


be used to study and define with accuracy the border between
metastable states can be useful in solving this kinetic problem.
The relevance of an accurate determination of energy barriers
in configurational space has been stated in a number of papers
in the recent literature.10,11

In this paper we present a method, called the GRadient
Adaptive Decomposition method or GRAD, which provides an
accurate definition of the energy barriers and related borders,
even when the number of centroids, or seeds, used to define the
initial state in MSM is small. The method uses a noise-filtering
procedure to smooth the energy landscape, reducing the
roughness due to errors, and determines the barriers and
related border by directly bringing to the method information
about the smoothed slope of the free energy landscape, during
the refinement step.
Effectively, the GRAD method finds the separation between

states by maximizing the time scales associated with metastable
states. It adaptively refines the position of state barriers by
randomly sampling microstates along the border wall, a less
costly alternative than splitting the full configurational space,
and then lumping each microstate in the direction of free
energy surface gradient. Newly predicted barriers are accepted
on the condition that the system metastability, or probability of
simulation data remaining within a state over a given lag time,
has increased.
In its present version, the method is developed for two

dimensions plus the energy; its generalization to higher
dimensions is possible, even if not strictly necessary. For
many dynamical problems of interest, simulation trajectories
can be conveniently projected onto a low-dimensional space
before the MSM procedure is applied. More in general, in the
case of protein dynamics, the trajectories can be easily reduced
to lower dimensions by applying a principal component
analysis (PCA) or the time-lagged independent component
analysis (tICA),12,13 or by using the mode decomposition of the
Langevin equation for protein dynamics (LE4PD) that we have
recently proposed.8 Because the GRAD method is integrated
with the MSM approach, it shares most advantages and
limitations with that method. For example, in principle, there is
no limitation on the number of macrostates that can be
considered. However, the GRAD method has the potential of
improving accuracy in undersampled MSM.
Here, we illustrate the GRAD method and the accuracy of its

predictions with a number of test calculations where the energy
barriers and their adjacent basins are well-defined. In our
examples the barrier can be symmetrical or not symmetrical.
We also present the predictions of the method for a small test
molecule, the deoxyribose adenosine dinucleotide mono-
phosphate (ApA). For this molecule, we present a simple
case of dimensionality reduction as the simulation trajectories
of ApA are conveniently mapped onto two coordinates,
relevant for the study of breathing fluctuations in DNA. In all
cases the GRAD refinement method appears to be useful in
improving the accuracy in the calculation of the kinetics.

■ BRIEF OVERVIEW OF MARKOV STATE MODELS:
FROM MICROSTATES TO MACROSTATES

In this section, we briefly describe the current methodology to
generate micro and macro states, as well as to calculate
characteristic times in kinetics pathways, using Markov state
models. We focus on the information necessary to understand
the proposed procedure, while for a more detailed discussion of
the MSM, we refer to the literature.14−17 A reader familiar with

the MSM procedure should feel free to skip this section
without fear of missing some essential information.
Markov state models follow a ME formalism,18 which

describes the molecular kinetics of a process as a Markov-
chain of uncorrelated jumps among conformational states. This
formalism can be easily described by ṗ(t) = Kp(t), where p(t)
is the population state vector at time t, K the kinetic rate matrix,
and the dot denotes the differentiation with respect to time. As
the system is assumed Markovian, it holds that p(nτ) =
[T(τ)]np(0), where τ is the system lag time to satisfy the
Markov condition and T is the matrix of condition probabilities
to transition between all states. From these two equations it is
simply shown that the transition and rate matrices are related
by T(τ) = eKτ.
MSM is based on the Markovian discretization of the

configurational landscape into states that need to be kinetically
independent. By partitioning continuous energy landscapes into
discrete states, and by the projection of the continuum
trajectory onto a discrete trajectory along the macrostates, the
method introduces discretization errors.17 To improve the
quality of the prediction of the MSM, an automatic
decomposition procedure is introduced to carefully tune the
number of initial microstates in which the energy surface is
initially partitioned.18 If the number of microstates is too small
undersampling can inaccurately identify the position of the
barrier between metastable states. If the number is too high, i.e.
oversampling, this can be equally detrimental as it can lead to
“overfitting”, wherein the procedure fits the errors present in
the simulated energy landscape instead of the real border.9

In order to ensure exhaustive sampling of the energy
landscape, either an extensive number of short trajectories or a
small number long trajectories are calculated by performing
MD simulations. The trajectory is clustered into microstates by
performing k-means++.19 This method improves the standard
k-means solution,20 where centroids minimize center of mass of
all nearest neighbors, by carefully choosing seeds.21 Thus, the
multidimensional free energy landscape is first “seeded” by the
random generation of the centroids. K-means++ places an
additional weight on the acceptance of centroids by the squared
distance from the closest centroid. In this way, the procedure
tries to sufficiently sample all the regions in the configurational
landscape. The precision of the method increases with
increasing the number of centroids. The final results partitions
the configurational space in a number of states, equal to the
number of initial seeds.18

