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ABSTRACT

Recent studies suggest that globular clusters (GCs) may retain a substantial population of

stellar-mass black holes (BHs), in contrast to the long-held belief of a few to zero BHs.

We model the population of BH low-mass X-ray binaries (BH-LMXBs), an ideal observable

proxy for elusive single BHs, produced from a representative group of Milky Way GCs

with variable BH populations. We simulate the formation of BH binaries in GCs through

exchange interactions between binary and single stars in the company of tens to hundreds

of BHs. Additionally, we consider the impact of the BH population on the rate of compact

binaries undergoing gravitational wave driven mergers. The characteristics of the BH-LMXB

population and binary properties are sensitive to the GCs structural parameters as well as

its unobservable BH population. We find that GCs retaining ∼1000 BHs produce a galactic

population of ∼150 ejected BH-LMXBs, whereas GCs retaining only ∼20 BHs produce zero

ejected BH-LMXBs. Moreover, we explore the possibility that some of the presently known

BH-LMXBs might have originated in GCs and identify five candidate systems.

Key words: gravitational waves – stars: black holes – stars: low-mass – globular clusters: gen-

eral – X-rays: binaries.

1 IN T RO D U C T I O N

The fate of the population of stellar-mass black holes (BH) in glob-

ular clusters (GCs) is still widely uncertain. It is expected that tens

to hundreds and possibly thousands of BHs are formed in GCs, of

which some fraction might be ejected early due to a kick at forma-

tion (Belczynski et al. 2006). In the standard GC evolution picture,

the remainder of the BHs should rapidly sink to the core due to

mass segregation. There they are subject to a high rate of dynamical

interactions that are likely to eject the BHs as singles or in binaries.

It was long accepted that this process would lead to repeated ejec-

tions from the GC leaving a few to zero BHs (e.g. Kulkarni, Hut &

McMillan 1993; Sigurdsson & Hernquist 1993). Historically, this

was supported by the lack of observational evidence for a BH in a

GC; however, BHs are difficult to observe unless they are actively

accreting from a stellar companion.

In order to explore the population of BHs within and outside

of GCs, BH low-mass X-ray binaries (BH-LMXBs) can serve as

an ideal proxy. In an evolved cluster, a main-sequence (MS) star

will necessarily be less than the MS turn-off mass, yielding an

abundance of potential low-mass companions. This, coupled with a

high rate of encounters due to the high-density environment of GCs,

makes GCs ideal BH-LMXB factories. However, this assumes that

a significant number of BHs are retained by GCs and that the BHs

avoid segregating completely from the lower-mass stars.

⋆ E-mail: mgiesler@tapir.caltech.edu

The discovery of two BH-LMXB systems in the Milky Way

GC M22 (Strader et al. 2012) has led to a renewed interest in GC

BH retention. This observation coupled with an estimate for the

fraction of the BH population expected to be in accreting binaries

(Ivanova et al. 2010) suggests that M22 may contain 5–100 BHs

(Strader et al. 2012). Additionally, Di Stefano et al. (2002) sug-

gested a number of high-luminosity LMXBs residing in M31 GCs

may harbour BH primaries, which was confirmed by Barnard et al.

(2011). Recent theoretical studies, including some detailed N-body

simulations (e.g. Aarseth 2012; Wang, Jia & Li 2016), support the

idea that GCs are capable of retaining from a few to hundreds of

BHs (e.g. Breen & Heggie 2013; Morscher et al. 2013; Sippel &

Hurley 2013; Rodriguez et al. 2016b).

There is an increasing number of BH-LMXB candidates iden-

tified in the Milky Way galaxy. BlackCAT (Corral-Santana et al.

2016), a catalogue of BH-LMXBs, has to date identified 59 candi-

date Milky Way BH-LMXBs. An LMXB is identified as a candidate

BH-LMXB if the X-ray spectrum rules out a neutron star (NS) as

the compact accretor (McClintock & Remillard 2006). Of the 59

candidate BH-LMXBs in BlackCAT, 22 are currently considered to

be ‘confirmed’ BH-LMXBs. A BH-LMXB labelled as ‘confirmed’

has a dynamical measurement of the primary mass or mass function

f(MBH) (see, e.g. Casares & Jonker 2014).

Roughly one-fifth of the observed BH-LMXBs reside at an ab-

solute distance |z| perpendicular to the Galactic plane greater than

1 kpc (e.g. Jonker & Nelemans 2004; Corral-Santana et al. 2016).

The distribution of the candidate and confirmed BH-LMXBs within

the Milky Way gives rise to the idea that BHs might be subject
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to high-velocity kicks at formation (e.g. Gualandris et al. 2005;

Fragos et al. 2009; Repetto, Davies & Sigurdsson 2012; Repetto

& Nelemans 2015). In some cases, the velocity needed for the bi-

nary to reach large |z| exceeds the contribution from a Blaauw kick

(Blaauw 1961). This is the velocity imparted to a binary in the case

of sudden mass-loss, i.e. in the BH progenitor’s supernova explo-

sion. The exceptional high-velocity BH-LMXB cases have led to

the idea of high-velocity formation kicks, also known as ‘natal’

kicks, where the binary receives a large kick through an asymmet-

ric explosion launched prior to BH formation (Janka 2013; Janka

2017). Due to the long-held assumption that GCs maintain a near-

zero population of BHs, the possibility that some of these systems

originated in GCs has been largely ignored. BH-LMXBs sourced by

BH-retaining GCs might help to explain some of the peculiar prop-

erties of the observed Milky Way BH-LMXB population. Although

GCs are not likely to describe the entire population of BH-LMXBs,

the halo-orbits of GCs in the Milky Way make GCs ideal candidate

sources for the high-|z| systems. In light of the recent studies that

suggest GCs might harbour a large number of BHs, we revisit in

this paper the possibility of GCs as a potential origination point for

a subset of the observed BH-LMXB systems.

Although we are primarily concerned with the Galactic popula-

tion of BH-LMXBs evolving from initially non-mass-transferring

binaries ejected from GCs, BH-LMXBs can form within GCs

through more exotic channels. These formation channels include

mass-transfer following directly from a physical collision or triple-

induced mass transfer coupled with exchange encounters or physical

collisions (Ivanova et al. 2010). The more recent work of Ivanova

et al. (2017) proposes a new BH population-dependent channel for

the production of BH-LMXBs within GCs by means of grazing tidal

encounters between a BH and a sub-giant.

In addition to using BH-LMXBs as probes of BH retention in

GCs, the BH–BH merger rates might also serve to place some

constraints on GC BH retention. The recent success in observing

merging BH–BH binaries by advanced LIGO (aLIGO) makes this

a realistic possibility (Abbott et al. 2016a,b,c). Furthermore, binary

BH mergers occurring in GCs may be characteristically eccentric

due to dynamical formation channels. Although these eccentric

systems are likely to have circularized by the time they are visible in

the aLIGO frequency band, the eccentricity is potentially detectable

at lower frequencies. The addition of a space-based gravitational

wave observatory (e.g. LISA) in the future, designed for sensitivity

at lower frequencies, further improves the prospect of using BH–BH

mergers to probe GC dynamics.

In this study, we explicitly evolve ‘test’ binaries in a fixed cluster

background subject to dynamical friction and single-binary interac-

tions. Additionally, we include an updated prescription for allowing

single BHs to exchange into existing binaries. The GCs are chosen

to represent a realistic subset of Milky Way GCs with varying BH

populations in order to investigate the effects of BH retention in

clusters. Each GC background is described by an isotropic multi-

mass King model. We produce a large number of realizations for

each set of initial parameters to obtain statistical distributions of the

number of ejected binaries and their relevant properties. Using the

statistics from the GC simulations, we then perform Monte Carlo

simulations to obtain a population of BH-LMXBs produced by GCs.

The GCs and the ejected binaries are evolved in time through the

Milky Way potential while simultaneously accounting for the stel-

lar evolution of the ejected binaries. The resulting mass-transferring

systems make up a previously unexplored Galactic population of

BH-LMXBs from GCs. We investigate the distribution and proper-

ties of the resulting population and its dependence on BH retention

in GCs. Specifically, we find that in the case of minimal BH re-

tention (NBH = 20) no observable BH-LMXBs are produced, while

the NBH = 200 and NBH = 1000 cases, respectively, yield Galac-

tic populations of 25+10
−6 and 156+26

−24 BH-LMXBs. Furthermore, we

use the resulting population to determine the most likely candidates

for a GC origin in the population of observed Milky Way BH-

LMXBs: the five systems that are compatible with our simulated

population of BH-LMXBs from GCs are MAXI J1659-152, SWIFT

J1357.2-0933, SWIFT J1753.5-0127, XTE J1118+480, and GRO

J0422+32. One caveat is that four out of five of these systems are

still lacking measurements of the companion metallicity. Due to

the low-metallicity environments of GCs, a measurement finding a

metallicity significantly larger than typical GC metallicities would

be a strong piece of evidence ruling out a GC origin for the system

under consideration. The fifth system, XTE J1118+480, has had

its metallicity measured twice. However, the findings of Frontera

et al. (2001) and González Hernández et al. (2006) currently pro-

vide conflicting claims regarding the companion metallicity. Future

measurements will be necessary to increase support for a GC origin

theory, but if we can confidently attribute a BH-LMXB to a GC,

this would provide strong evidence for significant BH retention in

GCs.

The remainder of this paper is structured as follows. In Section 2,

we describe our model for the GCs and the evolution of a test-binary

in a static cluster background. In Section 3, we lay out how we gen-

erate the present-day BH-LMXB population from our simulations

of Milky Way GCs. In Section 4, we review the properties of the

ejected BH binaries along with the distribution and properties of

the present-day BH-LMXBs from GCs. Additionally, we explore

the effects of BH retention on the BH–BH merger rate in GCs. We

conclude the section by comparing our results with observations

and previous work. Finally, in Section 5, we provide concluding

remarks.

2 M E T H O D S

GCs typically contain ∼105–106 stars, which makes them accessi-

ble to modern N-body simulations (e.g. Zonoozi et al. 2011; Wang

et al. 2016) that can track GC evolution. However, full N-body clus-

ter evolution simulations are still very computationally expensive,

making this method poorly suited for studying many realizations of

different GCs necessary for building statistics on the evolution of

BH binaries inside clusters. Fokker–Planck methods are more ap-

proximate and describe GCs with a phase-space distribution func-

tion for its constituent stars that evolves via the Fokker–Planck

equation, a Boltzmann equation with a small local collision term

that modifies only velocities (see e.g. Spitzer 1987). The Fokker–

Planck equation can be numerically integrated directly (e.g. Cohn

1979; Chernoff & Weinberg 1990), or more commonly, integrated

with Monte Carlo methods [see e.g. Hénon (1971), Spitzer & Hart

(1971), and Rodriguez et al. (2016b) for a comparison between

N-body and the Monte Carlo approaches]. However, here we are

concerned with the evolution of BH binaries in GCs and not with

the GC evolution itself. Hence, we adopt the approach of mod-

elling the evolution of binaries in a fixed cluster background, pio-

neered in the early 1990s [see e.g. Hut et al. (1992), Davies & Benz

(1995), Davies (1995), Sigurdsson & Phinney (1995), and Benac-

quista & Downing (2013) for an overview of the theoretical models

of GCs and the dynamics occurring within]. We approximate the

collision term in the Fokker–Planck equation analytically to model

the effects of distant encounters as the binary evolves through the

GC. Near encounters are accounted for by explicitly integrating the
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three-body equations of motion. We build up statistics by carrying

out simulations of many random realizations of binaries for a given

GC background model. In the following sections, we describe our

method in detail.

2.1 Model

Our model, most closely based on Sigurdsson & Phinney (1995),

incorporates a number of assumptions that simplify the simulations

and allow us to perform ∼104 realizations for a given cluster model

with relatively minimal computational needs. The three key as-

sumptions are (i) GCs are well described by a ‘lowered Maxwellian’

distribution function, (ii) the gravitational potential and distribution

functions are stationary, and (iii) the effect of distant interactions

is well described by the leading order terms in the Fokker–Planck

equation. The ‘lowered Maxwellian’ distribution function, which

eliminates the tail of the Maxwellian velocity distribution, intro-

duces a maximum energy for stars within the cluster to remain

bound. This maximum energy φ(rt) implies a finite mass and a

maximum radius rt, commonly referred to as the ‘tidal’ radius, as

stars beyond this distance are pulled from the cluster by the Galac-

tic tidal field. Models based on a ‘lowered Maxwellian’, commonly

referred to as King models, readily describe many observed clusters

(Peterson & King 1975; Bahcall & Hausman 1977; Spitzer 1987).

We evolve a single ‘test binary’, initialized according to Sec-

tion 2.2.5, in a static cluster background described by an isotropic

multimass King model (King 1966) defined by single particle dis-

tribution functions fα(r, v, mα) for a discrete set of mass groups.

Here, r and v are the radius and velocity in the cluster centre-

of-mass frame and mα is the representative mass of group α. The

distribution function for a given mass group is given by

fα(ε) =

⎧

⎨

⎩

n0α

(2πσ 2
α )3/2 (e−ε/σ 2

α − 1) ε < 0

0 ε ≥ 0.
(1)

Here, ε is the energy per unit mass, ε = v2/2 − �(r), and

�(r) ≡ φ(rt) − φ(r) is the gravitational potential relative to that

at the tidal radius rt. Additionally, σ α is the group’s velocity dis-

persion at the core of the cluster and n0α
is a normalization fac-

tor. For an isotropic cluster, the velocity dispersion reduces to the

one-dimensional mean-square velocity, such that 3σ 2
α = v̄2

α . The

normalization factor in its full form is

n0α
= ηα

no

e�(0)/σ 2
α erf

(

√

�(0)

σ 2
α

)

−
√

4�(0)

πσ 2
α

(

1 + 2�(0)

3σ 2
α

) , (2)

where ηα = Nα/N is the number fraction for mass group α and

no = n(0) is the central density.

The free structural parameters necessary to specify a model clus-

ter, with specified mass groups, are the mean core velocity disper-

sion σ̄ , the core number density no, and the potential depth, which

is specified by the dimensionless King parameter Wo = �(0)/σ̄ 2.

The remaining structural parameters, which are fully determined by

the free parameters, are total mass Mc, core radius rc, tidal radius

rt, and concentration c = log10(rt/rc). The core radius rc is defined

as the radius at which the surface brightness has dropped to half the

value at the core.

For a given set of masses with corresponding distribution func-

tions, the cluster satisfies Poisson’s equation for the relative poten-

tial ∇2�(r) = −4πG
∑

α ρα . Here, ρα = mαnα , where nα is the

number density of mass group α given by

nα =
∫ v(rt)

0

fα(r, v, mα) 4πv2dv. (3)

The upper limit of the integral is the maximum allowed velocity

v(rt) =
√

2�(rt), i.e. the escape velocity. The object masses mα and

number fraction η0α
are determined by the evolved mass function

(EMF), discussed in Section 2.2.1. We generate a model cluster that

satisfies Poisson’s equation for the specified masses and number

fractions in an iterative fashion. We begin by integrating Poisson’s

equation out to a radius rt, implicitly determined by �(rt) = 0, with

boundary conditions �(0) = Wo and ∇�(0) = 0, and take ηα = η0α

as our initial guess. The actual number fraction of each mass group,

ηα = Nα/N, is then calculated using

Nα =
∫ rt

0

nα(r) 4πr2dr, (4)

along with N =
∑

αNα . We then update our guess to ηα = (ηαnew
+

ηαold
)/2, where ηαnew

→ ηαold
× (η0α

/ηα). We repeat the above steps

until (η0α
− ηα)/η0α

< δ is satisfied for all mass groups, where we

have made the somewhat arbitrary choice of δ = 6.25 × 10−3 for

our convergence threshold. This iterative procedure determines the

normalization constant n0α
and rt. Once rt is found, the concentra-

tion c = log10(rt/rc) is determined and the total mass of the cluster

Mc is obtained from

− ∇�(rt) =
GM

r2
t

. (5)

The evolution of our ‘test binary’ in the cluster background is

affected by long-range and short-range interactions, which modify

the magnitude and direction of the binary’s velocity. The short-

range encounters are accounted for by fully resolving the three-

body interactions, detailed in Section 2.3.4. We account for the

velocity fluctuations due to long-range interactions with ‘field stars’,

distant cluster stars, through the diffusion coefficients D(�vi) and

D(�vi�vj) in the Fokker–Planck equation,

Df

Dt
=

⎛

⎝

∂f

∂t

⎞

⎠

enc

=
∑

i,j

{

−
∂

∂vi

(D(�vi)f ) +
1

2

∂
2

∂vi∂vj

(D(�vi�vj )f )

}

. (6)

In this context, a diffusion coefficient D(X) for a variable X corre-

sponds to the average change in X per unit time. Here, we focus

on velocity changes per unit time as experienced by the binary due

to interactions with the ‘field stars’. The form of the coefficients

can be derived, for a simple case, by first considering the change in

velocity of a mass m1, initially at rest, due to an encounter with a

second mass m2 at a relative velocity v with impact parameter p,

(�v)2 =
4m2

1

(m1 + m2)2

v2

(1 + ( p

po
)2)

, (7)

where po ≡ G(m1 + m2)/v2 is a reference impact parameter

that causes a deflection of π/2, consistent with close encounters

(e.g. Spitzer 1987). The average rate of change of the quantity in

equation (7), per unit time, due to encounters is then obtained by

integrating over the possible impact parameters for a given density

of field stars n,

D(�v2) = 2π

∫ pmax

0

�v2pnv dp, (8)
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up to a maximum allowable impact parameter pmax. The maximum

impact parameter is required to suppress the divergence of the inte-

gral and essentially determines the maximum distance of long-range

encounters that contribute to the velocity perturbations. This maxi-

mum value, pmax, is not explicitly specified, but finds its way into the

coefficient calculations through the so-called Coulomb logarithm,

ln � ≡ ln(pmax/po), which appears as a result of the integration.

