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ABSTRACT

Recent studies suggest that globular clusters (GCs) may retain a substantial population of
stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs.
We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable
proxy for elusive single BHs, produced from a representative group of Milky Way GCs
with variable BH populations. We simulate the formation of BH binaries in GCs through
exchange interactions between binary and single stars in the company of tens to hundreds
of BHs. Additionally, we consider the impact of the BH population on the rate of compact
binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB
population and binary properties are sensitive to the GCs structural parameters as well as
its unobservable BH population. We find that GCs retaining ~1000 BHs produce a galactic
population of ~150 ejected BH-LMXBs, whereas GCs retaining only ~20 BHs produce zero
ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known
BH-LMXBs might have originated in GCs and identify five candidate systems.

Key words: gravitational waves — stars: black holes — stars: low-mass — globular clusters: gen-
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1 INTRODUCTION

The fate of the population of stellar-mass black holes (BH) in glob-
ular clusters (GCs) is still widely uncertain. It is expected that tens
to hundreds and possibly thousands of BHs are formed in GCs, of
which some fraction might be ejected early due to a kick at forma-
tion (Belczynski et al. 2006). In the standard GC evolution picture,
the remainder of the BHs should rapidly sink to the core due to
mass segregation. There they are subject to a high rate of dynamical
interactions that are likely to eject the BHs as singles or in binaries.
It was long accepted that this process would lead to repeated ejec-
tions from the GC leaving a few to zero BHs (e.g. Kulkarni, Hut &
McMillan 1993; Sigurdsson & Hernquist 1993). Historically, this
was supported by the lack of observational evidence for a BH in a
GC; however, BHs are difficult to observe unless they are actively
accreting from a stellar companion.

In order to explore the population of BHs within and outside
of GCs, BH low-mass X-ray binaries (BH-LMXBs) can serve as
an ideal proxy. In an evolved cluster, a main-sequence (MS) star
will necessarily be less than the MS turn-off mass, yielding an
abundance of potential low-mass companions. This, coupled with a
high rate of encounters due to the high-density environment of GCs,
makes GCs ideal BH-LMXB factories. However, this assumes that
a significant number of BHs are retained by GCs and that the BHs
avoid segregating completely from the lower-mass stars.
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The discovery of two BH-LMXB systems in the Milky Way
GC M22 (Strader et al. 2012) has led to a renewed interest in GC
BH retention. This observation coupled with an estimate for the
fraction of the BH population expected to be in accreting binaries
(Ivanova et al. 2010) suggests that M22 may contain 5-100 BHs
(Strader et al. 2012). Additionally, Di Stefano et al. (2002) sug-
gested a number of high-luminosity LMXBs residing in M31 GCs
may harbour BH primaries, which was confirmed by Barnard et al.
(2011). Recent theoretical studies, including some detailed N-body
simulations (e.g. Aarseth 2012; Wang, Jia & Li 2016), support the
idea that GCs are capable of retaining from a few to hundreds of
BHs (e.g. Breen & Heggie 2013; Morscher et al. 2013; Sippel &
Hurley 2013; Rodriguez et al. 2016b).

There is an increasing number of BH-LMXB candidates iden-
tified in the Milky Way galaxy. BlackCAT (Corral-Santana et al.
2016), a catalogue of BH-LMXBs, has to date identified 59 candi-
date Milky Way BH-LMXBs. An LMXB is identified as a candidate
BH-LMXB if the X-ray spectrum rules out a neutron star (NS) as
the compact accretor (McClintock & Remillard 2006). Of the 59
candidate BH-LMXBs in BlackCAT, 22 are currently considered to
be ‘confirmed’ BH-LMXBs. A BH-LMXB labelled as ‘confirmed’
has a dynamical measurement of the primary mass or mass function

f(Mgy) (see, e.g. Casares & Jonker 2014).

Roughly one-fifth of the observed BH-LMXBs reside at an ab-
solute distance |z| perpendicular to the Galactic plane greater than
1 kpc (e.g. Jonker & Nelemans 2004; Corral-Santana et al. 2016).
The distribution of the candidate and confirmed BH-LMXBs within
the Milky Way gives rise to the idea that BHs might be subject
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to high-velocity kicks at formation (e.g. Gualandris et al. 2005;
Fragos et al. 2009; Repetto, Davies & Sigurdsson 2012; Repetto
& Nelemans 2015). In some cases, the velocity needed for the bi-
nary to reach large |z| exceeds the contribution from a Blaauw kick
(Blaauw 1961). This is the velocity imparted to a binary in the case
of sudden mass-loss, i.e. in the BH progenitor’s supernova explo-
sion. The exceptional high-velocity BH-LMXB cases have led to
the idea of high-velocity formation kicks, also known as ‘natal’
kicks, where the binary receives a large kick through an asymmet-
ric explosion launched prior to BH formation (Janka 2013; Janka
2017). Due to the long-held assumption that GCs maintain a near-
zero population of BHs, the possibility that some of these systems
originated in GCs has been largely ignored. BH-LMXBs sourced by
BH-retaining GCs might help to explain some of the peculiar prop-
erties of the observed Milky Way BH-LMXB population. Although
GCs are not likely to describe the entire population of BH-LMXBs,
the halo-orbits of GCs in the Milky Way make GCs ideal candidate
sources for the high-|z| systems. In light of the recent studies that
suggest GCs might harbour a large number of BHs, we revisit in
this paper the possibility of GCs as a potential origination point for
a subset of the observed BH-LMXB systems.

Although we are primarily concerned with the Galactic popula-
tion of BH-LMXBs evolving from initially non-mass-transferring
binaries ejected from GCs, BH-LMXBs can form within GCs
through more exotic channels. These formation channels include
mass-transfer following directly from a physical collision or triple-
induced mass transfer coupled with exchange encounters or physical
collisions (Ivanova et al. 2010). The more recent work of Ivanova
et al. (2017) proposes a new BH population-dependent channel for
the production of BH-LMXBs within GCs by means of grazing tidal
encounters between a BH and a sub-giant.

In addition to using BH-LMXBs as probes of BH retention in
GCs, the BH-BH merger rates might also serve to place some
constraints on GC BH retention. The recent success in observing
merging BH-BH binaries by advanced LIGO (aLIGO) makes this
arealistic possibility (Abbott et al. 2016a,b,c). Furthermore, binary
BH mergers occurring in GCs may be characteristically eccentric
due to dynamical formation channels. Although these eccentric
systems are likely to have circularized by the time they are visible in
the aL.IGO frequency band, the eccentricity is potentially detectable
at lower frequencies. The addition of a space-based gravitational
wave observatory (e.g. LISA) in the future, designed for sensitivity
atlower frequencies, further improves the prospect of using BH-BH
mergers to probe GC dynamics.

In this study, we explicitly evolve ‘test’ binaries in a fixed cluster
background subject to dynamical friction and single-binary interac-
tions. Additionally, we include an updated prescription for allowing
single BHs to exchange into existing binaries. The GCs are chosen
to represent a realistic subset of Milky Way GCs with varying BH
populations in order to investigate the effects of BH retention in
clusters. Each GC background is described by an isotropic multi-
mass King model. We produce a large number of realizations for
each set of initial parameters to obtain statistical distributions of the
number of ejected binaries and their relevant properties. Using the
statistics from the GC simulations, we then perform Monte Carlo
simulations to obtain a population of BH-LMXBs produced by GCs.
The GCs and the ejected binaries are evolved in time through the
Milky Way potential while simultaneously accounting for the stel-
lar evolution of the ejected binaries. The resulting mass-transferring
systems make up a previously unexplored Galactic population of
BH-LMXBs from GCs. We investigate the distribution and proper-
ties of the resulting population and its dependence on BH retention

in GCs. Specifically, we find that in the case of minimal BH re-
tention (Ngyg = 20) no observable BH-LMXBs are produced, while
the Ngy = 200 and Ny = 1000 cases, respectively, yield Galac-
tic populations of 257}° and 156735 BH-LMXBs. Furthermore, we
use the resulting population to determine the most likely candidates
for a GC origin in the population of observed Milky Way BH-
LMXBs: the five systems that are compatible with our simulated
population of BH-LMXBs from GCs are MAXI J1659-152, SWIFT
J1357.2-0933, SWIFT J1753.5-0127, XTE J1118+4480, and GRO
J04224-32. One caveat is that four out of five of these systems are
still lacking measurements of the companion metallicity. Due to
the low-metallicity environments of GCs, a measurement finding a
metallicity significantly larger than typical GC metallicities would
be a strong piece of evidence ruling out a GC origin for the system
under consideration. The fifth system, XTE J1118+4480, has had
its metallicity measured twice. However, the findings of Frontera
et al. (2001) and Gonzéilez Herndndez et al. (2006) currently pro-
vide conflicting claims regarding the companion metallicity. Future
measurements will be necessary to increase support for a GC origin
theory, but if we can confidently attribute a BH-LMXB to a GC,
this would provide strong evidence for significant BH retention in
GCs.

The remainder of this paper is structured as follows. In Section 2,
we describe our model for the GCs and the evolution of a test-binary
in a static cluster background. In Section 3, we lay out how we gen-
erate the present-day BH-LMXB population from our simulations
of Milky Way GCs. In Section 4, we review the properties of the
ejected BH binaries along with the distribution and properties of
the present-day BH-LMXBs from GCs. Additionally, we explore
the effects of BH retention on the BH-BH merger rate in GCs. We
conclude the section by comparing our results with observations
and previous work. Finally, in Section 5, we provide concluding
remarks.

2 METHODS

GCs typically contain ~10°-10° stars, which makes them accessi-
ble to modern N-body simulations (e.g. Zonoozi et al. 2011; Wang
et al. 2016) that can track GC evolution. However, full N-body clus-
ter evolution simulations are still very computationally expensive,
making this method poorly suited for studying many realizations of
different GCs necessary for building statistics on the evolution of
BH binaries inside clusters. Fokker—Planck methods are more ap-
proximate and describe GCs with a phase-space distribution func-
tion for its constituent stars that evolves via the Fokker—Planck
equation, a Boltzmann equation with a small local collision term
that modifies only velocities (see e.g. Spitzer 1987). The Fokker—
Planck equation can be numerically integrated directly (e.g. Cohn
1979; Chernoff & Weinberg 1990), or more commonly, integrated
with Monte Carlo methods [see e.g. Hénon (1971), Spitzer & Hart
(1971), and Rodriguez et al. (2016b) for a comparison between
N-body and the Monte Carlo approaches]. However, here we are
concerned with the evolution of BH binaries in GCs and not with
the GC evolution itself. Hence, we adopt the approach of mod-
elling the evolution of binaries in a fixed cluster background, pio-
neered in the early 1990s [see e.g. Hut et al. (1992), Davies & Benz
(1995), Davies (1995), Sigurdsson & Phinney (1995), and Benac-
quista & Downing (2013) for an overview of the theoretical models
of GCs and the dynamics occurring within]. We approximate the
collision term in the Fokker—Planck equation analytically to model
the effects of distant encounters as the binary evolves through the
GC. Near encounters are accounted for by explicitly integrating the
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three-body equations of motion. We build up statistics by carrying
out simulations of many random realizations of binaries for a given
GC background model. In the following sections, we describe our
method in detail.

2.1 Model

Our model, most closely based on Sigurdsson & Phinney (1995),
incorporates a number of assumptions that simplify the simulations
and allow us to perform ~10* realizations for a given cluster model
with relatively minimal computational needs. The three key as-
sumptions are (i) GCs are well described by a ‘lowered Maxwellian’
distribution function, (ii) the gravitational potential and distribution
functions are stationary, and (iii) the effect of distant interactions
is well described by the leading order terms in the Fokker—Planck
equation. The ‘lowered Maxwellian’ distribution function, which
eliminates the tail of the Maxwellian velocity distribution, intro-
duces a maximum energy for stars within the cluster to remain
bound. This maximum energy ¢(r;) implies a finite mass and a
maximum radius r,, commonly referred to as the ‘tidal’ radius, as
stars beyond this distance are pulled from the cluster by the Galac-
tic tidal field. Models based on a ‘lowered Maxwellian’, commonly
referred to as King models, readily describe many observed clusters
(Peterson & King 1975; Bahcall & Hausman 1977; Spitzer 1987).
We evolve a single ‘test binary’, initialized according to Sec-
tion 2.2.5, in a static cluster background described by an isotropic
multimass King model (King 1966) defined by single particle dis-
tribution functions f,(r, v, m,) for a discrete set of mass groups.
Here, r and v are the radius and velocity in the cluster centre-
of-mass frame and m, is the representative mass of group «. The
distribution function for a given mass group is given by

"0y —¢/o2
(27::3)3/2(6 ¢% —1) £<0

Ju(e) = ey

e > 0.

Here, ¢ is the energy per unit mass, & = v2/2 — W(r), and
W(r) = ¢(r) — ¢(r) is the gravitational potential relative to that
at the tidal radius r,. Additionally, o, is the group’s velocity dis-
persion at the core of the cluster and ng, is a normalization fac-
tor. For an isotropic cluster, the velocity dispersion reduces to the
one-dimensional mean-square velocity, such that 362 = 2. The
normalization factor in its full form is

n()
W(0)/02 v | /4w 20(0)
et/ erf(\/ o2 ) \ moZ <1 + S )

where n, = N,/N is the number fraction for mass group « and
n, = n(0) is the central density.

The free structural parameters necessary to specify a model clus-
ter, with specified mass groups, are the mean core velocity disper-
sion &, the core number density n,, and the potential depth, which
is specified by the dimensionless King parameter W, = W(0)/5>.
The remaining structural parameters, which are fully determined by
the free parameters, are total mass M., core radius r, tidal radius
1, and concentration ¢ = logo(r/r.). The core radius r, is defined
as the radius at which the surface brightness has dropped to half the
value at the core.

For a given set of masses with corresponding distribution func-
tions, the cluster satisfies Poisson’s equation for the relative poten-

@

no, = Na
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tial V2W(r) = —4nG Y, py. Here, py = myn,, where n, is the
number density of mass group « given by
v(ry)
N = fulr, v, mg) 4rvdv. 3)
0

The upper limit of the integral is the maximum allowed velocity
v(ry) = +/2W (1), i.e. the escape velocity. The object masses m, and
number fraction 7, are determined by the evolved mass function
(EMF), discussed in Section 2.2.1. We generate a model cluster that
satisfies Poisson’s equation for the specified masses and number
fractions in an iterative fashion. We begin by integrating Poisson’s
equation out to a radius 7, implicitly determined by W (r,) = 0, with
boundary conditions W(0) = W, and VW (0) = 0, and take n, = 1,
as our initial guess. The actual number fraction of each mass group,
Ne = Ny /N, is then calculated using

N, = / ne(r)4mr?dr, 4)
0

along with N =%, N,,. We then update our guess t0 1y = (Naye,, +
Naga)/2, Where ng,.. = Naga X (Mo, /Na). We repeat the above steps
until (7o, — 14)/n0, < & is satisfied for all mass groups, where we
have made the somewhat arbitrary choice of § = 6.25 x 1073 for
our convergence threshold. This iterative procedure determines the
normalization constant o, and r,. Once r; is found, the concentra-
tion ¢ = log;(r/r.) is determined and the total mass of the cluster
M. is obtained from

—vwiy = 2L )
re

The evolution of our ‘test binary’ in the cluster background is
affected by long-range and short-range interactions, which modify
the magnitude and direction of the binary’s velocity. The short-
range encounters are accounted for by fully resolving the three-
body interactions, detailed in Section 2.3.4. We account for the
velocity fluctuations due to long-range interactions with ‘field stars’,
distant cluster stars, through the diffusion coefficients D(Av;) and
D(Av;Av;) in the Fokker—Planck equation,

br_ [

Dt ot

enc

2
=y { - aa (D(Av)f) + 1a(D(AviAv_f)f)}-(6)
] V; 2 aviav j
In this context, a diffusion coefficient D(X) for a variable X corre-
sponds to the average change in X per unit time. Here, we focus
on velocity changes per unit time as experienced by the binary due
to interactions with the ‘field stars’. The form of the coefficients
can be derived, for a simple case, by first considering the change in
velocity of a mass m, initially at rest, due to an encounter with a
second mass m;, at a relative velocity v with impact parameter p,
2 am? v?
(Av)” = @)

C A me)? (L (2]

where p, = G(m; + my)/v? is a reference impact parameter
that causes a deflection of 7t/2, consistent with close encounters
(e.g. Spitzer 1987). The average rate of change of the quantity in
equation (7), per unit time, due to encounters is then obtained by
integrating over the possible impact parameters for a given density
of field stars 7,

Pmax
D(AV?) = 27{/ Av?pnvdp, (8)
0
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up to a maximum allowable impact parameter pp,x. The maximum
impact parameter is required to suppress the divergence of the inte-
gral and essentially determines the maximum distance of long-range
encounters that contribute to the velocity perturbations. This maxi-
mum value, py.x, is not explicitly specified, but finds its way into the
coefficient calculations through the so-called Coulomb logarithm,
In A = In(pmax/Po), Which appears as a result of the integration.

We work out the details for the case of an isotropic velocity
dispersion with a density of field stars given by equation (3) and
restate the relevant coefficients we use in our model (cf. Binney &
Tremaine 2008). These coefficients, which describe the average rate
of change in the velocity of the binary due to long-range encounters,
are used to update the velocity of the binary at each time-step.
The implementation is described further in Section 2.3. A detailed
derivation and a more general form of the coefficients can be found
in Spitzer (1987).