In centroid based algorithms, such as k-means++, k-medoids,
k-centers, etc., a large number of centroids increases the
accuracy of the discretization. It is common to use a few
thousands microstates to sample the free energy surface.
However, the computational time of MSM increases with the
number of sampling centroids, and further increases the
computational time for analysis due to the diagonalization of
the transition matrix. The latter has dimensions equal to the
number of centroids and becomes sparse when the number of
centroids is high as the transition between some of the possible
states has low probability.
The properties of the MSM are determined by the ME

transition matrix, Tij(τ), which is defined as the conditional
probability for a trajectory to enter state j from i over a given
time interval τ, also called lag time. This is directly estimated
from simulation data by counting the observed transition,
Cij(τ). Due to thermal noise or limited sampling, simulations
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are rarely perfectly reversible, Cij(τ) ≠ Cji(τ). This can be
corrected by enforcing detail balance9,18 according to
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The ME transition matrix is then calculated by row normal-
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The procedure to build the transition matrix works well in the
limit of infinite sampling, or more practically when the length of
the simulations is considerably greater than the predicted time
scales of the transition matrix. Commonly, this is not the case
and a maximum likelihood estimator as described by Prinz et al.
can be employed.16

Once the MSM is generated and the ME transition matrix is
estimated for a given lag time τ, the model can be evaluated
directly by evaluating time scale and metastability according to
the properties of T. As the metastability can be thought of how
long-lived a state is, this can be quantified as the sum of the
diagonal elements of the transition matrix

∑=M T
i

ii
(3)

The time scales of the model can be evaluated according to the
Chapman−Kolmogorov22 (CK) condition

τ τ=nT T( ) [ ( )]n (4)

for integer n intervals of lag time τ. If the trajectory follows a
random walk in configurational space, taking n steps with lag
time τ is equivalent to taking one step with lag time nτ.
It is reasonable to assume that the system becomes

Markovian at large enough τ, as all kinetic events become
uncorrelated if they are sampled at times that differ by a interval
larger than their correlation time. Fulfilling the CK equation
ensures that the relaxation time of a process is independent of
the number of uncorrelated steps that are used to model the
process. The implied relaxation times for process i is given
according to the eigenvalue, λi as

τ

λ
=

−
t

ln
i

i (5)

By analyzing the behavior of t2 as a function of the lag time τ it
is possible to identify the time lag at which the dynamics
becomes Markovian.
Coarse-graining is commonly performed by PCCA+

analysis.4,15−18 However, several coarse-graining schemes exist
such as the Bayesian hierarchical23 and the transition path
clustering.11,24 Accurate coarse-graining still remains an active
field of study.25 The number of macrostates is predicted by the
eigenvalues of the transition matrix by identifying “gaps in
time” in the list of eigenvalues. PCCA+ employs the structure
within the right eigenvectors of this spectral decomposition to
assign a fuzzy membership likelihood26 to each microstate to
belong within a set of metastable states, or macrostates. The
microstates are clustered as macrostates for which the relevant
dynamical observables, for example the metastability M or
relaxation time t2, are measured. These quantities have been
used as variational parameters for coarse-graining,27−29 because
they quantify how long-lived is a macrostate in its coarse-

grained representation, which correlates to its degree of
metastability.
Adopting a fuzzy overlap amounts to assigning each

microstate to a number of macrostates with a weighted
distribution. As a microstate can belong to a number of
different macrostates, this provides a realistic evaluation of the
transition time scale. While this is useful from a theoretical
standpoint it can result in a large uncertainty along the
macrostate borders. Any conformational analysis of transition
states can therefore lose chemical insight. For this reason, crisp
partitioning is desirable, as it retains molecular information at
minima and along the barriers.
The use of a crisp partition is not incompatible with

transition path models. In fact, once the paths that describe a
transition from one state to another are identified, con-
formation along the path need to be assigned to either the
initial or the final state. If the barrier in the path is crisply
defined, the assignment of configurations to either states
becomes unambiguous, and the calculation of the transition
time by means of the master equation should become more
accurate. It is reasonable to think that GRAD applied to
transition path models could give consistent answers to the
maximum-likelihood propagator-based method, because the
identification of the correct position and height of the energy
barrier would improve the accuracy in the calculation of the
transition time and maximize its value.11

In the traditional MSM, “refinement” is performed by
generating repeated MSM where the number of initial seeds or
microstates is increased. If the separation in macrostate from
this new calculation is consistent with the previous one, and the
time t2 converges to the same value, then the procedure is
terminated. If agreement is not achieved, the procedure is
repeated with an increased number of initial microstates, until
the process converges.
Because the number of necessary microstates cannot be

known a priori, multiple runs of microstate clustering are
necessary to adequately define what number of microstates are
sufficient to generate a model with low discretization error.30

This “refinement” procedure is, however, computationally quite
expensive. Currently, several thousand to tens of thousands
centroids are typically used to sufficiently sample trajectories.
However, having more than 4000 centroids requires the use of
sparse linear algebra methods to reduce computational
complexity, severely affecting the computational time needed
to perform the MSM analysis.