We work out the details for the case of an isotropic velocity

dispersion with a density of field stars given by equation (3) and

restate the relevant coefficients we use in our model (cf. Binney &

Tremaine 2008). These coefficients, which describe the average rate

of change in the velocity of the binary due to long-range encounters,

are used to update the velocity of the binary at each time-step.

The implementation is described further in Section 2.3. A detailed

derivation and a more general form of the coefficients can be found

in Spitzer (1987).

By choosing a coordinate system in which one axis is aligned

with the velocity of the binary, we can decompose D(�vi) into a

coefficient parallel to the binary’s velocity D(�v‖) and two mutually

orthogonal coefficients perpendicular to the velocity, D(�v⊥)1 and

D(�v⊥)2. In an isotropic cluster, there is no preferred direction with

regard to the two perpendicular components, so the contributions

from D(�v⊥)1 and D(�v⊥)2 tend to cancel each other out; however,

their squares, D(�v2
⊥)1 and D(�v2

⊥)2, on the other hand, do not

and are non-vanishing. Additionally, we include a quadratic term

for the parallel component D(�v2
‖) and in consideration of the

symmetry we retain only the sum of the perpendicular components

D(�v2
⊥) = D(�v2

⊥)1 + D(�v2
⊥)2.

The diffusion coefficient D(�v‖) parallel to the binary’s motion is

by analogy often referred to as the coefficient of dynamical friction

as it opposes the binary’s direction of motion,

D(�v‖) = −
∑

α

γα

(

1 +
mb

mα

)

∫ v

0

(

vα

v

)2

fα(vα) dvα . (9)

Here, mb is the mass of the binary and γα ≡ (4πGmα)2 ln �, where

we have chosen to set ln � = 10, a value typical for GCs (Spitzer

1987). The two remaining coefficients,

D(�v2
‖) =

∑

α

2

3
vγα

⎧

⎨

⎩

∫ v

0

(

vα

v

)4

+
∫ ∞

v

(

vα

v

)

⎫

⎬

⎭

fα(vα)dvα

(10)

and

D(�v2
⊥) =

∑

α

2

3
vγα

×

⎧

⎨

⎩

∫ v

0

[

3

(

vα

v

)2

−

(

vα

v

)4]

+ 2

∫ ∞

v

(

vα

v

)

⎫

⎬

⎭

fα(vα)dvα,

(11)

are strictly positive. These coefficients are responsible for the

stochastic perturbations to the parallel and perpendicular compo-

nents of the velocity, which take the binary on a random walk

through velocity space and compete with the slowing due to dy-

namical friction. We implement these ‘random kicks’ as discrete

changes to the binary’s velocity by sampling from a normalized

distribution of the velocity perturbations, described in Section 2.3.

2.2 Initial conditions

2.2.1 Evolved mass function

We obtain an initial distribution of masses in the range

0.08 M⊙ < m < 120 M⊙ from the broken-power-law initial mass

function (IMF)

ξ (m) ∝

{

m−1.3m0.3−x∗
x m < mx

m−1.0−x∗ m ≥ mx,
(12)

with x∗ = 1.35 and mx = 0.55 M⊙ chosen to incorporate a Salpeter

IMF (Salpeter 1955) for masses above mx and a Kroupa ‘correction’

(Kroupa 2001) to masses below mx along with a normalization factor

for continuity. Stars with masses below the MS turn-off, which we

set to mto = 0.85 M⊙ (Meylan & Heggie 1997), are assumed not

to evolve significantly on the time-scale of the simulations, while

masses above mto are assumed to be completely evolved according

to a specified EMF. The evolved mass me is determined by the

EMF:

me =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

mMS = m 0.08 M⊙ < m ≤ mto

mWD = 0.45 + 0.12(m − 1) mto < m < 8 M⊙
mNS = 1.4 8 M⊙ ≤ m < 20 M⊙
mBH = mBH(m, fsBH

) 20 M⊙ < m < 120 M⊙,

(13)

where the mass subscripts label the object type and refer to main

sequence (MS), white dwarf (WD), neutron star (NS), and black

hole (BH). We occasionally refer to the set of MS and WD objects

as the non-compact (NC) population. The MS stars below the turn-

off mass are set to their zero-age main-sequence (ZAMS) mass, the

WD stars are a linear function of their ZAMS mass (Catalán et al.

2008), and NS are simply set to 1.4 M⊙. Following the work of

Sana et al. (2012), the BHs are assumed to have formed from two

possible channels: stars with companions that significantly affect

the evolution of the star and those stars that are ‘effectively single.’

Effectively single is used to describe stars that evolve in isolation

as well as those stars that evolve in wide binaries with minimal

interaction. Sana et al. (2012) estimate that ∼70 per cent of massive

stars will have their final state impacted by a companion, which

motivates setting fsBH
= 0.3 for the fraction of BHs that formed in

isolation. This fraction of BHs that evolve from ‘effectively single’

stars are void of the complexities of binary stellar evolution and are

assumed to lose a significant fraction of their hydrogen shells to

stellar winds before collapsing to a BH. For the low metallicities

typical of GCs, we approximate the mass-loss, as ∼10 per cent of

the initial mass and set me = 0.9m. The remaining 70 per cent of

BHs formed will have evolved with a companion and likely passed

through a common envelope phase, stripping the stars down to

their helium (He) cores (Sana et al. 2012; de Mink et al. 2014).

Using MESA (Paxton et al. 2011) to evolve masses in the range

20 M⊙ < m < 120 M⊙, we obtained the He core mass as a function

of the ZAMS mass in order to determine the remnant mass for the

remaining (1 − fsBH
) fraction of BHs:

me = mHe = 0.2312(mZAMS)1.1797 M⊙. (14)

The stellar evolution performed using MESA version 6794, follows

the procedure laid out in Morozova et al. (2015).

Fig. 1 displays the resulting He core mass as a function of the

ZAMS mass from the MESA runs with metallicity Z = 5 × 10−4,

along with the power-law fit of equation (14). This metallicity
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Figure 1. The He core mass (marked by circles) as a function of ZAMS

mass from the MESA (Paxton et al. 2011) runs, along with the fit (blue,

dashed line) given by equation (14). For the ∼70 per cent of BHs formed in

binaries, we approximate the remnant BH mass with the He core mass of

the progenitor. The remnant mass for the remaining ∼30 per cent of BHs is

approximated by 0.9MZAMS, which accounts for the hydrogen mass lost to

stellar winds at low metallicity.

corresponds to the higher peak in the bimodal, GC metallicity dis-

tribution (Harris 1996). In order to properly account for the range

of metallicities in our sample of clusters (see Table 2), we repeat the

same process with Z = 5 × 10−3, corresponding to the secondary

peak in the GC metallicity distribution. However, as this order of

magnitude difference in metallicity produces He core masses dif-

fering by �10 per cent, we rely on equation (14) as a good approx-

imation for the remnant masses in all modelled clusters.

In addition to specifying the evolved masses, it is also necessary

to specify the number of NS and BH objects retained by the cluster

in its static state. We specify the retained population of compact

objects, comprised of NSs and BHs, through the retention fractions

frNS
and frBH

, respectively. This is necessary since we are mod-

elling the cluster in its evolved state, a time at which many of the

NS and BHs formed within the cluster have already been ejected

due to formation kicks. Studies of the proper motion of pulsars sug-

gest that NSs receive kicks in the range of 200–450 km s−1 (Lyne

& Lorimer 1994), easily exceeding the typical escape velocity of

clusters, which is on the order of tens of km s−1. However, the ob-

servations of pulsars in GCs implies a ‘retention problem’, since

the observed fraction retained is inconsistent with the average natal

kick velocities being significantly greater than GC escape veloci-

ties. This issue is somewhat reconciled by assuming some NS form

in binaries, which dampen the kick and allow the GC to maintain a

hold on the NS and companion (Pfahl, Rappaport & Podsiadlowski

2002). In consideration of these observations, for the case of NSs,

we retain a constant fraction, frNS
= 0.1, of those produced by the

IMF (Sigurdsson & Phinney 1995; Pfahl et al. 2002; Ivanova et al.

2008). In the BH case, the distribution of natal kicks is highly un-

certain. Rather than take the retention fraction frBH
to be a constant

across clusters, as in the NS case, we utilize this fraction as a free

parameter in our models to control the number of retained BHs in

each modelled GC.

Once we have determined the evolved masses from the IMF,

the masses are binned into 12 groups. The small number of bins

Table 1. Evolved mass groups for NGC 6121 (NBH = 200) with correspond-

ing mass index, the lower boundary bin mass mmin, the upper boundary bin

mass mmax, the average mass of the group m̄, the fraction of the total mass

in the cluster fm, the number fraction with respect to the total number of

objects in the cluster fn, and the fraction of luminous objects in the group fL.

For reference, the BH masses occupy the top three mass groups with mean

masses of 8.87 M⊙, 20.48 M⊙, and 57.18 M⊙.

Mass

group mmin(M⊙) mmax(M⊙) m̄(M⊙) fm fn fL

0 0.08 0.200 0.12827 0.17531 0.42853 1.0000

1 0.20 0.350 0.26596 0.17757 0.20933 1.0000

2 0.35 0.450 0.40704 0.13954 0.10748 0.7552

3 0.45 0.600 0.51190 0.24921 0.15264 0.5763

4 0.60 0.700 0.64624 0.10020 0.04861 0.7644

5 0.70 0.850 0.76855 0.11027 0.04499 0.8233

6 0.85 1.000 0.91758 0.01161 0.00397 0.0000

7 1.00 1.200 1.08980 0.01005 0.00289 0.0000

8 1.20 1.500 1.29547 0.00527 0.00128 0.0000

9 1.50 10.00 8.87443 0.00143 0.00005 0.0000

10 10.0 40.00 20.4808 0.01261 0.00019 0.0000

11 40.0 120.0 57.1851 0.00693 0.00004 0.0000

allows for a proper representation of the true distribution while

keeping the computational costs to a minimum. Poisson’s equation

is then integrated to determine the final structural parameters as

discussed in Section 2.1. For illustrative purposes, the evolved mass

distribution for NGC 6121 with 200 retained BHs is given in Table 1.

The bins for each mass group, the mean mass in each bin, and

the fraction of luminous objects are constant across simulations;

however, the mass fraction and number fraction depend on the

structure of the cluster and the number of BHs.

2.2.2 Core density

As discussed in Section 2.1, one of the free parameters in our model

when specifying a cluster’s structure is the core number density no.

However, because this parameter is not easily observable, a GC’s

density is often reported in terms of a central luminosity density

ρL. For each mass group, we determine a central luminous number

density nLα
= fLα

n̄α , where fLα
and n̄α are the fraction of lumi-

nous objects and the core density, respectively, of mass group α.

The central luminosity density is then given by ρL =
∑

α LαnLα
. In

order to account for the variability in the mass–luminosity relation

with stellar mass, we use a parametrized luminosity for each group

of the form Lα = a(mα)b, with luminosity coefficients a = 0.23,

b = 2.3 for mα < 0.43 M⊙ and a = 1.0, b = 4.0 for the remaining

luminous objects (Duric 2004). To ensure that our clusters appropri-

ately model the Milky Way GCs of interest, we compute ρL for each

integrated cluster and adjust no accordingly to match the observed

quantity.

2.2.3 Binary fraction

In order to account for the uncertainty in the size of the binary pop-

ulation within a cluster, we allow for a specifiable binary fraction.

The fraction of objects that are binaries is

fb =
Nb

Ns + Nb

, (15)

where Ns and Nb are the number of single objects and binary objects,

respectively, and the total number of objects in our model clusters is
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then N = Ns + 2Nb. Observations of the binary fraction are limited

to the luminous objects within the cluster. Due to this restriction,

we take the observed fraction to be determined solely by the MS

star binary fraction fobs = NMSb
/(NMSs

+ NMSb
), where, as above,

we respectively refer to NMSs
and NMSb

as the number of single and

binary MS stars. Using the above definitions along with the fraction

of all binaries that are MS–MS binaries, fMSb
= NMSb

/Nb, and the

fraction of objects that are MS stars, fMS = NMS/N, we convert the

observed binary fraction into a uniform total binary fraction for use

in our models through the relation

fb =

⎛

⎝

fMSb

fMS

(fobs + 1)

fobs

− 1

⎞

⎠

−1

. (16)

The number of MS stars, NMS, is determined solely by the IMF

and for the simulations in this study we use fMSb
= 0.23 (Fregeau,

Ivanova & Rasio 2009). We perform our simulation with fobs cover-

ing a range of values, consistent with theoretical findings, between

5 and 10 per cent (Ivanova et al. 2005), and with observational

constraints, between 5 and 20 per cent (Milone et al. 2012). We

complete an approximately equal number of simulations for fobs

taking values from the set {0.05, 0.10, 0.20}. However, we find that

this parameter has a negligible effect on the quantities of interest,

so for conciseness, it is not specified in the simulation parameters.

2.2.4 Modified BH velocity dispersion

Recent studies of BH retention in GCs have shown clusters initially

retain between 65 and 90 per cent of the BHs formed in cluster, with

the remainder being lost due to formation kicks (Morscher et al.

2015). This is in contrast to the long-standing belief that present-

day GCs should be nearly void of BHs. In addition to the increase

in retention, Morscher et al. (2015) also found that the retained

BHs remain well mixed with the non-BH population. Follow-up

studies support the idea of a large population of BHs that are spread

throughout the cluster and are consistent with a recent 106 N-body

simulation (Rodriguez et al. 2016b).

In the standard King model, it is common to assume that the mass

groups satisfy an equipartition of energy. Specifically,

mασ
2
α = m̄σ̄ 2, (17)

where mα and σ α are the mass and velocity dispersion of mass

group α, m̄ is the mean mass of all objects in the cluster, and σ̄ is

the mean velocity dispersion. However, with this equipartition of

kinetic energy amongst all mass groups, the heavier objects then

necessarily have lower random velocities compared to the lighter

objects and become trapped deep in the gravitational potential at the

core of the cluster. With an equipartition of kinetic energy in place,

the much more massive BHs densely populate the central region of

the cluster, driving the core radius to a small fraction of the tidal

radius. This disparity between the core radius and tidal radius leads

to concentrations that deviate from observations, limiting the mod-

elled clusters to supporting only a small number of BHs. In order to

generate clusters with a significant BH population that are still rep-

resentative of observed GCs, motivated by Morscher et al. (2015),

we implement a velocity dispersion for the BHs away from energy

equipartition. We maintain an equipartition of energy amongst the

lower-mass objects and use a modified energy partitioning for the

BHs of the form

mβσ 2
β =

∑

mβ
∑

mα

1

fs

m̄σ̄ 2, (18)

Figure 2. Radial number density profiles for the BH sub-group (solid lines)

and the non-BH objects (dashed lines) in NGC 6656 for the three considered

values of NBH. The vertical line (red, dashed), at rc = 0.73 pc, marks the

core radius for this cluster. The non-BH objects are largely unaffected by the

different numbers of BHs added to the cluster and the necessary modification

to the velocity dispersion. For NBH = 20, the BHs are concentrated in the

core region, whereas to accommodate NBH ≥ 200, the modified velocity

dispersion spreads the BHs throughout the cluster with a profile similar to

that of the non-BH objects.

where the indices β and α label the mass groups corresponding to

BHs and non-BHs, respectively. Here, fs is a specifiable scale factor

of order unity. The fs parameter is enough to rescale the velocity

dispersion for the BHs; however, the factor involving the mass ratio

contributes substantially and fs remains of order unity and does not

vary wildly across the GCs we consider.

With this modified BH velocity dispersion in place, we find that

we can match the observed structural parameters of a specific cluster

for zero BHs up to ∼20 BHs, in the case of more massive clusters up

to ∼100 BHs, and in the most massive clusters up to ∼1000 BHs.

We vary the number of BHs residing in the cluster by adjusting

the scale factor fs in equation (18) and the fraction retained, frBH
,

introduced in Section 2.2.1. To illustrate the spreading of the BHs,

we present in Fig. 2 the radial density profiles for the BHs and the

non-BH objects for different populations of retained BHs in the

cluster model representing NGC 6656. In the case of minimal BH

retention, the BH number density falls off quickly outside of the

core, which for our model of NGC 6656 is located at rc = 0.73 pc

and is marked by a vertical line in Fig. 2 for reference. However,

in the case of many BHs, the modified velocity dispersion extends

the number density profile radially, spreading the BHs throughout

the cluster, without affecting the central density. The distribution of

non-BH objects is largely unaffected by the change in BH numbers.

2.2.5 Binary initialization

We choose the initial masses for our ‘test binary’ by randomly sam-

pling from the evolved mass distribution and reject those that do not

contain at least one BH. If one of the component masses falls within

a mass bin with a non-zero luminous population, we then sample

from the luminous mass fraction to determine whether the low-mass

object is an MS star or WD. Additionally, if the selected mass is

in the turn-off group, 0.63 M⊙ ≤ m ≤ 0.8 M⊙, then the object is

chosen to be a giant with probability P = 0.095fL, where fL is the
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luminous fraction for the turn-off mass group. The probability for

giants is adopted from Sigurdsson & Phinney (1995) and represents

the approximate fraction of the cluster age that giants in this mass

range survive. Once the masses and object types are established,

the BH radii are set to the Schwarzschild radius RBH = 2GM/c2,

while the stellar radii are determined as described in Sigurdsson &

Phinney (1995). The eccentricity of the binary e is specified by sam-

pling from the probability density function f(e) = 2e (Jeans 1919),

commonly referred to as a ‘thermal’ eccentricity distribution. The

semimajor axis a is obtained from a distribution uniform in log10a in

the range −3 ≤ log10(a au−1) ≤ 1. To avoid an immediate merger of

the objects in our initial binary, we enforce a > ftid(R1 + R2)/(1 − e),

where Ri are the radii of each component of the binary and ftid = 3.1,

by letting a → 2a until this condition is satisfied. The factor ftid is

chosen based on the separation at which tidal effects would induce

a merger (Lee & Ostriker 1986). Once the binary parameters are set,

we sample the primary-mass number density profile nα(r) to deter-

mine the binary placement within the cluster and obtain a velocity

from the primary-mass velocity distribution function at r.