By choosing a coordinate system in which one axis is aligned
with the velocity of the binary, we can decompose D(Av;) into a
coefficient parallel to the binary’s velocity D(Av) ) and two mutually
orthogonal coefficients perpendicular to the velocity, D(Av); and
D(Av, ),. In an isotropic cluster, there is no preferred direction with
regard to the two perpendicular components, so the contributions
from D(Av, ), and D(Av ), tend to cancel each other out; however,
their squares, D(Avi)l and D(Avi)z, on the other hand, do not
and are non-vanishing. Additionally, we include a quadratic term
for the parallel component D(A vﬁ) and in consideration of the
symmetry we retain only the sum of the perpendicular components
D(Av?) = D(Av?); 4+ D(Av?),.

The diffusion coefficient D(Av)) parallel to the binary’s motion is
by analogy often referred to as the coefficient of dynamical friction
as it opposes the binary’s direction of motion,

2
__ my \ Y Ve
D(Avy) = %)“G+MH>A (v)fu%m%. ©)

Here, my, is the mass of the binary and y,, = (4ntGmy)? In A, where
we have chosen to set In A = 10, a value typical for GCs (Spitzer
1987). The two remaining coefficients,

4
2 v v, * [ v,
D(Avﬁ):zazgvya /o<v> +/U <U> fa(Va)dvg
(10)

and

2
D(Avi) = Z gUVa

{rbte) ()

are strictly positive. These coefficients are responsible for the
stochastic perturbations to the parallel and perpendicular compo-
nents of the velocity, which take the binary on a random walk
through velocity space and compete with the slowing due to dy-
namical friction. We implement these ‘random kicks’ as discrete
changes to the binary’s velocity by sampling from a normalized
distribution of the velocity perturbations, described in Section 2.3.

+2/w<?> Fuva)dva,

an

2.2 Initial conditions

2.2.1 Evolved mass function

We obtain an initial distribution of masses in the range
0.08 M < m < 120M¢, from the broken-power-law initial mass
function (IMF)

-1.3,,03—x
myeT™ m < m,

§(m) o (12)
m~ 0= m=>my,

with x,, = 1.35 and m, = 0.55 M, chosen to incorporate a Salpeter
IMF (Salpeter 1955) for masses above m, and a Kroupa ‘correction’
(Kroupa 2001) to masses below m, along with a normalization factor
for continuity. Stars with masses below the MS turn-off, which we
set to my, = 0.85 M@ (Meylan & Heggie 1997), are assumed not
to evolve significantly on the time-scale of the simulations, while
masses above my, are assumed to be completely evolved according
to a specified EMF. The evolved mass m, is determined by the
EMF:

Mys = m 0.08Mp <m < my
mwyp = 0.45+0.12(m — 1) m, <m <8Mgp
8Mp <m <20Mgp

20Mp <m < 120Mp,

e = mns = 1.4

mpy = mpy(m, fsBH)
(13)

where the mass subscripts label the object type and refer to main
sequence (MS), white dwarf (WD), neutron star (NS), and black
hole (BH). We occasionally refer to the set of MS and WD objects
as the non-compact (NC) population. The MS stars below the turn-
off mass are set to their zero-age main-sequence (ZAMS) mass, the
WD stars are a linear function of their ZAMS mass (Catalan et al.
2008), and NS are simply set to 1.4 M. Following the work of
Sana et al. (2012), the BHs are assumed to have formed from two
possible channels: stars with companions that significantly affect
the evolution of the star and those stars that are ‘effectively single.’
Effectively single is used to describe stars that evolve in isolation
as well as those stars that evolve in wide binaries with minimal
interaction. Sana et al. (2012) estimate that ~70 per cent of massive
stars will have their final state impacted by a companion, which
motivates setting fg,, = 0.3 for the fraction of BHs that formed in
isolation. This fraction of BHs that evolve from ‘effectively single’
stars are void of the complexities of binary stellar evolution and are
assumed to lose a significant fraction of their hydrogen shells to
stellar winds before collapsing to a BH. For the low metallicities
typical of GCs, we approximate the mass-loss, as ~10 per cent of
the initial mass and set m, = 0.9m. The remaining 70 per cent of
BHs formed will have evolved with a companion and likely passed
through a common envelope phase, stripping the stars down to
their helium (He) cores (Sana et al. 2012; de Mink et al. 2014).
Using MEsA (Paxton et al. 2011) to evolve masses in the range
20M@p < m < 120 My, we obtained the He core mass as a function
of the ZAMS mass in order to determine the remnant mass for the
remaining (1 — f,) fraction of BHs:

me = mye = 0.2312(mzams)"""’ Mg (14)

The stellar evolution performed using MEsA version 6794, follows
the procedure laid out in Morozova et al. (2015).

Fig. 1 displays the resulting He core mass as a function of the
ZAMS mass from the MEsA runs with metallicity Z = 5 x 1074,
along with the power-law fit of equation (14). This metallicity
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Figure 1. The He core mass (marked by circles) as a function of ZAMS
mass from the Mesa (Paxton et al. 2011) runs, along with the fit (blue,
dashed line) given by equation (14). For the ~70 per cent of BHs formed in
binaries, we approximate the remnant BH mass with the He core mass of
the progenitor. The remnant mass for the remaining ~30 per cent of BHs is
approximated by 0.9Mzams, which accounts for the hydrogen mass lost to
stellar winds at low metallicity.

Ll
120

corresponds to the higher peak in the bimodal, GC metallicity dis-
tribution (Harris 1996). In order to properly account for the range
of metallicities in our sample of clusters (see Table 2), we repeat the
same process with Z =5 x 1073, corresponding to the secondary
peak in the GC metallicity distribution. However, as this order of
magnitude difference in metallicity produces He core masses dif-
fering by < 10 per cent, we rely on equation (14) as a good approx-
imation for the remnant masses in all modelled clusters.

In addition to specifying the evolved masses, it is also necessary
to specify the number of NS and BH objects retained by the cluster
in its static state. We specify the retained population of compact
objects, comprised of NSs and BHs, through the retention fractions
Sfins and fig,, respectively. This is necessary since we are mod-
elling the cluster in its evolved state, a time at which many of the
NS and BHs formed within the cluster have already been ejected
due to formation kicks. Studies of the proper motion of pulsars sug-
gest that NSs receive kicks in the range of 200-450kms~! (Lyne
& Lorimer 1994), easily exceeding the typical escape velocity of
clusters, which is on the order of tens of kms~'. However, the ob-
servations of pulsars in GCs implies a ‘retention problem’, since
the observed fraction retained is inconsistent with the average natal
kick velocities being significantly greater than GC escape veloci-
ties. This issue is somewhat reconciled by assuming some NS form
in binaries, which dampen the kick and allow the GC to maintain a
hold on the NS and companion (Pfahl, Rappaport & Podsiadlowski
2002). In consideration of these observations, for the case of NSs,
we retain a constant fraction, fi, = 0.1, of those produced by the
IMF (Sigurdsson & Phinney 1995; Pfahl et al. 2002; Ivanova et al.
2008). In the BH case, the distribution of natal kicks is highly un-
certain. Rather than take the retention fraction f,,, to be a constant
across clusters, as in the NS case, we utilize this fraction as a free
parameter in our models to control the number of retained BHs in
each modelled GC.

Once we have determined the evolved masses from the IMF,
the masses are binned into 12 groups. The small number of bins

BH-LMXBs from BH retaining GCs 1857

Table 1. Evolved mass groups for NGC 6121 (Ngy = 200) with correspond-
ing mass index, the lower boundary bin mass mmin, the upper boundary bin
mass Mmax, the average mass of the group 7, the fraction of the total mass
in the cluster fy,, the number fraction with respect to the total number of
objects in the cluster f;,, and the fraction of luminous objects in the group fi..
For reference, the BH masses occupy the top three mass groups with mean
masses of 8.87 M@, 20.48 M@, and 57.18 M@.

Mass

group mmin(MQ) mmaX(MQ) mMp) Jm fa L

0 0.08 0.200 0.12827 0.17531 0.42853 1.0000
1 0.20 0.350 0.26596 0.17757 0.20933 1.0000
2 0.35 0.450 0.40704 0.13954 0.10748 0.7552
3 0.45 0.600 0.51190 0.24921 0.15264 0.5763
4 0.60 0.700 0.64624 0.10020 0.04861 0.7644
5 0.70 0.850 0.76855 0.11027 0.04499 0.8233
6 0.85 1.000 0.91758 0.01161 0.00397 0.0000
7 1.00 1.200 1.08980 0.01005 0.00289 0.0000
8 1.20 1.500 1.29547 0.00527 0.00128 0.0000
9 1.50 10.00 8.87443 0.00143 0.00005 0.0000
10 10.0 40.00 20.4808 0.01261 0.00019 0.0000
11 40.0 120.0 57.1851 0.00693 0.00004 0.0000

allows for a proper representation of the true distribution while
keeping the computational costs to a minimum. Poisson’s equation
is then integrated to determine the final structural parameters as
discussed in Section 2.1. For illustrative purposes, the evolved mass
distribution for NGC 6121 with 200 retained BHs is given in Table 1.
The bins for each mass group, the mean mass in each bin, and
the fraction of luminous objects are constant across simulations;
however, the mass fraction and number fraction depend on the
structure of the cluster and the number of BHs.

2.2.2 Core density

As discussed in Section 2.1, one of the free parameters in our model
when specitying a cluster’s structure is the core number density 7n,.
However, because this parameter is not easily observable, a GC’s
density is often reported in terms of a central luminosity density
pL. For each mass group, we determine a central luminous number
density ny, = fi, 7, where f;, and 7, are the fraction of lumi-
nous objects and the core density, respectively, of mass group .
The central luminosity density is then given by p, = >, Loni, . In
order to account for the variability in the mass—luminosity relation
with stellar mass, we use a parametrized luminosity for each group
of the form L, = a(m,)?, with luminosity coefficients a = 0.23,
b=23form, <0.43Mg and a = 1.0, b = 4.0 for the remaining
luminous objects (Duric 2004). To ensure that our clusters appropri-
ately model the Milky Way GCs of interest, we compute p;, for each
integrated cluster and adjust n, accordingly to match the observed
quantity.

2.2.3 Binary fraction

In order to account for the uncertainty in the size of the binary pop-
ulation within a cluster, we allow for a specifiable binary fraction.
The fraction of objects that are binaries is
CONEN

where N; and N, are the number of single objects and binary objects,
respectively, and the total number of objects in our model clusters is

Jo (15)
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then N = Ny + 2N,. Observations of the binary fraction are limited
to the luminous objects within the cluster. Due to this restriction,
we take the observed fraction to be determined solely by the MS
star binary fraction fobs = Nus, /(Nms, + Nums, ), Where, as above,
we respectively refer to Nys, and Ny, as the number of single and
binary MS stars. Using the above definitions along with the fraction
of all binaries that are MS—-MS binaries, fus, = Nwus, /Nv, and the
fraction of objects that are MS stars, fyis = Nus/N, we convert the
observed binary fraction into a uniform total binary fraction for use
in our models through the relation

-1

fMSb (fobs + 1) _1

fb - f MS f obs

(16)

The number of MS stars, Ny, is determined solely by the IMF
and for the simulations in this study we use fus, = 0.23 (Fregeau,
Ivanova & Rasio 2009). We perform our simulation with f,ps cover-
ing a range of values, consistent with theoretical findings, between
5 and 10per cent (Ivanova et al. 2005), and with observational
constraints, between 5 and 20 per cent (Milone et al. 2012). We
complete an approximately equal number of simulations for fops
taking values from the set {0.05, 0.10, 0.20}. However, we find that
this parameter has a negligible effect on the quantities of interest,
so for conciseness, it is not specified in the simulation parameters.

2.2.4 Modified BH velocity dispersion

Recent studies of BH retention in GCs have shown clusters initially
retain between 65 and 90 per cent of the BHs formed in cluster, with
the remainder being lost due to formation kicks (Morscher et al.
2015). This is in contrast to the long-standing belief that present-
day GCs should be nearly void of BHs. In addition to the increase
in retention, Morscher et al. (2015) also found that the retained
BHs remain well mixed with the non-BH population. Follow-up
studies support the idea of a large population of BHs that are spread
throughout the cluster and are consistent with a recent 10° N-body
simulation (Rodriguez et al. 2016b).

In the standard King model, it is common to assume that the mass
groups satisfy an equipartition of energy. Specifically,

Mol = mé?, 17

where m, and o, are the mass and velocity dispersion of mass
group «, m is the mean mass of all objects in the cluster, and & is
the mean velocity dispersion. However, with this equipartition of
kinetic energy amongst all mass groups, the heavier objects then
necessarily have lower random velocities compared to the lighter
objects and become trapped deep in the gravitational potential at the
core of the cluster. With an equipartition of kinetic energy in place,
the much more massive BHs densely populate the central region of
the cluster, driving the core radius to a small fraction of the tidal
radius. This disparity between the core radius and tidal radius leads
to concentrations that deviate from observations, limiting the mod-
elled clusters to supporting only a small number of BHs. In order to
generate clusters with a significant BH population that are still rep-
resentative of observed GCs, motivated by Morscher et al. (2015),
we implement a velocity dispersion for the BHs away from energy
equipartition. We maintain an equipartition of energy amongst the
lower-mass objects and use a modified energy partitioning for the
BHs of the form

1
mpol = %mﬁ ?mfﬁ, (18)
My Js
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Figure 2. Radial number density profiles for the BH sub-group (solid lines)
and the non-BH objects (dashed lines) in NGC 6656 for the three considered
values of Npy. The vertical line (red, dashed), at r. = 0.73 pc, marks the
core radius for this cluster. The non-BH objects are largely unaffected by the
different numbers of BHs added to the cluster and the necessary modification
to the velocity dispersion. For Ngy = 20, the BHs are concentrated in the
core region, whereas to accommodate Ngy > 200, the modified velocity
dispersion spreads the BHs throughout the cluster with a profile similar to
that of the non-BH objects.

where the indices 8 and « label the mass groups corresponding to
BHs and non-BHs, respectively. Here, f; is a specifiable scale factor
of order unity. The f; parameter is enough to rescale the velocity
dispersion for the BHs; however, the factor involving the mass ratio
contributes substantially and f; remains of order unity and does not
vary wildly across the GCs we consider.

With this modified BH velocity dispersion in place, we find that
we can match the observed structural parameters of a specific cluster
for zero BHs up to ~20 BHs, in the case of more massive clusters up
to ~100 BHs, and in the most massive clusters up to ~1000 BHs.
We vary the number of BHs residing in the cluster by adjusting
the scale factor f; in equation (18) and the fraction retained, f,,,
introduced in Section 2.2.1. To illustrate the spreading of the BHs,
we present in Fig. 2 the radial density profiles for the BHs and the
non-BH objects for different populations of retained BHs in the
cluster model representing NGC 6656. In the case of minimal BH
retention, the BH number density falls off quickly outside of the
core, which for our model of NGC 6656 is located at r. = 0.73 pc
and is marked by a vertical line in Fig. 2 for reference. However,
in the case of many BHs, the modified velocity dispersion extends
the number density profile radially, spreading the BHs throughout
the cluster, without affecting the central density. The distribution of
non-BH objects is largely unaffected by the change in BH numbers.

2.2.5 Binary initialization

We choose the initial masses for our ‘test binary’ by randomly sam-
pling from the evolved mass distribution and reject those that do not
contain at least one BH. If one of the component masses falls within
a mass bin with a non-zero luminous population, we then sample
from the luminous mass fraction to determine whether the low-mass
object is an MS star or WD. Additionally, if the selected mass is
in the turn-off group, 0.63 M < m < 0.8 My, then the object is
chosen to be a giant with probability P = 0.095f., where fi. is the
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luminous fraction for the turn-off mass group. The probability for
giants is adopted from Sigurdsson & Phinney (1995) and represents
the approximate fraction of the cluster age that giants in this mass
range survive. Once the masses and object types are established,
the BH radii are set to the Schwarzschild radius Rgy = 2GM/c?,
while the stellar radii are determined as described in Sigurdsson &
Phinney (1995). The eccentricity of the binary e is specified by sam-
pling from the probability density function f{e) = 2e (Jeans 1919),
commonly referred to as a ‘thermal’ eccentricity distribution. The
semimajor axis a is obtained from a distribution uniform in log,pa in
the range —3 <logjg(aau~") < 1. To avoid an immediate merger of
the objects in our initial binary, we enforce a > fija(R; + R»)/(1 — e),
where R; are the radii of each component of the binary and f;g = 3.1,
by letting a — 2a until this condition is satisfied. The factor fiq is
chosen based on the separation at which tidal effects would induce
amerger (Lee & Ostriker 1986). Once the binary parameters are set,
we sample the primary-mass number density profile n,(r) to deter-
mine the binary placement within the cluster and obtain a velocity
from the primary-mass velocity distribution function at r.

2.3 Evolution of the ‘test binary’

Once we have an appropriate model, which satisfies the structural
parameters for a specific cluster and an initial binary, we then evolve
this single binary within the cluster background. In addition to the
static potential, we include the interaction terms discussed in Sec-
tion 2.1. To account for dynamical friction, the diffusion coefficient
D(Av)) is added to the potential gradient to create a smooth ef-
fective acceleration a.f = VW (r) + D(Avy). This smooth force is
integrated using a fourth-order Runge—Kutta integrator, which is
discussed in detail in Section 2.3.2. The quadratic scattering terms,
or random ‘kicks’, are implemented by discretely updating the cor-
responding velocity components at each time-step At. As discussed
in Section 2.1, the diffusion coefficient for Av?, of the form D(Av?),
represents the change in this quantity per unit time, i.e. Av?/At. We
update the velocity at each time-step by sampling from the normal
distribution of kicks through

Av; = X/ D(Av)AL,

/1
Avy, =Y 5D(Avi)m,
/1
Av, =Y 5D(Aui)m, (19)

where X and Y are random numbers with mean values of zero and
standard deviations of one.

