R+qDs +4))
I, =2M —_— = + O(e), C.13b
roin VR(F) 4 1= ) (€) (C.13b)

a(QMr - aj\) — Qg1 [r?’ +a?(r+2M) — 2aM5\}

J. = 0\/%@ T = A (C.13c)
(¢+2)°R

+0>e), (C.13d)

__ZI +q<1_3R>_1(D _31)3)_1_10
P! o\ 7T 1 S| (Do + Ro+2)(Ds + 2B + 2))

> 2

. s, 7. 3D, (Ds + 2R + 2))
Jp =2 dr = —=I, — 222 41 _
. Ll LR St e

+ O(e), (C.13e)

Tmin
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where D and D, are as defined in Eq. (3.20),

Dy = \/q2R2 +8AR+4)2,  D,=+/q>+ 4R, + R2. (C.14)

These results appear in the text in Eqs. (3.18), (3.39) and (3.40). Next, the variations are’

?91; _ i(li _ ;) (C.159)
381; _ _iéz? (C.15b)
%Iqr __Iqr_Q(éliqz) [(8_q2) (£+50_3> +2+21io]’ (€450
%:_Z+M[(8_qz)£+2} (C.15d)
(T,
D)
%{1 _ ;1r+;+;l*;qR; (C.15g)
L1 [(32—5q2)R+(16—q2)A+ (7T—¢*)(8—*+2R,) 2
2q(4 - ¢°) D D, q|
é;? _ 27qu - ! - (32— 592)RDJQ (16 —¢*)A j’q%, (C.15h)
D Angular integrals
We quote relevant results from Ref. [31]. In terms of a new variable u = cos? §, we find that the angular

potential ©(u) = G2 + u|a? — A\2(1 — u)_l} has roots at

/ 42 1 A2+5\2
Ui:Agﬂ: Ag—F%, A9:2<1—QG2 ) (Dl)

As aforementioned in Eq. (2.10), this implies that ©(€) has roots at 6+ = arccos F,/uy, with the ordering
0 < 6_ <64 < m. Note that we always have u_ < 0 < u4.

In the course of our computation, we encountered errors in Ref. [29]. Equations (A13) & (A15) are missing a factor of 2 in

the term 4/r2 + rf/ 2, which should instead read /72 + 2r§/ 2. This factor correctly appears in Eq. (A5) but is subsequently

dropped. The last term in Eq. (A20) displays the integrand r* — §*(r — 1)2 instead of the correct r* — G*r(r — 2). In the
(near-)extremal limit, this changes the e-scaling and therefore qualitatively alters the result.
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The incomplete elliptic integrals of the first, second, and third kind are respectively defined as

dt

sin ¢
m)
Hel / V1 —msin? / VA= 2)(1 —mt2)
sin ¢ 1— 2
E(¢|m) = /0 V1—msin0dg = /0 L=mi g (D.2b)

1—¢2

(D.2a)

TI(n; ¢|m) —/¢ ! 40 —/qu5 ! a (D.2c)
’ Jo (T—mnsin?0) /1~ msin2e  Jo L—nt? /(1 —2)(1 — mt?) .

Elliptic integrals are said to be “complete” when the amplitude ¢ = 7/2. The complete elliptic integrals
of the first, second, and third kind may thus be resepectively defined as

K(m) = F(g‘m) - 22F1<; ; 1;m>, (D.3a)
E(m) = E(g’m> - ;TQFl(; %; 1;m>, (D.3b)
II(njm) = H(n; g‘m) (D.3c)

where o F; denotes Gauss’ hypergeometric function.