2.3 Evolution of the ‘test binary’

Once we have an appropriate model, which satisfies the structural

parameters for a specific cluster and an initial binary, we then evolve

this single binary within the cluster background. In addition to the

static potential, we include the interaction terms discussed in Sec-

tion 2.1. To account for dynamical friction, the diffusion coefficient

D(�v‖) is added to the potential gradient to create a smooth ef-

fective acceleration aeff = ∇�(r) + D(�v‖). This smooth force is

integrated using a fourth-order Runge–Kutta integrator, which is

discussed in detail in Section 2.3.2. The quadratic scattering terms,

or random ‘kicks’, are implemented by discretely updating the cor-

responding velocity components at each time-step �t. As discussed

in Section 2.1, the diffusion coefficient for �v2, of the form D(�v2),

represents the change in this quantity per unit time, i.e. �v2/�t. We

update the velocity at each time-step by sampling from the normal

distribution of kicks through

�v‖ = X

√

D(�v2
‖)�t,

�v⊥1
= Y

√

1

2
D(�v2

⊥)�t,

�v⊥2
= Y

√

1

2
D(�v2

⊥)�t, (19)

where X and Y are random numbers with mean values of zero and

standard deviations of one.

At each time-step, we also consider the evolution of the binary’s

semimajor axis a and its eccentricity e due to gravitational wave

(GW) emission. If the BH is in a binary with another compact ob-

ject – which includes BHs, NSs, and WDs – then we implement the

evolution of a and e according to the gravitational radiation formal-

ism of Peters (1964). In these cases, we also calculate the time until

coalescence td due to the decay of a, and if this will occur within

the current time-step, td < �t, we consider this a GW merger. If the

merger is of a BH–BH or BH–NS binary, we add a recoil veloc-

ity, or ‘kick’, based on the fits to numerical relativity simulations

given by Campanelli et al. (2007) with initial spin magnitudes and

orientations assigned as in Clausen, Sigurdsson & Chernoff (2013).

2.3.1 Short-range encounters

As the binary moves throughout the cluster, at each time-step, we

check for the possibility of a short-range encounter with a single

star. Since the effects of long-range interactions are accounted for by

the diffusion coefficients (Section 2.1), here we focus on capturing

the effects due to strong three-body interactions with much smaller

impact parameters. We limit the range of encounters to include only

those three-body interactions that result in a resonance, exchange,

ionization, or the occasional flyby. We accomplish this by choosing

the maximum impact parameter to be

p = a[B + C(1 + e)], (20)

where we have set B = 4 and C = 0.6 following Hut & Bahcall

(1983). The choice of these coefficients is intended to limit the

number of weak encounters that have minimal impact on the bi-

nary, as these still require full resolution of the encounter, which is

one of the more computationally intensive tasks during evolution.

However, the coefficients only provide an approximate contour in

the space of initial conditions, hence the occasionally flyby. The

cross-section for an encounter to take place between the binary and

a star of mass mα with velocity vα is

σ (v, vα) = πp2 +
2πG(mb + mα)p

|v − vα|2
, (21)

(see e.g. Spitzer 1987). We then calculate the expected encounter

rate between the binary and each mass group

Ŵ(r, v, α) =
∫

σ (v, vα)|v − vα|fα(vα)dvα, (22)

and from this assign the probability of interacting with mass group

α to be

Pα = Ŵ(r, v, α)�t. (23)

An encounter is deemed to have occurred, based on a random gen-

erated number Z from a uniform distribution between 0 and 1, if Z

is less than the total probability P =
∑

αPα . The total probability is

implicitly constrained to be less than unity by controlling the time-

step size �t, which is discussed in more detail in the subsequent

section. In the case that Z < P, we select the third star m3 based on

the relative probabilities Pα and initiate our three-body integration

scheme explained in Section 2.3.3.

2.3.2 Time stepping

We use a fourth-order Runge–Kutta integrator to evolve the effec-

tive acceleration introduced in Section 2.3 as well as the three-

body interactions described in Section 2.3.3. During integrations,

we utilize a time-step reduction scheme requiring that the accu-

racy of the solution does not vary by more than a tolerance of

ǫrk = 10−5 when the time-step is halved. The initial integration

time-step �t = λ(1 + r)/(1 + v) is dynamically determined to

account for the position and velocity of the binary in the cluster,

with λ = 0.1 chosen to produce a time-step that is a fraction of the

core dynamical time rc/σ̄ for a binary at rest in the core. This time

stepper accounts for the higher density in the core and the enlarged

cross-section at small velocities. Although this choice of time-step is

usually sufficient, some extra care needs to be taken when using �t

in equation (23) to determine the encounter probability, so that the

total probability does not exceed unity. To ensure that we correctly

sample the encounter probabilities, by satisfying the constraint

P ≪ 1, we set Pmax = 0.1 and enforce P < Pmax by reducing the
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time-step �t when necessary. For the case P > Pmax, we decrease

the succeeding time-step by letting λ → 0.9(Pmax/P)λ. During the

subsequent step, if λ < λo, where λo = 0.1 is the fiducial value, and

P < Pmax, we allow the time-step to increase slowly by setting λ →
1.1λ. Once λ > λo and the probability is satisfactorily small, which

often occurs once the binary migrates out of the problematic dense

region, we reset the time-step factor to λ = λo.

2.3.3 Three-body interactions

In the case of an encounter, the relative probabilities described in

Section 2.3.1 determine the mass and velocity of the third object.

We take this sampled velocity v3 to be the velocity of the third

body at infinity and calculate the relative velocity at infinity for the

encounter from v∞ = |v − v3| =
√

v2 + v2
3 − 2vv3 cosχ . Given v

and the sampled m3 and v3, the relative velocity at infinity is de-

termined up to the cosχ term, which for an isotropic King model

distribution function can be sampled from an analytic expression for

χ ∈ [0, π] as in Sigurdsson & Phinney (1995). With the mass of the

third body and the relative velocity known, the maximum impact

parameter is obtained from the cross-section for the encounter

πp2
max = σ (v, v3) = πp2

(

1 +
2G(mb + m3)

pv2
∞

)

, (24)

with p defined in equation (20). The actual impact parameter for

the encounter is sampled from a uniform distribution in the area

spanned by the maximum impact parameter πp2
max. The angles that

comprise the remaining free variables necessary to specify the initial

conditions are the projected true anomaly f of the binary at the time

that the incoming third body reaches pericentre, two angles θ and

φ specifying the initial location of the third body with respect to

the binary centre of mass, and the impact orientation ψ , which

specifies the angle of the impact parameter in a plane transverse

to the incoming velocity of the third body. These four angles are

sampled in a manner consistent with Hut & Bahcall (1983). With

the initial conditions specified, the explicit integration is performed

with a modified scheme based on Sigurdsson & Phinney (1993).

We modify the original method of a fixed initial distance of the

third star, at Rin = 20a, to one of variable distance to improve

efficiency and to prevent the case of long three-body interactions

that can exceed the cluster time-step. The addition of massive BHs

introduces the possibility for wide binaries with orbital separations

much greater than those for which the previous method was suited to

handle. With a fixed choice for the distance of the third star from the

binary, interactions such as distant flybys, which are the quickest to

resolve computationally and have little impact on the binary, often

take a time that exceeds the cluster evolution time-step and leads to

the possibility of missing other probable encounters.

To represent the three-body system as an isolated one, and to re-

duce excessive time spent integrating long approaches, we require

that Rin ≤ Rmax(n), where Rmax(n) = (4πn/3)−1/3 is the ‘interparti-

cle’ distance and is a function of the local density n(r). Once Rin is

specified, we determine the relative velocity vin at Rin based on the

relative velocity at infinity. With these two quantities specified, we

approximate the time for a flyby as δt = 2Rin/vin. For the case in

which δt > �t, we let Rin → (�t/δt)Rin, calculate vin at the new ini-

tial distance and recompute the new estimated time. We repeat this

procedure until the estimated time is roughly the same as the clus-

ter time-step, 0.9 < δt/�t < 1.1. One important caveat is that this

could lead to placing the third object too close to the binary, spoiling

the assumption of an object at infinity approaching a well-defined

binary. To address this issue, we maintain one extra condition on

the initial distance specification, a consideration for which we are

willing to forgo our time-step restrictions; that is, (a/Rin)3 ≤ 0.01.

To increase the speed of the three-body integration, we move

from a constant integration time-step to one that is dynamical. We

choose a maximum time-step δTmax to be an arbitrarily small frac-

tion ǫ = 6.25 × 10−3 of the binary period Tb, i.e. δTmax = ǫTb.

At the end of each integration step, we update the time-step to

δT = ǫ(rmin/vmax), where rmin is the minimum separation between

any pair of the three objects and vmax is the largest velocity of the

three bodies. This sets the time-step to the maximum allowable

value in consideration of the need to resolve the dynamics of the

three objects or any potentially bound pair. In some instances, a

resonance can form a temporarily bound triple system, causing the

integrator to reach the maximum number of steps Nmax = 2 × 106

or to exceed the arbitrarily specified maximum allowable time of

5�t. Under these rare circumstances, we reinitialize the system with

newly sampled initial angles and restart the integration. In addition

to the occasional long-lasting semi-stable triples that form, there are

also instances when a binary makes its way to the core where the

average time-scale necessary to resolve the three body encounters

begins to approach the time-scale for the evolution of the binary

in the cluster. Since we calculate three-body encounters decoupled

from the binary’s evolution in the cluster, we are forced to terminate

the run in such cases. As the cluster time-scale is inversely propor-

tional to the cluster density, this situation is most likely to occur

in the densest clusters. As a result of this time-scale termination

criterion, although a similar number of realizations are performed

for each cluster, the highest-density clusters have noticeably fewer

runs than the lower-density clusters, as is observable in the rightmost

column of Table 2. For standard encounters, which are often much

shorter than the cluster time-step, we periodically check whether

the interaction has resolved – according to the criteria discussed

in the following section – and in the case that a new binary has

formed, even temporarily, we update δTmax with the period of this

new binary.

2.3.4 Encounter resolution

We first identify a potential binary amongst the triple system com-

posed of the original binary, m1 and m2, and the third mass m3, by

selecting the pair with the largest gravitational binding energy. We

refer to the masses in the potential binary as m̄1 and m̄2, which may

no longer correspond to the original binary composed of m1 and

m2. The remaining object, which is not part of the potential binary,

is labelled m̄3 that is distinct from m3. All unbarred variables rep-

resent the initial configuration where the third object is incoming,

while barred variables refer to the system where a binary has been

identified and the encounter is nearly resolved. The encounter can

be resolved in three ways: (I) there is a well defined bound binary

system with the third object unbound and moving off to infinity, (II)

a merger has occurred, or (III) the system is completely ionized.

For case (I), we terminate the integration once the following

criteria are all satisfied: (i) the third body has achieved the minimum

required separation from the binary, |r̄3 − (m̄1r̄1 + m̄2r̄2)/(m̄1 +
m̄2)| > max{Rmax(n), 1.1 Rin}, (ii) the eccentricity ē of m̄1 and m̄2

is less than unity, (iii) m̄1 and m̄2 are bound, specifically Ēb < 0,

and (iv) m̄3 is unbound, i.e. Ē3 > 0. Here, Ēb is the total energy

of the final binary and Ē3 is the total energy of the third body. In

addition to the above requirements, to determine the final state of the

‘isolated’ binary, we continue the integration until the total potential
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Table 2. Summary of simulations. Listed are the 15 GCs modelled for evolution along with the total cluster mass

Mc, squared velocity dispersion σ 2, the luminous core density ρL, concentration c, and metallicity Z. The clusters

are ordered by total mass. There are 39 independent models after taking into account the number of BHs retained

by the cluster. Medium-to-high mass clusters can accommodate large BH populations without disrupting the listed

structural parameters. The size of the BH population in lower-mass clusters is either (1) limited in number by

the IMF or (2) by the ability of the cluster to maintain the model structural parameters in their presence; in these

cases, the cluster is not used for evolutions and is omitted from the table. In the final column, we list the total

number of evolutions performed for each case.

Name M (M⊙) σ 2 (cm2s−2) ρL (L⊙pc−3) c Z NBH Nruns

Pal 13 5.12 × 103 8.10 × 109 1.45 0.66 2.6 × 10−4 20 15 232

NGC 6838 3.67 × 104 5.29 × 1010 6.76 × 102 1.15 3.3 × 10−3 20 18 364

200 20 430

NGC 6535 5.93 × 104 5.76 × 1010 5.19 × 102 1.33 3.2 × 10−4 20 35 865

200 33 561

NGC 6362 1.17 × 105 7.84 × 1010 1.95 × 102 1.09 2.0 × 10−3 20 32 544

200 33 798

NGC 5053 1.66 × 105 1.96 × 1010 3.47 0.74 3.8 × 10−5 20 69 058

200 74 681

NGC 6121 2.25 × 105 1.60 × 1011 4.37 × 103 1.65 1.4 × 10−3 20 14 429

200 17 884

1000 24 667

NGC 5694 2.92 × 105 3.36 × 1011 8.91 × 103 1.89 2.1 × 10−4 20 14 029

200 13 382

1000 17 445

NGC 6093 3.67 × 105 1.54 × 1012 6.17 × 104 1.68 3.6 × 10−4 20 7435

200 7019

1000 4645

NGC 5286 4.80 × 105 6.56 × 1011 1.26 × 104 1.41 4.1 × 10−4 20 6761

200 10 032

1000 8196

NGC 6656 5.36 × 105 6.08 × 1011 4.27 × 103 1.38 4.0 × 10−4 20 12 539

200 20 993

1000 14 832

NGC 1851 5.61 × 105 1.08 × 1012 1.23 × 105 1.86 1.3 × 10−3 20 7189

200 6950

1000 4563

NGC 6205 6.27 × 105 5.04 × 1011 3.55 × 103 1.53 5.9 × 10−4 20 13 444

200 24 899

1000 23 583

NGC 6441 1.30 × 106 3.24 × 1012 1.82 × 105 1.74 7.0 × 10−3 20 2388

200 2439

1000 2463

NGC 104 1.45 × 106 1.21 × 1012 7.59 × 104 2.07 3.8 × 10−3 20 9545

200 10 467

1000 8559

NGC 5139 2.64 × 106 2.82 × 1012 1.41 × 103 1.31 5.9 × 10−4 20 13 197

200 17 466

1000 23 513

energy between m̄3 and each mass in the binary is a fraction of the

total energy of the system E, specifically

Gm̄1m̄3

|r̄1 − r̄3|
+

Gm̄2m̄3

|r̄2 − r̄3|
> 0.05E. (25)

In case (II), two of the bodies merge and the third body is ei-

ther unbound or forms a new binary with the merger product. The

criteria for mergers is based on the distance of nearest approach d

between two bodies during the three body encounter. In the case of

a potential merger between two BHs, the merger criterion is d ≤
R1 + R2. For the remaining merger situations, the criterion remains

d = ftid(R1 + R2), as adopted from Sigurdsson & Phinney (1995), us-

ing the same value for ftid as introduced in Section 2.2.5. Our choice

for ftid was selected, as it approximately separates the boundary

of where hydrodynamical effects become important (e.g. Lee &

Ostriker 1986; Benz & Hills 1992). When this criterion is met, we

assume a tidal encounter takes place. The merger is assumed to be

a momentum conserving, impulsive, completely inelastic collision

with no mass-loss (Davies, Benz & Hills 1994). When a merger

occurs between the BH companion and the third body, if the merger

product remains bound to the BH, this dynamically formed binary

becomes our new ‘test binary’, which we continue to follow and

evolve within the cluster. Similarly, if the BH merges with a third

body and we still have a bound binary system, we again continue

to follow this binary. However, if the BH becomes unbound by

merging with another body or becomes unbound from a merger

product, we handle the newly single BH as described in the sub-

sequent section. In each of these cases, the position of the new

binary, or single BH, is updated by continuing along the original

binary trajectory and the velocity is updated by converting from the
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three-body centre-of-mass frame, where the three-body integration

is performed, back to the cluster frame.

The result of the encounter can also end in complete ionization,

case (III). Ionization occurs in the case of ill-defined binaries that

will inevitably be unbound if, given that all previous criteria are

satisfied, either (a) the eccentricity of m̄1 and m̄2 satisfies 1 − ē <

1 × 10−7 or (b) |r̄1 − r̄2| > Rmax(n) is satisfied. Additionally, ion-

ization occurs if m̄i v̄
2
i > 2(m̄im̄j/|r̄i − r̄j | + m̄im̄k/|r̄i − r̄k|) is

true for all masses at any time, with i �= j �= k taking on values

{1, 2, 3}. This last criterion is a straightforward definition for a

totally unbound triple. In addition to these choices for ionization

during three-body encounters, there is one other instance in which

the binary can be dissociated. For very wide binaries, the encoun-

ters are dominated by repeated grazing encounters with low-mass

stars, which tend to further widen the orbital separation. As a result,

strong interactions become less likely and the binary will inevitably

be dissociated by the increasing occurrence of these slowly ionizing

encounters. For this reason, we use the encounter rate to define a

maximum semimajor axis of dynamically formed binaries as

amax(Ŵ) =

(

Gmb

3(2πŴ)2

)1/3

, (26)

which is equivalent to requiring a minimum of three orbits between

encounters. Here, the total encounter rate Ŵ =
∑

αŴ(r, v, a) is

a sum over the rate associated with each mass group defined by

equation (22). The final criterion for ionization is then

a > min{amax(Ŵ), Rmax(n)}.

2.3.5 Single BHs

As described in the previous section, a BH can become single due

to three-body dynamics such as exchange, merger, or through the

dismantling of a binary that exceeds our large a or large e criteria.

In the case of a single BH, we allow for the solitary BH to form a

new binary by interacting with existing binaries within the cluster.