At each time-step, we also consider the evolution of the binary’s
semimajor axis a and its eccentricity e due to gravitational wave
(GW) emission. If the BH is in a binary with another compact ob-
ject —which includes BHs, NSs, and WDs — then we implement the
evolution of a and e according to the gravitational radiation formal-
ism of Peters (1964). In these cases, we also calculate the time until
coalescence #y due to the decay of a, and if this will occur within
the current time-step, 4 < At, we consider this a GW merger. If the
merger is of a BH-BH or BH-NS binary, we add a recoil veloc-
ity, or ‘kick’, based on the fits to numerical relativity simulations
given by Campanelli et al. (2007) with initial spin magnitudes and
orientations assigned as in Clausen, Sigurdsson & Chernoff (2013).

BH-LMXBs from BH retaining GCs 1859

2.3.1 Short-range encounters

As the binary moves throughout the cluster, at each time-step, we
check for the possibility of a short-range encounter with a single
star. Since the effects of long-range interactions are accounted for by
the diffusion coefficients (Section 2.1), here we focus on capturing
the effects due to strong three-body interactions with much smaller
impact parameters. We limit the range of encounters to include only
those three-body interactions that result in a resonance, exchange,
ionization, or the occasional flyby. We accomplish this by choosing
the maximum impact parameter to be

p=alB+C(+e), (20)

where we have set B = 4 and C = 0.6 following Hut & Bahcall
(1983). The choice of these coefficients is intended to limit the
number of weak encounters that have minimal impact on the bi-
nary, as these still require full resolution of the encounter, which is
one of the more computationally intensive tasks during evolution.
However, the coefficients only provide an approximate contour in
the space of initial conditions, hence the occasionally flyby. The
cross-section for an encounter to take place between the binary and
a star of mass m, with velocity v, is

2nG(my + mg)p

, 21
v — v, @b

o(v,v,) =7p’* +
(see e.g. Spitzer 1987). We then calculate the expected encounter
rate between the binary and each mass group

C(r,v.a) = /o(v, 0|V — Vel (e )i 22)

and from this assign the probability of interacting with mass group
a to be

P, =T(r,v,a)At. 23)

An encounter is deemed to have occurred, based on a random gen-
erated number Z from a uniform distribution between O and 1, if Z
is less than the total probability P =Y, P, . The total probability is
implicitly constrained to be less than unity by controlling the time-
step size At, which is discussed in more detail in the subsequent
section. In the case that Z < P, we select the third star m3 based on
the relative probabilities P, and initiate our three-body integration
scheme explained in Section 2.3.3.

2.3.2 Time stepping

We use a fourth-order Runge—Kautta integrator to evolve the effec-
tive acceleration introduced in Section 2.3 as well as the three-
body interactions described in Section 2.3.3. During integrations,
we utilize a time-step reduction scheme requiring that the accu-
racy of the solution does not vary by more than a tolerance of
€x = 1075 when the time-step is halved. The initial integration
time-step At = A(1 + r)/(1 + v) is dynamically determined to
account for the position and velocity of the binary in the cluster,
with A = 0.1 chosen to produce a time-step that is a fraction of the
core dynamical time r./& for a binary at rest in the core. This time
stepper accounts for the higher density in the core and the enlarged
cross-section at small velocities. Although this choice of time-step is
usually sufficient, some extra care needs to be taken when using At
in equation (23) to determine the encounter probability, so that the
total probability does not exceed unity. To ensure that we correctly
sample the encounter probabilities, by satisfying the constraint
P <« 1, we set Ppyx = 0.1 and enforce P < Py, by reducing the
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time-step At when necessary. For the case P > P, we decrease
the succeeding time-step by letting A — 0.9(Pyax/P)A. During the
subsequent step, if A < A,, where A, = 0.1 is the fiducial value, and
P < Puax, wWe allow the time-step to increase slowly by setting A —
1.1x. Once A > X, and the probability is satisfactorily small, which
often occurs once the binary migrates out of the problematic dense
region, we reset the time-step factor to A = A,.

2.3.3 Three-body interactions

In the case of an encounter, the relative probabilities described in
Section 2.3.1 determine the mass and velocity of the third object.
We take this sampled velocity v; to be the velocity of the third
body at infinity and calculate the relative velocity at infinity for the
encounter from vy, = |[v — v3| = \/v2 + v3 — 2vv3 cosy. Given v
and the sampled mj3 and v3, the relative velocity at infinity is de-
termined up to the cosy term, which for an isotropic King model
distribution function can be sampled from an analytic expression for
x € [0, t] as in Sigurdsson & Phinney (1995). With the mass of the
third body and the relative velocity known, the maximum impact
parameter is obtained from the cross-section for the encounter

2G(my, + m3)>

2
PV

TP = 0 (v, v3) = 7p? (1 + (24)
with p defined in equation (20). The actual impact parameter for
the encounter is sampled from a uniform distribution in the area
spanned by the maximum impact parameter 7tp?, .. The angles that
comprise the remaining free variables necessary to specify the initial
conditions are the projected true anomaly f of the binary at the time
that the incoming third body reaches pericentre, two angles 6 and
¢ specifying the initial location of the third body with respect to
the binary centre of mass, and the impact orientation v, which
specifies the angle of the impact parameter in a plane transverse
to the incoming velocity of the third body. These four angles are
sampled in a manner consistent with Hut & Bahcall (1983). With
the initial conditions specified, the explicit integration is performed
with a modified scheme based on Sigurdsson & Phinney (1993).

We modify the original method of a fixed initial distance of the
third star, at R;, = 20a, to one of variable distance to improve
efficiency and to prevent the case of long three-body interactions
that can exceed the cluster time-step. The addition of massive BHs
introduces the possibility for wide binaries with orbital separations
much greater than those for which the previous method was suited to
handle. With a fixed choice for the distance of the third star from the
binary, interactions such as distant flybys, which are the quickest to
resolve computationally and have little impact on the binary, often
take a time that exceeds the cluster evolution time-step and leads to
the possibility of missing other probable encounters.

To represent the three-body system as an isolated one, and to re-
duce excessive time spent integrating long approaches, we require
that Ry < Rpax(n), where Ry (n) = (47tn/3)~1/3 is the ‘interparti-
cle’ distance and is a function of the local density n(r). Once Ry, is
specified, we determine the relative velocity v;, at R;, based on the
relative velocity at infinity. With these two quantities specified, we
approximate the time for a flyby as 6t = 2R, /vi,. For the case in
which 67 > At, we let Ry, — (At/81)R;,, calculate vy, at the new ini-
tial distance and recompute the new estimated time. We repeat this
procedure until the estimated time is roughly the same as the clus-
ter time-step, 0.9 < §t/Ar < 1.1. One important caveat is that this
could lead to placing the third object too close to the binary, spoiling
the assumption of an object at infinity approaching a well-defined

binary. To address this issue, we maintain one extra condition on
the initial distance specification, a consideration for which we are
willing to forgo our time-step restrictions; that is, (a/Ri,)* < 0.01.

To increase the speed of the three-body integration, we move
from a constant integration time-step to one that is dynamical. We
choose a maximum time-step 67 1,,x to be an arbitrarily small frac-
tion € = 6.25 x 1073 of the binary period Ty, i.e. 6T max = €Tp.
At the end of each integration step, we update the time-step to
8T = €(Fmin/Vmax), Where ry;, is the minimum separation between
any pair of the three objects and v,y is the largest velocity of the
three bodies. This sets the time-step to the maximum allowable
value in consideration of the need to resolve the dynamics of the
three objects or any potentially bound pair. In some instances, a
resonance can form a temporarily bound triple system, causing the
integrator to reach the maximum number of steps Nya = 2 x 10°
or to exceed the arbitrarily specified maximum allowable time of
5At. Under these rare circumstances, we reinitialize the system with
newly sampled initial angles and restart the integration. In addition
to the occasional long-lasting semi-stable triples that form, there are
also instances when a binary makes its way to the core where the
average time-scale necessary to resolve the three body encounters
begins to approach the time-scale for the evolution of the binary
in the cluster. Since we calculate three-body encounters decoupled
from the binary’s evolution in the cluster, we are forced to terminate
the run in such cases. As the cluster time-scale is inversely propor-
tional to the cluster density, this situation is most likely to occur
in the densest clusters. As a result of this time-scale termination
criterion, although a similar number of realizations are performed
for each cluster, the highest-density clusters have noticeably fewer
runs than the lower-density clusters, as is observable in the rightmost
column of Table 2. For standard encounters, which are often much
shorter than the cluster time-step, we periodically check whether
the interaction has resolved — according to the criteria discussed
in the following section — and in the case that a new binary has
formed, even temporarily, we update §Tr,x With the period of this
new binary.

2.3.4 Encounter resolution

We first identify a potential binary amongst the triple system com-
posed of the original binary, m; and m,, and the third mass m3, by
selecting the pair with the largest gravitational binding energy. We
refer to the masses in the potential binary as /71, and /,, which may
no longer correspond to the original binary composed of m; and
my. The remaining object, which is not part of the potential binary,
is labelled /m3 that is distinct from mj3. All unbarred variables rep-
resent the initial configuration where the third object is incoming,
while barred variables refer to the system where a binary has been
identified and the encounter is nearly resolved. The encounter can
be resolved in three ways: (I) there is a well defined bound binary
system with the third object unbound and moving off to infinity, (II)
a merger has occurred, or (III) the system is completely ionized.
For case (I), we terminate the integration once the following
criteria are all satisfied: (i) the third body has achieved the minimum
required separation from the binary, |F3 — (m 7 + mar,)/(m; +
my)| > max{Rn.x(n), 1.1 R;,}, (ii) the eccentricity e of 7, and m,
is less than unity, (iii) /7, and m, are bound, specifically E, <0,
and (iv) /3 is unbound, i.e. E3 > 0. Here, E, is the total energy
of the final binary and Ej3 is the total energy of the third body. In
addition to the above requirements, to determine the final state of the
‘isolated’ binary, we continue the integration until the total potential
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Table 2. Summary of simulations. Listed are the 15 GCs modelled for evolution along with the total cluster mass
M_, squared velocity dispersion 02, the luminous core density pr,, concentration ¢, and metallicity Z. The clusters
are ordered by total mass. There are 39 independent models after taking into account the number of BHs retained
by the cluster. Medium-to-high mass clusters can accommodate large BH populations without disrupting the listed
structural parameters. The size of the BH population in lower-mass clusters is either (1) limited in number by
the IMF or (2) by the ability of the cluster to maintain the model structural parameters in their presence; in these
cases, the cluster is not used for evolutions and is omitted from the table. In the final column, we list the total
number of evolutions performed for each case.

Name M Mgp) o2 (em®s?)  pL (Lepe™) c z N Nuns
Pal 13 5.12 x 103 8.10 x 10° 1.45 0.66 2.6 x 1074 20 15232
NGC 6838 3.67 x 10* 5.29 x 1010 6.76 x 102 1.15 3.3 x 1073 20 18364
200 20430
NGC 6535 5.93 x 10* 5.76 x 1010 5.19 x 102 1.33 32 x 1074 20 35865
200 33561
NGC 6362 1.17 x 10° 7.84 x 1010 1.95 x 10? 1.09  20x 1073 20 32544
200 33798
NGC 5053 1.66 x 10° 1.96 x 1010 3.47 0.74 3.8 x 107 20 69058
200 74681
NGC 6121 225 x 10° 1.60 x 10 437 x 10 1.65 14 x 1073 20 14429
200 17884
1000 24667
NGC 5694  2.92 x 10° 3.36 x 10! 8.91 x 103 1.89  21x10™* 20 14029
200 13382
1000 17445
NGC 6093 3.67 x 10° 1.54 x 10'2 6.17 x 10* 1.68 3.6x107* 20 7435
200 7019
1000 4645
NGC 5286 4.80 x 10° 6.56 x 101 1.26 x 10* 1.41 4.1 %107 20 6761
200 10032
1000 8196
NGC 6656  5.36 x 10° 6.08 x 10! 427 x 10 138  40x 107 20 12539
200 20993
1000 14832
NGC 1851 5.61 x 10° 1.08 x 10'2 1.23 x 10° 1.86 1.3 x 1073 20 7189
200 6950
1000 4563
NGC 6205 6.27 x 10° 5.04 x 101 3.55 x 103 1.53 59 x 1074 20 13444
200 24899
1000 23583
NGC 6441 1.30 x 10° 3.24 x 1012 1.82 x 10° 174 7.0x 1073 20 2388
200 2439
1000 2463
NGC 104 1.45 x 10° 1.21 x 10'2 7.59 x 10* 2.07 3.8 x 1073 20 9545
200 10467
1000 8559
NGC 5139 2.64 x 10° 2.82 x 1012 141 x 10° 1.31 59 x 1074 20 13197
200 17466
1000 23513

energy between 3 and each mass in the binary is a fraction of the
total energy of the system E, specifically

Ostriker 1986; Benz & Hills 1992). When this criterion is met, we
assume a tidal encounter takes place. The merger is assumed to be
a momentum conserving, impulsive, completely inelastic collision
with no mass-loss (Davies, Benz & Hills 1994). When a merger
occurs between the BH companion and the third body, if the merger
product remains bound to the BH, this dynamically formed binary
becomes our new ‘test binary’, which we continue to follow and
evolve within the cluster. Similarly, if the BH merges with a third
body and we still have a bound binary system, we again continue
to follow this binary. However, if the BH becomes unbound by

Gmyms  Gmins

> 0.05E. (25)

|7y —7s| |7 — 75

In case (II), two of the bodies merge and the third body is ei-
ther unbound or forms a new binary with the merger product. The
criteria for mergers is based on the distance of nearest approach d
between two bodies during the three body encounter. In the case of
a potential merger between two BHs, the merger criterion is d <

R; + R;. For the remaining merger situations, the criterion remains
d=fi(R1 + R»), as adopted from Sigurdsson & Phinney (1995), us-
ing the same value for f;;4 as introduced in Section 2.2.5. Our choice
for fiq was selected, as it approximately separates the boundary
of where hydrodynamical effects become important (e.g. Lee &

merging with another body or becomes unbound from a merger
product, we handle the newly single BH as described in the sub-
sequent section. In each of these cases, the position of the new
binary, or single BH, is updated by continuing along the original
binary trajectory and the velocity is updated by converting from the
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three-body centre-of-mass frame, where the three-body integration
is performed, back to the cluster frame.

The result of the encounter can also end in complete ionization,
case (III). Ionization occurs in the case of ill-defined binaries that
will inevitably be unbound if, given that all previous criteria are
satisfied, either (a) the eccentricity of /72; and /1, satisfies 1 — e <
1 x 1077 or (b) |F| — 72| > Rmax(n) is satisfied. Additionally, ion-
ization occurs if ;07 > 2(m;m;/|F; — Fj| + g /|Fi — Fl) is
true for all masses at any time, with i # j # k taking on values
{1, 2, 3}. This last criterion is a straightforward definition for a
totally unbound triple. In addition to these choices for ionization
during three-body encounters, there is one other instance in which
the binary can be dissociated. For very wide binaries, the encoun-
ters are dominated by repeated grazing encounters with low-mass
stars, which tend to further widen the orbital separation. As a result,
strong interactions become less likely and the binary will inevitably
be dissociated by the increasing occurrence of these slowly ionizing
encounters. For this reason, we use the encounter rate to define a
maximum semimajor axis of dynamically formed binaries as

1/3
_ Gmb
Amax(I') = (W) , (26)

which is equivalent to requiring a minimum of three orbits between
encounters. Here, the total encounter rate I' = > ,I'(r, v, a) is
a sum over the rate associated with each mass group defined by
equation (22). The final criterion for ionization is then
a> min{amax(r)s Rmax(n)}'

2.3.5 Single BHs

As described in the previous section, a BH can become single due
to three-body dynamics such as exchange, merger, or through the
dismantling of a binary that exceeds our large a or large e criteria.
In the case of a single BH, we allow for the solitary BH to form a
new binary by interacting with existing binaries within the cluster.

In order to accomplish this, we need to know the probability for
the following encounter,

(my, my) + mpy — (mpu, my) + my, 27N

in which the BH exchanges with m, into a binary originally com-
posed of masses m; and m,. We also consider the possibility that
mpy and m, undergo an exchange, which contributes to the total
probability that the BH will exchange into the binary. However,
for conciseness in deriving the probability of exchange, we will
focus specifically on the encounter described by equation (27), later
adding the contribution from the reaction where the subscripts are
interchanged. Unfortunately, we can no longer compute the prob-
ability for encounter as in Section 2.3.1, since we do not possess
a distribution function for binaries. However, by considering the
reverse reaction of equation (27), given by

(mpu, my) +my — (my, my) + mgy, (28)

and relating this to the one of interest, we can obtain the encounter
probability for the BH to exchange into an existing binary in the
same way that we compute encounters for a binary composed of a
BH and a companion.

