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ABSTRACT

Motivated by the study of gene and environment interactions, we consider a multivariate response varying-
coefficient model with a large number of covariates. The need of nonparametrically estimating a large
number of coefficient functions given relatively limited data poses a big challenge for fitting such a model.
To overcome the challenge, we develop a method that incorporates three ideas: (i) reduce the number of
unknown functions to be estimated by using (noncentered) principal components; (ii) approximate the
unknown functions by polynomial splines; (i) apply sparsity-inducing penalization to select relevant covari-
ates. The three ideas are integrated into a penalized least-square framework. Our asymptotic theory shows
that the proposed method can consistently identify relevant covariates and can estimate the corresponding
coefficient functions with the same convergence rate as when only the relevant variables are included in
the model. We also develop a novel computational algorithm to solve the penalized least-square problem
by combining proximal algorithms and optimization over Stiefel manifolds. Our method is illustrated using
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data from Framingham Heart Study. Supplementary materials for this article are available online.

1. Introduction

This work is motivated by developing more flexible statistical
models for the study of gene and environment interactions. It
has been known over decades that some diseases are linked
with genetics factors, for example, study results for hyperten-
sion are reported in Kurtz and Spence (1993) and Burton et al.
(2007). These genetic effects, however, can be altered under vari-
ations of environmental exposures such as stress and dietary fac-
tors (Pausova, Tremblay, and Hamet 1999) or BMI (Taylor et al.
2010). Statistical analysis on how the effects of genetics change
with the environment is called gene and environment (G x E)
interactions (Tabery 2007).

A conventional method to study the G x E interactions with
univariate response is using a linear model. For the ith subject,
i=1,...,n,letY; bethe value of some phenotype response, X;
be the (p + 1) genetic factors, and T; be the environmental fac-
tor, respectively. The linear regression model with interaction
effects can be written as

4 P
O 0 o M
o+ T+ Yo Xiy + 3oV TX;
=1

E;X;, T) =
j=1
P
= Z((X;O) + Ol;l)Ti)Xij,
j=0

(1)

where oz](-o) and oc](.l) are unknown coefficients.

Although this linear model has a simple form and is con-
venient to estimate and interpret, it is usually not sufficiently
flexible for predicting the phenotype. Especially under the
influence of the environmental factor, the strong linearity
assumption is easily violated. To see this, Figure 1 shows the
estimated mean curve of one trait (which is weight) by cubic
splines against hours of sedentary activity per day for the three
genotype categories of the SNP ss66101769 from the Fram-
ingham Heart Study (Dawber, Meadors, and Moore 1951),
indicating clear nonlinear interaction effects.

To flexibly model the nonlinear G x E interaction, Ma
et al. (2015) proposed to use the generalized varying coef-
ficient model (VCM) where the coeflicient functions are
specified as nonparametric additive models. As a flexible yet
still interpretable extension of the linear model, VCM has been
extensively studied in the statistics literature and widely used
in practice. Published work on this subject includes Hastie
and Tibshirani (1993), Hoover et al. (1998), and Huang, Wu,
and Zhou (2002), among many others. The VCM in the high-
dimensional data settings have been studied in Wei, Huang, and
Li (2011), Lian (2012), Xue and Qu (2012), Fan et al. (2014),
and Liu, Li, and Wu (2014). In the application of VCM to the
G x E interactions, Ma et al. (2015) also proposed a method for
selecting relevant genes from a large number of candidates.

In reality, however, there are usually multiple phenotypes. For
example, in Framingham Heart Study (Dawber, Meadors, and
Moore 1951), multiple phenotype variables have been collected
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Figure 1. Plots of the estimated mean curves of weight by cubic splines against
hours of sedentary activity per day for the three genotype categories AA (thick line),
Aa (dashed line), and aa (thin line) of the SNP ss66101769 from the Framingham
Heart Study (FHS), where A is the minor allele.