In order to accomplish this, we need to know the probability for

the following encounter,

(m1, m2) + mBH → (mBH,m2) + m1, (27)

in which the BH exchanges with m1 into a binary originally com-

posed of masses m1 and m2. We also consider the possibility that

mBH and m2 undergo an exchange, which contributes to the total

probability that the BH will exchange into the binary. However,

for conciseness in deriving the probability of exchange, we will

focus specifically on the encounter described by equation (27), later

adding the contribution from the reaction where the subscripts are

interchanged. Unfortunately, we can no longer compute the prob-

ability for encounter as in Section 2.3.1, since we do not possess

a distribution function for binaries. However, by considering the

reverse reaction of equation (27), given by

(mBH, m2) + m1 → (m1, m2) + mBH, (28)

and relating this to the one of interest, we can obtain the encounter

probability for the BH to exchange into an existing binary in the

same way that we compute encounters for a binary composed of a

BH and a companion.

We use the seminumerical fit of Heggie, Hut & McMillan (1996),

σ̄1,2 =

(

M23

M123

)1/6(

m3

M13

)7/2(

M123

M12

)1/3(

M13

M123

)

g(2, 3, 1),

(29)

as the dimensionless cross-section for a generically labelled sin-

gle mass m3 to exchange into a binary of masses m1 and m2 to

form a new binary composed of m3 and m2, with m1 being ejected.

In this notation, uppercase masses represent the sum of the mass

subscripts, i.e. Mij = mi + mj. The coefficient g(2, 3, 1) is a numer-

ical fitting factor designed to improve the analytically derived fit.

This dimensionless cross-section σ̄1,2 is related to the dimensionful

cross-section for exchange �1, 2 through

σ̄1,2 =
2|v1,2 − v3|2

πGM123a1,2

�1,2. (30)

The existing binaries that the BH is likely to encounter, which have

remained intact in the cluster over long time-scales, can be con-

sidered ‘hard’. These ‘hard’ binaries are characterized by having a

binding energy Ubin that exceeds the average energy of the other

stars in the cluster |Ubin| > 1
2
m̄σ̄ 2 and this is what allows them

to stay intact over such long time-scales. In this case, we approxi-

mate the total encounter cross-section by the dominant gravitational

focusing term in equation (21), explicitly:

σ1,2 ≃
2πGM123a1,2

|v1,2 − v3|2
. (31)

Finally, relating equations (30) and (31) allows us to express the

cross-section for exchange in terms of the total encounter cross-

section σ 1, 2 through

�1,2 = (σ̄1,2/4)σ1,2. (32)

Evidently, the dimensionless cross-section for exchange is related

to the fractional probability that the total encounter ends in the

specific exchange we previously described. Considering equation

(31) and assuming the relative velocities are similar for the forward

and reverse reactions, we can relate the forward and backward

total cross-sections through σ1,2 = (
a1,2

a2,3
)σ2,3. Since the energy given

to the binary is comparable to the energy required to destroy it,

m1m2/a1, 2 ∼ m2m3/a2, 3, we can recast the relation in terms of the

masses alone:

σ1,2 =

(

m1

m3

)

σ2,3. (33)

The cross-section for the specific exchange of m3 for m1 in terms of

the total encounter cross-section of the original binary is found by

substituting equation (33) into equation (32), yielding

�1,2 =

(

σ̄1,2m1

4m3

)

σ2,3. (34)

By writing the exchange probability in terms of the post-exchange

binary, we can now utilize the same procedure described in Sec-

tion 2.3.1. In this formalism, m3 represents the BH and we return

to referring to this body as mBH, while m1 goes to mα , a variable

companion used for computing the relative probabilities for each

mass group α. First, we select a companion object m2 for the BH

on the left-hand side of equation (28). We obtain m2 by sampling

from the local number density and determine a and e for the binary

as in Section 2.2.5. The probability of the encounter described by

equation (27), where the BH exchanges places with mα in a binary

composed of m2 and mα is then,

Pα,2 = �t

∫

(

σ̄α,2mα

4mBH

)

σ2,BH(v, vα)|v − vα|fα(vα)dvα . (35)
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The usefulness of the manipulations in this section is most clearly

seen by writing this in terms of equation (23):

Pα,2 =

(

σ̄α,2mα

4mBH

)

Pα, (36)

which in practice makes computing the exchange probabilities as

easy as rescaling our standard encounter computations by the par-

enthetical factor. Since we also allow for the BH to exchange with

m2, we also consider the probability P2,α = (
σ̄2,αm2

4mBH
)P2.

We apply one final rescaling to account for the density of binaries

that are of type m2 and mα . We assume that the fraction of objects

that are binaries fb is constant throughout the cluster with the value

specified by equation (16). The density of binaries is then nb(r) =
( fb

1+fb
)n(r), which is derived from equation (15). Additionally, we

also assume that the fraction of binaries of a given type is constant

at all cluster radii, nij(r) = fi/jnb(r). Here, fi/j represents the fraction

of binaries that have a star of type i and a star of type j, e.g. fNS/MS

is the fraction of all binaries that are composed of an NS and an

MS star. For binaries composed of only MS or WD, we use values

of fMS/MS = 0.23, fMS/WD = 0.44, and fWD/WD = 0.32 (Fregeau

et al. 2009). The remaining one per cent of binaries contain at least

one BH or NS, for which we compute the binary fraction through

fi/j = 0.01( Ni

N
)(

Nj

NBH+NS
), where i can be any object type, j is limited

to BH or NS, N is the total number of objects in the cluster, and

NBH + NS is the total number of BHs and NSs.

The final total probability for the BH to exchange into a binary,

given the sampled mass m2, is then

Pexch(r) =
∑

α

nα2(r)

(

Pα,2

nα(r)
+

P2,α

n2(r)

)

. (37)

Here, we divide out the respective local density picked up in the

integration of the distribution function in order to enforce our as-

sumption of a uniform binary fraction. If an exchange is determined

to occur based on this total probability, we select a specific binary

for the encounter based on the relative probabilities of exchange for

each mass group mα . With a binary in hand, we initiate our three-

body system, which is run until we get the proper outcome dictated

by the encounter cross-section – i.e. that mBH exchanges with the

appropriate mass in the binary.

3 SI M U L AT I O N S

We present 698 486 realizations from 15 GC models with total

masses in the range of 5.12 × 103–2.64 × 106 M⊙, velocity dis-

persions covering 9 × 104–1.8 × 106 cm s−1, core densities of

1.45–1.23 × 105 pc−3, and concentrations spanning 0.66–2.07. The

simulations are summarized in Table 2, which includes the cata-

logue name for the modelled cluster, total mass, velocity dispersion

squared, central luminosity density, concentration, metallicity, the

number of retained BHs in the model, and the total number of com-

pleted runs. The simulations are run for t = 1010 yr or until the

single/binary is ejected from the cluster, when r > rt.

3.1 Structural parameters

In our framework, a GC’s structure is determined by four parame-

ters: the total cluster mass Mc, the core velocity dispersion σ , the

core luminosity density ρL, and the concentration c. McLaughlin

(2000) finds that GCs described by single-mass isotropic King mod-

els are fully defined by four independent physical parameters: the

Figure 3. The distribution of non-core-collapsed Milky Way GCs in a

face-on view of the Fundamental Plane. The colour of each unmodelled GC

(marked by circles) indicates the corresponding modelled GC (marked by

stars) that serves as its proxy for determining the properties of the ejected

binaries. The plane is defined by ǫ2 = 2.05 log10 E∗
b + log10 L and ǫ3 = c,

with the dashed line corresponding to the fit ǫ3 = −12.5 + 0.13ǫ2. Here,

c is the concentration, L is the total luminosity, and E∗
b is an additional

parameter related to L (see Section 3.2 for additional details).

mass-to-light ratio ϒv, 0, total binding energy Eb, central concen-

tration c, and total luminosity L. Furthermore, McLaughlin (2000)

shows that Milky Way GCs lie in a ‘Fundamental Plane’ and thus

can be fully described by just two independent parameters, c and

L. A face-on view of the Fundamental Plane is defined by the axes

ǫ2 = 2.05 log10 E∗
b + log10 L and ǫ3 = c. The apparent dependence

on the third quantity log10 E∗
b is due to a rotation in the larger three-

dimensional space in order to remove projection effects. However,

this is reconciled by showing that this third parameter, E∗
b , is fully

described by the luminosity, such that E∗
b (L) (McLaughlin 2000).

With the space of physical clusters reduced to the Fundamental

Plane, we determine a representative group of 15 Milky Way clus-

ters by sampling from the two-dimensional distribution. A face-on

view of the Fundamental Plane is given in Fig. 3, which includes

all GCs from the Harris catalogue (Harris 1996, 2010 edition) for

which observed concentrations are available. We omit clusters iden-

tified in the catalogue as core collapsed, since these are not generally

well described by King models. This includes those with c = 2.5,

an arbitrary value assigned to clusters in the catalogue with central

density cusps indicative of core collapse. There are 125 Milky Way

GCs remaining after core-collapse pruning; of these, 15 GCs are

chosen as representative models, in an attempt to properly cover

the fundamental parameter space. The 15 Milky Way GC models

representative of the 125 Milky Was GCs are described in Table 2

and represented by stars in Fig. 3 to visualize our coverage of the

fundamental parameter space.

As stated in Section 2.1, our input parameters for specifying the

structure of a cluster are the core velocity dispersion σ̄ , the central

density no, and the King parameter Wo. The mean core velocity

dispersion σ̄ is chosen to be the observed value listed in the Harris

catalogue. The core number density no is adjusted until the central

luminosity density ρL is consistent with observation. Finally, the

King parameter Wo, which sets the depth of the potential, is varied

until the cluster has the desired total mass Mc and concentration c.
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Once we have a model for a given GC, we add BHs by increasing

the fraction of retained BHs frBH
, where a value of unity corre-

sponds to retention of all BHs produced according to the IMF. For a

given number of BHs in the cluster, we use the parameter fs in equa-

tion (18) to adjust the BH velocity dispersion such that the overall

structure of the cluster is unaffected by the presence of a significant

number of BHs. However, we find that there is a limit to the number

of BHs each cluster can harbour. For the lowest-mass clusters, such

as Pal 13, setting the retention factor to unity, frBH
= 1, in order

to maximize the number of BHs retained by the cluster produces a

peak number of ∼20 BHs. In this case, the number of BHs retained

by the cluster is inherently limited by its structure. More generally,

for lower-mass clusters that allow for more BHs, the large number

of BHs can become problematic as they become a more significant

part of the total mass of the cluster. As the fraction of the total mass

in BHs increases, the BHs begin to affect the structural parameters

such that no set of initial parameters exists that satisfy the observed

structure of the GC. We find that for many of the lower-mass clus-

ters we are only able to simulate populations of 20 or 200 BHs

(cf. Table 2).

3.2 Galactic evolution

The GC evolution models, described in detail in Section 2, compute

the properties of the BH binaries at the moment they are ejected from

a GC. Determining the present-day properties of potentially observ-

able, ejected BH binaries requires further modelling that tracks both

the evolution of ejected binaries in the Milky Way potential and the

internal evolution of each binary. In this section, we describe Monte

Carlo models for the subsequent evolution of the ejected binaries

that are seeded with results from our GC models.

3.2.1 Globular cluster orbits

We first build a sample of GCs to include in our Galactic evolution

simulations. The orbit of a cluster is specified by its location on

the sky (right ascension and declination), distance from the Sun

D⊙, radial velocity vr, and proper motion μα and μδ . Of the 125

non-core-collapsed GCs in the Harris catalogue (Harris 1996, 2010

edition), we are able to find literature values for the orbital parame-

ters of 106 of these clusters in the catalogues of Moreno, Pichardo

& Velázquez (2014) and Kharchenko et al. (2013). For clusters ap-

pearing in both catalogues, we use the values given in Moreno et al.

(2014).

To begin each realization in our Monte Carlo ensemble, we ini-

tialize the GC orbits by sampling the uncertainty in their current

positions and velocities. We assume normally distributed errors and

use the quoted uncertainties in vr, μα , and μδ . Following Krauss

& Chaboyer (2003), we assume a 6 per cent error in D⊙. After

the orbit is specified, we integrate it 10 Gyr backwards in time,

corresponding to the duration of our GC dynamical simulations.

The orbits of the GCs, and the ejected binaries, are integrated

using the PYTHON Galactic dynamics library GALPY (Bovy 2015).

We model the Milky Way gravitational potential using the built-

in MWPOTENTIAL2014. The potential includes contributions from the

Galactic bulge, disc, and halo, which have been fit to observational

data to provide a realistic model of the Milky Way potential. The

physical scale of the potential is set using the distance from the

centre of the Galaxy to the Sun and the circular velocity of

the Sun, which we set to 8 kpc and 220 km s−1, respectively. For

all calculations, we use the DOPR54_C integrator, a fast implementa-

tion of a high-order Dormand–Prince method included with GALPY.

Now that we have calculated the positions and velocities of the

Milky Way GCs during the past 10 Gyr, the next step is to deter-

mine the properties of any potential BH-LMXBs ejected by these

clusters. Since our dynamical simulations only include a subset of

the Galactic GCs, we use the results from the 15 GCs simulated

in Table 2 as proxies for the ejected binary populations produced

by the remaining 110 clusters in our Galactic evolution models.

For each of the unmodelled clusters, a proxy cluster is selected by

finding the nearest simulated cluster in the Fundamental Plane (see

Section 3.1). Specifically, we find min[(ǫ′
2,i − ǫ′

2,j)
2 + (ǫ′

3,i − ǫ′
3,j)

2],

where the i index runs over all 106 clusters in the Galactic evolution

models, the j index runs over the 15 clusters included in our GC

dynamics models, and the primes denote the normalized versions of

ǫ2 and ǫ3 restricted to the range [0,1]. Fig. 3 shows the proxy cluster

chosen for each GC, by assigning the same colour marker to each

GC as the colour of the proxy cluster used, which are marked by

coloured stars. To ensure the robustness of this method for choosing

a proxy cluster, we assign a proxy by two additional methods. One

secondary method is to assign the proxy cluster based on the min-

imum distance in the Fundamental Plane using the unnormalized

axes ǫ2 and ǫ3. The second alternative is by identifying the most sim-

ilar cluster using the structural parameters Mc, σ , and ρL weighted

according to the strengths of the correlations between these param-

eters and the ejected binary populations, which are explored in 4.1.

Selecting the proxy cluster by any of these three methods gives

similar results in our Galactic evolution models. In fact, all three

methods will select the same proxy cluster for all but ∼15 of the 110

unmodelled GCs in our study. In what follows, we discuss models

that use the scaled distance in the Fundamental Plane to assign the

proxy cluster.

3.2.2 The ejected binaries

The output of our GC dynamical simulations describes the proper-

ties of the BH binaries ejected from GCs. To model the present-day

population of BH-LMXBs that are ejected from GCs, we use as

inputs for our Galactic evolution models: the ejection time tej, ejec-

tion velocity vej, and the properties of the binary, the semimajor

axis a, eccentricity e, the mass of the BH primary m1, and the mass

of the companion m2. This is accomplished by constructing empiri-

cal cumulative distribution functions (CDFs) of these quantities for

each of the 37 sets of parameters listed in Table 2, and then sam-

pling these distributions in our Monte Carlo models. We assume

that the ejection time, ejection velocity, and binary properties are

independent and sample the marginal distributions of each.

In the GC dynamical models, a, e, tej, and vej are treated as con-

tinuous variables. As such, we are able to sample the CDFs for these

quantities directly. We fit cubic splines to the empirical CDFs and

invert the distributions by interpolation. The GC dynamical mod-

els treat m1 and m2 as discrete quantities, which fall into the mass

bins shown in Table 1. In our Galactic evolution models, however,

we want to consider continuous masses. To accomplish this, we

first determine an object’s mass bin by sampling the discrete CDF

output by the dynamical simulations. Next, we sample the mass dis-

tribution within that bin using the EMF described in Section 2.2.1.

Using these CDFs, we are able to generate sample populations of

the BH binaries ejected by the 106 GCs in our Galactic evolution

simulations.

During each realization, for each cluster, we first determine the

number of binaries that the cluster will eject during the 10 Gyr

simulation by sampling a Poisson distribution with rate parameter
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Table 3. Expected number of binary ejections. For each cluster and number

of retained BHs, we list the exact number of BHs in the cluster along with

the expected number of ejections over the cluster lifetime for three binary

types: BH–NC, BH–NS, and BH–BH. The clusters follow the same order

as Table 2, sorted according to increasing total cluster mass. The values of

NBH are non-integer values as a consequence of modelling the population

with a smooth distribution function.