‘We use the seminumerical fit of Heggie, Hut & McMillan (1996),

1/6 72 13
_ My m3 M2 M3
G2 = — 82,3, 1),
Mi2; My My M2

(29)

as the dimensionless cross-section for a generically labelled sin-
gle mass mj to exchange into a binary of masses m; and m, to
form a new binary composed of m3; and m,, with m; being ejected.
In this notation, uppercase masses represent the sum of the mass
subscripts, i.e. M;; = m; + m;. The coefficient g(2, 3, 1) is a numer-
ical fitting factor designed to improve the analytically derived fit.
This dimensionless cross-section &7  is related to the dimensionful
cross-section for exchange X, , through

_ 2vp - v3/?

= (30)
G M23ai 2

012
The existing binaries that the BH is likely to encounter, which have
remained intact in the cluster over long time-scales, can be con-
sidered ‘hard’. These ‘hard’ binaries are characterized by having a
binding energy Uy, that exceeds the average energy of the other
stars in the cluster |Uyp,| > %ﬁl&z and this is what allows them
to stay intact over such long time-scales. In this case, we approxi-
mate the total encounter cross-section by the dominant gravitational
focusing term in equation (21), explicitly:

27TGM]23611YZ

. (€29)]
[vi, — v3/?

01,2 ~
Finally, relating equations (30) and (31) allows us to express the
cross-section for exchange in terms of the total encounter cross-
section 0, through

Y12 = (61,2/4)01.2. (32)

Evidently, the dimensionless cross-section for exchange is related
to the fractional probability that the total encounter ends in the
specific exchange we previously described. Considering equation
(31) and assuming the relative velocities are similar for the forward
and reverse reactions, we can relate the forward and backward
total cross-sections through oy, = (Z;—'i)al 3. Since the energy given
to the binary is comparable to the énergy required to destroy it,
mymy/ay , ~ mpyms/as, 3, we can recast the relation in terms of the
masses alone:

m
012 = <l>02,3- (33)
ms3

The cross-section for the specific exchange of m3 for m; in terms of
the total encounter cross-section of the original binary is found by
substituting equation (33) into equation (32), yielding

o= <01,2m1 > 023. (34)
4m3

By writing the exchange probability in terms of the post-exchange
binary, we can now utilize the same procedure described in Sec-
tion 2.3.1. In this formalism, m3 represents the BH and we return
to referring to this body as mpgy, while m; goes to m,, a variable
companion used for computing the relative probabilities for each
mass group «. First, we select a companion object m; for the BH
on the left-hand side of equation (28). We obtain m, by sampling
from the local number density and determine a and e for the binary
as in Section 2.2.5. The probability of the encounter described by
equation (27), where the BH exchanges places with m, in a binary
composed of m, and m, is then,

Ou.2My
Pa.2 = At/ ( - )UZ,BH(vs va)'” - votlfcx(va)dva« (35)
4mBH
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The usefulness of the manipulations in this section is most clearly
seen by writing this in terms of equation (23):

Puy = (”“'”"“) P,. (36)
: 4niBH

which in practice makes computing the exchange probabilities as
easy as rescaling our standard encounter computations by the par-
enthetical factor. Since we also allow for the BH to exchange with
my, we also consider the probability P, , = (Z;jl:;z VPs.

We apply one final rescaling to account for the density of binaries
that are of type m, and m,. We assume that the fraction of objects
that are binaries f;, is constant throughout the cluster with the value
specified by equation (16). The density of binaries is then ny(r) =
(%)n(r), which is derived from equation (15). Additionally, we
also assume that the fraction of binaries of a given type is constant
at all cluster radii, n;(r) = fi/jn,(r). Here, f;/; represents the fraction
of binaries that have a star of type i and a star of type j, .. fns/ms
is the fraction of all binaries that are composed of an NS and an
MS star. For binaries composed of only MS or WD, we use values
of fMS/MS = 023, fMS/WD = 044, and fWD/WD = 0.32 (Fregeau
et al. 2009). The remaining one per cent of binaries contain at least
one BH or NS, for which we compute the binary fraction through
fiji = 0‘01(%)( NBII;JiNS ), where i can be any object type, j is limited
to BH or NS, N is the total number of objects in the cluster, and
NgH + ns 18 the total number of BHs and NSs.

The final total probability for the BH to exchange into a binary,
given the sampled mass m,, is then

Pexen(r) = Zm(r)( Paz | P ) 37)

ne(r) = na(r)

Here, we divide out the respective local density picked up in the
integration of the distribution function in order to enforce our as-
sumption of a uniform binary fraction. If an exchange is determined
to occur based on this total probability, we select a specific binary
for the encounter based on the relative probabilities of exchange for
each mass group m,. With a binary in hand, we initiate our three-
body system, which is run until we get the proper outcome dictated
by the encounter cross-section — i.e. that mgy exchanges with the
appropriate mass in the binary.

3 SIMULATIONS

We present 698486 realizations from 15 GC models with total
masses in the range of 5.12 x 10°-2.64 x 10° My, velocity dis-
persions covering 9 x 10*-1.8 x 10°cms™!, core densities of
1.45-1.23 x 10° pc~3, and concentrations spanning 0.66—2.07. The
simulations are summarized in Table 2, which includes the cata-
logue name for the modelled cluster, total mass, velocity dispersion
squared, central luminosity density, concentration, metallicity, the
number of retained BHs in the model, and the total number of com-
pleted runs. The simulations are run for + = 10'° yr or until the
single/binary is ejected from the cluster, when r > r,.

3.1 Structural parameters

In our framework, a GC’s structure is determined by four parame-
ters: the total cluster mass M., the core velocity dispersion o, the
core luminosity density o, and the concentration ¢. McLaughlin
(2000) finds that GCs described by single-mass isotropic King mod-
els are fully defined by four independent physical parameters: the
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Figure 3. The distribution of non-core-collapsed Milky Way GCs in a
face-on view of the Fundamental Plane. The colour of each unmodelled GC
(marked by circles) indicates the corresponding modelled GC (marked by
stars) that serves as its proxy for determining the properties of the ejected
binaries. The plane is defined by €; = 2.05 log;( Ej +logo L and €3 = ¢,
with the dashed line corresponding to the fit €3 = —12.5 + 0.13¢,. Here,
c is the concentration, L is the total luminosity, and E; is an additional
parameter related to L (see Section 3.2 for additional details).

mass-to-light ratio Yy, o, total binding energy E}, central concen-
tration ¢, and total luminosity L. Furthermore, McLaughlin (2000)
shows that Milky Way GCs lie in a ‘Fundamental Plane’ and thus
can be fully described by just two independent parameters, ¢ and
L. A face-on view of the Fundamental Plane is defined by the axes
€, = 2.05 log, E; +log,o L and €3 = c. The apparent dependence
on the third quantity log,, E}; is due to a rotation in the larger three-
dimensional space in order to remove projection effects. However,
this is reconciled by showing that this third parameter, E}, is fully
described by the luminosity, such that E7(L) (McLaughlin 2000).
With the space of physical clusters reduced to the Fundamental
Plane, we determine a representative group of 15 Milky Way clus-
ters by sampling from the two-dimensional distribution. A face-on
view of the Fundamental Plane is given in Fig. 3, which includes
all GCs from the Harris catalogue (Harris 1996, 2010 edition) for
which observed concentrations are available. We omit clusters iden-
tified in the catalogue as core collapsed, since these are not generally
well described by King models. This includes those with ¢ = 2.5,
an arbitrary value assigned to clusters in the catalogue with central
density cusps indicative of core collapse. There are 125 Milky Way
GCs remaining after core-collapse pruning; of these, 15 GCs are
chosen as representative models, in an attempt to properly cover
the fundamental parameter space. The 15 Milky Way GC models
representative of the 125 Milky Was GCs are described in Table 2
and represented by stars in Fig. 3 to visualize our coverage of the
fundamental parameter space.

As stated in Section 2.1, our input parameters for specifying the
structure of a cluster are the core velocity dispersion &, the central
density n,, and the King parameter W,. The mean core velocity
dispersion & is chosen to be the observed value listed in the Harris
catalogue. The core number density n, is adjusted until the central
luminosity density pp is consistent with observation. Finally, the
King parameter W, which sets the depth of the potential, is varied
until the cluster has the desired total mass M. and concentration c.
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Once we have a model for a given GC, we add BHs by increasing
the fraction of retained BHs f;,,, where a value of unity corre-
sponds to retention of all BHs produced according to the IMF. For a
given number of BHs in the cluster, we use the parameter f; in equa-
tion (18) to adjust the BH velocity dispersion such that the overall
structure of the cluster is unaffected by the presence of a significant
number of BHs. However, we find that there is a limit to the number
of BHs each cluster can harbour. For the lowest-mass clusters, such
as Pal 13, setting the retention factor to unity, fi,, = 1, in order
to maximize the number of BHs retained by the cluster produces a
peak number of ~20 BHs. In this case, the number of BHs retained
by the cluster is inherently limited by its structure. More generally,
for lower-mass clusters that allow for more BHs, the large number
of BHs can become problematic as they become a more significant
part of the total mass of the cluster. As the fraction of the total mass
in BHs increases, the BHs begin to affect the structural parameters
such that no set of initial parameters exists that satisfy the observed
structure of the GC. We find that for many of the lower-mass clus-
ters we are only able to simulate populations of 20 or 200 BHs
(cf. Table 2).

3.2 Galactic evolution

The GC evolution models, described in detail in Section 2, compute
the properties of the BH binaries at the moment they are ejected from
a GC. Determining the present-day properties of potentially observ-
able, ejected BH binaries requires further modelling that tracks both
the evolution of ejected binaries in the Milky Way potential and the
internal evolution of each binary. In this section, we describe Monte
Carlo models for the subsequent evolution of the ejected binaries
that are seeded with results from our GC models.

3.2.1 Globular cluster orbits

We first build a sample of GCs to include in our Galactic evolution
simulations. The orbit of a cluster is specified by its location on
the sky (right ascension and declination), distance from the Sun
D@, radial velocity v,, and proper motion . and us. Of the 125
non-core-collapsed GCs in the Harris catalogue (Harris 1996, 2010
edition), we are able to find literature values for the orbital parame-
ters of 106 of these clusters in the catalogues of Moreno, Pichardo
& Velazquez (2014) and Kharchenko et al. (2013). For clusters ap-
pearing in both catalogues, we use the values given in Moreno et al.
(2014).

To begin each realization in our Monte Carlo ensemble, we ini-
tialize the GC orbits by sampling the uncertainty in their current
positions and velocities. We assume normally distributed errors and
use the quoted uncertainties in v,, iy, and wus. Following Krauss
& Chaboyer (2003), we assume a 6 per cent error in Dy. After
the orbit is specified, we integrate it 10 Gyr backwards in time,
corresponding to the duration of our GC dynamical simulations.

The orbits of the GCs, and the ejected binaries, are integrated
using the pyTHON Galactic dynamics library caLpy (Bovy 2015).
We model the Milky Way gravitational potential using the built-
in MwPOTENTIAL2014. The potential includes contributions from the
Galactic bulge, disc, and halo, which have been fit to observational
data to provide a realistic model of the Milky Way potential. The
physical scale of the potential is set using the distance from the
centre of the Galaxy to the Sun and the circular velocity of
the Sun, which we set to 8 kpc and 220 kms~!, respectively. For
all calculations, we use the boPr54_c integrator, a fast implementa-
tion of a high-order Dormand-Prince method included with GALPY.

Now that we have calculated the positions and velocities of the
Milky Way GCs during the past 10 Gyr, the next step is to deter-
mine the properties of any potential BH-LMXBs ejected by these
clusters. Since our dynamical simulations only include a subset of
the Galactic GCs, we use the results from the 15 GCs simulated
in Table 2 as proxies for the ejected binary populations produced
by the remaining 110 clusters in our Galactic evolution models.
For each of the unmodelled clusters, a proxy cluster is selected by
finding the nearest simulated cluster in the Fundamental Plane (see
Section 3.1). Specifically, we find min[(e} ; — €3;)* + (€ ; — €3 )],
where the i index runs over all 106 clusters in the Galactic evolution
models, the j index runs over the 15 clusters included in our GC
dynamics models, and the primes denote the normalized versions of
€, and €3 restricted to the range [0,1]. Fig. 3 shows the proxy cluster
chosen for each GC, by assigning the same colour marker to each
GC as the colour of the proxy cluster used, which are marked by
coloured stars. To ensure the robustness of this method for choosing
a proxy cluster, we assign a proxy by two additional methods. One
secondary method is to assign the proxy cluster based on the min-
imum distance in the Fundamental Plane using the unnormalized
axes €, and €3. The second alternative is by identifying the most sim-
ilar cluster using the structural parameters M., o, and pr. weighted
according to the strengths of the correlations between these param-
eters and the ejected binary populations, which are explored in 4.1.
Selecting the proxy cluster by any of these three methods gives
similar results in our Galactic evolution models. In fact, all three
methods will select the same proxy cluster for all but ~15 of the 110
unmodelled GCs in our study. In what follows, we discuss models
that use the scaled distance in the Fundamental Plane to assign the
proxy cluster.

3.2.2 The ejected binaries

The output of our GC dynamical simulations describes the proper-
ties of the BH binaries ejected from GCs. To model the present-day
population of BH-LMXBs that are ejected from GCs, we use as
inputs for our Galactic evolution models: the ejection time ., ejec-
tion velocity v, and the properties of the binary, the semimajor
axis a, eccentricity e, the mass of the BH primary m,, and the mass
of the companion m,. This is accomplished by constructing empiri-
cal cumulative distribution functions (CDFs) of these quantities for
each of the 37 sets of parameters listed in Table 2, and then sam-
pling these distributions in our Monte Carlo models. We assume
that the ejection time, ejection velocity, and binary properties are
independent and sample the marginal distributions of each.

In the GC dynamical models, a, e, tj, and v, are treated as con-
tinuous variables. As such, we are able to sample the CDFs for these
quantities directly. We fit cubic splines to the empirical CDFs and
invert the distributions by interpolation. The GC dynamical mod-
els treat m; and m, as discrete quantities, which fall into the mass
bins shown in Table 1. In our Galactic evolution models, however,
we want to consider continuous masses. To accomplish this, we
first determine an object’s mass bin by sampling the discrete CDF
output by the dynamical simulations. Next, we sample the mass dis-
tribution within that bin using the EMF described in Section 2.2.1.
Using these CDFs, we are able to generate sample populations of
the BH binaries ejected by the 106 GCs in our Galactic evolution
simulations.

During each realization, for each cluster, we first determine the
number of binaries that the cluster will eject during the 10 Gyr
simulation by sampling a Poisson distribution with rate parameter
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Table 3. Expected number of binary ejections. For each cluster and number
of retained BHs, we list the exact number of BHs in the cluster along with
the expected number of ejections over the cluster lifetime for three binary
types: BH-NC, BH-NS, and BH-BH. The clusters follow the same order
as Table 2, sorted according to increasing total cluster mass. The values of
Ny are non-integer values as a consequence of modelling the population
with a smooth distribution function.

Name Ngg  BH-NC BH-NS BH-BH
Pal 13 19.64  3.14 774 x 1073 1.40 x 107!
NGC 6838 2061 633 x 107" 359x107%2 508 x 107!
17455  2.56 x 10! 239 x 1071 2.67
NGC 6535 19.890 235 x 107! 172 x 1072 3.64 x 107!
19895 5.12 124 x 1071 2.08
NGC 6362 2022 161 x 107" 6.83x 1073 231 x 107!
199.33  1.07 236 x 1072 1.55
NGC 5053 2171  2.04x1072  3.14x107* 731 x 1072
199.65 179 x 107! 267 x 1073 4.96 x 107!
NGC 6121 2070 3.11x107! 631 x 1072 496 x 107!
200.53  1.74 3.03x 1071 266
1039.16  1.02 x 10? 1.43 8.17
NGC 5694 2049 229 x 107! 1.18 x 1071 7.49 x 107!
20039  1.54 1.02 4.19
1001.94  3.21 x 10! 2.87 1.54 x 10!
NGC 6093 19.85 1.01x 107! 481 x1072 342 x 107!
19831  1.13 3.67 x 1071 2,66
1004.51  1.23 x 10! 2.38 1.31 x 10!
NGC 5286 1229  6.00x 1072  236x 1072 191 x 107!
19828 929 x 1071 593 x 1072  2.08
78745 442 3.84 x 1071 548
NGC 6656 1980 679 x 1072 142x 1072 257 x 107!
205.86 422x 1071 883x 1072  1.74
100035 3.10 202 x 1071 5.09
NGC 1851 2076 837 x 1072 491 x 1072 474 x 107!
203.71 879 x 1071 498 x 10°!  3.09
1039.94  1.98 x 10! 1.82 1.03 x 10!
NGC 6205 2010 6.13x1072  1.79x 1072 2.62x 107!
199.58  425x 107" 561x1072 170
998.62  1.61 127 x 1071 536
NGC 6441 2098 351x1072 176 x 1072  3.16 x 107!
21257 959 x 1071 872x 1072  1.57
101037  3.69 820x 10°1 472
NGC 104 2249 660 x 1072 3.06x 1072 449 x 107!
22295  1.09 447 x 1071 2.89
979.55  3.09 2.52 8.41
NGC 5139 20.84  0.00 0.00 2.53 x 1072
207.50 1.19 x 1072 0.00 1.19 x 107!
1009.04  0.00 0.00 2.57 x 107!

(Nj) (the third column of Table 3). Once we have determined the
number Ny, of ejected binaries, we draw Ny, samples from the a,
e, my, my, t, and v distributions.