from some patients. Applying a univariate response VCM to the
Ith response, 1 < I < g, we have that,

p
Ya= Y fP(I)Xj+E=f"(T)'X;+ Bt (2)
=0
where fO(t) = {fo(l) ®,..., 15” ®)})T, and Ej is a mean-

zero random error, 1 <i < n. To write the model (2) in a
matrix form, we furtherlet Y; = (Y1, ..., KQ)T. Combining all
responses in one equation, we obtain the multivariate varying
coefficient model (MVCM):

Y; = F(T)X; + E,, (3)

where F(t) = [{fV (1), ..., £9(£)} ]y« (p+1) is amatrix of vary-
ing coeflicients and E; = (Ej, ..., Eiq)T. We refer to T; as the
index variable, which is chosen to be “sedentary activity hours”
in our application of MVCM to the Framingham Heart Study
in Section 3. Parameter estimation would be a challenge for the
MVCM since we need to estimate totally g(p + 1) coeflicient
functions, especially when we need to deal with the case that the
number of responses and the number of covariates are large. In
our asymptotic theory, we allow both q and p, the dimensions
of the responses and the covariates, to diverge with the sample
size n.

To have an interpretable model and sufficiently reduce the
number of unknown functions to be estimated, we borrow the
idea of (noncentered) functional principal components analysis
as follows. We represent all the coeflicient functions with r
principal component functions {f1, ..., 8,} such that

) = "diB @),

v=1

1<1<q0<j<p (4

where dj; , are the principal component loadings. Here, we use
the noncentered principal components analysis because the
coefficient functions are not an iid sample from a population

of functions and so it is not reasonable to assume a mean
function. This reduces the problem of estimating g(p + 1)
unknown functions in the MVCM model (3) to the problem of
estimating » unknown principal component functions and the
associated principal component loading matrices. The principal
component functions are subject to the orthogonality constraint
fT BB = &1, with T being a compact interval that all T;’s take
values, and 6;; being the Kronecker §. Consequently, we obtain
the following reduced multivariate varying-coefficient model
(reduced MVCM):

Yi = {D'Si(T) +--- + D'B(T)H}X; +E;, ©)

where D!, ..., D" are q % (p+ 1) matrices. The conventional
linear regression model with interaction effects (1) can be
viewed as a special case of (5). In particular, when the domain
of T is [0, 1], let B (t) = 1 and B, (t) = ~/6(t — 1/2), then (5)

becomes
Y; = (D'Bi(T) + D’ (T)}Xi + E; = (@@ + «VTHX; + E;

for some g x (p + 1) coefficient matrices «® and a‘?, recov-
ering the model (1) in the case of multivariate responses.

One could reduce the burden of estimating too many
unknown functions in the original MVCM (3) by representing
all coefficient functions using a fixed common basis such as
B-splines. To have enough flexibility, the basis should be rich
enough, that is, have a large enough dimension, denoted as K.
The resulting model, referred to as the full MVCM, has the same
form as (5) with r replaced by K and B;’s interpreted as the fixed
basis functions. It is clear that this fixed basis approach can have
much more basis coefficient matrices D/ to estimate than the
reduced MVCM. In contrast, our proposed (reduced MVCM)
approach usually only needs to estimate a much smaller number
of coefficient matrices together with some data-driven basis
functions (i.e., the principal components functions).

After reducing the number of unknown functions to a small
number of principal components, we still need to estimate the
basis coefficient matrix D/’s in (5). Accurate estimation of these
q X (p + 1)-dimensional matrices is difficult for a typical sam-
ple size, especially when p is large. To overcome this difficulty,
we assume sparsity of these matrices so that only a few covari-
ates are relevant for prediction of the responses. We are able to
show that using a sparsity-inducing penalty, the penalized least-
square estimator enjoys the nonparametric oracle property, that
is, the irrelevant variables can be consistently identified and
corresponding coeflicient functions can be estimated with the
same convergence rate as when only the relevant variables are
included in the model. For computation, by rewriting the penal-
ized least-square criterion in an equivalent form using Kro-
necker product of matrices (see Section 2.1), we are able to single
out alow-dimensional manifold structure in a high-dimensional
vector-valued function space and thereby develop an iterative
algorithm that involves novel applications of the proximal
algorithms and optimization through Stiefel manifolds.