Name NBH BH–NC BH–NS BH–BH

Pal 13 19.64 3.14 7.74 × 10−3 1.40 × 10−1

NGC 6838 20.61 6.33 × 10−1 3.59 × 10−2 5.08 × 10−1

174.55 2.56 × 101 2.39 × 10−1 2.67

NGC 6535 19.89 2.35 × 10−1 1.72 × 10−2 3.64 × 10−1

198.95 5.12 1.24 × 10−1 2.08

NGC 6362 20.22 1.61 × 10−1 6.83 × 10−3 2.31 × 10−1

199.33 1.07 2.36 × 10−2 1.55

NGC 5053 21.71 2.04 × 10−2 3.14 × 10−4 7.31 × 10−2

199.65 1.79 × 10−1 2.67 × 10−3 4.96 × 10−1

NGC 6121 20.70 3.11 × 10−1 6.31 × 10−2 4.96 × 10−1

200.53 1.74 3.03 × 10−1 2.66

1039.16 1.02 × 102 1.43 8.17

NGC 5694 20.49 2.29 × 10−1 1.18 × 10−1 7.49 × 10−1

200.39 1.54 1.02 4.19

1001.94 3.21 × 101 2.87 1.54 × 101

NGC 6093 19.85 1.01 × 10−1 4.81 × 10−2 3.42 × 10−1

198.31 1.13 3.67 × 10−1 2.66

1004.51 1.23 × 101 2.38 1.31 × 101

NGC 5286 12.29 6.00 × 10−2 2.36 × 10−2 1.91 × 10−1

198.28 9.29 × 10−1 5.93 × 10−2 2.08

787.45 4.42 3.84 × 10−1 5.48

NGC 6656 19.80 6.79 × 10−2 1.42 × 10−2 2.57 × 10−1

205.86 4.22 × 10−1 8.83 × 10−2 1.74

1000.35 3.10 2.02 × 10−1 5.09

NGC 1851 20.76 8.37 × 10−2 4.91 × 10−2 4.74 × 10−1

203.71 8.79 × 10−1 4.98 × 10−1 3.09

1039.94 1.98 × 101 1.82 1.03 × 101

NGC 6205 20.10 6.13 × 10−2 1.79 × 10−2 2.62 × 10−1

199.58 4.25 × 10−1 5.61 × 10−2 1.70

998.62 1.61 1.27 × 10−1 5.36

NGC 6441 20.98 3.51 × 10−2 1.76 × 10−2 3.16 × 10−1

212.57 9.59 × 10−1 8.72 × 10−2 1.57

1010.37 3.69 8.20 × 10−1 4.72

NGC 104 22.49 6.60 × 10−2 3.06 × 10−2 4.49 × 10−1

222.95 1.09 4.47 × 10−1 2.89

979.55 3.09 2.52 8.41

NGC 5139 20.84 0.00 0.00 2.53 × 10−2

207.50 1.19 × 10−2 0.00 1.19 × 10−1

1009.04 0.00 0.00 2.57 × 10−1

〈Nej〉 (the third column of Table 3). Once we have determined the

number Nbin of ejected binaries, we draw Nbin samples from the a,

e, m1, m2, tej, and vej distributions.

Since the internal evolution of a binary is independent of its orbit

in the Galaxy, we separately compute the full internal evolution

of the binary using the rapid binary population synthesis code BSE

described in Hurley, Tout & Pols (2002) with the updates described

in Clausen et al. (2012) and Lamberts et al. (2016). BSE combines

interpolated stellar evolution models with recipes for mass trans-

fer and other binary evolution processes to enable rapid modelling

of a binary system’s lifetime. Binary population synthesis calcula-

tions employ parametrized models to describe poorly understood

processes in binary evolution. In our BSE runs, we assume that sta-

ble mass transfer is conservative. Additionally, we use a common-

envelope efficiency parameter of 1.0 and include the effects of tidal

circularization.

We use each set of a, e, m1, m2 as the initial conditions for a BSE

run. When handling the binary stellar evolution to determine which

ejected binaries become mass transferring, we discard a small num-

ber of binaries that would have begun mass transfer within the clus-

ter. The internal evolution of these tight binaries are coupled to their

dynamical evolution within the cluster in a complex manner. Since

these effects are not accounted for in our code, we do not include

them in our results. For the remaining binaries, we set the compan-

ion star’s metallicity to that of its parent GC and its age to tej. The

latter has little effect because most of the ejected stars have lifetimes

that exceed 10 Gyr. The binary is evolved for tevol = 10 Gyr − tej,

i.e. to the present day. Systems are discarded if the companion star

is not overflowing its Roche lobe and transferring mass to the BH

at the end of the simulation. For each mass transferring binary, we

determine the position rGC and velocity vGC of its parent GC at tej.

We initialize an orbit for the ejected binary at rGC and vGC + vej,

assuming that the binaries are ejected isotropically. With the initial

conditions determined, we then evolve these binaries using GALPY

to determine their positions at the present day.

Our Galactic evolution models consider three BH-retention sce-

narios. In the first, we assume that most BHs are ejected and use

the results from our GC dynamics models with NBH = 20. We refer

to this set of models as MIN. In the second case, referred to as 200,

we assume moderate BH retention, using the results from our GC

dynamics models with NBH = 200. Finally, in a case denoted MAX,

we consider significant BH retention by utilizing the GC dynamics

models with NBH = 1000. In cases where we are unable to generate

a background cluster model with the appropriate NBH, we use the

results from the model with nearest NBH simulated for that same

cluster. We compute 104 realizations for the MIN and 200 cases and

5 × 103 realizations for the MAX case.

4 R ESULTS

Our simulations of binary-single star interactions in GCs provide us

with statistical properties of the ejected BH binaries they produce

including ejection time tej, ejection velocity vej, the orbital proper-

ties a and e, and the component masses m1 and m2. Combining these

results with the methods described in Section 3.2, we obtain predic-

tions for the distribution and properties of the Galactic population

of BH-LMXBs produced by GCs. Additionally, the simulations al-

low us to explore merger events involving BHs such as gravitational

radiation driven mergers, both in the cluster and post-ejection, as

well as those mergers that occur during three-body encounters. We

describe these results in detail below.

4.1 Ejected BH binaries

We find that the number of ejected binaries and the properties of

these binaries are strongly affected by the GC structure and the

number of retained BHs. In Table 3, we list the expected number of

ejected BH binaries over the life of each cluster, listed in order of

increasing mass, including the exact number of BHs in each cluster.

The ejected BH-binary expectation value is well described by the

number of retained BHs NBH and the two characteristic variables

that define the Fundamental Plane of GCs (see Fig. 3), namely the

total cluster mass Mc and the concentration c. In Fig. 4, we plot the

expected number of ejected BH binaries as a function of the three

characteristic variables: NBH, Mc, and c.

The most important structural variable that impacts the ejected

binary properties is the cluster mass. The total cluster mass enforces

a minimum energy needed to escape, which the binary must gain
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Figure 4. Expected number of binary ejections 〈Nej〉 as a function of the

number of retained BHs NBH, concentration c, and total cluster mass Mc.

The number of binaries ejected over the life of the cluster is well described

by the two characteristic variables of the Fundamental Plane, c and Mc,

along with the number of BHs retained by the cluster.

Figure 5. The distributions of ejection velocities vej as a function of the

total cluster mass Mc for the ejected binaries. Each vertical bar represents the

distribution of vej for the corresponding mass Mc and is normalized such that

the integral over log10vej in each mass bin yields unity. The binary velocity

fluctuates due to random encounters with other stars in the cluster until

the binary acquires a high enough recoil velocity to exceed the minimum

ejection velocity, which is determined by the cluster mass. The increase in

the necessary velocity for escape is apparent in the increasing mean value

of each vej distribution.

through repeated encounters. In order for a binary to escape from

the cluster, it must acquire a recoil velocity from a final three-body

encounter high enough to climb out of the cluster gravitational

potential. In Fig. 5, we show the distribution of the ejected binary

velocities as a function of cluster mass, where the influence of the

mass of the cluster on the ejection velocity is apparent.

The expected number of ejections is then higher for lower-mass

clusters due to the lower escape velocities associated with these

clusters, as is visible in Fig. 4. To decouple this statement from the

additional variables in Fig. 4, it can also be observed in Table 3

(which is ordered by increasing mass) that for a fixed number of

retained BHs, the expected number of ejections scales with the

cluster mass.

The mechanism through which the binary converts binding en-

ergy to kinetic energy is easiest to understand in the three-body

centre of mass frame, where we perform our integration for en-

counters. After an encounter, the final relative velocity at infinity is

given by

v̄2
∞ =

m3(m1 + m2)

m̄3(m̄1 + m̄2)
v2

∞ +
2M123

m̄3(m̄1 + m̄2)
(Ubin − Ūbin), (38)

where Ubin = −Gm1m2

a
is the binding energy of the binary and all

unbarred quantities represent the initial binary before encountering

m3, while barred quantities represent the final binary and m̄3 is the

ejected mass. In the case of no exchange, and utilizing �a ≡ ā − a,

equation (38) reduces to

v̄2
∞ = v2

∞ −
2M123

m3mb

(

Gm1m2�a

a2

)

. (39)

In this frame, the binary velocity is related, through conservation

of momentum, to the relative velocity simply by vb = m3

M123
v∞. The

change in the kinetic energy, �T ≡ T̄ − T , of the binary is then

�T = −
Gm1m2m3

M123

(

�a

a2

)

. (40)

The amount by which the semimajor axis changes in an average

encounter, where the semimajor axis is reduced without exchange,

is proportional to the semimajor axis, �a ≈ −ǫa, with ǫ in the

range ∼[0, 0.6] (Sigurdsson & Phinney 1993). Using this relation,

and assuming a binary with constant m1 and m2, equation (40)

reduces to

�T ∝
m3

M123

ǫ

a
, (41)

yielding a simple relation that describes the gain in kinetic energy in

terms of the constant fractional change in the semimajor axis ǫ and

the ratio of the third body to the total mass of the three-body system.

Additionally, equation (41) shows that this change in kinetic energy

becomes more efficient as the semimajor axis decreases, convert-

ing more energy from binding to kinetic after each encounter that

shrinks the binary’s orbit. After repeated interactions, the increase

in velocity due to the decrease in a becomes more substantial and

the binary can eventually reach the necessary velocity to escape.

We can directly relate the necessary gain in kinetic energy to the

change in binding energy �U = Ūbin − Ubin, by simply rearranging

equation (38) and assuming no exchange of masses, which yields

�T = −
m3

M123

�U. (42)

In the process of the binary increasing its kinetic energy, the binding

energy becomes more negative. Since the higher-mass clusters tend

to hold on to the binaries longer, this strict minimum kinetic energy

for ejection is manifest in the more negative-valued binding energy

of the binaries it ejects. It follows from this, that on average, the

semimajor axes of the binaries ejected from more massive clusters

tend to be smaller. This is confirmed by Fig. 6, which depicts the

distribution of orbital separations as a function of cluster mass.

In addition to the increase in the expected number of ejected bi-

naries in lower-mass clusters, the total number of expected ejections

also increases with an increase in the number of BHs. While the

number of ejections is expected to increase with the number of BHs,

interestingly, the fraction of ejected binaries composed of a BH and

non-compact (BH–NC) object also grows with the number of BHs
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Figure 6. The distributions of the semimajor axes at ejection a as a function

of the total cluster mass Mc for the ejected binaries. Each vertical bar repre-

sents the distribution of a for the corresponding mass Mc and is normalized

such that the integral over log10a in each mass bin yields unity. High-mass

clusters require a high velocity for escape, which a binary must acquire

through three-body interactions in order to be ejected. The energy needed

to escape is more easily gained once the orbital separation has decreased

sufficiently (see equation 41). As a consequence, the mean value of a at

ejection shifts to smaller separation with increasing cluster mass Mc.

(see Fig. 4 and Table 3). This behaviour can be attributed to the

fact that the BHs are not in energy equipartition with the rest of

the cluster. Adding more BHs without affecting the distribution

of the luminous cluster members requires that the BHs are spread

out farther from the core, where they have traditionally been ex-

pected to reside. Accordingly, the mean density of BHs goes down,

and they are less likely to interact with each other. However, be-

cause they are well mixed with the stars at larger radii, the number

of BH–NC binaries that form in three-body exchanges grows. Ad-

ditionally, since these binaries form farther from the core, they also

have the benefit of a shallower potential to climb out of.

Besides influencing the number of ejected binaries, the number

of retained BHs also affects the distribution of the semimajor axes

of the ejected binaries. In Fig. 7, we show the distribution of semi-

major axes for the ejected BH–NC binaries in our cluster model for

NGC 5694 for the three different choices of BHs retained. We

choose this cluster since it is representative of the effect that the

number of retained BHs has on the population of ejected BH–NC

binaries. Fig. 7 displays an increase in the width of the distribu-

tion of semimajor axes for larger populations of BHs. This is again

related to the necessary spreading of the BHs, as we increase the

number of BHs harboured by the cluster.

Therefore, the BH–NC binaries that form outside of the core,

where the escape velocity drops rapidly as a function of radius, can

be ejected while their binding energies are of comparably lower

magnitudes. Although the more widely separated binaries are less

likely to become mass-transferring systems, the simulations with

large BH numbers tend to have much higher ejection rates. The

higher ejection rates still produce enough tight binaries in the tail of

distribution to outnumber those produced with fewer BHs present.

The remaining structural property of GCs that has a clear effect on

the population of ejected binaries is the cluster density. In Fig. 8, we

plot the distribution of ejection times as a function of the luminous

central density, which is related to the core density as discussed in

Section 2.2.2. The distribution establishes that the cluster density

Figure 7. The probability distribution for the ejected BH–NC binary semi-

major axes from NGC 5694, a representative case, with a population of 20,

200, and 1000 BHs. An increase in the number of BHs requires spreading

the BHs outside of the core, where they are more likely to form binaries

with NC objects. In the outskirts, the energy necessary to escape is much

smaller, allowing the binary to escape before it has had sufficient time to

harden. These binaries escape with comparatively low-magnitude binding

energy and wide orbital separations.

Figure 8. The distributions of time of ejection tej as a function of the lumi-

nous central density ρL for the ejected binaries. Each vertical bar represents

the distribution of tej for the corresponding core luminosity density ρL and

is normalized such that the integral over log10tej in each density bin yields

unity. In higher-density clusters, where encounters occur more frequently,

many binaries are ejected after only a few Gyr, while in the lower-density

clusters most ejections occur near the end of the 10 Gyr evolution.

has some impact on the time at which binaries are ejected from

their host GCs. The time between binary-single encounters can be

approximated by

tenc = Ŵ−1 =
vm

2πG(mb + m̄)noa
, (43)

where vm is the mean velocity of stars in the cluster, no is its core

density, and m̄ is the mean mass. Combining this result with equation

(40), we can obtain an approximation for the rate at which a binary

increases its kinetic energy �T/�t. As encounters approximately
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occur in increments of the encounter time-scale, letting �t = tenc,

we find that the rate at which the binary increases its kinetic energy,

�T

�t
=

(

2πG2m1m2m3ǫ

vm

)

no, (44)

scales with the cluster core density. Therefore, the time it takes for

a binary to acquire a high enough velocity to escape is reduced

for higher-density clusters. As can be seen in Fig. 8, in clusters

of higher density, where encounters occur more frequently, most

BH–NC systems are ejected after only 3 Gyr of evolution, whereas

in lower-density clusters most ejections take place near the end of

the 10 Gyr simulation (i.e. the present day),

4.2 Black-hole low-mass X-ray binaries

Here, we focus strictly on the population of the present-day mass-

transferring systems that have successfully become BH-LMXBs.

These results reflect the contribution to the BH-LMXB population

from the entire population of non-core-collapsed Milky Way GCs.

The production of BH-LMXBs is based on a subset of 15 simulated

GCs and the methods detailed in Section 3.2. In the following sec-

tion, we discuss the distribution and the properties of this population

of BH-LMXBs from GCs.

As discussed at the end of Section 3.1, some clusters require

choosing a BH retention fraction of unity, frBH
= 1, in order to ob-

tain the desired quantity of BHs. This occurs in the lowest-mass

cluster for each set of NBH, i.e. Pal 13 for NBH = 20, NGC 6838

for NBH = 200, and NGC 6121 for NBH = 1000. These specific

parameter sets are not used in determining the population of BH-

LMXBs. Although the results from these three sets are included in

the previous discussions, they are excluded here due to the unphys-

ical nature of complete BH retention. During BH formation, natal

kicks ensure that at least some fraction of the BHs formed from the

IMF are ejected from the cluster. This makes complete BH retention

essentially unattainable. In consideration of this, we include only

those models with frBH
< 1.

4.2.1 Population

The number of mass-transferring systems that develops from the

BH–NC binaries that are ejected from our model clusters strongly

depends on the assumed BH retention in GCs. We employ the

same notation as in Section 3.2.2 for BH retention: MIN refers to

NBH = 20, 200 refers to NBH = 200, and MAX refers to NBH = 1000.

The populations are generated from 104 realizations in the MIN

and 200 case and from 5 × 103 realizations for the MAX case,

as described in Section 3.2.2. The resulting BH-LMXB population

distributions are presented in Fig. 9. The MIN case produces zero

observable BH-LMXB systems. The 200 case produces 25+10
−6 mass-

transferring BH low-mass systems and the MAX case yields an

expectation value of 156+26
−24 ejected BH-LMXBs, with the stated

uncertainties bounding the 95 per cent confidence interval.

The clusters that contribute the largest number of BH-LMXBs

are those with the highest BH–NC ejection rates (see Table 3). As

is visible in Fig. 4, the expected number of ejections can be approx-

imated as a function of the number of retained BHs NBH and the

two fundamental parameters describing the cluster: the concentra-

tion c and the total cluster mass Mc. While the initial semimajor

axis at ejection a, which is sensitive to the cluster mass (Fig. 6),

is an important factor in determining whether a BH–NC will lead

to mass transfer, surprisingly, the fraction of BH–NCs that become

Figure 9. The distribution of the number of BH-LMXBs, NBH-LMXB, pro-

duced from 104 realizations for the NBH = 200 case and 5 × 103 realizations

for the NBH = 1000 case. The NBH = 20 case produces a population of zero

BH-LMXBs in 104 realizations. The expected values for the two producing

cases are 25+10
−6 for NBH = 200 and 156+26

−24 for NBH = 1000, with the stated

uncertainties bounding the 95 per cent confidence interval.

BH-LMXBs appears nearly constant across clusters. Equivalently

stated, 〈NBH-LMXB〉 ∼ fLMXB〈Nej〉 appears to hold true for the set of

clusters modelled, where fLMXB ∼ 0.25 represents the fraction of

ejected BH–NC binaries that evolve into BH-LMXBs. Although the

distributions of most orbital parameters, which determine whether

a system will evolve into a BH-LMXB, vary from cluster to cluster,

the thermal eccentricity distribution shared by all clusters ensures

that a roughly equal proportion of the ejected binaries will become

BH-LMXBs. For clusters that tend to eject wider binaries, it is only

the highly eccentric systems that become BH-LMXBs, and vice

versa.

For a given BH retention, the number of successfully formed

BH-LMXBs from GCs is potentially a function of the ejection

time, initial separation, initial eccentricity, primary and companion

masses, and the complex internal evolution of the binary. Yet, since

we find that the ejection properties are largely determined by the

cluster properties, namely the quantities defining the Fundamental

Plane, the size of the BH-LMXB population from GCs is well

approximated by the cluster properties alone.