Since the internal evolution of a binary is independent of its orbit
in the Galaxy, we separately compute the full internal evolution
of the binary using the rapid binary population synthesis code BSE
described in Hurley, Tout & Pols (2002) with the updates described
in Clausen et al. (2012) and Lamberts et al. (2016). BSE combines
interpolated stellar evolution models with recipes for mass trans-
fer and other binary evolution processes to enable rapid modelling
of a binary system’s lifetime. Binary population synthesis calcula-
tions employ parametrized models to describe poorly understood
processes in binary evolution. In our BSE runs, we assume that sta-
ble mass transfer is conservative. Additionally, we use a common-
envelope efficiency parameter of 1.0 and include the effects of tidal
circularization.

BH-LMXBs from BH retaining GCs 1865

We use each set of a, e, m, m, as the initial conditions for a BSE
run. When handling the binary stellar evolution to determine which
ejected binaries become mass transferring, we discard a small num-
ber of binaries that would have begun mass transfer within the clus-
ter. The internal evolution of these tight binaries are coupled to their
dynamical evolution within the cluster in a complex manner. Since
these effects are not accounted for in our code, we do not include
them in our results. For the remaining binaries, we set the compan-
ion star’s metallicity to that of its parent GC and its age to f;. The
latter has little effect because most of the ejected stars have lifetimes
that exceed 10 Gyr. The binary is evolved for feyo = 10 Gyr — f;,
i.e. to the present day. Systems are discarded if the companion star
is not overflowing its Roche lobe and transferring mass to the BH
at the end of the simulation. For each mass transferring binary, we
determine the position ¢ and velocity vge of its parent GC at 7.
We initialize an orbit for the ejected binary at rgc and vgc + v,
assuming that the binaries are ejected isotropically. With the initial
conditions determined, we then evolve these binaries using GALPY
to determine their positions at the present day.

Our Galactic evolution models consider three BH-retention sce-
narios. In the first, we assume that most BHs are ejected and use
the results from our GC dynamics models with Ngy = 20. We refer
to this set of models as MIN. In the second case, referred to as 200,
we assume moderate BH retention, using the results from our GC
dynamics models with Ngy = 200. Finally, in a case denoted MAX,
we consider significant BH retention by utilizing the GC dynamics
models with Ngy = 1000. In cases where we are unable to generate
a background cluster model with the appropriate Ny, we use the
results from the model with nearest Ngy simulated for that same
cluster. We compute 10* realizations for the MIN and 200 cases and
5 x 10 realizations for the MAX case.

4 RESULTS

Our simulations of binary-single star interactions in GCs provide us
with statistical properties of the ejected BH binaries they produce
including ejection time 7, ejection velocity v.;, the orbital proper-
ties a and e, and the component masses m; and m,. Combining these
results with the methods described in Section 3.2, we obtain predic-
tions for the distribution and properties of the Galactic population
of BH-LMXBs produced by GCs. Additionally, the simulations al-
low us to explore merger events involving BHs such as gravitational
radiation driven mergers, both in the cluster and post-ejection, as
well as those mergers that occur during three-body encounters. We
describe these results in detail below.

4.1 Ejected BH binaries

We find that the number of ejected binaries and the properties of
these binaries are strongly affected by the GC structure and the
number of retained BHs. In Table 3, we list the expected number of
ejected BH binaries over the life of each cluster, listed in order of
increasing mass, including the exact number of BHs in each cluster.
The ejected BH-binary expectation value is well described by the
number of retained BHs Ny and the two characteristic variables
that define the Fundamental Plane of GCs (see Fig. 3), namely the
total cluster mass M, and the concentration c. In Fig. 4, we plot the
expected number of ejected BH binaries as a function of the three
characteristic variables: Ny, M., and c.

The most important structural variable that impacts the ejected
binary properties is the cluster mass. The total cluster mass enforces
a minimum energy needed to escape, which the binary must gain

MNRAS 477, 1853-1879 (2018)

Downloaded from https://academic.oup.com/mnras/article-abstract/477/2/1853/4935178
by California Institute of Technology user
on 06 July 2018



1866 M. Giesler, D. Clausen and C. D. Ott

——r

2F e BH-NC o

r ¢ BH-NS N o]

L [ i

1L o BH-BH 80800_
—~ + [ )

30 o8 00659.%'8 *

£ Of °a N *

= [ g %8 e8¢ e, 1

L % % o, ° oo ]

— | ‘3...‘. .. ]

L ° .. ° i

[ ~.o. ° d ]

72__ ° ° ]

[ ° ]

[ ) ISR IS VI IR ST R

-35 -30 -25 -20 -15 -—-10 -05
loglo(NBz\I/{I}O [Mél])

Figure 4. Expected number of binary ejections (Nej) as a function of the
number of retained BHs Ny, concentration ¢, and total cluster mass M.
The number of binaries ejected over the life of the cluster is well described
by the two characteristic variables of the Fundamental Plane, ¢ and M.,
along with the number of BHs retained by the cluster.
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Figure 5. The distributions of ejection velocities vcj as a function of the
total cluster mass M, for the ejected binaries. Each vertical bar represents the
distribution of ve; for the corresponding mass M, and is normalized such that
the integral over logjovej in each mass bin yields unity. The binary velocity
fluctuates due to random encounters with other stars in the cluster until
the binary acquires a high enough recoil velocity to exceed the minimum
ejection velocity, which is determined by the cluster mass. The increase in
the necessary velocity for escape is apparent in the increasing mean value
of each ve;j distribution.

through repeated encounters. In order for a binary to escape from
the cluster, it must acquire a recoil velocity from a final three-body
encounter high enough to climb out of the cluster gravitational
potential. In Fig. 5, we show the distribution of the ejected binary
velocities as a function of cluster mass, where the influence of the
mass of the cluster on the ejection velocity is apparent.

The expected number of ejections is then higher for lower-mass
clusters due to the lower escape velocities associated with these
clusters, as is visible in Fig. 4. To decouple this statement from the
additional variables in Fig. 4, it can also be observed in Table 3
(which is ordered by increasing mass) that for a fixed number of

retained BHs, the expected number of ejections scales with the
cluster mass.

The mechanism through which the binary converts binding en-
ergy to kinetic energy is easiest to understand in the three-body
centre of mass frame, where we perform our integration for en-
counters. After an encounter, the final relative velocity at infinity is
given by

m3(my +my) , 2M 3

—2 —
I v, + Ubin — Ubin), 38
% = iy +2) " T gty + gy Cbin — Ubin) G8

where Uy, = —% is the binding energy of the binary and all
unbarred quantities represent the initial binary before encountering
ms, while barred quantities represent the final binary and 775 is the
ejected mass. In the case of no exchange, and utilizing Aa = a — a,
equation (38) reduces to

2M G A
=U§¢— 123( mymy a>' (39)

=2
Vo

msmy, a?

In this frame, the binary velocity is related, through conservation
of momentum, to the relative velocity simply by v, = - v,,. The

_ Mi23
change in the kinetic energy, AT = T — T, of the binary is then
G A
A - Gmimams [(Aa’) 40)
Mo a?

The amount by which the semimajor axis changes in an average
encounter, where the semimajor axis is reduced without exchange,
is proportional to the semimajor axis, Aa ~ —ea, with € in the
range ~[0, 0.6] (Sigurdsson & Phinney 1993). Using this relation,
and assuming a binary with constant m; and m;,, equation (40)
reduces to
ms €
Mz a’
yielding a simple relation that describes the gain in kinetic energy in
terms of the constant fractional change in the semimajor axis € and
the ratio of the third body to the total mass of the three-body system.
Additionally, equation (41) shows that this change in kinetic energy
becomes more efficient as the semimajor axis decreases, convert-
ing more energy from binding to kinetic after each encounter that
shrinks the binary’s orbit. After repeated interactions, the increase
in velocity due to the decrease in a becomes more substantial and
the binary can eventually reach the necessary velocity to escape.
We can directly relate the necessary gain in kinetic energy to the
change in binding energy AU = Uyin — Uyin, by simply rearranging
equation (38) and assuming no exchange of masses, which yields

AT

(41

ms3

AT = — AU. (42)

123
In the process of the binary increasing its kinetic energy, the binding
energy becomes more negative. Since the higher-mass clusters tend
to hold on to the binaries longer, this strict minimum kinetic energy
for ejection is manifest in the more negative-valued binding energy
of the binaries it ejects. It follows from this, that on average, the
semimajor axes of the binaries ejected from more massive clusters
tend to be smaller. This is confirmed by Fig. 6, which depicts the
distribution of orbital separations as a function of cluster mass.

In addition to the increase in the expected number of ejected bi-
naries in lower-mass clusters, the total number of expected ejections
also increases with an increase in the number of BHs. While the
number of ejections is expected to increase with the number of BHs,
interestingly, the fraction of ejected binaries composed of a BH and
non-compact (BH-NC) object also grows with the number of BHs
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Figure 6. The distributions of the semimajor axes at ejection a as a function
of the total cluster mass M, for the ejected binaries. Each vertical bar repre-
sents the distribution of a for the corresponding mass M. and is normalized
such that the integral over logjpa in each mass bin yields unity. High-mass
clusters require a high velocity for escape, which a binary must acquire
through three-body interactions in order to be ejected. The energy needed
to escape is more easily gained once the orbital separation has decreased
sufficiently (see equation 41). As a consequence, the mean value of a at
ejection shifts to smaller separation with increasing cluster mass M.

(see Fig. 4 and Table 3). This behaviour can be attributed to the
fact that the BHs are not in energy equipartition with the rest of
the cluster. Adding more BHs without affecting the distribution
of the luminous cluster members requires that the BHs are spread
out farther from the core, where they have traditionally been ex-
pected to reside. Accordingly, the mean density of BHs goes down,
and they are less likely to interact with each other. However, be-
cause they are well mixed with the stars at larger radii, the number
of BH-NC binaries that form in three-body exchanges grows. Ad-
ditionally, since these binaries form farther from the core, they also
have the benefit of a shallower potential to climb out of.

Besides influencing the number of ejected binaries, the number
of retained BHs also affects the distribution of the semimajor axes
of the ejected binaries. In Fig. 7, we show the distribution of semi-
major axes for the ejected BH-NC binaries in our cluster model for
NGC 5694 for the three different choices of BHs retained. We
choose this cluster since it is representative of the effect that the
number of retained BHs has on the population of ejected BH-NC
binaries. Fig. 7 displays an increase in the width of the distribu-
tion of semimajor axes for larger populations of BHs. This is again
related to the necessary spreading of the BHs, as we increase the
number of BHs harboured by the cluster.

Therefore, the BH-NC binaries that form outside of the core,
where the escape velocity drops rapidly as a function of radius, can
be ejected while their binding energies are of comparably lower
magnitudes. Although the more widely separated binaries are less
likely to become mass-transferring systems, the simulations with
large BH numbers tend to have much higher ejection rates. The
higher ejection rates still produce enough tight binaries in the tail of
distribution to outnumber those produced with fewer BHs present.

The remaining structural property of GCs that has a clear effect on
the population of ejected binaries is the cluster density. In Fig. 8, we
plot the distribution of ejection times as a function of the luminous
central density, which is related to the core density as discussed in
Section 2.2.2. The distribution establishes that the cluster density
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Figure 7. The probability distribution for the ejected BH-NC binary semi-
major axes from NGC 5694, a representative case, with a population of 20,
200, and 1000 BHs. An increase in the number of BHs requires spreading
the BHs outside of the core, where they are more likely to form binaries
with NC objects. In the outskirts, the energy necessary to escape is much
smaller, allowing the binary to escape before it has had sufficient time to
harden. These binaries escape with comparatively low-magnitude binding
energy and wide orbital separations.
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Figure 8. The distributions of time of ejection fj as a function of the lumi-
nous central density pr, for the ejected binaries. Each vertical bar represents
the distribution of #.; for the corresponding core luminosity density pr and
is normalized such that the integral over logjotej in each density bin yields
unity. In higher-density clusters, where encounters occur more frequently,
many binaries are ejected after only a few Gyr, while in the lower-density
clusters most ejections occur near the end of the 10 Gyr evolution.

has some impact on the time at which binaries are ejected from
their host GCs. The time between binary-single encounters can be
approximated by

Um

1. = r‘71 =
2nG(my, + m)noa

43)
where vy, is the mean velocity of stars in the cluster, n, is its core
density, and /7 is the mean mass. Combining this result with equation
(40), we can obtain an approximation for the rate at which a binary
increases its kinetic energy AT/At. As encounters approximately

MNRAS 477, 1853-1879 (2018)

Downloaded from https://academic.oup.com/mnras/article-abstract/477/2/1853/4935178
by California Institute of Technology user
on 06 July 2018



1868 M. Giesler, D. Clausen and C. D. Ott

occur in increments of the encounter time-scale, letting At = teyc,
we find that the rate at which the binary increases its kinetic energy,

AT (271G2m1m2m36>
= - nO?

- (44)

Um

scales with the cluster core density. Therefore, the time it takes for
a binary to acquire a high enough velocity to escape is reduced
for higher-density clusters. As can be seen in Fig. 8, in clusters
of higher density, where encounters occur more frequently, most
BH-NC systems are ejected after only 3 Gyr of evolution, whereas
in lower-density clusters most ejections take place near the end of
the 10 Gyr simulation (i.e. the present day),

4.2 Black-hole low-mass X-ray binaries

Here, we focus strictly on the population of the present-day mass-
transferring systems that have successfully become BH-LMXBs.
These results reflect the contribution to the BH-LMXB population
from the entire population of non-core-collapsed Milky Way GCs.
The production of BH-LMXBs is based on a subset of 15 simulated
GCs and the methods detailed in Section 3.2. In the following sec-
tion, we discuss the distribution and the properties of this population
of BH-LMXBs from GCs.

As discussed at the end of Section 3.1, some clusters require
choosing a BH retention fraction of unity, fi,, = I, in order to ob-
tain the desired quantity of BHs. This occurs in the lowest-mass
cluster for each set of Npy, i.e. Pal 13 for Ngg = 20, NGC 6838
for Ngg = 200, and NGC 6121 for Ngg = 1000. These specific
parameter sets are not used in determining the population of BH-
LMXBs. Although the results from these three sets are included in
the previous discussions, they are excluded here due to the unphys-
ical nature of complete BH retention. During BH formation, natal
kicks ensure that at least some fraction of the BHs formed from the
IMF are ejected from the cluster. This makes complete BH retention
essentially unattainable. In consideration of this, we include only
those models with f,, < 1.

4.2.1 Population

The number of mass-transferring systems that develops from the
BH-NC binaries that are ejected from our model clusters strongly
depends on the assumed BH retention in GCs. We employ the
same notation as in Section 3.2.2 for BH retention: MIN refers to
Npy = 20, 200 refers to Ngy = 200, and MAX refers to Ngy = 1000.
The populations are generated from 10 realizations in the MIN
and 200 case and from 5 x 10° realizations for the MAX case,
as described in Section 3.2.2. The resulting BH-LMXB population
distributions are presented in Fig. 9. The MIN case produces zero
observable BH-LMXB systems. The 200 case produces 25:')0 mass-
transferring BH low-mass systems and the MAX case yields an
expectation value of 156728 ejected BH-LMXBs, with the stated
uncertainties bounding the 95 per cent confidence interval.

The clusters that contribute the largest number of BH-LMXBs
are those with the highest BH-NC ejection rates (see Table 3). As
is visible in Fig. 4, the expected number of ejections can be approx-
imated as a function of the number of retained BHs Npy and the
two fundamental parameters describing the cluster: the concentra-
tion ¢ and the total cluster mass M.. While the initial semimajor
axis at ejection a, which is sensitive to the cluster mass (Fig. 6),
is an important factor in determining whether a BH-NC will lead
to mass transfer, surprisingly, the fraction of BH-NCs that become
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Figure 9. The distribution of the number of BH-LMXBs, Ngy.L.mxB, pPro-
duced from 10* realizations for the Ngpy = 200 case and 5 x 107 realizations
for the Ngy = 1000 case. The Ngy = 20 case produces a population of zero
BH-LMXBs in 10* realizations. The expected values for the two producing
cases are 2510 for Ngg = 200 and 156f§2 for Ngg = 1000, with the stated
uncertainties bounding the 95 per cent confidence interval.

BH-LMXBs appears nearly constant across clusters. Equivalently
stated, (Npu-Lmxs) ~ fumxs (Nej) appears to hold true for the set of
clusters modelled, where fi mxg ~ 0.25 represents the fraction of
ejected BH-NC binaries that evolve into BH-LMXBs. Although the
distributions of most orbital parameters, which determine whether
a system will evolve into a BH-LMXB, vary from cluster to cluster,
the thermal eccentricity distribution shared by all clusters ensures
that a roughly equal proportion of the ejected binaries will become
BH-LMXBs. For clusters that tend to eject wider binaries, it is only
the highly eccentric systems that become BH-LMXBs, and vice
versa.

For a given BH retention, the number of successfully formed
BH-LMXBs from GCs is potentially a function of the ejection
time, initial separation, initial eccentricity, primary and companion
masses, and the complex internal evolution of the binary. Yet, since
we find that the ejection properties are largely determined by the
cluster properties, namely the quantities defining the Fundamental
Plane, the size of the BH-LMXB population from GCs is well
approximated by the cluster properties alone.