The reduced MVCM is connected with the multivariate
regression as follows. We can rewrite (5) as

Y; =D'Bi(TH)X; + - + D'B.(T)X; + E.. (6)



If {B1, ..., B;} were known, this model would be a multivari-
ate linear regression with (D', ..., D) as the coefficient matrix
and {B1(THXT, ..., B(T)XT}T as the covariates, respectively.
Variable selection for multivariate linear regression using penal-
ization has been studied by Bunea, She, and Wegkamp (2012),
Chen, Chan, and Stenseth (2012), Chen and Huang (2012), Ma,
Xiao, and Wong (2014), and Ma, Ma, and Sun (2016), among
others. The need for estimating unknown principal component
functions in our reduced MVCM distinguishes this article from
those works. Another related work is Jiang et al. (2013), where
the same varying-coefficient model as (2) and (3) were studied
but with univariate response. The multiple-step procedure pro-
posed in that article cannot be applied directly to deal with large
number of covariates.

The rest of this article is organized as follows. Section 2
describes the proposed method, including the penalized
least-square estimation, the computational algorithm and its
convergence analysis, the asymptotic properties, and the sim-
ulation study. Section 3 applies the proposed methods on the
real data from the Framingham Heart Study. Some concluding
remarks are given in Section 4. The technical proofs of the
theoretical results are deferred to the Appendices.

2. Method

2.1. Penalized Least Squares

To facilitate parameter estimation of our reduced MVCM (5),
we first rewrite the model in a more succinct form using matrix
multiplications. Note that foreachv € {1, ..., r}, D" 8,(T) X is
a vector, thus

D', (T)X; = vec{D" B, (THX;} = (X; ® 1) vec(D")B, (1),

where ® and vec(-) denote the Kronecker product and
vectorization operator, respectively (Magnus and Neudecker
1995). Denote D = {vec(D'), ..., vec(D")}q(p+1)xr and B =
(B1, ..., B)T. Then (5) can be written as

Y = (X ® I,) DA(T;) + E.. (7)

We need to estimate the r principal component functions stored
in the vector B(T;) and the (p+ 1)qr unknown parameters
in D.

For estimation of the unknown principal component func-
tions, we approximate them using polynomial splines and apply
the penalized least-square estimation with a sparsity-inducing
penalty function. Specifically, let b(t) = {b;(¢), ..., bx(t)}T be
a spline basis with dimension K. For the Ith principal compo-
nent function B;(t), we write §;(¢) ~ a; Tb(t), where a; is the
spline coeflicient vector in the basis expansion. Then we have
B(t) ~ ATb(t), where A = (a,, ..., a,) is the K x r matrix of
spline coeflicients. Ignoring the spline approximation error in
the coefficient matrix estimation, the reduced model (5) then
takes the form of

Y = (X! ® ;) DA'b(T) + E;,

with the identifiability constraints

ATA=1,, /b(t)bT(t) = I. (8)
T
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The constraints in (8) imply that [ B(¢) BT (t) =1,, which
is a usual orthogonality constraint imposed on the principal
component functions.

When p is large, the reduction through principal component
is not sufficient to obtain a parsimonious model. This can be
seen from the fact that when the model is linear, the dimen-
sion reduction above becomes void and the estimation still suf-
fers from high dimensionality. However, in applications, many
covariates are irrelevant (or almost so) for prediction of the
responses; see, for example, Ma et al. (2015). This fact opens the
door for reaching a more parsimonious model through selection
of relevant covariates. The selection can be achieved by intro-
ducing sparsity-inducing penalization to the method of least
squares.