4.2.2 Distribution

As GCs generally have low escape velocities, the ejected BH-

LMXBs typically escape with relatively low velocities. Due to

this, the distribution of BH-LMXBs closely mimics the distribu-

tion of GCs in the Milky Way galaxy. In Fig. 10, we present the

spatial probability distribution of BH-LMXBs from GCs, for the

MAX case, on a Mollweide projection of the Galactic map in

longitudinal and latitudinal Galactic coordinates (l, b). Addition-

ally, we include the distribution of Galactic GCs and known BH-

LMXBs from BlackCAT (Corral-Santana et al. 2016), a catalogue

of candidate BH-LMXBs, which we use in all figures including

an observed population, unless stated otherwise. Although the 200

case produces fewer BH-LMXBs, the distribution is qualitatively

similar to the MAX case. The highest probability density region is

near the Galactic centre, where the majority of GCs reside. How-

ever, as Fig. 5 illustrates, the distributions of the ejection velocities
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Figure 10. The spatial probability distribution of the simulated population of BH-LMXBs from GCs with NBH = 1000. The populations of Milky Way GCs

(marked by black circles) and known BH-LMXBs (marked by orange stars) are included for reference. The map is a Mollweide projection of the (l, b) Galactic

coordinate system. The Galactic centre is located near 0◦ latitude and 0◦ longitude, where the high density of objects explains the clustering of BH-LMXBs

and GCs.

Figure 11. The spatial probability distribution of the simulated population

of BH-LMXBs from GCs with NBH = 1000 in the R–z plane. The coordinate

z specifies the distance perpendicular to the Galactic plane and R is the in-

plane distance from the Galactic centre at the origin. The populations of

Milky Way GCs (marked by black circles) and known BH-LMXBs (marked

by orange stars) are included for reference. While many of the BH-LMXBs

from GCs populate the Galactic disc, the distribution extends well out of the

Galactic plane into the high-|z| region.

have widths that span an order of magnitude or more. As a conse-

quence, some fraction of the binaries have ejection velocities that

allow them to separate from their parent cluster. Additionally, the

binaries that are ejected at an earlier time in the GC’s orbit have

sufficient time to diverge from the host GC orbit. The higher-density

streaks in Fig. 10 can be attributed to these binaries that have drifted

from the parent GC.

As GCs primarily follow halo orbits that extend well out of

the Galactic plane, the GCs are easily able to populate this space

with BH-LMXBs. In Fig. 11, we provide the spatial probability

distribution for BH-LMXBs from the MAX case in the R–z plane.

Again, we present only the MAX case, as the 200 case is sim-

ilarly distributed but with a lower overall probability density. The

median absolute distance from the Galactic plane is |z| = 1.63 kpc

Figure 12. The normalized CDF of the absolute distance perpendicular

to the Galactic plane |z|. The included distributions are the BH-LMXBs

produced in our GC simulations for the cases of NBH = 200, NBH = 1000,

and the observed population. Note that in the case that GCs have minimal

BH retention (NBH = 20), no mass-transferring systems are produced.

and the median distance from the Galactic centre in the plane is

R = 4.51 kpc. While it is clear from Fig. 11 that many of the

BH-LMXBs from GCs are located in the Galactic disc, the distri-

bution extends well out of the Galactic plane into the lower-density

regions above and below the disc. BH-LMXBs that form in the

field will generally reside in the high-density Galactic plane, un-

less they receive substantial kicks at birth, which might eject them

into the ‘high-z’ regions. However, the magnitude of BH-LMXB

kicks is still uncertain and the magnitude necessary to reach the

highest of BH-LMXBs from GCs is considered unlikely (see e.g.

Repetto & Nelemans 2015; Mandel 2016). In Fig. 12, we show

the CDF of the absolute distance |z| perpendicular to the Galactic

plane for the MAX case, the 200 case, and the observed population

of BH-LMXBs. The observed population terminates at a maximum

|z| ∼ 2 kpc, while the BH-LMXB population from GCs extends well

beyond this point. This produces a region of space that is unique to
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Figure 13. The probability distributions of BH masses in BH-LMXBs for

the observed population (Özel et al. 2010) and for the BH-LMXBs produced

in our GC simulations for the cases of NBH = 200, 1000. Note that in the case

that GCs have minimal BH retention (NBH = 20), no mass-transferring sys-

tems are produced. The discontinuous jumps in the distribution correspond

to the mass bin minimum and maximum, with a power-law distribution in-

between determined by the EMF. The lowest-BH-mass bin was truncated at

7 M⊙.

a population of BH-LMXBs from GCs, a population distinct from

those forming in the field.

4.2.3 Properties

A typical BH-LMXB with a GC origin has an initial semimajor

axis of 5.71 R⊙, initial BH mass of 8.09M⊙, and an initial com-

panion mass of 0.4M⊙. The median present-day period is 4.48 h

and the median present-day BH mass is 8.25M⊙, which has in-

creased above the initial median BH mass due to accretion from the

companion. As discussed in Section 3.2.2, the masses used in the

Monte Carlo models for the ejected binaries are sampled according

to the EMF from the mass bin corresponding to the mass in the

ejected BH–NC. This is done for both the primary BH mass MBH

and the companion mass m2 to obtain the mass distributions, which

we discuss below.

In Fig. 13, we show the distribution of the BH mass in the popu-

lation of BH-LMXBs from GCs for both cases that produce mass-

transferring systems.

Along with the BH mass distributions for the 200 and MAX cases,

we include the inferred BH mass distribution from observations

(Özel et al. 2010). Although the observed mass distribution reaches

down to ∼5M⊙, our EMF does not produce BH masses in the

range MBH < 7M⊙. The BH primary mass is peaked at 7.4 M⊙ and

displays a preference for the lower-mass BHs. The lack of systems

at high-mass BH can be attributed to two contributing factors. The

leading contribution is the distribution of BH masses in the ejected

BH–NCs, which is dominated by the two lowest-BH-mass bins (i.e.

8.87M⊙ and 20.48M⊙). Although these are produced in nearly

equal numbers, the preference for the lowest-mass bin that arises

in the BH-LMXBs is due to a secondary effect introduced during

the binary stellar evolution. High-mass ratio systems are prone to

disrupting the companion star, ending the possibility of evolving

into a stable BH-LMXB. Despite these barriers to forming BH-

LMXBs with high-mass BHs, there remains a small population of

Figure 14. The probability distributions of the companion masses in BH-

LMXBs for the cases NBH = 1000 and NBH = 200. The observed popu-

lation includes 12 of the 18 confirmed BH-LMXBs in BlackCAT (Corral-

Santana et al. 2016) that have the necessary observational quantities (see

Section 4.2.3 for a description of the observed population) and are included

for reference; the circles indicate the mean value, the line represents the

uncertainty in the observations, and the inclusion of an arrow indicates that

the uncertainty is only bounded on one side. The remaining 6 confirmed BH-

LMXBs have companion masses above the range considered here, where

the axis has been truncated to focus on the range of masses less than the MS

turn-off mass mto = 0.85 M⊙. The peaks in the simulated distributions are

due to the sampling of companion masses from the EMF within each mass

bin.

high-mass present-day BH-LMXBs, with MBH > 40M⊙, which

accounts for ∼1 per cent of the population.

The low-mass companions are restricted to the range

m2 < 0.85 M⊙, where the maximum mass is constrained by the

MS turn-off mass, mto = 0.85 M⊙. The present-day companion

mass is a function of the mass-transfer rate and the time since the

onset of mass transfer. The majority of the companion masses are

MS stars; however, there exists a sub-population of WD companion

masses that account for ∼10 per cent of the companions in the MAX

case and ∼20 per cent in the 200 case. In Fig. 14, we display the

companion mass distribution for the MAX case, 200 case, and the

observed population of BH-LMXBs.

The lack of lower-mass companions in the 200 case relative to

the MAX case is due to the higher fraction of WDs, which have

masses mWD � 0.4 M⊙. In the MAX case, there is a larger number

of BHs in the outskirts where the lowest masses reside, whereas the

200 case is more centrally concentrated where there is an increase in

the probability of picking up a higher-mass companion and which

includes a larger population of WDs. The observed population in

Fig. 14 is generated from the observational data in the candidate BH-

LMXB catalogue BlackCAT. There are 18 confirmed BH-LMXBs

in the catalogue that have a measurement of the BH mass MBH and

the mass ratio q, which we use to estimate the companion mass

m2 = q MBH. The companion masses in the observed population

have large error bars due to the uncertainty in the measurements of

the BH mass and the mass ratio.

The initial eccentricity of the binaries follows a thermal distri-

bution, while the initial semimajor axis, as discussed in 4.2.1, is

typically (a/AU) ≪ 1, due to their GC origin. The small initial

separation of the BH–NCs leads to a distribution of periods p where

∼99 per cent of the BH-LMXBs have p � 6.2 h for the MAX case
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Figure 15. The probability distribution of orbital periods in the simulated

BH-LMXBs from GCs for the two stellar companion sub-populations: WD

and MS. The periods for the observed population of BH-LMXBs that are

less than 13 h are included for reference and are identified by orange tick

marks (18 of the 28 candidate BH-LMXBs from BlackCAT). To preserve the

relative size of the MS and WD companion populations, each distribution is

independently normalized and then multiplied by the factors NBH-MS/N and

NBH-WD/N, respectively, with N = NBH-MS + NBH-WD. This normalization

is applied to each NBH case independently.

and p � 6.8 h in the 200 case. The sub-population of BH-LMXBs

with a WD companion have a qualitatively similar distribution but

with a reduced period such that ∼99 per cent of the population have

p � 3 h for both cases, MAX and 200. The reduced period for the

WD companions is due to the smaller separations necessary to in-

duce mass transfer for these compact objects. In Fig. 15, we display

the bi-modal distribution of the orbital period for our population of

BH-LMXBs along with a subset of the observed population with

periods less than ∼1/2 d.

The mass transfer in these systems is primarily driven by angular

momentum loss due to tidal circularization. As the companion star

passes the BH at periastron, the tidal forces from the BH deform

the star and dissipate energy. This tidal torque efficiently removes

eccentricity from the system and eventually leads to circularization

of the orbit with a reduced period. Once the period reaches some

critical separation, the companion star overfills its Roche lobe and

transitions to a state of mass transfer. This is the same mechanism

operating on the BH-LMXBs with a WD companion; however due

to the compact nature of WDs, the critical separation that leads to

Roche lobe overflow occurs at smaller separations, hence the shorter

orbital periods. The binary evolution for the BH-LMXBs from GCs

is significantly different from the evolution of field binaries. In

the standard binary evolution picture, the companion evolves to

overfill its Roche lobe, which can lead to mass transfer at relatively

large separations. The MS stars in BH-LMXBs from GCs have not

evolved significantly within the cluster, but evolve on much longer

time-scales, preventing them from achieving mass transfer at wide

separations.

In Fig. 16, we provide a temperature-luminosity diagram for the

mass-transferring MS companions. We exclude the WD systems

from the diagram, since they are likely too faint for observation.

The MS companions have temperatures ∼1500–6300 K and lumi-

nosities ∼6 × 10−4 – 0.5 L⊙, making these identifiable as K/M

late-type MS stars below the MS turn-off.

Figure 16. Temperature-luminosity diagram for the BH-LMXB compan-

ion mass in the simulated population of BH-LMXBs from GCs with

NBH = 1000. The low-luminosity WD companions are excluded from the

figure, leaving only the mass-transferring MS companions. Since the MS

companions from GCs are unevolved stars, the companion temperature-

luminosity diagram is essentially the portion of the Hertzsprung-Russell

MS branch with m2 < mto.

Figure 17. The probability distributions for the space velocity v of the sim-

ulated BH-LMXB population for the two BHs retention values NBH = 1000

and NBH = 200. The BH-LMXB space velocity is v = vej + vGC, where

vej is the ejection velocity and vGC is the velocity of the host GC. Since vej

is approximately the GC escape velocity, the magnitude v is dominated by

the relatively large contribution from vGC. As such, the velocity distribution

of BH-LMXBs is consistent with the velocity distribution of GCs, which is

reflected in the high mean velocities.

A distinct characteristic of these systems are their kinematic prop-

erties. In Fig. 17, we show the distribution of the magnitude of the

velocity v of the BH-LMXBs from GCs.

The velocity v is computed from the components of the space

velocity in the heliocentric Galactic coordinate system (U, V, W),

a right-handed coordinate system with U in the direction of the

Galactic centre, V along the direction of rotation, and W pointing

towards the Galactic north pole. The median values of the velocity

components for the MAX case are (U, V, W) = (− 24.47, −211.31,

−22.23) km s−1. The large negative velocity in the V component is

indicative of this population not participating in Galactic rotation.
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The peculiar velocity – the velocity of a source relative to a local

standard of rest, obtained by removing the contribution of Galactic

rotation at the source distance in the Galactic plane R – is sometimes

used to infer a ‘natal kick’ for BH-LMXBs. Although it is possible

to convert the Galactic space velocity to a peculiar velocity, this

inferred ‘kick velocity’ is only justified in assuming the source

was born in the Galactic disc, where it participates in Galactic

rotation. For BH-LMXBs formed in the field, which is most likely

to occur in the disc, this is a reasonable assumption. However, the

V component of the BH-LMXBs from GCs indicate low rotational

velocities, which is consistent with the parent GC halo orbits, which

are typically non-circular and extend well out of the Galactic plane.

As the BH-LMXBs with GC origins are ejected at relatively low

velocities along the GC’s orbit in the Galaxy, this population of BH-

LMXBs has a velocity distribution consistent with the high-velocity

halo orbits of GCs. As these systems have high apparent peculiar

velocities, due to their halo orbits and the lack of participation in

Galactic rotation, attempting to infer a ‘natal kick’ from the peculiar

velocity in such a case is ill-posed and leads to the conclusion of a

large required ‘natal kick.’

4.3 Merger events

4.3.1 GW-driven mergers

As briefly discussed in Section 2.3, we allow for gravitational-

radiation-driven mergers between compact objects. Since all of our

‘test binaries’ contain at least one BH, the allowable set of GW

merger pairs is limited to BH–NS, BH–WD, and BH–BH. In addi-

tion to those binaries that merge during their evolution within the

cluster, binaries of these types can also be ejected from the cluster.

In the case of the ejection of a compact pair, we calculate the ex-

pected merger time td using the ejected binary parameters and refer

to these as post-ejection mergers if tej + td < tH, where tH = 1010 yr

is approximately the Hubble time. The total merger rate includes

these post-ejection mergers in addition to the in-cluster mergers.

Here, we present an estimate of the merger rates averaged over the

1010 yr simulations for different BH retention values.

For notational convenience, we refer to a parameter set as xi,

where the index i runs over the 39 parameter sets that make up each

row of Table 2 and corresponds to a specific GC and value of NBH.

We compute the expected number of mergers for each parameter

set by considering the probability of a BH being involved in a

merger, defined simply by Pm(xi) = Nmergers(xi )

Nruns(xi )
, multiplied by the

BH population

〈Nm〉i = Pm(xi) NBH(xi). (45)

In the case of a merger involving two BHs, the expectation value is

calculated using NBH(xi)/2 in order to avoid double counting. The

rightmost three columns of Table 4 list the expected number of GW-

driven compact object mergers over the lifetime of each cluster for

a given BH population. The number of BH–BH mergers is strongly

correlated with the GC core density no. Each population of BHs

has a merger expectation value that follows a power law in the core

density with exponent ∼0.58. Since we do not include primordial

binaries, exchange encounters are the only means to forming BH–

BH binaries that can later merge. The average rate of encounters is

directly proportional to the density, with the highest-density clusters

providing the largest number of opportunities to successfully form

BH–BH binaries. There are additional correlated variables, such as

the concentration c and velocity dispersion σ ; however, these are

secondary to the density no and likely due to their own correlation

with no.

Given the expected number of mergers for each cluster, we de-

termine a weighted average using the GC mass function, since the

total cluster mass of GCs is not uniformly distributed (McLaughlin

& Pudritz 1996). We do this individually for each group of simu-

lations belonging to the sets NBH = {20, 200, 1000}, utilizing the

GC mass spectrum dN(Mc)/dMc of McLaughlin & Pudritz (1996).

For each simulated cluster, we assign a weight wi = N(Mc(xi)) and

compute the expected number of mergers per cluster in the Milky

Way from

〈Nm(NBH)〉 =
∑

i wi 〈Nm〉i
∑

i wi

. (46)

For clarity, to obtain the expected number of mergers for NBH = 20,

we sum over all parameter sets in Table 2 with NBH = 20. The result-

ing expected number of BH–BH mergers over the life of a cluster

for each choice of NBH are 〈Nm(20)〉 = 0.513, 〈Nm(200)〉 = 5.08,

and 〈Nm(1000)〉 = 62.5.

We convert the expected number of mergers to a merger rate

density by assuming that our simulations of Milky Way GCs are

a fair representation of GCs in other galaxies, that the GCs are all

approximately tGC = 1010 yr old, and that the spatial density of GCs

in the Universe is ρGC = 0.77 Mpc−3 (see supplemental materials

of Rodriguez et al. 2015). Using the weighted averages computed

above as our ‘typical’ cluster merger values and assigning this value

to each GC in the volume, we obtain the merger rate density due to

all GCs in the Universe,

〈R(NBH)〉 =
〈Nm(NBH)〉

tGC

ρGC. (47)

In Table 5, we provide the computed estimated merger rate densities

for compact object mergers due to GCs for the three populations

of NBH we consider. Although there is an increased interest in the

BH-mass spectrum for BH–BH mergers in GCs, stimulated by the

larger than expected BH masses recently detected by aLIGO (Abbott

et al. 2016d), the use of just three discrete BH masses precludes the

possibility of such an analysis.

