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ABSTRACT: Coarse-graining (CG) procedures provide
computationally efficient methods for investigating the
corresponding long time- and length-scale processes. In the
bottom-up approaches, the effective interactions between the
CG sites are obtained using the information from the atomistic
simulations, but reliable CG procedures are required to
preserve the structure and thermodynamics. In this regard, the
integral equation coarse-graining (IECG) method is a
promising approach that uses the first-principles Ornstein−
Zernike equation in liquid state theory to determine the
effective potential between CG sites. In this work, we present
the details of the IECG method while treating the density as an
intrinsic property and active variable of the CG system.
Performing extensive simulations of polymer melts, we show that the IECG theory/simulation and atomistic simulation results
are consistent in structural properties such as the pair-correlation functions and form factors, and also thermodynamic properties
such as pressure. The atomistic simulations of the liquids show that the structure is largely sensitive to the repulsive part of the
potential. Similarly, the IECG simulations of polymeric liquids show that the structure can be determined by the relatively short-
range CG repulsive interactions, but the pressure is only accurately determined once the long-range, weak CG attractive
interactions are included. This is in agreement with the seminal work by Widom on the influence of the potential on the phase
diagram of the liquid [Widom, B. Science 1967, 157, 375−382]. Other aspects of the IECG theory/simulations are also discussed.

1. INTRODUCTION

Many interesting properties in macromolecule liquids depend on
the chain length, N, such as phase separation, demixing, self-
assembly, and glass transition temperature,1 which have different
time and length scales. Computer simulations allow one to
explore essential properties and fundamental mechanisms of the
polymeric systems, but atomistic simulations are not close to
representing common polymeric systems,2 which have large N,
because they are computationally expensive. This is true even for
simulations of the phenomena involving relatively short time
scales such as relaxation of the polymer melts3 with only a small
number of chains, where significant finite size effects exist.
Therefore, reliable coarse-graining (CG) representations are
very much required to speed up the simulations by eliminating
the microscopic degrees of freedom.
The CG models can adopt either top-down or bottom-up

approaches. In the top-down approach, a set of experimental data
is directly used to obtain the CG parameters, while in the
bottom-up approaches the CG parameters are, in principle,
obtained from the underlying atomistic simulations.4 Well-
known bottom-up approaches are the Iterative Boltzmann
Inversion (IBI)5 and Force Matching procedures.6 Hybrid
approaches have also been developed that combine both
bottom-up and top-down strategies.7 Most CG models fail to

simultaneously reproduce all properties accurately even at the
thermodynamic state of calibration, which is known as the so-
called representability problem.8 In addition, the accuracy of the
CG parameters optimized for a set of thermodynamic states is
only limited to state points close to the calibration state and does
not apply to other thermodynamic conditions, which is known as
the transferability problem.9 Furthermore, recognition of the CG
sites may be performed by mapping procedures, which involve
different strategies such as simple mapping of the CG sites onto
the center-of-mass or center-of-charge of the underlying groups
of atoms. More sophisticated mapping procedures may involve
performing principal component analysis or elastic network
models to determine localized fluctuations and coarse-graining
the atoms with analogous behavior.10

Nomatter how the CG procedure is performed, the number of
degrees of freedom is reduced and care is required to interpret
the properties of the CG model. In particular, the potential
between the CG sites is a free energy, and many aspects of state-
dependent potentials apply to effective CG potentials.11−13
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When the effective CG potential has explicit density and/or
temperature dependencies, the density and/or temperature are
regarded as active variables of the system, and the usual
statistical-mechanical expressions for energy, pressure, and
isothermal compressibility require fundamental changes.
A promising approach to solve the aforementioned represent-

ability and transferability problems is to perform the coarse-
graining strictly based on the Ornstein−Zernike equation14 in
the liquid state theory. The integral equation theories15 warrant
the proper calculation of the effective interactions between CG
sites, which emerge from the propagation through the liquid of
the many-body atomistic interactions. In this regard, the Integral
Equation Coarse-Graining (IECG) method is developed in our
group, where the CG sites (blobs) are larger than the polymer
persistence length. The mapping procedure involves identifying
the center-of-mass of the underlying groups of atoms, which
allows one to relate the monomer−monomer structural
correlations to the blob−blob structural correlations.16−18 The
IECG method was successfully applied to polymeric liquids
when the density was treated as a passive variable of the system
and accurately described both structure and thermodynamic
properties.19−22 The corresponding effective CG potentials were
characterized by soft potentials with long-range repulsive tails
and, at even larger distances, very shallow attractive wells.
Considering the range of CG interactions, here we attribute the
repulsive part of the effective CG potential as relatively short-
range and the attractive part as relatively long-range.
In this work, we present the IECG method from a bottom-up

approach perspective when the density is treated as an active
variable of the system. This means that the potential changes as
the total density fluctuates. We investigate the density depend-
ence of the effective CG potential and its corresponding CG virial
and test the compatibility of the CG and atomistic virials. The
implications of temperature dependence for effective CG
potential will be reserved for later consideration. We also discuss
the role of relatively short-range repulsive and relatively long-
range weak attractive CG interactions on structural and
thermodynamic properties. In particular, we address under
what circumstances two different effective CG potentials
generate almost indistinguishable pair correlations.
The remainder of the paper is organized as follows: in the next

section, the IECG theory is discussed in detail. In Section 3, the
IECG method is demonstrated for soft spheres and multiblobs.
This is done for both the IECG theory and the IECG simulations.
Next, the transferability of the IECG method is discussed. In
Section 5, the results of IECG simulations are discussed when the
effective CG potential is truncated with different approaches.
This is followed by discussion and conclusions.

2. IECG THEORY
Many aspects of the IECG theory are already described
extensively in a number of our publications.19−22 This section
formulates the IECG theory from the perspective of a formal
statistical-mechanical theory while briefly presenting the aspects
of the IECG theory previously discussed. The IECG theory is a
coarse-graining theory based on the solution of the Ornstein−
Zernike integral equation,23 extended to macromolecular
liquids.1,24 In the IECG model, each polymer in the melt is
described as a chain of CG units, positioned at a distance along
the chain comparable to or larger than the persistence length.25

As shown in Figure 1 each polymer is partitioned into a number,
nb, of blobs or CG units. In the case where nb = 1, the polymer is
described as a point particle interacting with a soft potential, i.e.,

the soft sphere model. However, it is of great importance to be
able to treat the same molecular system at different resolutions in
multiscale modeling. Low resolution CG methods usually allow
one to extremely enhance the computational speed, while higher
resolution CG methods give a more detailed description of the
structure on the local-scale, which is necessary to study the
properties of aggregation, interaction with surfaces, and self-
assembly of macromolecules. Therefore, the IECG theory may
be used to describe higher resolution modeling, which involves
representing the polymer as more than one blob. In soft sphere
or multiblob representations, each blob represents a number of
monomers, Nb, such that the total number of monomers in a
chain is N = nbNb.