To add a proper penalty function, we take a further look at the
q(p + 1) x r coefficient matrix D in (7). We consider the row-
wise partition D = (DT, e, D}T,)T with D; e R?7,0 < j<p,
where the submatrix block D contains all unknown coefficients
associated with the jth predictor. Moreover, the (I, v)th entry in
Djis dj;,,, the principal component loading of 8, on the coeffi-
cient f j(l) corresponding to the /th response and jth predictor. In

light of (4), when D; = 0, the coefficient functions fj(l) become
a zero function for all responses. In other words, the jth predic-
tor is irrelevant for all responses simultaneously if and only if
D; = 0. Thus, we consider the penalized least-square problem

n
min E |Y; —
DA

=

P
(X! ® 1) DA"B(T) |2 + 1Y pi (D).

=0

€)
where || - || for a matrix denotes its Frobenius norm, p,(-) is a
penalty function, and A is a penalty parameter. The resulting
estimator for fj(i(t) becomes ]/‘;(l) (t) = Zf_l'\jg bi(t), where
’cﬁ? = > h_1 kvd k.. Although other sparsity-inducing penal-
ties can be used, in this article we use the smoothly clipped
absolute deviation (SCAD) penalty function (Fan and Li 2001),
defined by

pa(u) = A/umin{l,

= /u{l(x<)»)+%l(x>k)dx} u>0,
0
(10)

(a—x/1)4 dx}

a—1

where a is a parameter, which is typically set to be 3.7 accord-
ing to Fan and Li (2001). Our application of a penalty on a
matrix norm is similar in spirit to the group-wise penalization
(Yuan and Lin 2006; Huang, Breheny, and Ma 2012; Gong et al.
2013). Our situation differs to existing work in two aspects: first,
our group is a matrix instead of a vector; second, we need to
minimize an objective function with respect to an orthonormal
matrix A.

The solution to the optimization problem (9) is not unique.
Suppose (D A) is a solutlon to (9) and Q is an r x r orthogo-
nal matrix. Let D = DQ and A = AQ, then D i= =D, Q. Since
||D]|| = ||D]||, ATA =1,, and DAT = DAT, (D, A) is also a
solution to (9). Similar to Chen and Huang (2012), we have the
following result.
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Lemma 1. The solution (D, A) to the optimization problem (9)
is unique up to an r X r orthogonal matrix.

This lemma says that, although (D, A) is not identified but
C := DA" is. Moreover, the coefficient function matrix F is
identifiable. To see this, note that vec(F) = Dp, with the spline
approximation that 8 = ATb, we have that vec(F) = DATb =
Cb is identifiable.

Since rank(A) = r, rank(C) < r. On the other hand, if
rank(C) < r, the QR decomposition C = DAT will give us
(D, A). Assuming ATA =1, and writing C = (cr, ..., CIT,)T,
we have C; = DJ-AT € R?K and IC;ll = IIDjll. Therefore, the
optimization problem (9) is equivalent to a rank constrained
optimization problem with respect to C:

n P
DI = (X @ 1) Ch(T) 1>+ 1Y pa(IClD.

i=1

(11)
This equivalent representation of (9) is convenient when we
study the asymptotic properties of our estimator.

min
c:rank(c)<r =0

2.2. Computational Algorithm

We solve (9) by using block-wise coordinate proximal/gradient
descent, that is, alternatively updating D and A in a cyclic man-
ner with proximal descent and gradient descent. To facilitate our
discussion, denote the least-square part and the penalty part of
the objective function as

H(D, A) =Z||Yi—(xf®1q) DA'B(T)|*> and G(D)
i=1

p
=nY_ P.(IDjl).

j=0

respectively. When A is fixed at A, we denote Hz(D) =

H(D, A). Similarly, when D is fixed at D, denote H5(A) =
H(D, A).