Since BH–BH mergers from GCs only partially contribute to

the total merger rate, with the remaining mergers coming from the

field, the rates due to GCs should not exceed the upper bound of the

total estimated merger rate. The most recent observational evidence

constrains the BH–BH merger rate density to lie in the range of

12–213 Gpc−3 yr−1 (Abbott et al. 2017). The GC BH–BH merger

rate densities given in Table 5 for the three different BH retention

scenarios are well below the upper bound, presenting no conflict

with the observed rate. It is tempting to rule out the lower BH

retention cases based on their relatively low merger rate densities

compared to the observed lower bound. However, we emphasize

that the rates presented in Table 5 are the expected rates due to GCs

alone, while the observed rate provides bounds on the total BH–BH

merger rate that includes the contribution from the field. We could

attempt to convert the cluster merger rate to a total rate, but this relies

on a well constrained value of the GC fractional contribution. Given

the large uncertainty in this fractional contribution, any attempt to

approximate the total rate will be dominated by the error in the

fractional estimate. Therefore, we presently refrain from ruling out

certain BH populations based on their BH–BH merger rate densities

alone.

The bounds of our merger rates, which span a wide range of

uncertainty in BH retention, are consistent with previous studies that

provide estimates of the BH–BH merger rate from GCs (O’Leary
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Table 4. Expected number of mergers. For each cluster and number of retained BHs, we list the exact number of BHs in the cluster along with the expected

number of mergers over the cluster lifetime. The number of expected mergers within a cluster are Poisson distributed. Denoting each expectation value λ, the

standard deviation, σ , associated with each value in the table follows from Poisson statistics and is given by σ =
√

λ.

Three-body mergers GW mergers

Name NBH BH–NC BH–WD BH–NS BH–BH BH–WD BH–NS BH–BH

NGC 13 19.64 2.53 × 10−1 1.81 × 10−2 0.00 0.00 1.42 × 10−2 0.00 7.74 × 10−3

NGC 6838 20.61 8.27 1.02 8.98 × 10−3 1.68 × 10−3 9.27 × 10−1 6.85 × 10−2 2.99 × 10−1

174.55 4.40 × 101 4.76 1.71 × 10−2 4.27 × 10−3 4.15 2.22 × 10−1 1.54

NGC 6535 19.89 5.32 5.96 × 10−1 1.28 × 10−2 2.77 × 10−4 5.15 × 10−1 4.55 × 10−2 1.97 × 10−1

198.95 3.29 × 101 3.30 1.19 × 10−2 0.00 2.88 1.90 × 10−1 1.19

NGC 6362 20.22 4.77 4.81 × 10−1 4.97 × 10−3 1.24 × 10−3 5.33 × 10−1 2.55 × 10−2 1.83 × 10−1

199.33 3.40 × 101 3.82 2.95 × 10−2 2.95 × 10−3 3.49 1.59 × 10−1 1.11

NGC 5053 21.71 5.63 × 10−1 2.51 × 10−2 3.14 × 10−4 3.14 × 10−4 3.21 × 10−2 3.14 × 10−4 1.79 × 10−2

199.65 3.89 1.71 × 10−1 0.00 0.00 2.33 × 10−1 0.00 1.22 × 10−1

NGC 6121 20.70 1.51 × 101 2.31 4.30 × 10−2 5.02 × 10−3 2.19 6.99 × 10−1 9.91 × 10−1

200.53 1.22 × 102 1.71 × 101 3.25 × 10−1 2.80 × 10−2 1.74 × 101 3.45 6.74

1039.16 3.85 × 102 4.32 × 101 5.90 × 10−1 8.43 × 10−2 5.50 × 101 4.80 1.70 × 101

NGC 5694 20.49 2.21 × 101 4.62 9.93 × 10−2 2.19 × 10−3 4.36 2.34 2.34

200.39 1.98 × 102 3.83 × 101 8.39 × 10−1 4.49 × 10−2 3.53 × 101 1.57 × 101 1.69 × 101

1001.94 6.90 × 102 1.10 × 102 2.87 2.87 × 10−2 1.14 × 102 2.75 × 101 5.06 × 101

NGC 6093 19.85 3.70 × 101 9.09 1.23 × 10−1 1.33 × 10−3 6.19 4.46 5.21

198.31 3.96 × 102 9.52 × 101 1.33 2.83 × 10−2 6.85 × 101 3.67 × 101 4.64 × 101

1004.51 2.01 × 103 4.60 × 102 3.68 1.08 × 10−1 3.81 × 102 1.42 × 102 2.03 × 102

NGC 5286 12.29 1.10 × 101 1.50 3.09 × 10−2 1.82 × 10−3 1.45 6.40 × 10−1 1.06

198.28 2.07 × 102 3.19 × 101 3.95 × 10−1 3.95 × 10−2 3.38 × 101 5.97 1.45 × 101

787.45 7.43 × 102 1.14 × 102 1.06 9.61 × 10−2 1.23 × 102 1.20 × 101 3.96 × 101

NGC 6656 19.80 1.53 × 101 2.18 4.90 × 10−2 7.90 × 10−4 2.37 4.74 × 10−1 1.13

205.86 1.52 × 102 2.32 × 101 2.94 × 10−1 1.96 × 10−2 2.46 × 101 3.55 9.43

1000.35 5.92 × 102 7.79 × 101 1.01 0.00 9.36 × 101 8.09 2.90 × 101

NGC 1851 20.76 2.40 × 101 4.28 9.53 × 10−2 0.00 2.74 2.69 3.41

203.71 2.77 × 102 4.80 × 101 8.21 × 10−1 4.40 × 10−2 3.62 × 101 2.41 × 101 2.85 × 101

1039.94 1.42 × 103 2.45 × 102 5.24 2.28 × 10−1 2.30 × 102 8.11 × 101 1.17 × 102

NGC 6205 20.10 1.42 × 101 2.06 4.34 × 10−2 1.50 × 10−3 2.28 5.73 × 10−1 1.17

199.58 1.35 × 102 1.94 × 101 3.69 × 10−1 1.20 × 10−2 2.23 × 101 3.60 8.74

998.62 5.12 × 102 6.68 × 101 7.62 × 10−1 0.00 7.95 × 101 7.66 2.49 × 101

NGC 6441 20.98 2.57 × 101 3.95 7.91 × 10−2 1.32 × 10−2 2.26 2.76 5.12

212.57 3.54 × 102 6.14 × 101 1.57 4.36 × 10−2 4.98 × 101 2.65 × 101 5.08 × 101

1010.37 2.07 × 103 3.32 × 102 7.38 0.00 3.06 × 102 1.06 × 102 1.99 × 102

NGC 104 22.49 2.51 × 101 4.83 1.88 × 10−1 4.71 × 10−3 3.36 4.29 4.34

222.95 2.92 × 102 5.64 × 101 1.90 1.07 × 10−2 4.70 × 101 4.08 × 101 3.80 × 101

979.55 1.30 × 103 2.33 × 102 7.90 5.72 × 10−2 2.21 × 102 1.29 × 102 1.33 × 102

NGC 5139 20.84 7.15 8.37 × 10−1 1.89 × 10−2 7.90 × 10−4 1.16 1.52 × 10−1 4.63 × 10−1

207.50 7.02 × 101 6.80 1.07 × 10−1 1.78 × 10−2 1.15 × 101 9.86 × 10−1 3.45

1009.04 2.91 × 102 2.84 × 101 5.15 × 10−1 2.15 × 10−2 4.55 × 101 4.29 1.14 × 101

Table 5. The contribution to the compact merger rate density from all GCs

in the Universe, stated in Gpc−3 yr−1. Each row corresponds to the merger

rate contribution from GCs with the simulated BH population specified

by NBH in 〈R(NBH)〉. The merger rate densities are averaged over the life

of the cluster, weighted by the GC mass function to account for the non-

uniform mass distribution of GCs, and assumes a GC spatial density of

ρGC = 0.77 Mpc−3.

〈R(NBH)〉 BH–BH BH–NS BH–WD

〈R(20)〉 3.95 × 10−2 2.71 × 10−2 7.15 × 10−2

〈R(200)〉 3.91 × 10−1 2.51 × 10−1 7.73 × 10−1

〈R(1000)〉 4.81 2.83 10.59

et al. 2006; Sadowski et al. 2008; Downing et al. 2011; Morscher

et al. 2015; Rodriguez, Chatterjee & Rasio 2016a). However, we

find that only ∼10 per cent of the BH–BH mergers occur outside of

the cluster boundaries, which differs from a subset of these previous

studies. In Downing et al. (2011), no mergers occur in cluster, while

in Morscher et al. (2015), ∼85 per cent of BH–BH mergers occur

post-ejection, and Rodriguez et al. (2016a) find that ∼90 per cent

merge outside the cluster. In contrast to the small number of BH–

BH binaries, these studies find merging in cluster, O’Leary et al.

(2006) finds that only ∼24–72 per cent of the BH–BH mergers are

post-ejection. Finally, Sadowski et al. (2008) is most closely aligned

with our results, with ∼10 per cent of mergers occurring out of the

cluster.

This discrepancy in merger location can be attributed to the dis-

tribution of the BHs in the cluster and their interactions with the

lower-mass components. In models with centrally clustered BHs,

the BHs are segregated from the remainder of the cluster, forming

an isolated and decoupled system. These self-interacting BHs ef-

ficiently form BH binaries. Strong binary–binary interactions can

eject these binary BHs from the cluster, where they might later

merge in isolation. In addition to the efficient removal of BH bina-

ries from the core, binary-single interactions are equally efficient

at ejecting single BHs from the cluster. Furthermore, these strong
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encounters are likely to interrupt potential mergers of eccentric BH

binaries that would merge in-cluster if uninterrupted. This chan-

nel leads to a majority of BH–BH mergers outside of the cluster

and eventually depletes the GC of BHs (e.g. O’Leary et al. 2006;

Banerjee, Baumgardt & Kroupa 2010; Downing et al. 2011). We

assume that in order for GCs to retain significant BH populations,

the BHs must avoid segregating in the core, which we accomplish

through a modified velocity dispersion for the BHs, as discussed in

Section 2.2.4. This modified velocity dispersion spreads the BHs

throughout the cluster, where they can interact with the lower-mass

stars. This supposition is similar to the assumptions made in Sad-

owski et al. (2008) and produces qualitatively similar results.

In our simulations, a key channel for producing BH–BH binaries

is through the formation of a binary composed of a BH and a non-

BH outside of the core, which eventually drift to the centre where

there is a high density of BHs. The non-BH will be preferentially

exchanged with one of the more massive BHs in the core, producing

a BH–BH binary that will realize one of three outcomes: (1) the BH–

BH binary will be dismantled in the high-density region, (2) given

a sufficiently large eccentricity (hence a shorter orbital decay time),

will eventually merge in the core, or (3) will harden and be ejected

from the cluster. This formation channel is similar to that described

in Sadowski et al. (2008). As discussed in Section 2.3.5, we allow

for single BHs to exchange into existing binaries. The majority

of binaries that a single BH encounters are binaries composed of

two low-mass stars. Successful exchanges of a more massive BH

for one of the lower-mass stars tend to produce high-eccentricity

BH–non-BH binaries following the relation

〈e〉 ≈ 1 − 1.3
(mnon-BH

mBH

)

, (48)

which is independent of the initial eccentricity and applicable when

mnon-BH ≪ mBH (Sigurdsson & Phinney 1993). For the three BH

masses considered, MBH = {8.87, 20.48, 57.18} M⊙, and a cluster

non-BH star with an average mass of 〈mnon-BH〉 ≈ 0.3 M⊙, this

leads to mean initial eccentricities of 〈e〉 ≈ {0.956, 0.981, 0.993}.

Once the binary makes it to the core, the non-BH is easily exchanged

for one of the many massive BHs, yielding a highly eccentric BH–

BH binary according to equation (48). In Fig. 18, we display the

eccentricity distributions for the BH–BH binaries at formation and

at merger or ejection for those binaries that have end states (2) and

(3), as described above, respectively. Some fraction of the eccentric

binaries that form through this channel are driven to high enough

eccentricities that they can merge in-cluster in-between encounters.

The remainder are subject to further encounters that drive their

eccentricities towards a thermalized distribution, are hardened in

the process, and are eventually ejected.

The eccentricity distribution of merging BH–BH binaries is im-

portant for the detection of the resulting gravitational waves. The

eccentricity tends to zero as the orbit shrinks; however modern de-

tectors are sensitive to the GW signal at frequencies when the binary

is still in the inspiral phase and the eccentricity is finite. The aLIGO

(LIGO Scientific Collaboration et al. 2015) detectors are sensitive

to ∼10 Hz, at design sensitivity, while the future space-based de-

tector LISA (Amaro-Seoane et al. 2012) will be sensitive to much

lower frequencies ∼1 mHz. We determine the eccentricity at a spe-

cific frequency by evolving ao and eo, according to 〈de/da〉 (Peters

1964), up until some target value a associated with the frequency

in consideration.

In Fig. 19, we display the residual eccentricity of the inspiralling

BH–BH binaries, as they first enter the design-sensitivity frequency

bands for aLIGO and LISA. It is apparent that for aLIGO, both

Figure 18. The probability distributions of eccentricity for two populations

of BH–BH binaries in GCs: BH–BH binaries that form and merge in cluster

(BH–BHm, black lines) and the BH–BH binaries that form and are ejected

from the cluster (BH–BHej, blue lines). For each population, we show the

eccentricity distribution at the time the binary forms, e(to) (solid lines), and

the distribution of eccentricities at the binary’s final state (dashed lines).

The final state of the in-cluster mergers is at a time tm, the time at which

the computed merger time is less than the cluster time-step. The final state

for the ejected binaries is the time of ejection tej. A thermal eccentricity

distribution, with probability density f(e) = 2e, is included for reference.

Figure 19. The eccentricity probability distributions for two populations of

BH–BH mergers from GCs for the two detectors aLIGO and LISA. The two

populations correspond to the BH–BH mergers occurring in-cluster (solid

lines) and those that merge outside of the cluster, post-ejection (dashed lines).

The black lines correspond to the eccentricity of each population when it

reaches a corresponding gravitational wave frequency of fGW = 10 Hz, the

lower-bound frequency of the aLIGO band at design sensitivity. The blue

lines represent the eccentricity distribution at fGW = 1 mHz, the proposed

lower-bound frequency for LISA.

the ejected mergers and the initially high-eccentricity in-cluster

mergers have residual eccentricity distributions below 10−1, which

has a negligible effect on detections using circularized templates.

However, in the case of LISA, while the ejected mergers result in a

small eccentricity at 1 mHz, the initially highly eccentric in-cluster

merger population remains significantly eccentric at this frequency.
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Table 6. The rate of three-body mergers in GCs computed for the Milky

Way galaxy and stated in MWEG−1Myr−1. Each row corresponds to the

three-body merger rate in Milky Way GCs with the simulated BH population

specified by NBH in 〈R(NBH)〉. The merger rates are averaged over the life

of the cluster, weighted by the GC mass function to account for the non-

uniform mass distribution of GCs, and assumes NGC ≃ 150 for the number

of GCs in the galaxy.

〈R(NBH)〉 BH–NC BH–WD BH–NS BH–BH

〈R(20)〉 1.02 × 10−1 1.60 × 10−2 2.65 × 10−4 1.64 × 10−5

〈R(200)〉 1.08 1.72 × 10−1 2.53 × 10−3 1.40 × 10−4

〈R(1000)〉 12.27 2.14 3.03 × 10−2 1.11 × 10−3

Utilizing 〈de/da〉 to determine the evolved eccentricity assumes

that the binary evolves in isolation. For the in-cluster mergers, we

classify a BH–BH binary as merged once the orbital decay time

has fallen below the cluster time-step. However, this could leave

significant time for further dynamics to modify the eccentricity

such that the binary will not in fact merge in cluster (Banerjee

et al. 2010). To account for this possibility, the in-cluster mergers

in Fig. 19 only include those mergers which satisfy the additional

constraint tdec < 〈tenc〉, which is satisfied for ∼70 per cent of in-

cluster mergers. Here, the average encounter time is approximated

by 〈tenc〉 = tbin/Nenc with tbin corresponding to the time since the

binary’s formation and Nenc is the number of three-body encounters

the binary has been subject to during the time tbin. The remaining

∼30 per cent of mergers are uncertain and are not further evolved;

they may be broken up, ejected, or merge after subsequent interac-

tions.

4.3.2 Three-body mergers

In addition to the GW-driven mergers, we also calculate the rate of

tidally driven mergers or ‘collisions’ that occur during three-body

encounters. The merger criteria are based on a minimum separation

between bodies, as discussed in Section 2.3.4. We compute the

expected number of three-body merger events only for those that

involve a BH. Although we track the number of three-body mergers

for all object types, including NS–NS, MS–WD, etc., we are missing

a significant fraction of these mergers by only tracking single BHs

or binaries with at least one BH. We compute the expected number

of mergers in a manner similar to the computation of GW mergers

above.

The left columns of Table 4 list the expected number of mergers

involving a BH that occur during three-body encounters over the

lifetime of each cluster for a given BH population. These three-body

mergers are computed using equation (45) to obtain an expected

value for each cluster in the set. As the majority of these events

will only be observationally relevant locally, we provide these rates

solely for the Milky Way galaxy. Using the computed values from

Table 4 we construct a cluster weighted average with equation (46).

From this we use a modified version of equation (47), with NGC ≃
150, for the approximate number of GCs in our Galaxy, in place of

ρGC to obtain the final approximate rate for each event: 〈R(NBH)〉 =
〈Nm(NBH)〉

tGC
NGC. These computed rates for BH–BH, BH–NS, BH–

WD, and BH–NC are shown in Table 6, stated in terms of the number

of expected events per Milky Way equivalent galaxy (MWEG) per

Myr. The BH–NC merger rate includes the three-body mergers of

both BH-RG and BH-MS.

These rates are included to ensure that a large population of

retained BHs in GCs does not lead to a conflict with observations.