■ METHOD TO REFINE MACROSTATE BORDERS:
GRAD ALONG MACROSTATE BORDERS

In the procedure that we propose, i.e. the GRadient Adaptive
Decomposition, the number of initial microstates is small, and
accuracy is achieved by the iterative refinement of the
macrostates along their borders. This is computationally
convenient because it limits the number of microstates and
localizes the refinement procedure only in a sub area of the free
energy space. All analysis codes for GRAD were written in
Python31 using NumPy and SciPy.32

In the proposed GRAD procedure, the number of initial
microstates is small, and accuracy is achieved by the iterative
refinement of the macrostates along their borders. This is
computationally convenient because it limits the number of
microstates and localizes the refinement procedure only in a
sub area of the free energy space.
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The main goals of our proposed refinement method is to
build an MSM with two criteria: (1) to reduce the number of
centroids used, (2) while retaining a crisp partitioning of the
energy barrier. By refining macrostates to minimize discretiza-
tion error, in particular reducing error from underfitting the
kinetic model, fewer microstates are necessary as initial input.
Additionally, as the refinement identifies the barriers between
metastable states without resorting to convex hull about
microstate centroids, we can ensure an accurate, crisp
decomposition. The proposed method refines the macrostate
borders iteratively by generating microstates along the border
between macrostates. Microstates are assigned to metastable
states by lumping in the direction of the gradient along the free
energy landscape. In the following section, we introduce and
detail the GRAD along macrostate borders refinement method.
The procedure maximizes the system metastability while
limiting the number of initial centroids necessary in the
microstate generation.
In order to retain information from both the free energy

landscape as well as the Markov states, a lattice map is made
that bins the conformational landscape and assigns a state from
the coarse-grained MSM. The free energy surfaces are
estimated from the probability along kinetically relevant
parameters, X as

Δ = −G X k T P X( ) ln( ( ))B (6)

While lattice methods are most commonly developed for a few
dimensions, due to the computational costs and extensive
memory allocation, the constraint of our method to low
dimensions is not a real limitation. The use of dimensionality
reduction procedures, such as the principal component analysis
(PCA) or the time-lagged independent component analysis
(tICA),12,13 is a convenient strategy to reduce the number of
relevant variables before MSM are applied. Identifying either
the largest variance or the slowest kinetic processes through
PCA and tICA, respectively, has been shown to be a valid
method to reduce the dimensionality of a kinetic process in
MSM.30,33 An alternative procedure could be to start from a
dynamical mode decomposition as performed by LE4PD.8

Alternatively, for smaller molecular systems the kinetic process
can be described easily by one- or two-dimensional ordered
parameters, properly selected, as illustrated in the ApA example
here.
Splitting the Metastable Border. The GRAD procedure

begins by generating new microstates exclusively along the
internal wall between macrostates. We refer to these as
microborders so as to avoid confusion with the initial microstate
seeding. Microborders are generated following a multistep
procedure. First, the internal walls of a specific macrostate are
padded with a region as shown in Figure 1. We select the
shortest axis in the area of the macrostate and define the
padding length as a percentage of this axis length. We typically
use the small ratios of 0.01, 0.001, and 0.0001 over the course
of the refinement to help ensure convergence.
Large width ratios allow for exploration of the surface,

whereas small width ratios allow for more detailed refinement.
Once the padded region is built, centroids are randomly
initialized and microborders are built as a Voronoi cell. Because
standard uniform distribution methods are typically plagued by
issues of densely packed centroids which create microborders of
varying shapes and sizes, centroids are placed using a Poisson
disk distribution.34

Poisson disk generation uniformly placed centroids with
“blue noise” characteristics (avoiding aggregation of the
centroids on the surface), where each new centroid maintains
a minimum radial separation from all previously accepted
centroids.35 For our method we define the radial separation
between centroids as being two times larger than the padding
length; we add the extra criteria that all centroids must fall
within the padded region. This creates microborders with even,
convex shapes and automatically determines the number of
microborders necessary to fill the padded region (see Figure 1).
While other centroid generation methods exists, the

computational time of this Poisson method scales linearly
with the total number of centroids. Disk generation enforces
that the microborder centroids have uniform density by
evaluating whether any centroids are within a radial disk from
a newly proposed centroid. While the centroids are still
randomly generated, they have a minimal radial separation
between all other centroid positions. Without such a restriction,
there would be no guarantee that the contributions from each
microborder would refine at the same length scale. Changes in
the configurational decomposition would therefore be unevenly
weighted, creating nonsmooth, and even nonphysical, division
between states.

Assigning Microborders to Macrostates. The discrete
states generated are stored along a lattice map at a fixed number
of grid-points, allowing for trivial one-to-one mapping of
surface properties such as the free energy surface (FES). As
such, microborders can be clustered to corresponding macro-
states by using the gradient along the FES to identify barrier

Figure 1. (a) Microborders generated along the wall of an arbitrarily
defined macrostate at a fixed padding length. Each microborder is
shown with a centroid, as predicted by the poisson disk method. (b)
Each microborder clustered to a macrostate (denoted by color)
assigned by the direction along the mean gradient within each
microborder.
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maxima. The mean gradient along the FES within each newly
generated microborder is therefore used to determine in what
direction the microstate should be regrouped across the border
(see Figure 1). The method appends to the standard MSM
workflow. While the traditional MSM repeats the procedure
while increasing the number of centroids until the predicted
time scales converges, our proposed method selects a small
number of centroid and then refines the borders between
macrostates until the metastability is maximized.18

Each microborder is assigned to a neighboring macrostate by
lumping the microborder in the direction of the gradient along
the free energy surface. This pushes the border between
macrostates closer to the barrier and reduces the discretization
error from the initial MSM. Within each microborder, the mean
gradient along the energy surface is computed by a numerical
gradient.36 Because these numerical methods can have error at
low numbers of grid-points, and MD simulations often produce
sparse regions of poor sampling, a 2D Savitzky−Golay filter37 is
applied to the energy surface prior to calculating the gradient.
This filter reduces statistical noise, improves the signal-to-noise
ratio, and ensures that the gradients are accurately calculated
even in the presence of sparse or noisy sampling (see Figure 2).