2.1. Effective Hamiltonian. The effective Hamiltonian of
the polymer melts,H, represented by one or more blobs, is given
by

= + +H K U Uintra inter (1)

where K, Uintra, and Uinter are the total kinetic, effective
intramolecular, and effective intermolecular energies.
When the polymer is represented as more than one blob, these

are treated as flexible without rigid constraints.26 The blobs may
be considered as point masses, and the kinetic energy of the
system is given by

∑ ∑=
= =

K
p

m2k

nn

a

ka

k1 1

3 2

b

b

(2)

where n is the number of polymers, nb is the number of blobs in a
given polymer, and a = 1, 2, 3 designates the component of the
Cartesian coordinates of the kth blob with a momentum of pa and
mass of mb.
The classical configuration integral of the system14,27 may be

written by

∫ ∫= β− +Z r... e dU U( )intra inter

(3)

where β is inverse temperature, dr = ∏i=1
n ∏γ=1

nb dri
γ, and Uinter is

taken to be a sum of pairwise interactions (see eq 14). Therefore,
the corresponding canonical partition function in this classical
approximation is given by

Figure 1. Top left shows a snapshot of typical atomistic molecular
dynamics simulations. The top right displays two polymer chains
consisting of 300 monomers, which are represented by soft spheres. The
bottom left and right display two polymer chains consisting of 300
monomers, which are represented by diblobs and five blobs,
respectively.
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=
Λ !

Q
Z

nnn3 b (4)

where Λ = (2πβℏ2/mb)
1/2, the mean thermal de Broglie

wavelength.
The total intramolecular effective potential is given by

= + +U U U Uintra bond angle nb (5)

where Ubond, Uangle, and Unb are the total effective bond potential
between intrachain blobs in the field of the surrounding polymer
chains, total effective angle potential, and total effective
nonbonded intrachain potential between the blobs that are
separated more than two apart,19 respectively. Note that, as the
level of CG decreases, dihedral angles might be necessary to
incorporate in the model, but in this work we are only concerned
with the relatively high levels of CG and very soft potentials.
Making use of an appropriate Jacobian determinant,27,28 onemay
use the relative coordinates to describe the aforementioned
effective potentials. The total effective bond potential is then
given by

∑ ∑= ⟨ ⟩+

+

γ
γ γ

γ

−⎡
⎣
⎢⎢
⎤
⎦
⎥⎥

U n k Tl R k T g l

U l

2 / ln( ( ))

( )

i

n n

i i

i

bond
1

b B
2 2

B
bb

eff
bb

b

(6)

where l, kB, T, and ⟨R2⟩ are the bond length between blobs, the
Boltzmann constant, temperature, and the mean-square end-to-
end distance, respectively. As can be seen, an intermolecular
term, obtained by subtracting the potential of mean force from
the effective intermolecular potential Ueff

bb, is added to the bond
potential, where gbb is the radial distribution function (RDF)
between blobs. This intermolecular term is designed to
reproduce the appropriate bond length distribution.
The total effective angle potential is given by

∑ ∑ θ θ= −
ξ

ξ ξ

−⎡
⎣
⎢⎢

⎤
⎦
⎥⎥U k T Pln[ ( )/sin( )]

i

n n

i i
angle

2

B

b

(7)

where the angular probability distribution for a random walk
chain is given by

θ θ
π θ

θ θ

θ

θ

= −
−

+ −

−

+

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥
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a
a a

a

a

( )
(1 ) sin

(1 cos )
1 2 cos arccos( cos )

1 cos

3 cos

2 3/2

2 2 2

2 2

2 2

(8)

with a → −0.25 for long chains.29
Now we discuss how the intermolecular effective potential,

Ueff
bb, is obtained in the IECGmethod, where each blob consists of

a large enough number of monomers so that one can use
Gaussian statistics to obtain the intramolecular correlations. A 2
× 2 matrix Ornstein−Zernike (OZ) equation14,16,17,23 is first
solved for a system consisting of the monomer sites and the blob
sites to get the total blob−blob correlation function, hbb. It is
assumed that there is no direct correlation between the
monomer−blob sites and also blob−blob sites. Therefore, one
can relate hbb to the total monomer−monomer, hmm

̂ = Ω̂
Ω̂

̂
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥h k

k
k

h k( )
( )
( )

( )
bb

bm

mm

2
mm

(9)

where Ω̂mm(k) and Ω̂bm(k) are the normalized monomer−
monomer and blob−monomer form factors given below,
respectively. They characterize the internal structure of polymers
and are related to the Fourier components of the intramolecular
monomer density.
The total monomer correlation function, h ̂mm(k), is then

estimated in Fourier space by the polymer reference interaction
site model (PRISM)1,24 for a homopolymer fluid

ω
ρ ω

̂ =
̂ ̂

− ̂ ̂
h k

k c k
k c k

( )
( ) ( )

1 ( ) ( )
mm mm 2 mm

m
mm mm

(10)

where ω̂mm(k) =NΩ̂mm(k),N is the number of monomers in the
polymer, ρm is the number density of monomer sites, and c ̂mm(k)
is the monomer direct correlation function.
Noting that, at relatively large distances, the monomer direct

correlation function is almost constant in Fourier space, one can
approximate c ̂mm(k) = c ̂mm(0) = c0:

ω
ρ ω

̂ =
̂

− ̂
h k

c k
c k

( )
( )

1 ( )
bb 0

bm 2

m 0
mm

(11)

where ω̂bm(k) =NΩ̂bm(k), and c0 has density, temperature, andN
dependencies.
The direct correlation function between blob sites, c ̂bb(k), is

determined by solving the OZ equation for a system consisting of
only blob sites:

ρ
̂ =

̂

Ω̂ Ω̂ + ̂
c k

h k

n k n k h k
( )

( )

( )[ ( ) ( )]
bb

bb

b
bb

b
bb

b
bb

(12)

where nb is the number of blobs, and ρb is the number density of
blobs.
The effective CG potential for a pair of blobs is finally obtained

by making use of an appropriate closure, such as the hypernetted
chain (HNC) closure30 that works well for the soft bounded
potentials and in the limits of interest, i.e., melt density and long
chains:

β ρ

ρ ρ

ρ

= − + +

−

U r T N

h r T N h r T N

c r T N

( , , , )

ln[ ( , , , ) 1] ( , , , )

( , , , )

eff
bb

c
bb

c
bb

c
bb

c (13)

Note that the closure, together with the OZ equation, implicitly
captures the many-body effects.31,32 Therefore, the total effective
intermolecular (nonbonded) interaction in eq 3 is given by

∑ ∑ ∑ ∑ ρ=
γ α

γα
−

>

U U r T N( , , , )
i

n

j i

n n n

ij
inter

1

eff
bb ( )

c

b b

(14)

where the Greek indices are used to label the number of a blob
along a chain.
Hence, the IECG effective potential can be used as an input to

existing software programs for Molecular Dynamics (MD) and
Monte Carlo (MC) simulations as discussed below.