Even in the case of maximal BH retention, the occurrence of these

events is relatively infrequent. The most commonly occurring three-

body collision is that between a BH and a NC star. The interaction

of a NC object with a BH, commonly referred to as a tidal disruption

event (TDE), is often studied in the context of supermassive BHs

rather than stellar-mass BHs. However, there is some interest in GC-

relevant NC collisions with stellar-mass BHs, which are referred to

as micro-TDEs (Perets et al. 2016). These events lead to full or

partial tidal disruption of the NC star and are accompanied by long-

duration energetic flares. There is large uncertainty in the signals

associated with these events as the strength and duration of the

signal depends heavily on the details of the encounter (see e.g.

Perets et al. 2016).

The signals associated with the compact mergers are likely to

appear as head-on mergers due to the criteria associated with cat-

egorizing mergers during three-body encounters; the exclusion of

higher-order corrections to Newtonian gravity in our three-body cal-

culations requires extremely close-encounters due to the relatively

small size of the compact objects involved. Despite the uncertainty

in the observables produced in three-body collisions, the rate of oc-

currence is low enough that our model does not generate a conflict

with present observations.

4.4 Comparison with observations and previous results

In our simulations, GCs produce a population of BH-LMXBs with

a unique set of characteristic properties. These properties provide

some constraints on the likelihood of a BH-LMXB having a GC

origin. In this section, we identify the key characteristics of BH-

LMXBs from GCs and determine which of the currently known

BH-LMXBs are consistent with this population.

As discussed in Section 4.2.3 and visible in Fig. 13, the spec-

trum of BH masses in BH-LMXBs from GCs in our simulations

is roughly consistent with the observed population of BH masses.

This makes the BH mass a poor candidate for differentiating be-

tween field-formed BH-LMXBs and those with a GC origin. As a

consequence of the age of GCs, the companions are typically un-

evolved MS stars, with masses necessarily below the turn-off mass

mto = 0.85 M⊙. Additionally, they reside on a tightly confined

branch of a temperature–luminosity diagram (see Fig. 16). This

provides the first distinctive characteristic of BH-LMXBs formed in

GCs: a companion mass of m2 � 0.85 M⊙ and a spectral class con-

sistent with late-type K/M stars. BlackCAT (Corral-Santana et al.

2016) currently contains 18 observed BH-LMXB systems with the

proper information to compute an estimate of the companion mass.

Of the 18 BH-LMXB systems, 6 BH-LMXBs have companion

masses exceeding the maximum companion mass in our popula-

tion of BH-LMXBs from GCs. Two of these six are near the edge

of the distribution with m2 � 0.9 M⊙, while the other four have

m2 ≥ 2.52 M⊙, suggesting these are more consistent with a field-

formation scenario.

A second property of a BH-LMXB with a GC origin is a char-

acteristically short period. As shown in Fig. 15, there is a sharp

limit in the distribution confining GC-origin BH-LMXBs to peri-

ods shorter than p ∼ 6.5 h. Of the 27 confirmed BH-LMXBs with

measured periods in BlackCAT, 18 have periods with p > 7 h, indi-

cating an unlikely GC origin for an additional set of systems. Note,

however, that these systems are not necessarily distinct from those

ruled unlikely on the basis of companion mass.

Although the GC-origin BH-LMXBs are more likely to reside at

larger values of |z| perpendicular to the Galactic plane (see Fig. 12),

the overall distribution of the BH-LMXBs from GCs does not pro-

vide a strict criterion for discerning between GC origin and field
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Table 7. Properties of the five observed systems that are consistent with the properties of our simulated population of BH-LMXBs with

GC origins. The columns refer to the primary BH mass MBH, the companion mass m2, the orbital period p, and the absolute distance

perpendicular to the Galactic plane |z|.

Name MBH [M⊙] m2 [M⊙] p [h] |z| [kpc] References

MAXI J1659-152 5.8 ± 2.2 0.19 ± 0.05 2.414 ± 5 × 10−3 2.45 ± 1.05 [0,1]

SWIFT J1357.2-0933 >8.3 >0.33 2.8 ± 3 × 10−1 >1.75 [2,3]

SWIFT J1753.5-0127 > 7.4 ± 1.2 ≥ 0.30 ± 0.03 3.244 ± 1 × 10−3 1.3 ± 0.4 [4–7]

XTE J1118+480 7.55 ± 0.65 0.187 ± 0.083 4.07841 ± 1 × 10−5 1.52 ± 0.09 [8–11]

GRO J0422+32 8.5 ± 6.5 0.46 ± 0.31 5.09185 ± 5 × 10−6 0.51 ± 0.06 [12–15]

References: [0] Yamaoka et al. (2012), [1] Kuulkers et al. (2013), [2] Mata Sánchez et al. (2015), [3] Corral-Santana et al. (2013), [4]

Shaw et al. (2016), [5] Neustroev et al. (2014), [6] Zurita et al. (2008), [7] Cadolle Bel et al. (2007), [8] Khargharia et al. (2013), [9]

Calvelo et al. (2009), [10] Torres et al. (2004), [11] Gelino et al. (2006), [12] Casares et al. (1995), [13] Beekman et al. (1997), [14]

Webb et al. (2000), [15] Gelino & Harrison (2003).

origin. Fig. 11 illustrates that while the simulated population extends

much farther out of the Galactic plane than the observed distribution,

there is still a significant population of GC-origin BH-LMXBs that

reside in the plane, overlapping the region where field-formed bina-

ries are expected to have the highest density. This makes discerning

a potential origin for BH-LMXBs in this region difficult. Addition-

ally, for the many systems clustered near the Galactic centre or

those that reside in the plane, the high density of objects and dust

make these systems equally difficult to observe optically. Although

a number of BH-LMXB candidates are detectable in these regions

through X-ray, the detailed properties of these systems remain un-

known due to current optical limitations. The spatial distribution

of BH-LMXBs from GCs, in general, makes observations of the

population difficult, even for those out of the plane. Observation

and confirmation of BH-LMXBs rely on a dynamical measurement

of the BH mass through optical spectroscopy, introducing a bias

towards sources at distances D < 10 kpc from the Sun (Repetto

& Nelemans 2015). For the population of BH-LMXBs from our

model GCs, the MAX and 200 cases both produce a median dis-

tance of D = 9.7 kpc, placing roughly half of the systems beyond

the observable range.

Although this model population has characteristics that make ob-

servations of the binary properties difficult, there are some observed

systems that provide a resemblance to those with GC origins. There

are 18 observed and confirmed BH-LMXBs in BlackCAT with mea-

sured quantities that allow for comparison with our simulated popu-

lation. Five of the 18 systems have a BH mass, companion mass, and

period consistent with the characteristics of our population of BH-

LMXBs from GCs. These systems are MAXI J1659-152, SWIFT

J1357.2-0933, SWIFT J1753.5-0127, XTE J1118+480, and GRO

J0422+32. In Table 7, we list the five consistent systems and the

known properties that are compatible with the range of values be-

longing to our population of BH-LMXBs from GCs. While we

cannot make any strong claims in regards to the specific origin

of these systems, it is worthwhile to note the similarities of these

systems with respect to the population produced in this study.

The BH-LMXB system XTE J1118+480 is well studied, which

provides some additional parameters worth comparing with our

modelled population of BH-LMXBs from GCs. In addition to the

consistent mass of the companion star in XTE J1118+480, the spec-

tral type is also aligned with the band of GC-origin companions

in Fig. 16. Although space-velocity measurements of BH-LMXBs

are rare, fortunately there exists a velocity measurement of XTE

J1118+480. In the same heliocentric Galactic coordinate system

(U, V, W) introduced in Section 4.2.3, Mirabel et al. (2001) found a

space–velocity for this system of (U = −105 ± 16, V = −98 ± 16,

W = −21 ± 10) km s−1. The large magnitude v ∼ 145 km s−1 and

the large negative V-component are consistent with a high-velocity

halo orbit and a lower than average rotational velocity about the

Galactic centre. This description is consistent with the velocity dis-

tribution of our population of BH-LMXBs from GCs, which inherit

the high-velocity halo-orbits when they are ejected from the GC.

As a consequence of the high-velocity halo orbit, which manifests

itself as a high computed peculiar velocity, this system is commonly

invoked to support large natal kicks (Gualandris et al. 2005; Fra-

gos et al. 2009; Repetto et al. 2012; Repetto & Nelemans 2015).

Confidently identifying an origin for this system could help to shed

some light on the issue. The relatively low-metallicity environments

of GCs provides an additional constraint on properly categorizing

BH-LMXBs as originating in GCs versus in the field. Although all

of the previous characteristics point to a GC origin, perhaps one of

the strongest arguments against a GC origin for this system is the

supersolar abundance of elements in the secondary star found by

González Hernández et al. (2006), which is consistent with a metal-

rich progenitor and makes a GC origin highly unlikely. However,

there exist a conflicting claim presented by Frontera et al. (2001),

where through broad-band X-ray spectroscopy, it was concluded

that the companion has a metallicity of Z ∼ 10−3, consistent with

the low metallicities expected of systems at large |z| or those with a

GC origin. Given that metallicity provides a strong constraint on the

origin of a BH-LMXB, additional observations appear necessary to

reduce the uncertainty of this case.

To our knowledge, there are no known velocity measurements

or metallicity measurements for the four other BH-LMXBs with

possible GC origins. Although an increasing number of BH-LMXB

candidates are being discovered in X-rays, only a few have been

confirmed and characterized with detailed optical follow-up obser-

vations. Over time, more data will become available, better con-

straining the properties of the Galactic BH-LMXB population. If

even a single BH-LMXB could be confidently attributed to a GC ori-

gin, this would provide a strong argument in favour of BH retention

in GCs.

5 D I S C U S S I O N A N D C O N C L U S I O N S

There is growing observational evidence and theoretical support for

a sizable BH population in present-day Galactic GCs. These BHs

can acquire low-mass companions through dynamical interactions

within the GC. Those binaries that are ejected from the GC can

evolve into BH-LMXBs and can populate a large region of space

above and below the Galactic plane. These binaries could potentially

explain observed BH-LMXBs at large distances from the plane

without a need for large BH birth kicks.
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In this study, we have presented a population of Milky Way

BH-LMXBs formed through dynamical interactions in GCs. To ex-

plore the BH-LMXB population dependence on BH retention in

GCs, we performed simulations for retained BH populations of

20, 200, and 1000 BHs. The simulated GCs broadly cover the pa-

rameter space and represent a realistic subset of Milky Way GCs.

We generated a large number of binary evolution realizations for

each set of initial GC parameters and number of retained BHs.

This allowed us to derive statistical distributions for the number

of ejected binaries and their relevant properties. Using the statis-

tics from the GC simulations, we performed Monte Carlo simu-

lations to obtain a present-day population of BH-LMXBs ejected

from GCs.

We find that in the case of minimal BH retention (NBH = 20)

no observable BH-LMXBs are produced, while the NBH = 200

and NBH = 1000 cases yield 25+10
−6 and 156+26

−24 BH-LMXBs, respec-

tively. Here, the uncertainties represent the bounds of the 95 per cent

confidence interval. As there is no observable population for mini-

mal BH retention, this suggests that finding any BH-LMXB of GC

origin would imply that GCs retain sizable BH populations of more

than a few tens of BHs.

Aside from the difference in the size of the population, the prop-

erties and distributions of BH-LMXBs are qualitatively similar for

the two cases that produce BH-LMXBs, 200 and MAX. We find that

BH-LMXBs from GCs have velocity distributions inherited from

their host clusters that are consistent with stars on high-velocity

halo orbits. Additionally, the ejected BH-LMXBs have a spatial

distribution that is also similarly aligned with the GC Galactic dis-

tribution. This shared distribution is described by a high density in

the Galactic plane and near the Galactic centre, with a significant

fraction distributed well above and below the Galactic plane. The

typical binary is located at an absolute distance of R = 4.5 kpc

from the Galactic core when projected on to the Galactic plane,

an absolute distance of |z| = 1.6 kpc perpendicular to the Galactic

plane, and at a distance of D = 9.74 kpc from the Sun. The presence

of a large population of BH-LMXBs at large distances from the

plane is characteristic of BH-LMXBs from GCs, as field formed

BH-LMXBs must be subject to large kicks in order to access this

region. The average present-day BH-LMXB ejected from a GC is

composed of a 8.25 M⊙ BH and a 0.22 M⊙ K/M late-type MS star

below the turn-off mass, with a characteristically short orbital period

of p = 0.186 h. These properties and their associated distributions

are key observable characteristics of this predicted population of

BH-LMXBs formed in GCs.

Comparing our BH-LMXB systems with the ensemble of ob-

served BH-LMXBs, we find that five of these are candidates for

having a GC origin. There are a total of 27 confirmed BH-LMXBs,

but just 18 of these have sufficient observations for comparing mea-

sured properties against our results. The five systems that are com-

patible with our simulated population of BH-LMXBs from GCs are

MAXI J1659-152, SWIFT J1357.2-0933, SWIFT J1753.5-0127,

XTE J1118+480, and GRO J0422+32. XTE J1118+480 is one of

the rare systems with a measured space velocity and it is atypically

large for a system formed in the Galactic disc, with v ∼ 145 km s−1.

This system is commonly discussed in the context of formation

kicks, since a high-velocity kick is required to explain the large dis-

tance from the Galactic plane, |z| ∼ 1.52 kpc, under the assumption

that it originated in the plane. However, if XTE J1118+480 comes

from a GC, which produces BH-LMXBs at a median distance of

|z| ∼ 1.6 kpc from the plane, then its position and velocity are a

natural consequence of the GC origin and do not require a large BH

birth kick.

Future observations of the remaining four system velocities

would provide an important additional piece of evidence in each

of these cases. Additionally, the companion stars in BH-LMXBs

from GCs should have the same low metallicity as is typical for

GCs. This emphasizes the need for reliable metallicity measure-

ments of the companion metallicity, which could help to support

or reject a GC origin scenario. The strength in this measurement

relies on the distinctly low-metallicity environments of GCs com-

pared to the disc environment. The metallicity of the companion

in XTE J1118+480 has been measured by Frontera et al. (2001)

and González Hernández et al. (2006). However, the two measure-

ments disagree, with the former finding sub and the latter finding

super solar metallicity. Additional observations may be necessary

to settle the discussion for XTE J1118+480. Future observations

will be needed to more reliably determine or rule out the potential

GC origin of the candidate BH-LMXBs. On the basis of our GC

simulations, we reaffirm that if one or multiple can be shown to

come from a GC, then GCs retain sizable BH populations.

An additional result from our simulations is a prediction for the

BH–BH merger rate as function of the GC–BH population. The

expected rate of mergers due to all GCs for our maximum retention

case, NBH = 1000, is 4.81 Gpc−3 yr−1, while in the case of minimal

retention, NBH = 20, the rate is as low as 3.95 × 10−2 Gpc−3 yr−1.

This rate represents an average over the cluster lifetimes and

assumes a spatial density of GCs throughout the Universe of

ρGC = 0.77 Mpc−3. Our maximum retention rate is consistent with

previous estimates of the GC merger rate contribution and is com-

patible with the recent observations by aLIGO. Although our model

produces rates in good agreement with previous studies, our simu-

lations result in a larger than average fraction of mergers occurring

in-cluster, as opposed to post-ejection. We attribute the discrepancy

to the increased interaction between the BHs and the lower-mass

stars as a consequence of our cluster BH distribution. The BH–BH

binaries that merge in-cluster are a consequence of the large ec-

centricities, acquired through dynamical formation, leading to sig-

nificantly shortened orbital decay times. The dynamically formed

BH–BH binaries that merge in-cluster are formed with an average

eccentricity of e ∼ 0.96. At the time of merger in the aLIGO band,

the residual eccentricities are small and in the range 10−6 � e �

10−2. However, we find that when passing through the LISA band

years before merger, they still have eccentricities in the range 10−2 �

e � 1. Models in which the BHs are confined to a sub-cluster at

the core of GCs produce mergers with substantially smaller eccen-

tricities. As the merger formation channels are sufficiently different

for a BH sub-cluster model, LISA might be able to help distinguish

how a population of retained BHs is distributed in GCs by observing

the distribution of eccentricities.

The present study provides new insights into the population

and properties of BH-LMXBs of GC origin. However, there are

a number of important limitations that should be kept in mind when

interpreting our results. While there is mounting evidence to support

that present-day GCs are BH retaining, how GCs are able to retain

a significant population of BHs and how those BHs are distributed

is still uncertain. Our choice of distributing the BHs throughout the

cluster is motivated by preserving the observed structural proper-

ties of each modelled GC in the presence of a large BH population.

However, this spreading leads to an increase in interaction between

the BHs and the lower-mass stars, which is typically a rare occur-

rence if the BHs remain clustered in the core. If GCs are able to

retain a significant population of BHs that remain centrally clus-

tered, formation of BH–NC binaries will likely be suppressed. The

reduced formation of BH–NC binaries would significantly reduce
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the number of ejected BH–NCs, directly diminishing the number

of BH-LMXBs from GCs. Future studies regarding the impact of

the BH distribution within BH-retaining GCs are necessary to fully

understand the consequences of this limitation. Furthermore, the

results presented here rely on the outcomes of many independent

realizations. Since we perform each simulation independently in a

static cluster background, we are neglecting the change in the BH

population and its impact on the cluster as single BHs and BH bi-

naries are ejected over the cluster lifetime. Additionally, we do not

account for binary–binary interactions, which have the potential to

disrupt existing binaries or possibly aid in ejecting them. Models

that account for these limitations are necessary to better understand

the impact of ignoring these processes. While N-body simulations

and Monte-Carlo-based models can resolve some of these issues,

the computational expense remains a limiting factor in performing

many realizations. However, as the computational techniques and

resources continue to improve, it will soon be possible to produce

many high-accuracy GC simulations that address these limitations.
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González Hernández J. I., Rebolo R., Israelian G., Harlaftis E. T., Filippenko

A. V., Chornock R., 2006, ApJ, 644, L49

Gualandris A., Colpi M., Portegies Zwart S., Possenti A., 2005, ApJ, 618,

845

Harris W. E., 1996, AJ, 112, 1487

Heggie D. C., Hut P., McMillan S. L. W., 1996, ApJ, 467, 359
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