The Savitzky−Golay filter has two critical parameters, the first
is the size of the window used to fit the data with a polynomial
function, and the second is the degree of the polynomial that
fits the data. As the surface has a fixed number of points along
the lattice, the window size is kept fixed as 10% of the total
number of grid-point.The order of the polynomial is
determined by direct inspection of a number of critical regions
in the energy map. The goal is to obtain a smoothed surface
without changing the characteristic shape of the FES, while
improving continuity in the gradients (see Figure 2). It is
noteworthy that the time required to calculate the filtered FES
with our code is orders of magnitude faster than other
computational steps in the MSM+GRAD workflow. It follows
that defining the parameters by direct inspection in practice
does not significantly increase the computational time of the

MSM+GRAD procedure. The method smooths the structure in
the data and cannot correct for missing features along the
conformational topology. However, we have found that
gradient filtering with Savitzky−Golay works well with sets of
at least 10 000 data-points so long as transitions are
representatively sampled (data not shown).
As stated earlier, the border between macrostates is moved in

the direction of the mean gradient. The direction is defined
from the median centroid of a microborder along the state
space lattice using the Bresenham algorithm.38 Because the
method maps along a grid, the line drawn needs to be restricted
to positions along the lattice. The Bresenham algorithm
“rasterizes” a line along a lattice (i.e., represents a line by the
shortest corresponding path on the lattice) by moving stepwise
to discrete points that minimize the error away from the line.
The rasterized line is drawn until it reaches a point outside the
microborder, and the microborder is clustered into either the
macrostate from which it originated or into a neighboring
macrostate (see for example Figure 1).
Once all microborders within a macrostate have been

clustered, the metastability is computed. If the metastability
increases with respect to the previous iteration and within an
established threshold, the new arrangement is accepted;
otherwise, it is rejected, and a new macrostate is selected. A
single iteration in the refinement scheme ends when all
macrostates, selected in random order, have been refined.
The procedure terminates when the change in metastability

for a complete iteration becomes smaller than a pre-established
threshold, e.g. for step i we test that

τ τ τ≤ − ≤+
−M M M0 [ ( ) ( )]/ ( ) 10i i i1
6

(7)

This ensures that all macrostates are refined and that
convergence is met not for individual, but for all states.
Because the GRAD method is based on the calculation of the

free energy landscape from simulation trajectories, which have
usually noisy and sparse sampling at the barrier, it is important
to use an iterative procedure that minimizes the error to find
where each microstate belongs.

■ TEST OF GRAD ALONG MACROSTATE BORDERS
WITH MODEL POTENTIALS

In order to illustrate the capabilities of our refinement method,
we performed a number of test simulations where a particle was
free to diffuse on a free energy landscape. We selected
symmetric and asymmetric double and triple-well potentials.
The tridimensional potential surface is described by a sum of N
elliptical Gaussian functions
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where N is also the number of minima in the potential, kB is the
Boltzmann constant, and T is the temperature. The coefficients
of the potential are defined as
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Figure 2. Free energy calculated from a single diffusion simulation
along a symmetric two-well potential. (left to right) Smoothing
process by 2D Savitzky−Golay filter on the energy calculated from the
simulation trajectory (top panels), and as well on its gradient (bottom
panels). Red lines and vectors are calculated by an analytical function
(noise free), while blue lines and vectors are from simulated data.
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In eq 9 σx and σy represent standard deviation along the x and y
axis respectively; and the parameter θ is the angle by which the
axes are rotated with respect to the x axis.
Each diffusion model defines a test case, where the number

of macrostates is well-defined as the number of minima in the
free energy surface. By easily tuning the complexity of the
potential landscape, we were able to directly evaluate the
accuracy of the MSM generated with, and without, our
refinement procedure.
The single particle diffusion was modeled by a Langevin

equation

γ
⃗ + Δ = ⃗ +

Δ
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∂

∂ ⃗
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t V
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where r ⃗ = {x, y}, with γ as the friction coefficient, and rr⃗andom as
a random displacement obeying the white-noise fluctuation−
dissipation condition. For simplicity, we reduced the energy
scale such that the simulated particle had thermal energy, kBT =
1. All the simulations were performed for one million time
steps, and were repeated to allow the initialization from all
possible minima. The potentials that were studied are (i) a
symmetric two well, (ii) an asymmetric two well, (iii) a
symmetric three well, and (iv) an asymmetric three well.
For all diffusion simulations, initially a MSM analysis was

generated using 10 microstates using the KMeans package in
Scikit-Learn,39 and the trajectories were clustered by PCCA+
into macrostates from PYEMMA,40 determined by the number
of well minima. This 10-centroid MSM analysis is refined
following two different procedures. In the first, we used an
MSM performed with an increased number of centroids. In the
second, we keep the 10-centroid MSM as the starting system,
and we refine this model using the GRAD method. The
purpose is to assess how the shape and symmetry of the
potential affects the accuracy of the GRAD procedure
compared to MSM with increased sampling.
Using the conventional MSM method, we first performed

calculations with microstates generated using k-means++ with
10, 100, and 1000 centroids for the four potentials presented in
Figure 3. As a shorthand notation we identify each MSM
analysis of the simulation trajectory as MSMn

m, where n is the
number of centroids in the microstate generation, and m the
number of macrostates used to coarse-grain the model. Then,
to test the GRAD method, we started from the MSMn

m and
refined the borders following the procedure described in the
previous section. Refinement for all diffusion potentials were
carried out until reaching the convergence of the metastability
parameter, eq 7, while the calculations were performed using
the trajectories from the diffusive simulations for the four
potentials presented in Figure 3.
In order to evaluate how closely the proposed refinement

method corrects under-sampling of the MSM, we compared in
Figure 4 the refined MSM10