4.2.2 Distribution

As GCs generally have low escape velocities, the ejected BH-
LMXBs typically escape with relatively low velocities. Due to
this, the distribution of BH-LMXBs closely mimics the distribu-
tion of GCs in the Milky Way galaxy. In Fig. 10, we present the
spatial probability distribution of BH-LMXBs from GCs, for the
MAX case, on a Mollweide projection of the Galactic map in
longitudinal and latitudinal Galactic coordinates (I, ). Addition-
ally, we include the distribution of Galactic GCs and known BH-
LMXBs from BlackCAT (Corral-Santana et al. 2016), a catalogue
of candidate BH-LMXBs, which we use in all figures including
an observed population, unless stated otherwise. Although the 200
case produces fewer BH-LMXBs, the distribution is qualitatively
similar to the MAX case. The highest probability density region is
near the Galactic centre, where the majority of GCs reside. How-
ever, as Fig. 5 illustrates, the distributions of the ejection velocities
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Figure 10. The spatial probability distribution of the simulated population of BH-LMXBs from GCs with Ngg = 1000. The populations of Milky Way GCs
(marked by black circles) and known BH-LMXBs (marked by orange stars) are included for reference. The map is a Mollweide projection of the (/, b) Galactic
coordinate system. The Galactic centre is located near 0° latitude and 0° longitude, where the high density of objects explains the clustering of BH-LMXBs
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Figure 11. The spatial probability distribution of the simulated population
of BH-LMXBs from GCs with Ngyg = 1000 in the R—z plane. The coordinate
z specifies the distance perpendicular to the Galactic plane and R is the in-
plane distance from the Galactic centre at the origin. The populations of
Milky Way GCs (marked by black circles) and known BH-LMXBs (marked
by orange stars) are included for reference. While many of the BH-LMXBs
from GCs populate the Galactic disc, the distribution extends well out of the
Galactic plane into the high-|z| region.

have widths that span an order of magnitude or more. As a conse-
quence, some fraction of the binaries have ejection velocities that
allow them to separate from their parent cluster. Additionally, the
binaries that are ejected at an earlier time in the GC’s orbit have
sufficient time to diverge from the host GC orbit. The higher-density
streaks in Fig. 10 can be attributed to these binaries that have drifted
from the parent GC.

As GCs primarily follow halo orbits that extend well out of
the Galactic plane, the GCs are easily able to populate this space
with BH-LMXBs. In Fig. 11, we provide the spatial probability
distribution for BH-LMXBs from the MAX case in the R—z plane.

Again, we present only the MAX case, as the 200 case is sim-
ilarly distributed but with a lower overall probability density. The
median absolute distance from the Galactic plane is |z] = 1.63 kpc
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Figure 12. The normalized CDF of the absolute distance perpendicular
to the Galactic plane |z|. The included distributions are the BH-LMXBs
produced in our GC simulations for the cases of Npg = 200, Ngg = 1000,
and the observed population. Note that in the case that GCs have minimal
BH retention (Mg = 20), no mass-transferring systems are produced.

and the median distance from the Galactic centre in the plane is
R = 4.51kpc. While it is clear from Fig. 11 that many of the
BH-LMXBs from GCs are located in the Galactic disc, the distri-
bution extends well out of the Galactic plane into the lower-density
regions above and below the disc. BH-LMXBs that form in the
field will generally reside in the high-density Galactic plane, un-
less they receive substantial kicks at birth, which might eject them
into the ‘high-z’ regions. However, the magnitude of BH-LMXB
kicks is still uncertain and the magnitude necessary to reach the
highest of BH-LMXBs from GCs is considered unlikely (see e.g.
Repetto & Nelemans 2015; Mandel 2016). In Fig. 12, we show
the CDF of the absolute distance |z| perpendicular to the Galactic
plane for the MAX case, the 200 case, and the observed population
of BH-LMXBs. The observed population terminates at a maximum
|z] ~ 2 kpc, while the BH-LMXB population from GCs extends well
beyond this point. This produces a region of space that is unique to
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Figure 13. The probability distributions of BH masses in BH-LMXBs for
the observed population (Ozel et al. 2010) and for the BH-LMXBs produced
in our GC simulations for the cases of Ngy = 200, 1000. Note that in the case
that GCs have minimal BH retention (Ngyg = 20), no mass-transferring sys-
tems are produced. The discontinuous jumps in the distribution correspond
to the mass bin minimum and maximum, with a power-law distribution in-
between determined by the EMF. The lowest-BH-mass bin was truncated at
7 M@ .

a population of BH-LMXBs from GCs, a population distinct from
those forming in the field.

4.2.3 Properties

A typical BH-LMXB with a GC origin has an initial semimajor
axis of 5.71 R¢y, initial BH mass of 8.09M(,, and an initial com-
panion mass of 0.4M¢. The median present-day period is 4.48 h
and the median present-day BH mass is 8.25M(,, which has in-
creased above the initial median BH mass due to accretion from the
companion. As discussed in Section 3.2.2, the masses used in the
Monte Carlo models for the ejected binaries are sampled according
to the EMF from the mass bin corresponding to the mass in the
ejected BH-NC. This is done for both the primary BH mass Mgy
and the companion mass 1, to obtain the mass distributions, which
we discuss below.

In Fig. 13, we show the distribution of the BH mass in the popu-
lation of BH-LMXBs from GCs for both cases that produce mass-
transferring systems.

Along with the BH mass distributions for the 200 and MAX cases,
we include the inferred BH mass distribution from observations
(Ozel et al. 2010). Although the observed mass distribution reaches
down to ~5M¢), our EMF does not produce BH masses in the
range Mpy < 7M. The BH primary mass is peaked at 7.4 M and
displays a preference for the lower-mass BHs. The lack of systems
at high-mass BH can be attributed to two contributing factors. The
leading contribution is the distribution of BH masses in the ejected
BH-NCs, which is dominated by the two lowest-BH-mass bins (i.e.
8.87M( and 20.48M(y). Although these are produced in nearly
equal numbers, the preference for the lowest-mass bin that arises
in the BH-LMXBs is due to a secondary effect introduced during
the binary stellar evolution. High-mass ratio systems are prone to
disrupting the companion star, ending the possibility of evolving
into a stable BH-LMXB. Despite these barriers to forming BH-
LMXBs with high-mass BHs, there remains a small population of
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Figure 14. The probability distributions of the companion masses in BH-
LMXBs for the cases Ngg = 1000 and Ngg = 200. The observed popu-
lation includes 12 of the 18 confirmed BH-LMXBs in BlackCAT (Corral-
Santana et al. 2016) that have the necessary observational quantities (see
Section 4.2.3 for a description of the observed population) and are included
for reference; the circles indicate the mean value, the line represents the
uncertainty in the observations, and the inclusion of an arrow indicates that
the uncertainty is only bounded on one side. The remaining 6 confirmed BH-
LMXBs have companion masses above the range considered here, where
the axis has been truncated to focus on the range of masses less than the MS
turn-off mass m, = 0.85M(;). The peaks in the simulated distributions are
due to the sampling of companion masses from the EMF within each mass
bin.

high-mass present-day BH-LMXBs, with Mgy > 40M(, which
accounts for ~1 per cent of the population.

The low-mass companions are restricted to the range
my < 0.85Mg, where the maximum mass is constrained by the
MS turn-off mass, my, = 0.85Mc. The present-day companion
mass is a function of the mass-transfer rate and the time since the
onset of mass transfer. The majority of the companion masses are
MS stars; however, there exists a sub-population of WD companion
masses that account for ~10 per cent of the companions in the MAX
case and ~20 per cent in the 200 case. In Fig. 14, we display the
companion mass distribution for the MAX case, 200 case, and the
observed population of BH-LMXBs.

The lack of lower-mass companions in the 200 case relative to
the MAX case is due to the higher fraction of WDs, which have
masses mwyp 2, 0.4 M@ . In the MAX case, there is a larger number
of BHs in the outskirts where the lowest masses reside, whereas the
200 case is more centrally concentrated where there is an increase in
the probability of picking up a higher-mass companion and which
includes a larger population of WDs. The observed population in
Fig. 14 is generated from the observational data in the candidate BH-
LMXB catalogue BlackCAT. There are 18 confirmed BH-LMXBs
in the catalogue that have a measurement of the BH mass Mgy and
the mass ratio g, which we use to estimate the companion mass
my = g Mpy. The companion masses in the observed population
have large error bars due to the uncertainty in the measurements of
the BH mass and the mass ratio.

The initial eccentricity of the binaries follows a thermal distri-
bution, while the initial semimajor axis, as discussed in 4.2.1, is
typically (a/AU) <« 1, due to their GC origin. The small initial
separation of the BH-NCs leads to a distribution of periods p where
~99 per cent of the BH-LMXBs have p < 6.2 h for the MAX case
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Figure 15. The probability distribution of orbital periods in the simulated
BH-LMXBs from GCs for the two stellar companion sub-populations: WD
and MS. The periods for the observed population of BH-LMXBs that are
less than 13 h are included for reference and are identified by orange tick
marks (18 of the 28 candidate BH-LMXBs from BlackCAT). To preserve the
relative size of the MS and WD companion populations, each distribution is
independently normalized and then multiplied by the factors Ngy.ms /N and
Npu-wp/N, respectively, with N = Np-ms + Npu-wp. This normalization
is applied to each Npy case independently.

and p < 6.8 h in the 200 case. The sub-population of BH-LMXBs
with a WD companion have a qualitatively similar distribution but
with a reduced period such that ~99 per cent of the population have
p < 3h for both cases, MAX and 200. The reduced period for the
WD companions is due to the smaller separations necessary to in-
duce mass transfer for these compact objects. In Fig. 15, we display
the bi-modal distribution of the orbital period for our population of
BH-LMXBs along with a subset of the observed population with
periods less than ~1/2 d.

The mass transfer in these systems is primarily driven by angular
momentum loss due to tidal circularization. As the companion star
passes the BH at periastron, the tidal forces from the BH deform
the star and dissipate energy. This tidal torque efficiently removes
eccentricity from the system and eventually leads to circularization
of the orbit with a reduced period. Once the period reaches some
critical separation, the companion star overfills its Roche lobe and
transitions to a state of mass transfer. This is the same mechanism
operating on the BH-LMXBs with a WD companion; however due
to the compact nature of WDs, the critical separation that leads to
Roche lobe overflow occurs at smaller separations, hence the shorter
orbital periods. The binary evolution for the BH-LMXBs from GCs
is significantly different from the evolution of field binaries. In
the standard binary evolution picture, the companion evolves to
overfill its Roche lobe, which can lead to mass transfer at relatively
large separations. The MS stars in BH-LMXBs from GCs have not
evolved significantly within the cluster, but evolve on much longer
time-scales, preventing them from achieving mass transfer at wide
separations.

In Fig. 16, we provide a temperature-luminosity diagram for the
mass-transferring MS companions. We exclude the WD systems
from the diagram, since they are likely too faint for observation.
The MS companions have temperatures ~1500-6300 K and lumi-
nosities ~6 x 107* - 0.5 Lo, making these identifiable as K/M
late-type MS stars below the MS turn-off.
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Figure 16. Temperature-luminosity diagram for the BH-LMXB compan-
ion mass in the simulated population of BH-LMXBs from GCs with
Npu = 1000. The low-luminosity WD companions are excluded from the
figure, leaving only the mass-transferring MS companions. Since the MS
companions from GCs are unevolved stars, the companion temperature-
luminosity diagram is essentially the portion of the Hertzsprung-Russell
MS branch with my < my,.
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Figure 17. The probability distributions for the space velocity v of the sim-
ulated BH-LMXB population for the two BHs retention values Ngg = 1000
and Ny = 200. The BH-LMXB space velocity is v = vej + vge, where
v is the ejection velocity and vgc is the velocity of the host GC. Since ve;
is approximately the GC escape velocity, the magnitude v is dominated by
the relatively large contribution from vgc. As such, the velocity distribution
of BH-LMXBs is consistent with the velocity distribution of GCs, which is
reflected in the high mean velocities.

A distinct characteristic of these systems are their kinematic prop-
erties. In Fig. 17, we show the distribution of the magnitude of the
velocity v of the BH-LMXBs from GCs.

The velocity v is computed from the components of the space
velocity in the heliocentric Galactic coordinate system (U, V, W),
a right-handed coordinate system with U in the direction of the
Galactic centre, V along the direction of rotation, and W pointing
towards the Galactic north pole. The median values of the velocity
components for the MAX case are (U, V, W) = (—24.47, —211.31,
—22.23)kms~!. The large negative velocity in the V component is
indicative of this population not participating in Galactic rotation.
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The peculiar velocity — the velocity of a source relative to a local
standard of rest, obtained by removing the contribution of Galactic
rotation at the source distance in the Galactic plane R —is sometimes
used to infer a ‘natal kick’ for BH-LMXBs. Although it is possible
to convert the Galactic space velocity to a peculiar velocity, this
inferred ‘kick velocity’ is only justified in assuming the source
was born in the Galactic disc, where it participates in Galactic
rotation. For BH-LMXBs formed in the field, which is most likely
to occur in the disc, this is a reasonable assumption. However, the
V component of the BH-LMXBs from GCs indicate low rotational
velocities, which is consistent with the parent GC halo orbits, which
are typically non-circular and extend well out of the Galactic plane.
As the BH-LMXBs with GC origins are ejected at relatively low
velocities along the GC’s orbit in the Galaxy, this population of BH-
LMXBs has a velocity distribution consistent with the high-velocity
halo orbits of GCs. As these systems have high apparent peculiar
velocities, due to their halo orbits and the lack of participation in
Galactic rotation, attempting to infer a ‘natal kick’ from the peculiar
velocity in such a case is ill-posed and leads to the conclusion of a
large required ‘natal kick.’

4.3 Merger events

4.3.1 GW-driven mergers

As briefly discussed in Section 2.3, we allow for gravitational-
radiation-driven mergers between compact objects. Since all of our
‘test binaries’ contain at least one BH, the allowable set of GW
merger pairs is limited to BH-NS, BH-WD, and BH-BH. In addi-
tion to those binaries that merge during their evolution within the
cluster, binaries of these types can also be ejected from the cluster.
In the case of the ejection of a compact pair, we calculate the ex-
pected merger time #4 using the ejected binary parameters and refer
to these as post-ejection mergers if e + t4 < ty, where i = 10" yr
is approximately the Hubble time. The total merger rate includes
these post-ejection mergers in addition to the in-cluster mergers.
Here, we present an estimate of the merger rates averaged over the
100 yr simulations for different BH retention values.

For notational convenience, we refer to a parameter set as x;,
where the index i runs over the 39 parameter sets that make up each
row of Table 2 and corresponds to a specific GC and value of Npy.
We compute the expected number of mergers for each parameter
set by considering the probability of a BH being involved in a

merger, defined simply by Pn(x;) = % multiplied by the
BH population
(Nm)i = Pum(x;) Npu(x;). 45)

In the case of a merger involving two BHs, the expectation value is
calculated using Ngy(x;)/2 in order to avoid double counting. The
rightmost three columns of Table 4 list the expected number of GW-
driven compact object mergers over the lifetime of each cluster for
a given BH population. The number of BH-BH mergers is strongly
correlated with the GC core density n,. Each population of BHs
has a merger expectation value that follows a power law in the core
density with exponent ~0.58. Since we do not include primordial
binaries, exchange encounters are the only means to forming BH—
BH binaries that can later merge. The average rate of encounters is
directly proportional to the density, with the highest-density clusters
providing the largest number of opportunities to successfully form
BH-BH binaries. There are additional correlated variables, such as
the concentration ¢ and velocity dispersion o; however, these are

secondary to the density n, and likely due to their own correlation
with n,.

Given the expected number of mergers for each cluster, we de-
termine a weighted average using the GC mass function, since the
total cluster mass of GCs is not uniformly distributed (McLaughlin
& Pudritz 1996). We do this individually for each group of simu-
lations belonging to the sets Ngg = {20, 200, 1000}, utilizing the
GC mass spectrum dN(M.)/dM. of McLaughlin & Pudritz (1996).
For each simulated cluster, we assign a weight w; = N(M.(x;)) and
compute the expected number of mergers per cluster in the Milky
Way from

Siwi
For clarity, to obtain the expected number of mergers for Ngy = 20,
we sum over all parameter sets in Table 2 with Ngy = 20. The result-
ing expected number of BH-BH mergers over the life of a cluster
for each choice of Ny are (N,(20)) = 0.513, (N,,(200)) = 5.08,
and (N,,(1000)) = 62.5.

We convert the expected number of mergers to a merger rate
density by assuming that our simulations of Milky Way GCs are
a fair representation of GCs in other galaxies, that the GCs are all
approximately fgc = 10'° yr old, and that the spatial density of GCs
in the Universe is pgc = 0.77 Mpc™3 (see supplemental materials
of Rodriguez et al. 2015). Using the weighted averages computed
above as our ‘typical’ cluster merger values and assigning this value
to each GC in the volume, we obtain the merger rate density due to
all GCs in the Universe,

{Nm(Ngn))
—0
Igc

(Nm(Npn)) = (46)

(R(Ngn)) = GC- 47)
In Table 5, we provide the computed estimated merger rate densities
for compact object mergers due to GCs for the three populations
of Ny we consider. Although there is an increased interest in the
BH-mass spectrum for BH-BH mergers in GCs, stimulated by the
larger than expected BH masses recently detected by aLIGO (Abbott
et al. 2016d), the use of just three discrete BH masses precludes the
possibility of such an analysis.