2.2. Soft Spheres: Equation of State. Here we discuss the
equation of state (EOS), when the density is an active variable of
the soft sphere system.12 The EOS may be obtained from
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= ∂
∂

⎜ ⎟⎛
⎝

⎞
⎠P k T

Z
V

ln

n T
B

, (15)

where P and V are the pressure and volume of the system. The
resulting pressure is obtained as

∫

∫

ρ
πρ

ρ
ρ

πρ
ρ

ρ
ρ

= −
∂

∂

+
∂
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∞

∞

P
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r
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d
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c
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cc

c

c
2

B 0

2 cc
c

eff
cc

c

c

(16)

where gcc and Ueff
cc are the RDF and the effective density-

dependent potential energy between the soft spheres. In what
follows, the superscript cc is used to indicate the correlation/
potential between the soft spheres.
An analytical solution of eq 16 can be derived making use of

the mean-spherical approximation (MSA) closure and gcc(r, ρc,
T, N) = 1. Note that the MSA closure can be derived formally
from the HNC closure by assuming that the pair distribution
function is equal to 1, and that the use of theMSA is well-justified
for polymer melts of high density, where the CG potential has a
long-range, slowly varying tail. This approximation gives the soft
sphere EOS as

ρ
ρ ρ

= −P
k T

Nc T N
1

( , , )

2c B

m 0
eff

m

(17)

where c0
eff(ρm,T,N) = (c0(ρm,T,N) + ρm∂c0(ρm, T,N)/∂ρm) (see

the Supporting Information (SI) for details).
The direct correlation function between soft spheres in the

reciprocal space is then obtained as

ρ
= − Γ Ω

+ Γ Ω − Ω
c k

N k
k k

( )
( )

1 ( ( ) ( ) )eff
cc

eff

m

cm 2

eff mm cm 2
(18)

where Γeff = Γ + Γρ with Γ = −Nρmc0 and Γρ = −Nρm2 ∂c0/∂ρm.
The monomer intramolecular distribution is given by the Debye
function

Ω̂ =
+ −−

k
q

q
( )

2(e 1)q
mm

2
(19)

where q = k2⟨R2⟩/6, and the monomer-cm distribution is given
by

πΩ̂ = −
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥k

q
q

( ) e erf
2

qcm

1/2
/12

1/2

(20)

An inverse Fourier transform of ceff
cc(k) while keeping the

leading term results in

ρ = − Γ
Γ

− Γ
⎡
⎣⎢

⎤
⎦⎥c r T N

B
r

Dr
( , , , )

( )
sin

( )
e Dr

eff
cc(0)

c

eff 1/2

eff 1/4
/( )eff 1/4

(21)

where =
πρ ⟨ ⟩

B
R

9 5
2 c

2 and =
⟨ ⟩

D 3
R

51/2

2 . It is useful to stress that this

direct correlation function incorporates the density dependence
of the CG virial, which allows one to obtain the CG pressure in
MSA as

∫ρ
πρ ρ

= +
∂

∂

∞P
k T

r g r
c r T N

r
1

2

3
( )

( , , , )
dr

c B

c

0

3
CG
cc eff

cc(0)
c

(22)

where gCG
cc (r) denotes that the RDF has temperature, density, and

N dependencies (see SI for the detailed derivations). By
assuming gCG

cc (r) = 1, eq 22 reduces to eq 17, which may be
written as

ρ
= + ΓP

k T
1

2c B

eff

(23)

with Γeff = −ρmNc0eff(ρm, T, N). This indicates that when the
monomer (atomistic) configurations are mapped into the CG
configurations, another contribution may be added to c0, which
captures the volume dependence of the effective CG interactions.
Therefore, in the IECG theory the CG pressure for soft spheres
may be obtained by a simple EOS

∫ρ
πρ ρ

= −
∂

∂

∞P
k T k T

r g r
U r T N

r
r1

2

3
( )

( , , , )
d

c B

c

B 0

3
CG
cc CG

cc
c

(24)

where UCG
cc is the effective CG potential, which incorporates the

density dependence of the CG virial through c0
eff. Note that

various closures such asMSA orHNCmay be used to obtainUCG
cc

in eq 24. This equation, with the HNC closure, is used when
reporting the IECG theoretical values of pressure. As will be
shown in Section 3, the resulting effective CG potential
accurately reproduces the pair-correlation functions.

2.3. Multiblobs: Equation of State. The pressure (EOS)
for multiblobs may be obtained using eq 15, which results in
decomposing the pressure into kinetic and intramolecular and
intermolecular contributions as

= + +P P P Pkin inter intra (25)

where each term is presented in detail below.
The kinetic contribution is obtained as

ρ=P k Tkin b B (26)

The intermolecular contribution is obtained as

∫πρ ρ
= −

∂
∂

∞
P r g r

U r T N

r
r

2

3
( )

( , , , )
dinter

b
2

0

3
CG
bb CG

bb
c

(27)

where the effective CG potential, UCG
bb , is calculated through c0

eff

by making use of the normalized monomer−monomer Ω̂mm,
blob−monomer Ω̂bm, and blob−blob Ω̂bb intramolecular form
factors. The normalized monomer−monomer intramolecular
form factors for multiblobs in the blob averaged limit may be
written as

Ω̂ = − + −k
n q

q n( )
2

( 1 e )n qmm

b
2

b
2 b b

b b

(28)

where qb = q/nb, and q = k2 ⟨R2⟩/6 and Ω̂mm(k) = ω̂mm(k)/N.
The normalized blob−monomer intramolecular form factors are
given by
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where Ω̂bm(k) = ω̂bm(k)/N. The following normalized blob−
blob intramolecular form factors are used

Ω̂ = +
− + −

−

− −

−
−

⎡
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⎤
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n
n n
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( )

1
2
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e
n q q

q
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b

b b

b
2 2

2 /3
b b b

b

b

(30)

where Ω̂bb(k) = ω̂bb(k)/nb.
The intramolecular contribution of the pressure consists of the

harmonic part of the bond interactions, Pb
harm, the repulsive part

of the bond interactions, Pb
rep, and the nonbonded interactions,

Pnb:

= + +P P P Pintra b
harm

b
rep

nb (31)

The pressure due to harmonic bond interactions is obtained as

∫πρ
ω

ρ
= −

− ∂
∂

∞
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r
r
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3
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0

3
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c

(32)

with Ub
harm = 9nbkBTr

2/(4⟨R2⟩), and ωCG
bb1, the blob−blob bond

length distribution, as

ω
π

=
⟨ ⟩

− ⟨ ⟩
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⎞
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3
8
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b

3/2

b
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(33)

It is worth mentioning that the contribution from the harmonic
bonds can be integrated analytically and combined with the
kinetic contributions to give

ρ+ =P P k Tkin b
harm

c B (34)

suggesting that the kinetic and harmonic bond contributions in
the multiblob models can compensate for each other.
The pressure due to the repulsive part of bond interactions is

obtained as

∫πρ
ω

ρ
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n
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(35)

with

= +U U r k T g r( ) ln( ( ))b
rep

CG
bb

B CG
bb

(36)

The pressure due to the intramolecular nonbonded interactions
between the blobs, which are more than two apart, is obtained as

∫πρ
ω
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∞
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with
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=
− + − −
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>

− − + −

−

k
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e ( 3) e e ( 2)
(1 e )

q n q q

q

CG
bb 3

8/3
b

(2 3 )/3 11/3
b

2

b b b b

b

(38)

where qb = q/nb.

As will be shown in the next section, the multiblob EOS in the
IECG theory works reasonably well when compared to the
atomistic and IECG simulation results.