2 +GRAD (panel d), with the MSM10
2

(panel a) as well as with the MSM100
2 (panel b) and with the

MSM1000
2 (panel c) models. Each panel in the figure displays

how the MSM partitions the energy surface into macrostates,
given a fixed number of initial centroids, or microstates.
Panels a−c in Figure 4 show the conventional MSM

microstates grouped by PCCA+ into macrostates, after
convergence to the Markovian statistics for the symmetric
two-well potential. The microstates are delimited by black lines,
while the macrostates are shown as the blue and the purple
areas to illustrate their MSM border. At the lag time τ selected

for this figure, the macrostate are optimized and do not show
further modification of their areas.

Figure 3. Free energy surface of the four model potentials: (a)
symmetric two well, (b) asymmetric two well, (c) symmetric three
well, and (d) asymmetric three well. The free energy surface calculated
from the analytical equation is shown as smooth contour lines, while
the free energy sampled by the diffusive simulation trajectory is shown
as filled contour surfaces. As the energy scale increases from red to
blue, the figure indicates that the diffusive simulations preferentially
sample the states with lowest energy.

Figure 4. Panels display the process of identifying the energy barrier
for a symmetric two-well potential. The vertical barrier is located at the
center between the two minima. MSM for (a) MSM10

2 , (b) MSM100
2 ,

and (c) MSM1000
2 centroids where black lines represent the crisp

borders of microstates and each fill color (purple and red) denotes
assignment in macrostates. (d) Macrostate MSM initialized by 10
centroids and refined with GRAD. The barrier predicted by MSM10

2 is
clearly on the right of the correct position. This is slightly improved in
the MSM100

2 panel where, however, the straight barrier is approximated
by a fragmented, irregular pattern. The agreement is improved in the
MSM1000

2 sample and even more so in the MSM initialized by 10
centroids and refined with GRAD calculations.
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The initial number of centroids in which the free energy
surface is partitioned is MSM10

2 in the top left panel, MSM100
2 in

the top right panel, and MSM1000
2 in the bottom left panel.

Because of the analytical structure of the potential, the exact
border is well-defined and it is given by a straight vertical line
exactly positioned at equal distance between the minima in the
two wells. The figure shows that by increasing the number of
microstates the resolution of the energy border between
macrostates improves. The last, bottom-right, panel shows the
two macrostates obtained from MSM initialized with 10
microstates (MSM model of panel a) and refined with the
GRAD along macrostate borders procedure. Even in the under
sampled limit of our MSM10

2 +GRAD model, the refinement of
the border leads to a precise definition of the border between
macrostates. Similar results are obtained for all the three other
potential shapes.
The comparison between the MSM10

m +GRAD and the
MSM1000

m is shown, for all potentials, in Figure 5. Specifically,

the figure shows, for each potential, how the free energy surface
is decomposed in m macrostates for the two refinement
procedure (MSM1000

m and MSM10
m +GRAD). The border

between macrostates is depicted in blue for MSM10
m +GRAD

refinement method and in red for the MSM1000
m . The

demarcation line is crisper for the GRAD refinement method
with low centroid number for both symmetric and asymmetric
potentials, with two or three wells.
To further test the precision of the GRAD refinement

method versus the MSM with sufficient microstate sampling we
evaluated how accurately the barriers between macrostates were
reproduced according to the analytical potential for which the
true gradients along the barrier is easily calculated. First we
evaluated the mean squared error between MSM1000 and the
analytical barrier of the potential, using a harsh boolean metric,

where all matching points along the lattice receive a score of 0,
and all differences a penalty of 1. The error is reported, as the
mean squared error over all sampled positions, at the bottom of
each panel in Figure 5.
Figure 6 reports the error per accepted iteration of the

MSM10+GRAD method, and, as a horizontal red line, the error

of the MSM1000 calculation. For three of the potentials, initially
the MSM10 is evidently incorrect when compared with the
better sampled MSM1000. However, as the GRAD refinement
procedure proceeds, the error is reduced, and the GRAD
method rapidly finds the correct energy barrier decomposition.
The final predicted error in MSM10+GRAD is less than the
error in the well sampled MSM1000 calculation. These results
are significant as they demonstrate the ability of the GRAD
methods to reduce discretization error even below those
predicted by well sampled centroid models.
Figure 6 illustrates an issue with overfitting in MSM. For the

asymmetric three-well potential, MSM10
2 performs better than

MSM1000
2 even in the absence of refinement. It appears that the

proposed refined method can correct for both under sampling
as well as for the discretization error of oversampling. The
reason for this is that the GRAD method is directly informed by
the free energy landscape at the barrier, while in the MSM
approach the energy landscape enters only through the
sampling performed by the centroids. In this way the quality
of the method used to sample the free-energy-landscape
determines both the computational efficiency of the method
and the precision of the results. One could object that the error
in the free-energy-landscape, i.e. the roughness of the surface
and its associated noise, could affect the local slope at the
border. However, this error is accounted for by the procedure
that smooths the energy surface.
In addition refining the crisp partitioning of the conforma-

tional landscape, a key aspect of the GRAD method is its ability

Figure 5. Illustration of the refined decomposition of the conforma-
tional space into macrostates for diffusion models (a) symmetric m =
2, (b) asymmetric m = 2, (c) symmetric m = 3, and (d) asymmetric m
= 3. Lines represent the crisp partition between metastable states
predicted from 1000 centroids (red) and refined with GRAD from 10
centroids (blue). The error, ϵ, reported is the mean squared error
predicted via harsh boolean metric against the analytical barrier, for
MSM1000

m (red, bottom left) and MSM10
m +GRAD (blue, bottom right).