Since BH-BH mergers from GCs only partially contribute to
the total merger rate, with the remaining mergers coming from the
field, the rates due to GCs should not exceed the upper bound of the
total estimated merger rate. The most recent observational evidence
constrains the BH-BH merger rate density to lie in the range of
12-213 Gpc 3 yr~! (Abbott et al. 2017). The GC BH-BH merger
rate densities given in Table 5 for the three different BH retention
scenarios are well below the upper bound, presenting no conflict
with the observed rate. It is tempting to rule out the lower BH
retention cases based on their relatively low merger rate densities
compared to the observed lower bound. However, we emphasize
that the rates presented in Table 5 are the expected rates due to GCs
alone, while the observed rate provides bounds on the total BH-BH
merger rate that includes the contribution from the field. We could
attempt to convert the cluster merger rate to a total rate, but this relies
on a well constrained value of the GC fractional contribution. Given
the large uncertainty in this fractional contribution, any attempt to
approximate the total rate will be dominated by the error in the
fractional estimate. Therefore, we presently refrain from ruling out
certain BH populations based on their BH-BH merger rate densities
alone.

The bounds of our merger rates, which span a wide range of
uncertainty in BH retention, are consistent with previous studies that
provide estimates of the BH-BH merger rate from GCs (O’Leary
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Table 4. Expected number of mergers. For each cluster and number of retained BHs, we list the exact number of BHs in the cluster along with the expected
number of mergers over the cluster lifetime. The number of expected mergers within a cluster are Poisson distributed. Denoting each expectation value X, the
standard deviation, o, associated with each value in the table follows from Poisson statistics and is given by o = V.

Three-body mergers GW mergers
Name NBH BH-NC BH-WD BH-NS BH-BH BH-WD BH-NS BH-BH
NGC 13 19.64 2.53 x 107! 1.81 x 1072 0.00 0.00 142 x 1072 0.00 7.74 x 1073
NGC 6838 20.61 8.27 1.02 8.98 x 1073 1.68 x 1073 9.27 x 107! 6.85 x 1072 2.99 x 107!
174.55 4.40 x 10! 4.76 1.71 x 1072 427 x 1073 4.15 222 x 107! 1.54
NGC 6535 19.89 5.32 5.96 x 107! 1.28 x 1072 277 x 1074 5.15 x 107! 455 x 1072 1.97 x 107!
198.95 3.29 x 10! 3.30 1.19 x 1072 0.00 2.88 1.90 x 107! 1.19
NGC 6362 20.22 4.77 4.81 x 1071 497 x 1073 1.24 x 1073 533 x 107! 2.55 x 1072 1.83 x 107!
199.33 3.40 x 10! 3.82 2.95 x 1072 2.95 x 1073 3.49 1.59 x 107! 1.11
NGC 5053 21.71 5.63 x 107! 2.51 x 1072 3.14 x 1074 3.14 x 1074 3.21 x 1072 3.14 x 1074 1.79 x 1072
199.65 3.89 1.71 x 1071 0.00 0.00 233 x 107! 0.00 1.22 x 107!
NGC 6121 20.70 1.51 x 10! 2.31 430 x 1072 5.02 x 1073 2.19 6.99 x 107! 9.91 x 107!
200.53 1.22 x 10% 1.71 x 10! 325 % 107! 2.80 x 1072 1.74 x 10! 3.45 6.74
1039.16 3.85 x 10? 432 x 10! 5.90 x 107! 8.43 x 1072 5.50 x 10! 4.80 1.70 x 10!
NGC 5694 20.49 2.21 x 10! 4.62 9.93 x 1072 2.19 x 1073 436 2.34 2.34
200.39 1.98 x 10% 3.83 x 10! 8.39 x 107! 449 x 1072 3.53 x 10! 1.57 x 10! 1.69 x 10!
1001.94 6.90 x 102 1.10 x 10% 2.87 2.87 x 1072 1.14 x 10? 2.75 x 10! 5.06 x 10!
NGC 6093 19.85 3.70 x 10! 9.09 123 x 107! 1.33 x 1073 6.19 4.46 5.21
198.31 3.96 x 10% 9.52 x 10! 1.33 2.83 x 1072 6.85 x 10! 3.67 x 10! 4.64 x 10!
1004.51 2.01 x 103 4.60 x 10% 3.68 1.08 x 107! 3.81 x 102 1.42 x 102 2.03 x 102
NGC 5286 12.29 1.10 x 10! 1.50 3.09 x 1072 1.82 x 1073 1.45 6.40 x 107! 1.06
198.28 2.07 x 10? 3.19 x 10! 3.95 x 107! 3.95 x 1072 3.38 x 10! 5.97 1.45 x 10!
787.45 7.43 x 102 1.14 x 102 1.06 9.61 x 1072 1.23 x 10? 1.20 x 10! 3.96 x 10!
NGC 6656 19.80 1.53 x 10! 2.18 490 x 1072 7.90 x 10~* 2.37 4.74 x 107! 1.13
205.86 1.52 x 10% 2.32 x 10! 294 x 107! 1.96 x 1072 2.46 x 10! 3.55 9.43
1000.35 5.92 x 10? 7.79 x 10! 1.01 0.00 9.36 x 10! 8.09 2.90 x 10!
NGC 1851 20.76 2.40 x 10! 428 9.53 x 1072 0.00 274 2.69 3.41
203.71 2.77 x 102 4.80 x 10! 8.21 x 107! 440 x 1072 3.62 x 10! 241 x 10! 2.85 x 10!
1039.94 1.42 x 103 2.45 x 102 5.24 228 x 107! 2.30 x 102 8.11 x 10! 1.17 x 10?
NGC 6205 20.10 1.42 x 10! 2.06 434 x 1072 1.50 x 1073 2.28 5.73 x 107! 1.17
199.58 1.35 x 10% 1.94 x 10! 3.69 x 107! 1.20 x 1072 2.23 x 10! 3.60 8.74
998.62 5.12 x 10? 6.68 x 10! 7.62 x 107! 0.00 7.95 x 10! 7.66 2.49 x 10!
NGC 6441 20.98 2.57 x 10! 3.95 7.91 x 1072 1.32 x 1072 2.26 2.76 5.12
212.57 3.54 x 102 6.14 x 10! 1.57 436 x 1072 4.98 x 10! 2.65 x 10! 5.08 x 10!
1010.37 2.07 x 103 3.32 x 102 7.38 0.00 3.06 x 102 1.06 x 102 1.99 x 102
NGC 104 22.49 2.51 x 10! 4.83 1.88 x 107! 471 x 1073 3.36 4.29 434
222.95 2.92 x 102 5.64 x 10! 1.90 1.07 x 1072 4.70 x 10! 4.08 x 10! 3.80 x 10!
979.55 1.30 x 103 2.33 x 10? 7.90 5.72 x 1072 2.21 x 102 1.29 x 102 1.33 x 102
NGC 5139 20.84 7.15 8.37 x 107! 1.89 x 1072 7.90 x 1074 1.16 1.52 x 107! 4.63 x 107!
207.50 7.02 x 10! 6.80 1.07 x 107! 1.78 x 1072 1.15 x 10! 9.86 x 107! 3.45
1009.04 2.91 x 102 2.84 x 10! 5.15 x 107! 2.15 x 1072 4.55 x 10! 4.29 1.14 x 10!

Table 5. The contribution to the compact merger rate density from all GCs
in the Universe, stated in Gpc =3 yr~!. Each row corresponds to the merger
rate contribution from GCs with the simulated BH population specified
by Npn in (R(Ngn)). The merger rate densities are averaged over the life
of the cluster, weighted by the GC mass function to account for the non-
uniform mass distribution of GCs, and assumes a GC spatial density of
pGe = 0.77 Mpe 3.

in Morscher et al. (2015), ~85 per cent of BH-BH mergers occur
post-ejection, and Rodriguez et al. (2016a) find that ~90 per cent
merge outside the cluster. In contrast to the small number of BH—
BH binaries, these studies find merging in cluster, O’Leary et al.
(2006) finds that only ~24—72 per cent of the BH-BH mergers are
post-ejection. Finally, Sadowski et al. (2008) is most closely aligned
with our results, with ~10 per cent of mergers occurring out of the
cluster.

(R(Ngm)) BH-BH BH-NS BH-WD T . . . .

This discrepancy in merger location can be attributed to the dis-
(R20)) 3.95 x 107? 2.71 x 107? 7.15 x 107? tribution of the BHs in the cluster and their interactions with the
(R(200)) 391x 10 2.51% 10 7.73 x 10 lower-mass components. In models with centrally clustered BHs,
(R(1000)) 4.81 2.83 10.59

et al. 2006; Sadowski et al. 2008; Downing et al. 2011; Morscher
et al. 2015; Rodriguez, Chatterjee & Rasio 2016a). However, we
find that only ~10 per cent of the BH-BH mergers occur outside of
the cluster boundaries, which differs from a subset of these previous
studies. In Downing et al. (2011), no mergers occur in cluster, while

the BHs are segregated from the remainder of the cluster, forming
an isolated and decoupled system. These self-interacting BHs ef-
ficiently form BH binaries. Strong binary—binary interactions can
eject these binary BHs from the cluster, where they might later
merge in isolation. In addition to the efficient removal of BH bina-
ries from the core, binary-single interactions are equally efficient
at ejecting single BHs from the cluster. Furthermore, these strong
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encounters are likely to interrupt potential mergers of eccentric BH
binaries that would merge in-cluster if uninterrupted. This chan-
nel leads to a majority of BH-BH mergers outside of the cluster
and eventually depletes the GC of BHs (e.g. O’Leary et al. 2006;
Banerjee, Baumgardt & Kroupa 2010; Downing et al. 2011). We
assume that in order for GCs to retain significant BH populations,
the BHs must avoid segregating in the core, which we accomplish
through a modified velocity dispersion for the BHs, as discussed in
Section 2.2.4. This modified velocity dispersion spreads the BHs
throughout the cluster, where they can interact with the lower-mass
stars. This supposition is similar to the assumptions made in Sad-
owski et al. (2008) and produces qualitatively similar results.

In our simulations, a key channel for producing BH-BH binaries
is through the formation of a binary composed of a BH and a non-
BH outside of the core, which eventually drift to the centre where
there is a high density of BHs. The non-BH will be preferentially
exchanged with one of the more massive BHs in the core, producing
a BH-BH binary that will realize one of three outcomes: (1) the BH-
BH binary will be dismantled in the high-density region, (2) given
a sufficiently large eccentricity (hence a shorter orbital decay time),
will eventually merge in the core, or (3) will harden and be ejected
from the cluster. This formation channel is similar to that described
in Sadowski et al. (2008). As discussed in Section 2.3.5, we allow
for single BHs to exchange into existing binaries. The majority
of binaries that a single BH encounters are binaries composed of
two low-mass stars. Successful exchanges of a more massive BH
for one of the lower-mass stars tend to produce high-eccentricity
BH-non-BH binaries following the relation

(e~ 1-13( (48)

Myon-BH )
s

mMBH

which is independent of the initial eccentricity and applicable when
Mpon-a <K Mmpy (Sigurdsson & Phinney 1993). For the three BH
masses considered, Mpy = {8.87,20.48, 57.18} My, and a cluster
non-BH star with an average mass of (mgensu) ~ 0.3 Mg, this
leads to mean initial eccentricities of (e) ~ {0.956, 0.981, 0.993}.
Once the binary makes it to the core, the non-BH is easily exchanged
for one of the many massive BHs, yielding a highly eccentric BH—
BH binary according to equation (48). In Fig. 18, we display the
eccentricity distributions for the BH-BH binaries at formation and
at merger or ejection for those binaries that have end states (2) and
(3), as described above, respectively. Some fraction of the eccentric
binaries that form through this channel are driven to high enough
eccentricities that they can merge in-cluster in-between encounters.
The remainder are subject to further encounters that drive their
eccentricities towards a thermalized distribution, are hardened in
the process, and are eventually ejected.

The eccentricity distribution of merging BH-BH binaries is im-
portant for the detection of the resulting gravitational waves. The
eccentricity tends to zero as the orbit shrinks; however modern de-
tectors are sensitive to the GW signal at frequencies when the binary
is still in the inspiral phase and the eccentricity is finite. The aLIGO
(LIGO Scientific Collaboration et al. 2015) detectors are sensitive
to ~10Hz, at design sensitivity, while the future space-based de-
tector LISA (Amaro-Seoane et al. 2012) will be sensitive to much
lower frequencies ~1 mHz. We determine the eccentricity at a spe-
cific frequency by evolving a, and e,, according to (de/da) (Peters
1964), up until some target value a associated with the frequency
in consideration.

In Fig. 19, we display the residual eccentricity of the inspiralling
BH-BH binaries, as they first enter the design-sensitivity frequency
bands for aLIGO and LISA. It is apparent that for aLIGO, both

o
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Figure 18. The probability distributions of eccentricity for two populations
of BH-BH binaries in GCs: BH-BH binaries that form and merge in cluster
(BH-BH,y,, black lines) and the BH-BH binaries that form and are ejected
from the cluster (BH-BHe,;, blue lines). For each population, we show the
eccentricity distribution at the time the binary forms, e(#,) (solid lines), and
the distribution of eccentricities at the binary’s final state (dashed lines).
The final state of the in-cluster mergers is at a time #,, the time at which
the computed merger time is less than the cluster time-step. The final state
for the ejected binaries is the time of ejection Zj. A thermal eccentricity
distribution, with probability density fle) = 2e, is included for reference.
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Figure 19. The eccentricity probability distributions for two populations of
BH-BH mergers from GCs for the two detectors aLIGO and LISA. The two
populations correspond to the BH-BH mergers occurring in-cluster (solid
lines) and those that merge outside of the cluster, post-ejection (dashed lines).
The black lines correspond to the eccentricity of each population when it
reaches a corresponding gravitational wave frequency of fow = 10 Hz, the
lower-bound frequency of the aLIGO band at design sensitivity. The blue
lines represent the eccentricity distribution at fgw = 1 mHz, the proposed
lower-bound frequency for LISA.

the ejected mergers and the initially high-eccentricity in-cluster
mergers have residual eccentricity distributions below 10~!, which
has a negligible effect on detections using circularized templates.
However, in the case of LISA, while the ejected mergers result in a
small eccentricity at 1 mHz, the initially highly eccentric in-cluster
merger population remains significantly eccentric at this frequency.
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Table 6. The rate of three-body mergers in GCs computed for the Milky
Way galaxy and stated in MWEG~!Myr~!. Each row corresponds to the
three-body merger rate in Milky Way GCs with the simulated BH population
specified by Mgy in (R(Npn)). The merger rates are averaged over the life
of the cluster, weighted by the GC mass function to account for the non-
uniform mass distribution of GCs, and assumes Ngc =~ 150 for the number
of GCs in the galaxy.

(R(Npn)) BH-NC BH-WD BH-NS BH-BH
(R(20)) 1.02x 107" 1.60x 1072 2.65x10~* 1.64 x 1073
(R(200))  1.08 1.72 x 1071 253 x 1073 1.40 x 10~*

(R(1000)) 1227 2.14 3.03x 1072 1.11 x 1073

Utilizing (de/da) to determine the evolved eccentricity assumes
that the binary evolves in isolation. For the in-cluster mergers, we
classify a BH-BH binary as merged once the orbital decay time
has fallen below the cluster time-step. However, this could leave
significant time for further dynamics to modify the eccentricity
such that the binary will not in fact merge in cluster (Banerjee
et al. 2010). To account for this possibility, the in-cluster mergers
in Fig. 19 only include those mergers which satisfy the additional
constraint fgee < (fenc), Which is satisfied for ~70 per cent of in-
cluster mergers. Here, the average encounter time is approximated
bY (fenc) = tbin/Nenc With i, corresponding to the time since the
binary’s formation and N, is the number of three-body encounters
the binary has been subject to during the time #;,,. The remaining
~30 per cent of mergers are uncertain and are not further evolved;
they may be broken up, ejected, or merge after subsequent interac-
tions.

4.3.2 Three-body mergers

In addition to the GW-driven mergers, we also calculate the rate of
tidally driven mergers or ‘collisions’ that occur during three-body
encounters. The merger criteria are based on a minimum separation
between bodies, as discussed in Section 2.3.4. We compute the
expected number of three-body merger events only for those that
involve a BH. Although we track the number of three-body mergers
for all object types, including NS-NS, MS-WD, etc., we are missing
a significant fraction of these mergers by only tracking single BHs
or binaries with at least one BH. We compute the expected number
of mergers in a manner similar to the computation of GW mergers
above.

The left columns of Table 4 list the expected number of mergers
involving a BH that occur during three-body encounters over the
lifetime of each cluster for a given BH population. These three-body
mergers are computed using equation (45) to obtain an expected
value for each cluster in the set. As the majority of these events
will only be observationally relevant locally, we provide these rates
solely for the Milky Way galaxy. Using the computed values from
Table 4 we construct a cluster weighted average with equation (46).
From this we use a modified version of equation (47), with Ngc =~
150, for the approximate number of GCs in our Galaxy, in place of
pae to obtain the final approximate rate for each event: (R(Ngy)) =
WNGC. These computed rates for BH-BH, BH-NS, BH-
WD, and BH-NC are shown in Table 6, stated in terms of the number
of expected events per Milky Way equivalent galaxy (MWEG) per
Myr. The BH-NC merger rate includes the three-body mergers of
both BH-RG and BH-MS.

These rates are included to ensure that a large population of
retained BHs in GCs does not lead to a conflict with observations.
Even in the case of maximal BH retention, the occurrence of these
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events is relatively infrequent. The most commonly occurring three-
body collision is that between a BH and a NC star. The interaction
of a NC object with a BH, commonly referred to as a tidal disruption
event (TDE), is often studied in the context of supermassive BHs
rather than stellar-mass BHs. However, there is some interest in GC-
relevant NC collisions with stellar-mass BHs, which are referred to
as micro-TDEs (Perets et al. 2016). These events lead to full or
partial tidal disruption of the NC star and are accompanied by long-
duration energetic flares. There is large uncertainty in the signals
associated with these events as the strength and duration of the
signal depends heavily on the details of the encounter (see e.g.
Perets et al. 2016).