3. DEMONSTRATION OF THE IECG METHOD:
MOLECULAR DYNAMIC SIMULATIONS

In this section, we demonstrate the IECG method for soft
spheres and multiblobs for various degrees of polymerization at a
density of 0.77 g/cm3 at 503.17 K and discuss how it can be
mapped into atomistic simulations. We would like to stress that
the IECG method may be used in the top-down or bottom-up
approaches. When the bottom-up approach is used, only a few
atomistic simulations are required to set the parameters of the
formalism (c0

eff and ⟨R2⟩), and this is verified in Section 4.
3.1. Atomistic Simulation Details. A detailed description

of the atomistic MD simulation protocols is given in the SI. Here,
we only briefly present them. The atomistic simulations were
performed using the LAMMPS software program33 in the
canonical ensemble at the corresponding state points. A Nose−́
Hoover thermostat and standard velocity-Verlet integrator were
used for the atomistic simulations with a time step of 1.25 fs. A
cutoff distance of 14 Å was used, where both potential and force
were required to go smoothly to zero at the cutoff distance by
multiplying the potential by the Mei−Davenport−Fernando
taper function.34 The equilibration period ranged from 10 to 50
ns, and the production period consisted of 45−160 ns for various
polymer melts as discussed in the SI.

3.2. IECG Simulation Details. All IECG MD simulations
were performed in the canonical ensemble with a Nose−́Hoover
thermostat with a standard velocity-Verlet integrator. The end-
to-end distance and c0

eff reported in Table 1 were used. Note that
eq 17 has been used to obtain the values of c0

eff for the IECG
simulations. The cutoff distances for the IECG simulations were
determined over the range of r > 0 from the location of the
second extremum of the effective CG potential, i.e., 186, 290,
348, and 391 Å for soft sphere simulations of polymers with the
degrees of polymerization, N, of 96, 192, 250, and 300,

Table 1. Top:Mean-Square End-to-EndDistance ⟨R2⟩, Mean-
Square Radius-of-Gyration Rg

2, Pressure P, and c0
eff Obtained

Directly from a Few Atomistic Simulations of Polymer Melts
with Various Degrees of Polymerizations, Na

Atomistic Simulations

N ⟨R2⟩/6, Å2 Rg
2, Å2 P, atm c0

eff, Å3

96 293 ± 7 265 ± 4 523 ± 7 −13.5 ± 0.2
192 610 ± 16 580 ± 11 393 ± 6 −10.2 ± 0.2
250 815 ± 33 784 ± 20 362 ± 5 −9.5 ± 0.1
300 969 ± 29 943 ± 16 343 ± 4 −9.0 ± 0.1

Soft Spheres: IECG Simulations/Theory

N Psimulations, atm Ptheory, atm PMSA, atm

96 523 ± 1 523 524
192 392 ± 1 392 392
250 362 ± 1 361 362
300 343 ± 1 343 344

aThe statistical uncertainties are the standard deviations obtained from
block averages. Note that ⟨R2⟩/6 relatively deviates less from Rg

2 for
longer chains. Bottom: The values of pressure obtained from the
IECG simulations and compared with the IECG theory (eq 24). For
comparison, the values of pressure are also reported when the mean-
spherical approximation (MSA) and gcc = 1 approximation are applied
to eq 24, PMSA.
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respectively. A neighbor skin distance of 2 Å, a simulation
parameter that determines the Verlet neighbor lists,35 was used.
In multiblob models, the time step should be smaller than the
relaxation times of the fastest modes of vibration, τ, which
theoretically scale as τ ∝ nb

−1. A time step of 30 fs was used for all
soft sphere, diblob, and four-blob simulations. However, for 6-
and 10-blob simulations, a time step of 10 fs was used. The
production runs for soft spheres consisted of 3 ns for N = 96 and
N = 192 and 0.6 ns for N = 250 and N = 300. The effective CG
potential becomes less long-ranged for multiblob simulations,
allowing fewer force calculations in MD. For multiblobs
consisting of two and four blobs, the production consisted of 3
and 30 ns, respectively. For 6- and 10-blob simulations, a
production period of 10 ns was used.
3.3. Results: Consistencies in RDF, Form Factors, and

Pressure. The evolution of the pressure, mean-square end-to-

end distance (R2), and mean-square radius-of-gyration (Rg
2) for a

few atomistic simulations performed are shown in Figure 2 and
Figures S1 and S2. The mean-square end-to-end distance and
mean-square radius-of-gyration for each snapshot of the MD
trajectory are defined as ⟨R2(t)⟩ = ∑i

nRi
2(t)/n and Rg

2(t) =
∑i

nRgi
2 (t)/n, respectively. In the atomistic simulations, the density

was treated as a passive variable; i.e., the atomistic potential
parameters are optimized such that they do not explicitly have
density dependence. For instance, the depth of the Lennard-
Jones potential is invariant to the density change. The pressure
was calculated using the potential described in the SI via the virial
theorem as

ρ= ⟨ ⟩ + ⟨ ⟩
P k T

W
V3m B (39)

Figure 2. Evolution of the instantaneous average end-to-end distance (black lines) obtained for the production period of atomistic simulations of
polymers with degrees of polymerization N of 96 (top left panel), 192 (top right panel), 250 (bottom left panel), and 300 (bottom right panel). The
atomistic simulations forN = 96 and 192 consisted of 350 polymer chains, while the atomistic simulations forN = 250 and 300 consisted of 300 polymer
chains. The red lines show the cumulative mean-square end-to-end distance at a given MD step.

Figure 3. Left panel: mean-square internal distances from long MD runs for atomistic simulations of polymers with degrees of polymerization N of 96
(black), 192 (red), and 300 (blue). Right panel: evolution of the mean-square internal distances from long MD runs for atomistic simulations of
polymers with degrees of polymerization N of 192. In both panels, the magenta line shows the theoretical predictions of a freely rotating chain model.
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whereW is the virial given in ref 36. It is worth mentioning that
no explicit volume dependence exists in the atomistic virial, but
an implicit volume dependence exists via scaling of rij, where rij
may be calculated using the minimum-image convention for
periodic systems. Note that the thermodynamic pressure was
estimated by averaging the instantaneous pressure based on the
kinetic energy and the atomistic virial (and not the molecular
virial).
Comparing Figure S1 with Figures 2 and S2 shows that the

pressure is converged relatively faster than ⟨R2(t)⟩ andRg
2(t). The

average values are reported in Table 1. In addition, Table 1 lists
the values of c0

eff obtained directly from the atomistic pressures
andmaking use of eq 17. As will be discussed, c0

eff and ⟨R2⟩ are the
two parameters that need to be determined in the IECGmethod.
The average mean-square internal distances, for a given

number of internal monomers ν(⟨R2(ν)⟩), were calculated to
monitor the structural equilibration of the polymer melts. In
atomistic simulations, it was calculated as

∑ ∑ν
ν

⟨ ⟩ =
−

−
γ

ν
γ γ ν

= =

−
+

⎡
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where ν is the number of monomers between the γth monomer
and the (γ + ν)thmonomer along the same chain. The theoretical
prediction of the mean-square internal distance for a freely
rotating chain (FRC) model is

ν ν θ
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(41)

where cos θ = −0.785 was used to report ⟨R2(ν)⟩ for an FRC
model in Figure 3.
The left panel of Figure 3 compares ⟨R2(ν)⟩ for atomistic

simulations of polymer melts with various degrees of polymer-
izations and the corresponding FRC model. It turns out that, for
a given internal distance ν, ⟨R2(ν)⟩ from atomistic simulations is
almost independent of the chain length and in close agreement

with the FRC model. The right panel of Figure 3 shows the
structural equilibration of the polymer melt with N = 192.
Initially, the polymers appear to be compressed due to the
artifacts introduced by the preparation procedure. The
equilibration period eliminates these artifacts. Due to the strong
repulsive interactions between monomers, the local monomer
structure relaxes more quickly than the large-scale chain
structure. No significant change in the average mean-square
internal distances is observed after 50 ns.
In the IECG theory/simulations, the dimension of the

polymer may be determined from the mean-square end-to-end
distance, ⟨R2⟩, obtained during the atomistic production period.
The dimension of polymer melts with large chain lengths is
usually envisaged as an ideal polymer melt in which no
interactions exist aside from those responsible for chain
connectivity. For the polymer melts with large N, the equality
⟨R2⟩/6 = Rg