The predictions of the MSM10
m +GRAD method are more accurate than

those of MSM1000
m .

Figure 6. Mean squared error predicted via harsh boolean metric
between analytical barrier and MSM10

m +GRAD refinement method for
all the accepted iterations (blue) in (a) symmetric m = 2, (b)
asymmetric m = 2, (c) symmetric m = 3, and (d) asymmetric m = 3.
The error is additionally shown for MSM1000

m model (dashed red line).
While at a small number of iterations MSM10

m is less precise than the
1000 centroids MSM, with increasing number of iteration
MSM10

m +GRAD method converges to a smaller error.
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to successfully recover time scales predicted by the kinetic
model.
In Figure 7, the predicted long time scales (t2) of all refined

cases, MSM10
m+GRAD, are compared to the predicted times

from low-sampled MSM10
m and well-sampled MSM1000

m models.
For each MSMn, the centroids were clustered in macrostates
using PCCA+ at a lag time, τ. The lag time, defined in eq 5, was
calculated by finding the time at which the slowest relaxation
time, t2, converged and the CK condition was fulfilled. For all
four model potentials we observe that the MSM converged to
Markovian statistics within the time of the simulation run.
In MSM generation, the larger the number of centroids

initialized during the microstate clustering, the smaller the
discretization error. In the case of the simple diffusion models,
we find that MSM100

m gives an accurate enough decomposition
of the macrostates in most cases, as comparing models MSM100

m

to MSM1000
m . In its predictions of the time scale for the slowest

kinetic process, t2, the GRAD method with 10 centroids is
comparable in accuracy to the MSM with a high number of
centroids. Statistical errors were calculated by the reversible
transition matrix sampling algorithm.41 In all cases, convergence
via GRAD refinement produce significant t2 values.
The diffusion models illustrate the benefit of adopting the

MSM+GRAD refinement approach because with iterative
refinement the method converges to a decomposition of the
molecular landscape, successfully improving the accuracy of
both under and oversampled models. Additionally, as the
refinement method is not centroid dependent, it more
accurately decomposes the macrostates along the barriers
because it can accurately represent nonconvex shapes, while
Voronoi tessellation only does so in the limit of a large number
of centroids.
The results presented in this section can be explained

considering that the conventional MSM method assumes that

the barriers can be defined as the midpoint between centroids,
which allows for the use of Voronoi cells in the procedure of
energy-surface decomposition. However, if the shape of the
barrier is asymmetric, the Voronoi cells procedure can
introduce errors in the calculation of the kinetic. More
specifically, if the number of starting centroids is small, i.e.
the system is undersampled, the use of Voronoi cells introduces
discretization errors because of possible underfitting or
overfitting of the MSM. However, if the energy surface is
sufficiently sampled, barrier shape can be well-represented by
MSM, at the expense of large computational times. Thus, in the
case of undersampled systems, our method can be useful as it
provides an accurate prediction of border decomposition
independent of the shape of the barrier. When compared
with highly sampled MSM calculations, our method can still be
convenient because it is less computationally expensive.

■ DEOXYRIBOSE ADENOSINE DINUCLEOTIDE
MONOPHOSPHATE

As an additional example, we studied deoxyribose adenosine
dinucleotide monophosphate (ApA). For this system the free
energy landscape has complex features including several
minima. More challenging to capture, the roughness of the
landscape varies significantly, making it difficult to calculate
surface properties robustly. The combination of the complexity
and roughness of the landscape, provides further tests to
evaluate the capabilities of the GRAD method to define, with
accuracy, the border between macrostates.
ApA is a structurally small molecule, which allows for the

exhaustive sampling of its configurational free-energy space by
standard atomistic molecular dynamics simulations. All-atom
equilibrium molecular dynamics (MD) simulations for ApA
were performed using GROMACS42 with the Amber99+-
parmbsc043 force-field, in explicit TIP3P water. Sodium ions