The signals associated with the compact mergers are likely to
appear as head-on mergers due to the criteria associated with cat-
egorizing mergers during three-body encounters; the exclusion of
higher-order corrections to Newtonian gravity in our three-body cal-
culations requires extremely close-encounters due to the relatively
small size of the compact objects involved. Despite the uncertainty
in the observables produced in three-body collisions, the rate of oc-
currence is low enough that our model does not generate a conflict
with present observations.

4.4 Comparison with observations and previous results

In our simulations, GCs produce a population of BH-LMXBs with
a unique set of characteristic properties. These properties provide
some constraints on the likelihood of a BH-LMXB having a GC
origin. In this section, we identify the key characteristics of BH-
LMXBs from GCs and determine which of the currently known
BH-LMXBs are consistent with this population.

As discussed in Section 4.2.3 and visible in Fig. 13, the spec-
trum of BH masses in BH-LMXBs from GCs in our simulations
is roughly consistent with the observed population of BH masses.
This makes the BH mass a poor candidate for differentiating be-
tween field-formed BH-LMXBs and those with a GC origin. As a
consequence of the age of GCs, the companions are typically un-
evolved MS stars, with masses necessarily below the turn-off mass
my, = 0.85Mg. Additionally, they reside on a tightly confined
branch of a temperature—luminosity diagram (see Fig. 16). This
provides the first distinctive characteristic of BH-LMXBs formed in
GCs: a companion mass of m, < 0.85 M) and a spectral class con-
sistent with late-type K/M stars. BlackCAT (Corral-Santana et al.
2016) currently contains 18 observed BH-LMXB systems with the
proper information to compute an estimate of the companion mass.
Of the 18 BH-LMXB systems, 6 BH-LMXBs have companion
masses exceeding the maximum companion mass in our popula-
tion of BH-LMXBs from GCs. Two of these six are near the edge
of the distribution with m, 2 0.9 Mg, while the other four have
my > 2.52 M, suggesting these are more consistent with a field-
formation scenario.

A second property of a BH-LMXB with a GC origin is a char-
acteristically short period. As shown in Fig. 15, there is a sharp
limit in the distribution confining GC-origin BH-LMXBs to peri-
ods shorter than p ~ 6.5h. Of the 27 confirmed BH-LMXBs with
measured periods in BlackCAT, 18 have periods with p > 7 h, indi-
cating an unlikely GC origin for an additional set of systems. Note,
however, that these systems are not necessarily distinct from those
ruled unlikely on the basis of companion mass.

Although the GC-origin BH-LMXBs are more likely to reside at
larger values of |z| perpendicular to the Galactic plane (see Fig. 12),
the overall distribution of the BH-LMXBs from GCs does not pro-
vide a strict criterion for discerning between GC origin and field
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Table 7. Properties of the five observed systems that are consistent with the properties of our simulated population of BH-LMXBs with
GC origins. The columns refer to the primary BH mass Mgy, the companion mass m;, the orbital period p, and the absolute distance

perpendicular to the Galactic plane |z].

Name Mg M@ my M p[h] |z| [kpc] References
MAXI J1659-152 58+2.2 0.19 +0.05 24144+5x 1073 245+ 1.05 [0,1]
SWIFT J1357.2-0933 >8.3 >0.33 2.8+3 x 107! >1.75 [2,3]
SWIFT J1753.5-0127 >74+£1.2 >0.30£0.03 3244 £1 x 1073 1.3+04 [4-7]

XTE J1118+480 7.55 £ 0.65 0.187 £ 0.083 407841+ 1 x 1075 1.52 £ 0.09 [8-11]
GRO J0422+32 85+6.5 0.46 +0.31 5.09185+5 x 107¢ 0.51 £ 0.06 [12-15]

References: [0] Yamaoka et al. (2012), [1] Kuulkers et al. (2013), [2] Mata Sanchez et al. (2015), [3] Corral-Santana et al. (2013), [4]
Shaw et al. (2016), [5] Neustroev et al. (2014), [6] Zurita et al. (2008), [7] Cadolle Bel et al. (2007), [8] Khargharia et al. (2013), [9]
Calvelo et al. (2009), [10] Torres et al. (2004), [11] Gelino et al. (2006), [12] Casares et al. (1995), [13] Beekman et al. (1997), [14]

Webb et al. (2000), [15] Gelino & Harrison (2003).

origin. Fig. 11 illustrates that while the simulated population extends
much farther out of the Galactic plane than the observed distribution,
there is still a significant population of GC-origin BH-LMXBs that
reside in the plane, overlapping the region where field-formed bina-
ries are expected to have the highest density. This makes discerning
a potential origin for BH-LMXBs in this region difficult. Addition-
ally, for the many systems clustered near the Galactic centre or
those that reside in the plane, the high density of objects and dust
make these systems equally difficult to observe optically. Although
a number of BH-LMXB candidates are detectable in these regions
through X-ray, the detailed properties of these systems remain un-
known due to current optical limitations. The spatial distribution
of BH-LMXBs from GCs, in general, makes observations of the
population difficult, even for those out of the plane. Observation
and confirmation of BH-LMXBs rely on a dynamical measurement
of the BH mass through optical spectroscopy, introducing a bias
towards sources at distances D < 10kpc from the Sun (Repetto
& Nelemans 2015). For the population of BH-LMXBs from our
model GCs, the MAX and 200 cases both produce a median dis-
tance of D = 9.7 kpc, placing roughly half of the systems beyond
the observable range.

Although this model population has characteristics that make ob-
servations of the binary properties difficult, there are some observed
systems that provide a resemblance to those with GC origins. There
are 18 observed and confirmed BH-LMXBs in BlackCAT with mea-
sured quantities that allow for comparison with our simulated popu-
lation. Five of the 18 systems have a BH mass, companion mass, and
period consistent with the characteristics of our population of BH-
LMXBs from GCs. These systems are MAXI J1659-152, SWIFT
J1357.2-0933, SWIFT J1753.5-0127, XTE J1118+4-480, and GRO
J0422+-32. In Table 7, we list the five consistent systems and the
known properties that are compatible with the range of values be-
longing to our population of BH-LMXBs from GCs. While we
cannot make any strong claims in regards to the specific origin
of these systems, it is worthwhile to note the similarities of these
systems with respect to the population produced in this study.

The BH-LMXB system XTE J1118+480 is well studied, which
provides some additional parameters worth comparing with our
modelled population of BH-LMXBs from GCs. In addition to the
consistent mass of the companion star in XTE J1118+480, the spec-
tral type is also aligned with the band of GC-origin companions
in Fig. 16. Although space-velocity measurements of BH-LMXBs
are rare, fortunately there exists a velocity measurement of XTE
J11184-480. In the same heliocentric Galactic coordinate system
(U, V, W) introduced in Section 4.2.3, Mirabel et al. (2001) found a
space—velocity for this system of (U = —105 & 16, V= —98 £ 16,
W = —21 £ 10)kms~!. The large magnitude v ~ 145kms~! and

the large negative V-component are consistent with a high-velocity
halo orbit and a lower than average rotational velocity about the
Galactic centre. This description is consistent with the velocity dis-
tribution of our population of BH-LMXBs from GCs, which inherit
the high-velocity halo-orbits when they are ejected from the GC.
As a consequence of the high-velocity halo orbit, which manifests
itself as a high computed peculiar velocity, this system is commonly
invoked to support large natal kicks (Gualandris et al. 2005; Fra-
gos et al. 2009; Repetto et al. 2012; Repetto & Nelemans 2015).
Confidently identifying an origin for this system could help to shed
some light on the issue. The relatively low-metallicity environments
of GCs provides an additional constraint on properly categorizing
BH-LMXB:s as originating in GCs versus in the field. Although all
of the previous characteristics point to a GC origin, perhaps one of
the strongest arguments against a GC origin for this system is the
supersolar abundance of elements in the secondary star found by
Gonzélez Hernandez et al. (2006), which is consistent with a metal-
rich progenitor and makes a GC origin highly unlikely. However,
there exist a conflicting claim presented by Frontera et al. (2001),
where through broad-band X-ray spectroscopy, it was concluded
that the companion has a metallicity of Z ~ 1073, consistent with
the low metallicities expected of systems at large |z| or those with a
GC origin. Given that metallicity provides a strong constraint on the
origin of a BH-LMXB, additional observations appear necessary to
reduce the uncertainty of this case.

To our knowledge, there are no known velocity measurements
or metallicity measurements for the four other BH-LMXBs with
possible GC origins. Although an increasing number of BH-LMXB
candidates are being discovered in X-rays, only a few have been
confirmed and characterized with detailed optical follow-up obser-
vations. Over time, more data will become available, better con-
straining the properties of the Galactic BH-LMXB population. If
even a single BH-LMXB could be confidently attributed to a GC ori-
gin, this would provide a strong argument in favour of BH retention
in GCs.

5 DISCUSSION AND CONCLUSIONS

There is growing observational evidence and theoretical support for
a sizable BH population in present-day Galactic GCs. These BHs
can acquire low-mass companions through dynamical interactions
within the GC. Those binaries that are ejected from the GC can
evolve into BH-LMXBs and can populate a large region of space
above and below the Galactic plane. These binaries could potentially
explain observed BH-LMXBs at large distances from the plane
without a need for large BH birth kicks.

Downloaded Molr\nI%é§s‘!77a?c]a§eSm%_c.IOSuZ)g.c(ozm()rlm§)as/articlefabstract/ﬁl77/2/1853/4 935178

by California Institute of Technology user
on 06 July 2018



In this study, we have presented a population of Milky Way
BH-LMXBs formed through dynamical interactions in GCs. To ex-
plore the BH-LMXB population dependence on BH retention in
GCs, we performed simulations for retained BH populations of
20, 200, and 1000 BHs. The simulated GCs broadly cover the pa-
rameter space and represent a realistic subset of Milky Way GCs.
We generated a large number of binary evolution realizations for
each set of initial GC parameters and number of retained BHs.
This allowed us to derive statistical distributions for the number
of ejected binaries and their relevant properties. Using the statis-
tics from the GC simulations, we performed Monte Carlo simu-
lations to obtain a present-day population of BH-LMXBs ejected
from GCs.

We find that in the case of minimal BH retention (Ngg = 20)
no observable BH-LMXBs are produced, while the Ngy = 200
and Ny = 1000 cases yield 257}° and 156135 BH-LMXBs, respec-
tively. Here, the uncertainties represent the bounds of the 95 per cent
confidence interval. As there is no observable population for mini-
mal BH retention, this suggests that finding any BH-LMXB of GC
origin would imply that GCs retain sizable BH populations of more
than a few tens of BHs.

Aside from the difference in the size of the population, the prop-
erties and distributions of BH-LMXBs are qualitatively similar for
the two cases that produce BH-LMXBs, 200 and MAX. We find that
BH-LMXBs from GCs have velocity distributions inherited from
their host clusters that are consistent with stars on high-velocity
halo orbits. Additionally, the ejected BH-LMXBs have a spatial
distribution that is also similarly aligned with the GC Galactic dis-
tribution. This shared distribution is described by a high density in
the Galactic plane and near the Galactic centre, with a significant
fraction distributed well above and below the Galactic plane. The
typical binary is located at an absolute distance of R = 4.5 kpc
from the Galactic core when projected on to the Galactic plane,
an absolute distance of |z| = 1.6 kpc perpendicular to the Galactic
plane, and at a distance of D = 9.74 kpc from the Sun. The presence
of a large population of BH-LMXBs at large distances from the
plane is characteristic of BH-LMXBs from GCs, as field formed
BH-LMXBs must be subject to large kicks in order to access this
region. The average present-day BH-LMXB ejected from a GC is
composed of a 8.25 M BH and a 0.22 M) K/M late-type MS star
below the turn-off mass, with a characteristically short orbital period
of p = 0.186 h. These properties and their associated distributions
are key observable characteristics of this predicted population of
BH-LMXBs formed in GCs.

Comparing our BH-LMXB systems with the ensemble of ob-
served BH-LMXBs, we find that five of these are candidates for
having a GC origin. There are a total of 27 confirmed BH-LMXBs,
but just 18 of these have sufficient observations for comparing mea-
sured properties against our results. The five systems that are com-
patible with our simulated population of BH-LMXBs from GCs are
MAXI J1659-152, SWIFT J1357.2-0933, SWIFT J1753.5-0127,
XTE J1118+-480, and GRO J0422+32. XTE J1118+480 is one of
the rare systems with a measured space velocity and it is atypically
large for a system formed in the Galactic disc, with v ~ 145kms™".
This system is commonly discussed in the context of formation
kicks, since a high-velocity kick is required to explain the large dis-
tance from the Galactic plane, |z| ~ 1.52 kpc, under the assumption
that it originated in the plane. However, if XTE J11184-480 comes
from a GC, which produces BH-LMXBs at a median distance of
|z] ~ 1.6kpc from the plane, then its position and velocity are a
natural consequence of the GC origin and do not require a large BH
birth kick.

BH-LMXBs from BH retaining GCs 1877

Future observations of the remaining four system velocities
would provide an important additional piece of evidence in each
of these cases. Additionally, the companion stars in BH-LMXBs
from GCs should have the same low metallicity as is typical for
GCs. This emphasizes the need for reliable metallicity measure-
ments of the companion metallicity, which could help to support
or reject a GC origin scenario. The strength in this measurement
relies on the distinctly low-metallicity environments of GCs com-
pared to the disc environment. The metallicity of the companion
in XTE J1118+4480 has been measured by Frontera et al. (2001)
and Gonzélez Hernandez et al. (2006). However, the two measure-
ments disagree, with the former finding sub and the latter finding
super solar metallicity. Additional observations may be necessary
to settle the discussion for XTE J11184-480. Future observations
will be needed to more reliably determine or rule out the potential
GC origin of the candidate BH-LMXBs. On the basis of our GC
simulations, we reaffirm that if one or multiple can be shown to
come from a GC, then GCs retain sizable BH populations.

An additional result from our simulations is a prediction for the
BH-BH merger rate as function of the GC-BH population. The
expected rate of mergers due to all GCs for our maximum retention
case, Ny = 1000, is 4.81 Gpc =3 yr~!, while in the case of minimal
retention, Ngy = 20, the rate is as low as 3.95 x 1072 Gpc 3 yr!.
This rate represents an average over the cluster lifetimes and
assumes a spatial density of GCs throughout the Universe of
pGe = 0.77 Mpc 3. Our maximum retention rate is consistent with
previous estimates of the GC merger rate contribution and is com-
patible with the recent observations by aLLIGO. Although our model
produces rates in good agreement with previous studies, our simu-
lations result in a larger than average fraction of mergers occurring
in-cluster, as opposed to post-ejection. We attribute the discrepancy
to the increased interaction between the BHs and the lower-mass
stars as a consequence of our cluster BH distribution. The BH-BH
binaries that merge in-cluster are a consequence of the large ec-
centricities, acquired through dynamical formation, leading to sig-
nificantly shortened orbital decay times. The dynamically formed
BH-BH binaries that merge in-cluster are formed with an average
eccentricity of e ~ 0.96. At the time of merger in the aLIGO band,
the residual eccentricities are small and in the range 107¢ < e <
1072, However, we find that when passing through the LISA band
years before merger, they still have eccentricities in the range 1072 <
e < 1. Models in which the BHs are confined to a sub-cluster at
the core of GCs produce mergers with substantially smaller eccen-
tricities. As the merger formation channels are sufficiently different
for a BH sub-cluster model, LISA might be able to help distinguish
how a population of retained BHs is distributed in GCs by observing
the distribution of eccentricities.

The present study provides new insights into the population
and properties of BH-LMXBs of GC origin. However, there are
anumber of important limitations that should be kept in mind when
interpreting our results. While there is mounting evidence to support
that present-day GCs are BH retaining, how GCs are able to retain
a significant population of BHs and how those BHs are distributed
is still uncertain. Our choice of distributing the BHs throughout the
cluster is motivated by preserving the observed structural proper-
ties of each modelled GC in the presence of a large BH population.
However, this spreading leads to an increase in interaction between
the BHs and the lower-mass stars, which is typically a rare occur-
rence if the BHs remain clustered in the core. If GCs are able to
retain a significant population of BHs that remain centrally clus-
tered, formation of BH-NC binaries will likely be suppressed. The
reduced formation of BH-NC binaries would significantly reduce
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the number of ejected BH-NCs, directly diminishing the number
of BH-LMXBs from GCs. Future studies regarding the impact of
the BH distribution within BH-retaining GCs are necessary to fully
understand the consequences of this limitation. Furthermore, the
results presented here rely on the outcomes of many independent
realizations. Since we perform each simulation independently in a
static cluster background, we are neglecting the change in the BH
population and its impact on the cluster as single BHs and BH bi-
naries are ejected over the cluster lifetime. Additionally, we do not
account for binary—binary interactions, which have the potential to
disrupt existing binaries or possibly aid in ejecting them. Models
that account for these limitations are necessary to better understand
the impact of ignoring these processes. While N-body simulations
and Monte-Carlo-based models can resolve some of these issues,
the computational expense remains a limiting factor in performing
many realizations. However, as the computational techniques and
resources continue to improve, it will soon be possible to produce
many high-accuracy GC simulations that address these limitations.
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