2 holds.37 However, as shown in Table 1 for relatively
short polymer melts, the atomistic simulations show significant
deviations from the aforementioned equality. Considering the
uncertainties in ⟨R2⟩ and Rg

2, these deviations almost vanish for
the polymer melt with N = 300.
During the coarse-graining procedure, the density becomes an

active variable of the system, and the pressure was calculated
using the CG effective potential as

∑ ∑ρ= ⟨ ⟩ − ·
−

>

P k T
V

dU r

dr
r

1
3
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i

n

j i

n
ij

ij
ijc B

1
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cc

(42)

which captures the density dependence as shown in eq 24. This
suggests that making use of c0

eff(ρm, T, N) allows one to calculate
the CG pressure without modifying the standardMD/MC codes
designated for atomistic systems because the effective CG
potential and force capture the density-dependent part of
pressure in eq 16. The long-range CG corrections (discussed
below) can be applied after NVT simulations.
Table 1 shows that the IECG simulation results lie within the

statistical uncertainty of atomistic simulations. In addition,
theoretical values of pressure, Ptheory, were calculated using eq 24,

Figure 4. Theoretical and simulated radial distribution functions for polymers with degrees of polymerization, N, of 96 (top left panel), 192 (top right
panel), 250 (bottom left panel), and 300 (bottom right panel) when the polymer is represented by one soft sphere. Atomistic simulation results (blue
▲) are compared with coarse-grained simulation results (red ■) and with the IECG theoretical prediction (black). The theoretical results and the
data from the coarse-grained simulations are both within the error of the atomistic simulations.
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and excellent agreement was observed with both the atomistic
and IECG simulation results. When the MSA and gcc = 1
approximations were applied to eq 24, it was found that the
values of pressure, PMSA, were also in excellent agreement with
the IECG simulation/theoretical results. Figure 4 shows that the
difference between the RDFs obtained by the atomistic and CG
simulations is within the statistical uncertainty, and both are in
excellent agreement with the IECG theoretical predictions. The
RDF uncertainties in the atomistic simulations increase for
longer chain polymers, which involve more conformation states,
due to the lack of long enough trajectories.
Similarly, one can demonstrate the IECG method for

multiblob models. The top panel of Figure 5 displays the
evolution of the instantaneous atomistic pressure, Pi at step i,
while the red line shows its cumulative average; for instance at

step j, = ∑ =P Pj i i
1
st 1

st

j

j , as stj is the number of steps up to step j.

The bottom panel of Figure 5 shows in blue the probability
distribution of the pressure, as obtained from the atomistic
simulation, with the average pressure in blue, and the simulation
error bar. The inset shows the average pressure measured in the
IECG simulations, with the chains represented by 1 (red line), 4
(orange line), 6 (cyan line), and 10 (magenta line) blobs. The
error bar in the blob representations is of the order of the line
width. As can be seen, all the CG pressures fall within the error of
the atomistic simulation.
Table 2 provides a useful analysis of the contributions to the

total pressure of the polymer melt with N = 300 for the IECG
theory and simulations. The kinetic contributions increase as the
number of blobs increases, while the bonded contributions
appear to significantly compensate for them. The increase in the
kinetic contributions is less pronounced in the IECG simulations
than the IECG theory due to a slight overestimation of the
bonded contributions in the IECG theory. The nonbonded
contributions are positive due to repulsive interactions between
the blobs, which are more than two blobs apart and result in
excellent agreement of the IECG theory/simulation results with

the atomistic ones. Although the contributions of the intra-
molecular nonbonded interactions between the blobs and the
repulsive part of bond interactions to pressure are considerably
less than other contributions for the resolutions studied in this
work, they compensate for the relatively small reduction in the
intermolecular pressure in higher resolution CG models leading
to excellent agreement between the atomistic and IECG results.
Overall, as the level of CG decreases, the virial contributions to
the pressure decrease, while the kinetic contributions increase
and almost compensate for them.
The left panel of Figure 6 compares the RDFs from the

atomistic simulations, IECG simulations, and the IECG theory
for the polymer melts ofN = 192 represented by two blobs andN
= 300 represented by four blobs. The difference between the
IECG and atomistic simulations falls within statistical
uncertainties, both of which are in excellent agreement with

Figure 5. Top panel: evolution of the instantaneous pressure over the production run of an atomistic simulation of polyethylene withN = 300, at 503 K
and a monomer density of 0.03296 Å−3 (black curve). Cumulative average pressure for the same simulation (red curve). Bottom panel: pressure
distribution for the atomistic simulation (black curve). The blue line shows the average pressure for atomistic simulations with the simulation error bars
obtained from block averages. The red, orange, cyan, and magenta lines show the average pressure for coarse-grained (CG) simulations with 1, 4, 6, and
10 blobs per chain, respectively. The result for two blobs is indistinguishable from the one blob representation in the plot.

Table 2. Calculated Pressure with N = 300 When the Polymer
Is Represented by Various Numbers of Blobsa

IECG Simulations

nb ⟨Pkin⟩ ⟨Pinter⟩ ⟨Pb⟩ ⟨Pnb⟩ ⟨Pvir⟩ ⟨P⟩

1 7.5 336.0 0 0 336.0 343.5
2 15.1 335.0 −6.6 0 328.4 343.5
4 30.1 331.9 −19.2 0.4 313.1 343.2
6 45.2 328.9 −32.3 1.6 298.2 343.4
10 75.3 325.3 −59.1 4.5 270.7 346.1

IECG Theory

nb ⟨Pkin⟩ ⟨Pinter⟩ ⟨Pb
harm⟩ ⟨Pb

rep⟩ ⟨Pnb⟩ ⟨Pvir⟩ ⟨P⟩

1 7.5 335.8 0 0 0 335.8 343.3
2 15.1 335.0 −7.5 0.7 0 328.2 343.3
4 30.1 332.2 −22.6 2.0 0.3 311.9 342.0
6 45.2 329.6 −37.7 2.9 1.6 296.4 341.6
10 75.3 326.6 −67.8 4.0 3.6 266.4 341.7

aIn the IECG theory, Pkin, Pinter, Pb
harm, Pb

rep, and Pnb were obtained from
eqs 26, 27, 32, 35, and 37, respectively. The atomistic pressure for this
polymer melt is 343 ± 4 atm as reported in Table 1.
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the IECG theory results. The right panel of Figure 6 shows
excellent agreement between the normalized monomer−blob
factors for polymers with N = 192 represented by two blobs and
N = 300 represented by four blobs from the atomistic simulations
and the IECG theory. In addition, Figures S3 and S4 also show
agreement between the total correlation function and mono-
mer−blob form factors for atomistic simulations and the IECG
theory results when the polymer melt of N = 300 is represented
by 2, 4, 6, and 10 blobs.