Figure 7. Calculations for the four diffusion potentials: (a) symmetric m = 2, (b) asymmetric m = 2, (c) symmetric m = 3, and (d) asymmetric m = 3.
The t2 relaxation times of the MSM+GRAD refinement approach are reported as black lines and show how t2 evolves per accepted step in the
refinement procedure. The predicted t2 for MSM10 and MSM1000 are shown as purple and red lines, respectively. Errors are displayed as shaded
regions of the same corresponding color, where statistical uncertainty is calculated by the reversible transition matrix sampling algorithm.41
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were added to concentration such that charges along the
phosphate backbone were neutralized.44 Structures were
prepared45−47 by energy minimization using a steepest descent
algorithm for 5000 steps, heated to T = 300 K under
equilibration as an NVT ensemble for 100 ps and, then,
followed by a secondary 100 ps equilibration in the NPT
ensemble using the Parrinello−Rahman barostat.48 MD
production runs were performed in the NPT ensemble with
velocity rescaling thermostat and Parrinello−Rahman barostat,
evolving atomic coordinates every 2 fs with the Verlet
integrator under LINCS constraints.49 In total, 10 independent,
1 μs simulations were performed. Each independent run used
the same methodology but had different initial configurations,
starting from energy minima identified from a preliminary
MSM analysis of the first simulation trajectory. In total, the
simulation data gave a cumulative sampling of 10 μs.
While the ApA dinucleotide is a small molecule, the

configurational topology has several degrees of freedom due
to nonrestricted dihedral rotations.50,51 To analyze dinucleotide
base stacking, we adopted a two site per nucleotide description,
which defines vectors within the plane of each nucleotide. The
first site was positioned as the midpoint between the C4 and C5

atoms, and the position of the second site was given by a 1 Å
displacement oriented by an in-plane 90° rotation from the
bond between the C4 and C5 atoms (see Figure 8). The

orientation in this four bead model captures the distance
between nucleotides and their related torsion angle. Figure 8
illustrates the two site per nucleotide model for ApA and the
relative distance and orientation of the two in-plane vectors.
The distance, R, between nucleotides is calculated as the
distance between the C4 and the C5 midpoints of each base.
The stacking torsion, φ, is defined by the dihedral between the
in-plane vectors. This reference frame is consistent with the
convention that left and right handed helices are classified by φ
< 0 and φ > 0 respectively. These coordinates have been
selected because they are order parameters for the transition
between stacking and unstacking of the adenosine rings in the
ApA dinucleotide and are of use in the calculation of the
circular dichroism signal.52,53

From the free energy surface of ApA shown in Figure 9 along
the coordinates previously defined, the landscape appears
complex, with several minima characterized by a variety of base-
stacking, which can not be trivially separated into a two-state
model, based on the transition between “stacked” and
“unstacked” configurations. For this complex landscape an
MSM analysis of the complex transitions between states is
appropriate. We generated an MSM for the adenosine
dinucleotide using 100 starting microstates and repeated the

calculations with higher resolution using 10 000 centroids. We
selected a lag time of 100 ps, where the system converges to
Markov statistics. The free energy landscape is coarse-grained
with PCCA+ to 5 macrostates for both the MSM100 and
MSM10000 (see Figure 10). The resulting times, t2, for both
MSM calculations are reported in Table 1.
The predicted MSM, while informative, required the use of

10 000 centroids which is computationally costly and memory
exhaustive, both in the under sampled k-means++ seeding and
in the diagonalization of large matrices, which involves sparse
linear algebra. Thus, our refinement method could present an
opportunity to reduce the number of microstates needed and
return an accurate kinetic description from an under sampled
MSM. A kinetic model was generated starting from MSM100

and analyzed at the lag-time τ = 500 ps. The MSM100+GRAD
refinement was performed iteratively until convergence. The
predicted slow time, t2, for MSM100+GRAD is reported in
Table 1, and it is found to be consistent with MSM10000.
When exploring complex energy landscapes, convergence can

be slowed down due to complications in gradient minimization
as the barrier line can become locally trapped and not further
explore neighboring maxima. As the full configuration of all
macrostate decompositions is too large to sample ergodically,
overcoming this problem requires an intelligent exploration to
find the “true” division between metastable states. This is
addressed within the GRAD method by defining a padding
length, which is refined using coarse sizes to extend beyond
local peaks, and then finishing the refinement at finer padding
lengths. The procedure is repeated for consistency: initially the
padding length is set to be constant until convergence is
reached for the metastability. Then the procedure is repeated
with a padding length decreased by an order of magnitude. This
allows for exploration of local minima, and then after several
iterations, fine-scale refinement to ensure the largest increase in
metastability.
For the ApA system, a key evaluation of the refinement was

to recover the landscape decomposition of a system generated
from significantly more centroids, in this case MSM100+GRAD
method was compared with MSM10000. As this system is
nontrivially defined (as opposed to the diffusion potentials), the
landscape decomposition predicted via MSM is far more
challenging and as such more prone to error. While the number
of ApA simulations provide enough statistics to reduce sparse

Figure 8. Depiction of the conformational model wherein (a) the
fictitious sites are placed within the plane of the base. The independent
order parameters are (b) the radial separation between C4 and C5

midpoints within each adenine monomer. (c) Aerial view, shown 5′→
3′ into the page, of the dihedral between the in-plane vectors.

Figure 9. Free energy landscape calculated from simulations of ApA
smoothed via 2D Savitzky−Golay filter. Blue contours are calculated
directly from simulation data, whereas red contours have noise
reduced via filtering.
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sampling, several regions of the free energy surface are still not
sufficiently well sampled by simulations to minimize noise due
to numerical error. Therefore, the energy surface is first
analyzed after applying Savitzky−Golay filtering, which
smoothes the surface and reduces error during refinement.
Figure 10 shows a comparison between the two refinement
methods. While the method does converge to a slightly
different decomposition, it is evident that the refinement is able
to largely correct the decomposition predicted by MSM100 and
produce a macrostate model that is similar to that MSM10000

model. The mean squared error between the two refinement
methods, shown in Figure 11, demonstrates the improvement
capabilities of the proposed method.