The angular elliptic integrals that appear in the Kerr lens equations (2.20) are

0+
M/ e =a (D.4a)
VO(0) alyv=u= " \u_
. /249 M Uy
=M Fly,|—), D.4b
o=t [ = e () (D4b)
O+ csc? 9 2M Uy
Gy=M 0wy |[— D.4
o= M| e T v (] (D-4¢)
A /2 csc29 M Uy
Go=M I uy; O, — ), D.4d
o= M), Ve T v (o) (D40
O+ C0829 AMuy U
Gi=M g=—— "+ F'(—+ D.4
v [ = e () (D4¢)
Gi=M / 050 g 2Muy E’(qfo “*), (D.4f)
lal/—u_ U_

where E'(¢|m) = 0, E(¢|m) and

cos2 6,

Ut

V¥, = arcsin

(D.5)

In the near-extremal regime (C.2),

2 2\ 2 29
ur = Q1 + O(e), Q4 = % -3+ \/12 — (2q)2 + <(]2> =0, W, = arcsin CO; 2+ O(e).
+
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As such,

Go = L= oFy (% S %) O, Gy= %F(xp Q+> +0e), (D.7a)
Gy = \/_QT <Q+ g*) + Oe), Gy = %n(gﬁxy Q) 4O, (Db
G =— 4_QQ+_E’(8+> +0(e), G =— 2_QQ+_E’<xI/ Q) +0(e). (D.7¢)
Now define
Grs = 2G5 — ;G \/% [2H<Q+ 3) + Q+E<gf>] +0(e), (D.8a)
Gig = 2Gy — %G = \/% [2H<Q+; v, o ) + Q+E’< o )} + O(e). (D.8b)

Then in the near-extremal regime, we find that the G integral defined in Eq. (3.50) becomes

s AGHY = Q.G
G = 7

m,s 1 m,s A
=267 = G + O(e) = mGug — sGig + O(c). (D.9)

Finally, note that in our computation, we only need the variations of these expressions with respect
to ¢, for which (at leading order in €), it suffices to take a simple derivative with respect to g.

E Screen coordinates

Figure 6: The screen coordinates (a, ) are Cartesian coordinates for the apparent position on the plane
of the sky.

In this section, we derive Eq. (2.15) for the screen coordinates («, [3), which are just Cartesian coor-

dinates for the apparent position on the plane of the sky. The observer (green dot in Fig. 6) is assumed
to be far away from the black hole, where the curvature is negligible and the spacetime is approximately
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flat. The unit vectors are related to a Cartesian coordinate system {x,y, z} centered at the apparent
position of the black hole by

& = —sin ¢, & + cos @, 7, B = F cosb,(cos ¢, T + sin ¢, ) £ sinb, 2, (E.1)

where the upper /lower sign corresponds to an image that lies in the northern/southern hemisphere of the
observer’s sky. Let #s denote the apparent position of the source on the screen (red dot in Fig. 6). Then
on the one hand,

Fs=aa+BB3= —(asin ¢, £ B cos b, cos ¢,) + (acos p, F P cosb,sing,)y £+ Ssinb, z. (E.2)

The apparent position &5 of the source is obtained by extending the unit tangent vector ¥, of the of the
photon at the observer a distance 7, in the fictitious global Cartesian coordinate system (orange line in
Fig. 6). The unit tangent is given by v¢ = pi/pt, where i € {1,2,3} and p} is the four-momentum of the
photon at the observer, expressed in Cartesian (asymptotically Minkowski) coordinates. That is,

zl =1 — r(,&. (E.3)

In terms of spherical coordinates, we find

= () [ 0 ) 0

T

—; = —| cos 8, cos cbop—g — sin 8, sin gbop—: T — | cos8,sin gbop—to + sin 6, cos gbop—: 7 + sin Qop—:é. (E4)
TO pO (o] pO o pO

Equating the components of this expression to those in Eq. (E.2) yields

¢ 0
o = —r2sin 90%, B = irgp—;’. (E.5)
Using Eqgs. (2.8), we find that as r, — oo,
A ) - 1
(a,8) = | ———,%+\/ 4% +a%cos?20, — \2cot?0, | + O — ). (E.6)
sin 6, To
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