4. TRANSFERABILITY OF THE IECG METHOD
The common numerical CG potentials are usually optimized to
reproduce an atomistic quantity at a given state point and suffer
from the problem of being not transferable to other
thermodynamic conditions or to other systems. However, the
IECG method is transferable because it is based on analytical
expressions that can determine the parameter values at state
points of interest in the phase diagram. Since the focus here is on
the direct mapping of the atomistic simulations to the IECG
theory/simulations, a few atomistic simulations should be
performed to obtain the values of c0

eff and ⟨R2⟩ in the phase
diagram. Accurate EOSs1 and the principles of polymer physics25

then allow one to easily estimate the values of these two
parameters at other state points. However, if the goal of the
IECG method is based on a top-down approach, i.e., making use
of the experimental data for the IECG theory/simulations, then
atomistic simulations may not be required as several c0

eff and ⟨R2⟩
obtained from experiments are sufficient to make the IECG
method transferable.
Figure 7 illustrates how the state points in the phase diagram

can be determined for polymer melts with long chain lengths,
where atomistic simulations are almost impractical despite access
to massively parallel supercomputers. Even with a small number
of chains that can have significant finite size effects, it is
computationally expensive to perform atomistic simulations of
chains with more than 105 monomers each, a reasonable chain
length to study.2 To demonstrate the transferability of the IECG
method for various chain lengths, only four state points from
atomistic simulations are used to determine the EOS from which

one can estimate c0
eff at other state points in the phase diagram. To

verify the accuracy of this procedure, independent atomistic
simulations consisting of a 50 ns production period were
performed for polymers with degrees of polymerization of 44,
124, and 400 at 503.17 K and a monomer density of 0.03296 Å−3.
No significant finite size effects were observed for these relatively
short chain length polymers. For instance, the values of pressure
for the polymer melt withN = 44 consisting of 175, 350, and 700
chains were 856 ± 12, 849 ± 11, and 853 ± 6 atm, respectively,
where 20 ns was used for the equilibration period and 30 ns was
used for the production period. We hesitated to report
independent atomistic simulations for the polymer melts with
very long chain lengths because they are computationally very
expensive to equilibrate and may have more significant finite size
effects given the small number of chains that is usually used in
their simulations.
The top of Table 3 lists the values of pressure obtained from

the IECG theory and IECG simulations in soft sphere and
multiblob representations and compares them with the results

Figure 6. Left panel: IECG theoretical and simulated radial distribution functions for polymers with degrees of polymerization when the polymer is
represented by two and four blobs. The atomistic simulation results (▲) are compared with the IECG simulation results (red ■) and the IECG
theoretical prediction (black line). Right panel: the normalized monomer−blob form factor, Ωbm, for atomistic simulations (▲) and the IECG theory
(black ). The statistical uncertainties are less than the symbol size.

Figure 7.Values of c0
eff (red●) and ⟨R2⟩ (blue■) computed for polymer

melts of various degrees of polymerization, N, at 503 K and a monomer
density of 0.03296 Å−3. The red and blue solid lines are fits of the form a
+ b/N and a + b N, respectively.
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from independent atomistic simulations. Excellent agreement is
observed between the aforementioned approaches demonstrat-
ing the transferability of the IECG method. The IECG theory in
its current version tends to slightly overestimate the magnitude
of bond contributions to the pressure, which resulted from the
approximations related to eq 33. However, all IECG simulation
results in Table 3 fall within the statistical uncertainties of
atomistic simulation results showing the consistency for various
levels of coarse-graining. In addition, the top panel of Figure 8

shows excellent agreement between the RDFs obtained from the
aforementioned approaches forN = 44 andN = 124 (represented
by two blobs). In the bottom panel of Figure 8, the probability
distribution of the atomistic pressure is shown and confirms that
the IECG theory/simulation results are in excellent agreement
with the atomistic ones.
Similarly, the transferability of the IECG method is

demonstrated at various densities for the polymer melt with N
= 192 at the bottom of Table 3, where only three c0

eff data points
from atomistic simulations (shown in the left top panel of Figure
9) were used to determine the corresponding EOS in the phase
diagram. Note that the values of ⟨R2⟩ and Rg

2 are almost constant
for related densities at a givenN. For instance, Rg

2 values obtained
from atomistic simulations of the polymer melt with N = 192 at
monomer densities of 0.03201, 0.03296, and 0.03344 Å−3 were
found to be 577± 11, 580± 11, and 580± 14 Å2. Usually, better
agreements were observed between the independent atomistic
simulations and the predictions/results of the IECG theory and
the IECG simulations when the atomistic simulations were more
converged. The equilibration period ranged from 5 to 65 ns for
the data presented in Table 3 for various monomer densities and
N.

4.1. Sensitivities of RDF and Pressure to c0
eff and ⟨R2⟩.As

discussed above, the effective CG potentials are determined in
terms of c0

eff and ⟨R2⟩, which are associated with uncertainties.
Themonomer local-scale information is captured in c0

eff, while the
polymer large-scale properties are included in ⟨R2⟩. To get
specific local-scale information on the structural correlation
functions, one may use multiscale-scale approaches as described
in our previous work38 or adaptive resolution approaches.39

Noting that the end-to-end distance is constant at various
studied densities (as supported by the atomistic simulation
results), the RDFs and effective CG potentials are presented in
Figure 9 for a polymer with N = 192. The top left panel shows
that the direct monomer−monomer correlations become more
pronounced as the density increases. The bottom left panel

Table 3. Comparison of the Pressure from Independent
Atomistic Simulations and the IECG Theory/Simulations for
the PolymerMelts at 503 K at VariousN (Top) andMonomer
Densities (Bottom)a

ρm = 0.03296 Å−3

N nb IECG theory IECG simulations atomistic simulations

44 1 846 846 849 ± 11
124 1 467 469 466 ± 5
124 2 467 469 466 ± 5
400 1 322 322 325 ± 4
400 2 322 322 325 ± 4
400 4 321 322 325 ± 4
400 8 320 322 325 ± 4

N = 192

ρm, Å
−3 nb IECG theory IECG simulations atomistic simulations

0.03153 1 86 87 84 ± 4
0.03153 4 86 87 84 ± 4
0.03248 1 276 277 274 ± 5
0.03248 4 275 277 274 ± 5
0.03439 1 830 830 833 ± 4
0.03439 4 826 829 833 ± 4

aThe IECG parameters are computed from the fits shown in Figures 7
and 9. The unit of the pressure is atm, and the uncertainties in the
IECG simulations are less than 1 atm.

Figure 8. Top panel: comparison of RDFs obtained from independent atomistic simulations and the IECG theory for N = 44 and N = 124 at 503.17 K
and a monomer density of 0.03296 Å−3. The IECG theory/simulation results are within the uncertainties of independent atomistic simulation. Bottom
panel: pressure distribution for the atomistic simulation (blue curve). The black line shows the pressure computed from the IECG simulations, which is
indistinguishable from the independent atomistic simulation results and the IECG theory in the plot scale. See Table 3 to compare the pressure values for
the aforementioned approaches.
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displays the RDFs of the polymer melt represented by four blobs
at various densities showing the increase in the correlation hole at
higher densities, but no considerable differences in RDFs at large
distances. The right panel shows the effective CG potentials at
contact, Ubb(0), which become more repulsive as the density
increases. In addition, the depths of the attraction parts of the
effective CG potentials and the positions of their minima increase
as the density increases. Therefore, both the short-range and
long-range parts of the effective potential have density
dependencies.
It is useful to know how the pressure is sensitive to the choice

of the end-to-end distance or the radius-of-gyration. The values
of ⟨R2⟩/6 and Rg

2 for the polymer melt withN = 44 obtained from
40 ns production period in atomistic simulations were 101 ± 1

and 123± 2 Å2, respectively. However, the IECG theory predicts
pressure values corresponding to Rg

2 and ⟨R2⟩/6 as 847 and 848
atm, respectively. This suggests that once the value of c0

eff is
determined for a given state point, the pressure of the system is
relatively insensitive to the values of mean-square end-to-end
distance or radius-of-gyration. On the other hand, for short chain
polymer melts, the structure is accurately determined with ⟨R2⟩/
6, while making use of Rg

2 overestimates the correlation hole,
which is shown in Figure S5 in the SI.