■ DISCUSSION

MSM are widely employed to evaluate the kinetics of transition
in systems that have a complex energy landscape, by analyzing
simulation trajectories of the time evolution of the system. The
goal of the MSM is to represent kinetic pathways in the time
evolution of the system as uncorrelated transitions between
states with no memory of the process history. Because complex
systems are rarely Markovian, the goal of the method is to find
a number of macrostates, or metastable states, that are
kinetically independent and as such are connected by
memory-less Markovian transitions. Thus, the method shifts
the challenge from evaluating the complex kinetic pathway
leading from the initial to the final states of a transition, to
finding the proper states in the pathway that are sampled by the
system when following a random walk along the reaction
pathway.
Given that the pathways are inherently non-Markovian at

short time, the MSM finds the pathway that minimizes the
departure from Markov statistics by first identifying the long-
time scale at which the process becomes Markovian and then,
at that time, the macrostates that are sampled by the system.
Those are metastable states that the system “visits” during its
dynamical evolution. Following this procedure, the pathway is
represented in a simpler way as a random walk among states in
configurational space, where the ME formalism applies.
To calculate the kinetics of the process, one has to construct

the transition matrix in the ME formalism, and to do so, one
has to precisely count, during the simulation trajectory, the
number of fast transitions that keep the system still inside each
macrostate, and separate them from the slow transitions that
occur between macrostates; the latter forming the Markovian
pathway. To precisely allocate each transition inside or outside
a macrostate, it is important to perform the MSM analysis with
a precise definition of the location of the borders between
macrostates. This partition between macrostates has to be crisp
to ensure a precise count of intra and interstate transition.
In the traditional MSM the search of the macrostate borders

is performed by progressively increasing the number of seeds,
or centroids, used to build the transition matrix, until the
slowest kinetic time converges. This process is precise but
computationally costly, both in the seeding procedure and in
the numerical diagonalization of the sparse transition matrix of
the ME formalism.
In this paper we propose an alternative method to refine

macrostates borders that we call GRAD. The new method,

Figure 10. Decomposition of the free energy surface for ApA, as predicted by (a) MSM with 100 centroids and no refinement, (b) MSM+GRAD
with 100 centroids and refinement, and (c) MSM with 10 000 centroids and no refinement.

Table 1. Time Scale for the Slowest Kinetic Process, t2, in
the Dynamics of the Deoxyribose Adenosine Dinucleotide
Monophosphate

model t2 (ps)

MSM100
5 2484.09

MSM10,000
5 3686.19

MSM100
5 +GRAD 3851.34

Figure 11. Mean squared error predicted via harsh boolean metric
between the MSM10000 decomposition and the MSM100+GRAD
decomposition, as a function of the accepted iterations. The error of
the MSM100, with respect to the standard of MSM1000, is given by the
point at zero iterations accepted and decreases with the
implementation of the GRAD refinement procedure.
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which is easily integrated in the traditional MSM workflow,
starts from a MSM performed by using a minimal number of
centroids, larger than or equal to the number of minima in the
free energy landscape. A region along the border is then
decomposed into microstate borders, or microborders, which
are subsequently assigned to the proper confining macrostates
where they belong, using as information the slope of the energy
landscape in the center of the microborder. The decomposition
and recomposition of the borders is methodically performed on
all the macrostates and iteratively performed while the method
checks that the overall metastability of the sum of the
macrostates increases and then converges. The metastability
is calculated as the number of transitions in the simulation
trajectory that keep the system in the same metastable state.
The use of metastability is not novel; where our method is
different is in its effort to maximize the metastability of the
system by crisply refining the separation between macrostates
and minimizing the uncertainty of the coarse-grained model.
Because the number of initial centroids is small and because

the calculation of the metastability requires an optimization of
the diagonal element of the transition matrix, but not its
diagonalization, the GRAD method is relatively computation-
ally inexpensive. While the MSM improves accuracy by scaling
up the number of discrete states, the GRAD method improves
accuracy while remaining at the low limit of the number of
microstate centroids.
The GRAD refinement method is a novel protocol that

ensures the accurate decomposition of conformational space on
discrete metastable states. It works well to accurately and
crisply decompose the conformational landscape from under
sampled MSM. The method is robust to landscape complexity
with respect to sparsity as well as noise inherent in the
simulation data. This is predominantly due to the implementa-
tion of the Savitzky−Golay filtering, which is used for data
smoothing to reduce error from noisy as well as sparse
sampling. Implementing information from surface data can
prove particularly useful in reducing the effect of limited
sampling of energy barriers in simulation trajectories.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: mguenza@uoregon.edu.

ORCID

M. G. Guenza: 0000-0002-1151-4766

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank M. Dinpajooh and E. R. Beyerle for carefully reading
the manuscript and providing helpful feedback. This work was
mostly supported by NIH training grant T32 GM007759 (to
P.G.R.). Partial support of this work was given by the National
Science Foundation (NSF) Grant No. CHE-1362500. CPU
time was provided by NSF Grant No. ACI-1053575 through
Extreme Science and Engineering Discovery Environment
(XSEDE) resources.

■ REFERENCES

(1) Noe,́ F.; Fischer, S. Transition Networks for Modeling the
Kinetics of Conformational Change in Macromolecules. Curr. Opin.
Struct. Biol. 2008, 18, 154−162.
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