5. POTENTIAL TRUNCATION EFFECTS

While the short-range part of the effective CG potential
determines the structural consistency across variable levels of
coarse-graining, the long-range part of the effective CG potential

Figure 9.Top left panel: values of c0
eff computed for a polymer melt withN = 192 at 503 K and at various monomer densities. The dashed black line is a fit

to a Carnahan−Starling-type equation.40 Bottom left panel: the radial distribution function for the polymer melt withN = 192 at 503.17 K at monomer
densities of 0.03201 (black line), 0.03296 (red line), and 0.03344 (blue line) Å−3. The polymer melt is represented by four blobs. Right panel: the
effective CG potential for the same polymer melt at the same state points. Inset: the attractive contribution of the effective CG potential.

Figure 10. Theoretical and CG simulated radial distribution functions for polymers with degrees of polymerization when the polymer is represented by
one soft sphere. IECG simulation results where the cutoff distances were determined over the range of r > 0 from the locations of the first (blue unfilled
▲) and second extrema (red filled■) of the effective CG potential. They are compared with the IECG theoretical prediction (black). The differences
between the IECG simulation results with various treatments of potential truncation are within the statistical uncertainties (see main text).
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is important for consistency in thermodynamic properties.
However, care is required to interpret the potential truncation in
the effective CG potential. In the atomistic simulations in this
work, the van der Waals interactions were explicitly calculated up
to the potential truncation distance, and the long-range
contributions beyond this cutoff distance may be approximated
by analytical tail corrections to report the thermodynamic
properties such as pressure and internal energy.35,41 In the SI,
these tail corrections are discussed for the Lennard-Jones
polymer melts studied in this work. Here we focus on the
corrections related to the coarse-graining procedure, where the
effective CG potential has a long repulsive tail with a small
attractive contribution that only appears after the RDF
diminishes to 1. We investigate how the pressure and RDFs
change with various treatments of the cutoff distance in the IECG
method and compare them with the corresponding atomistic
simulation results. Two approaches have been used. The cutoff
distances for the IECG simulations were determined over the
range of r > 0 from the locations of the first and second extrema
of effective CG potential (rcut1 and rcut2 approaches, respectively).
As mentioned before, all results presented in Tables 1 and 2 use
the rcut2 approach. The IECG simulation details with the rcut1
approach are the same as the rcut2 approach except a time step of
10 fs was used for 4-blob simulations and a time step of 2 fs was
used for 6- and 10-blob simulations. In addition, the neighbor
skin distances of 8, 15, and 30 Å were used for 4-, 6-, and 10-blob
simulations. It is important to note that the system may become
unstable for relatively large time steps and/or small neighbor skin
distances in this approach.
Figure 10 presents the IECG simulated RDFs for the polymer

melts represented by soft spheres for the rcut1 and rcut2 approaches
and compares them with the IECG theoretical results. The RDFs
are statistically indistinguishable for the two approaches for
polymers with various degrees of polymerizations, and both are
in excellent agreement with the IECG theoretical calculations
and also the atomistic simulation results as can be inferred from
Figure 4. It is worth mentioning that, for the same length of
trajectories, the uncertainties for the first cutoff approach are
usually higher than the second cutoff approach. Similarly, Figure
S6 compares the IECG simulated RDFs for the multiblobmodels
with nb values of 2, 4, 6, and 10 for the polymer melt withN = 300
for the rcut1 and rcut2 approaches. Excellent agreement is observed

for the aforementioned approaches over various levels of coarse-
graining. Therefore, the structure of the polymer melts can be
determined from the relatively short-range repulsive CG
interactions suggesting that the long-range weak attractive forces
exerted on a given chain by its neighbors largely cancel.42

Table 4 lists the average values of the pressure for various
approaches. Cutting the effective CG potential at the first cutoff
distance significantly overestimates the values of the pressure in
the IECG simulations because the small attraction part of the
effective CG potential, which contributes negatively, is neglected.
Adding the long-range CG corrections almost completely
incorporates the attraction contributions. On the other hand,
truncating the effective CG potential at the second cutoff
distance only slightly underestimates the values of the pressure,
and adding the long-range CG corrections again results in
excellent agreement with the atomistic simulation results.
Therefore, the effect of the relatively long-range attractive
potential on the EOS of the polymer melts is merely to lower the
pressure, and the attractive forces do not influence the molecular
configurations.42

6. DISCUSSION AND CONCLUSIONS
In a CG model, the interactions are effective free energies in the
CG coordinates and are thermodynamically state-dependent.
Therefore, it is plausible to treat the thermodynamic variables
such as density as active, which means that the density
dependence of the effective interactions is regarded as an
intrinsic property of the CG model. In this framework, the
appropriate statistical-mechanical formalism is required in order
to describe thermal equilibrium.12 Here we have derived a CG
virial, which accurately captures the density dependence of the
effective CG potential. The effective CG potential is obtained
starting from the Ornstein−Zernike equation for polymers,24

while coarse-graining each macromolecule into one or more
blobs, i.e., the IECG method.19,21 The IECG method accurately
computes the pressure, which reproduces the atomistic
simulation results, while preserving the consistency in pair-
correlation functions. The CG potential depends on two
parameters, namely, the zero wave-vector limit of effective direct
monomer−monomer correlation function, c0

eff, and the mean-
square end-to-end distance, ⟨R2⟩. The IECG method is
reasonably transferable because c0

eff can be determined from the

Table 4. Calculated Pressure for Various Treatments of Potential Truncation in the IECG Simulations of Polymer Melts for
Different Degrees of Polymerizations at 503 K and a Monomer Density of 0.03296 Å−3a

Soft Sphere

N rcut1, Å Pfirst Pfirst+CGcorr rcut2, Å Psecond Psecond+CGcorr Patomistic

96 100 597 523 186 519 523 525 ± 7
192 156 455 392 290 388 392 393 ± 6
250 188 423 362 348 357 362 362 ± 5
300 211 404 343 391 339 343 343 ± 4

Multiblobs, N = 300

nb rcut1, Å Pfirst Pfirst+CGcorr rcut2, Å Psecond Psecond+CGcorr Patomistic

1 211 404 343 391 339 343 343 ± 4
2 128 393 344 239 341 343 343 ± 4
4 78 381 343 147 342 343 343 ± 4
6 59 374 343 111 342 343 343 ± 4
10 41 367 346 78 346 346 343 ± 4

aAll pressure values are reported in atm. The cutoff distances for the IECG simulations were determined over the range of r > 0 from the locations of
the first (rcut1) and second (rcut2) extrema of effective CG potential. The long-range CG corrections (CGcorr) were then applied to report the CG
pressures, which are in excellent agreement with the atomistic pressures. The statistical uncertainties for IECG simulations results are all less than 1
atm.
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accurate EOS and ⟨R2⟩, which can be predicted by the principles
of polymer physics and the related extensive works.43−47 This is
an important advantage of the IECG method when compared to
the well-known CG approaches such as the iterative Boltzmann
inversion (IBI)5,48,49 and force matching6 methods, where the
parameters that are optimized for a given state point are not
transferable to other state points.
A number of relevant points about coarse-graining emerged

from this study. MD simulations were performed with the IECG
potential at variable levels of resolution, from the soft sphere
representation to the multiblob representation, and directly
compared to atomistic simulations. Through a comprehensive
evaluation of pressure and structure functions, both in the real
and reciprocal spaces, it was shown that it is possible to find a CG
potential that maintains the consistency with the atomistic
description for both structure and pressure, while changing the
level of coarse-graining. Furthermore, in the condition in which
theMSA applies, i.e., at the liquid density, the IECGEOS and the
pair distribution functions are solved analytically, providing an
additional test for the validity of the results obtained from the CG
simulations. The analytical solution of the IECG equation
confirms again the agreement observed in the simulation results,
and, in general, provides a formal method to study the theoretical
implications of a CG procedure. For example, this study shows
that the density dependence of the CG potential is captured in
the zero wave-vector limit of the effective direct monomer−
monomer correlation function. In a bottom-up CG approach, the
parameter c0

eff can be obtained from a proper number of atomistic
simulations performed in the canonical ensemble. In a top-down
IECG model, this parameter can be obtained directly from the
experimental isothermal compressibility of the liquid.
It is worth noticing that the IECG method is based on a CG

model that has solid foundations in the statistical mechanics of
liquid. The IECG method does not necessarily require the
performance of initial atomistic simulations of the system that
one wants to coarse-grain.22 We argue that this is the main
advantage of the IECG method, with respect to other CG
approaches, because performing atomistic simulations for every
system one wants to coarse-grain in part defeats the purpose of
building a CG model, which should be predictive: It is not clear
what extra information can be gained from the CG simulations
that is not already contained in the atomistic simulations.
The roles of short-range repulsive and long-range attractive

interactions have been investigated extensively in determining
the structure and thermodynamics in the CG representation.
Note that, compared to the atomistic simulations, the short-
range repulsive part of the effective IECG potential is much more
long-ranging due to the CG procedure. It is demonstrated that,
similar to the atomistic simulations, the repulsive part of the
effective CG potential accurately determines the structure of the
polymer melts at liquid density, and the positional correlations in
the CG coordinate are due to the repulsive forces. Therefore, the
CG models that idealize the attractive forces without correlating
effects, but treat the correlating effects of the repulsive forces with
high accuracy, should be successful in reproducing the liquid
structure in the high density limit. On the other hand, following
the discussion by Widom42 we speculate that the success of CG
models for investigating the critical phenomena and the character
of the liquid−vapor equilibrium depends on their ability to
capture the attractive part of the CG potential with great fidelity.
As shown in Table 4, excluding the long-range attractive part of
the effective CG potential results in significant inaccuracies in

pressure. Decomposing the pressure into attractive and repulsive
contributions results in
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where S is the entropy of the CG system, Urep and Uatt are the
repulsive and attractive parts of the CG potential, respectively,
Prep is the pressure resulting from the repulsive forces, and c0att

eff is
the effective monomer−monomer direct correlation function,
which only contains the attractive forces, at the zero wave-vector
limit. Note that the configurational entropy of the CG system
with only the repulsive forces is almost identical to the
configurational entropy of the CG system when both attractive
and repulsive forces are included because the attractive potential
is long-ranging and weak and can be conceived as a uniform
background potential with no gradient. Therefore, eq 43 suggests
that the effect of the uniform potential from the attractive CG
forces is to lower the pressure by an amount proportional to the
square of the density.
As discussed, the range of effective CG potential is much

longer than the atomistic potential. In the IECG simulations, the
system size is determined once the cutoff distance is calculated
and the box length is usually slightly more than twice the cutoff
distance. Making use of larger box lengths (system sizes) has
negligible effects on the structural and thermodynamic proper-
ties presented in this work (results not shown). Therefore,
cutting the CG potential at shorter distances, which is sufficient
to represent the repulsive forces with high accuracy, can save
significant computational time. The long-range attractive
contributions of the effective CG potential can be added after
IECG MD simulations to compute the thermodynamic proper-
ties while improving efficiency.50

The calculated EOSs in the IECG method cover very well the
data points obtained by MD simulations of polymer melts. This,
in turn, allows one to calculate the Helmholtz free energy of
polymer melts by integrating the EOS along a reasonable
reversible path (such as isotherm) using the thermodynamic
integration methods as shown in a previous work.22 A direct
extension would be the application of the IECG approach to the
Widommethod51 to calculate the chemical potential for polymer
melts. Unlike atomistic simulations, where insertions of polymers
are too inefficient for the polymer melts with long chain lengths,
the CG representations are extremely efficient because the IECG
potential is soft and does not suffer from the significant overlap in
atomistic simulations. Therefore, a Boltzmann factor of zero, as
usually occurs in the atomistic simulations, is circumvented. A
similar argument can be applied to the grand canonical
simulations, where successful insertions of chains are extremely
rare, and thus, n is poorly sampled. Therefore, it is perceivable to
implement the IECG method into the aforementioned types of
simulations. In addition, the constant temperature−pressure
(NPT) CG simulations require the state-dependent CG effective
potential, but the CG virial should be compatible with the
corresponding atomistic virial at each density. The IECGmethod
can be extended to be used in NPT simulations by accurately
incorporating the density dependence of the CG potential. This
is important because, as pointed out by Andersen et al.,52 recent
CG methods are ad hoc in nature and lack a strong theoretical
justification in terms of consistency of atomistic and CG
ensembles.6 In addition, these recent numerical potentials that
are optimized to reproduce an atomistic quantity suffer from the
problem of being not transferable to other systems or to other
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thermodynamic conditions.52 Furthermore, the IECG can be
incorporated in mixed resolution modeling, where maintaining
consistency between the resolution levels is not trivial in
Adaptive Resolution Simulations (AdResS).53−55 In the Force
AdResS scheme, a general Hamiltonian formulation is impeded
due to the enforcement of Newton’s third law, while in the
Hamiltonian AdResS scheme the drift forces that appear in the
hybrid region should be corrected.54 Therefore, in the present
state of development of the method, the degree of consistency of
the AdResS depends both on the type of AdResS approach that is
chosen and on the compatibility of the different models adopted
in the regions that have different resolution. The AdResS
schemes can take advantage of the IECG theory because the
related thermodynamical and structural properties are conserved
in the IECG method19,20 and the ad hoc forces in the AdResS
schemes that balance the CG with the atomistic parts can be
minimized.
The present work has focused on the density as an active

variable in the effective CG potential, but similar issues exist
concerning the temperature dependence of the effective CG
potential. This is especially important in the simulations/
analyses in microcanonical ensembles, but even in the canonical
ensemble as discussed by Stillinger et al.,11 the thermodynamic
energies for such effective potentials involve additional terms.
For instance, for the multiblob models discussed in this work, the
thermodynamic intermolecular energies are given by
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but this is another feature whose full analysis should await a later
examination.
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