For updating the D with the A fixed at A%, where k repre-

sents the iteration number, the objective function becomes

Hpw (D) + G(D). (12)

There is no closed-form to solve D in (12). We thus consider the

following proximal regularization function (Beck and Teboulle
2009) of (12) at D®

Huyw (D®) + (VHyw (D), D — D®)

1
+— ID—D®|* + G(D), (13)
270D
D
where tl()kH) > 0 is the step-size and VH,w(D) has a

closed-form:

VHyo (D) = =23 (Xi® 1) {Yi — (X @ L) DA®)b(T)}
i=1

x b(T;)TA®. (14)

D**D is defined to be the minimizer of (13), or equivalently, by
completing the squares,

D D = argmin D — (D® — ¢ VH,w (D)) 2/2
D

+ 5 G(D). (15)

This is the proximal operator (Beck and Teboulle 2009) on G(D)
with a general step-size tp

Prox,,g(E) = argmin {'CD GMD)+ (1/2)|D — =B ||2} . (16)
D

Following the idea of vector regularization problems such as
Huang, Breheny, and Ma (2012), the matrix form of the proximal
operator on G(D) = n Zj P, (IIDj|) with P, (-) defined in (10)
has an analytical expression. In particular, denote Prox,,g(E);,
j=0,..., p,as the jth g x r submatrix of Prox,,c(E) and let
S(E; A;) be the soft-thresholding rule for the g x r matrix
atlevel Aj, that is,

0, if |Z: <A,
S(Eja) =1 g e
AR E;— Ai—==, otherwise.
FTMEN
Then
S(Ej; tpnd), if | E;] < 2wpna,
Prox,,g(E); = { “=2S(Ej; 422, if2tpni < |E;|| < atpnh,
g, if | 2| > atpna.

(17)
Thus, the updating rule for D under proximal descent, when A
isat A®, is

DD = Prox_ s [D® — ¢tV VHyw (D*HD)), (18)
D

with VHy w () defined in (14) and PrOXr[()kJrl)G(') defined in (17),

respectively.

To choose the step-size rl()kH) in the updating rule (18), one
commonly uses a backtracking method to find one value of
rl()kﬂ) such that the objective function monotonically decreases
with steps. Similar to Gong et al. (2013), we take rl()k+1) =
(1/2)?, where p is the minimal valueamong p =1, 2, ..

that the following criterion holds:

., such

Hyw (D(k+1)) + G(D(k+1))

1

k

< Hyo D®) + GDY) — ™ — - [ID*D —D®?,
2))

(19)

where €p is a fixed small number in (0, 1). A condition to ensure
the boundedness of the step-size will be given at Section 2.4.

Next, fixing D at D**V, the objective function becomes
Hpwn (A), with A satisfying the orthonormal constraint. The
set of all K x r orthonormal matrices, denoted as St(r, K)
(r <K) is called (orthogonal) Stiefel manifold (Edelman,
Arias, and Smith 1998), that is,

St(r, K) := {A € RF*" : ATA = 1,}.

We use that fact that St(r, K) is an embedded sub-manifold of
the K x r Euclidean space RX*" and update A*+" by the gra-
dient descent method (Edelman, Arias, and Smith 1998; Absil,
Mahony, and Sepulchre 2009). The gradient descent updating



rule for a sub-manifold includes four steps: first, we calculate
the negative gradient of the objective function without any
constraint in the Euclidean space; second, we find the tangent
space of the sub-manifold structure at the current point, then
project the negative gradient function of the Euclidean space
onto the tangent space; third, calculate the value of updating
A along the direction of projected negative gradient with given
step-size T,; finally, retract the calculated value in the third step
back to the manifold structure.

Now we specialize the four steps to our problem. With
the objective function Hpw+n (A), the gradient function on the
Euclidean space, with respect to A is

n
VHpen (A) = —2 Y b(T) [Y; — (X] ® 1) D*VATH(T) )
i=1

x (X! ® 1) D*D. (20)

The tangent space of St(r, K) at A can be explicitly expressed as
TaSt(r,K) = {Z e R . ATZ + Z"A = 0}.

The gradient function, from the view of Stiefel manifold
structure, is

grad Hpwn (A) = Pa {VHpen (A)}, (21)

and the projection P, onto the tangent space TxSt(r, K) has a
closed-form

Paé = (I — AA")E + Askew(AT§), (22)

where skew(AT§) = 1/2(AT& — £TA). Denote gf(&) as the Q
factor of the QR decomposition of & € RX*", which retracts &
back to the manifold St(r, K). When D is fixed at D®+D | the
gradient descent method on the Stiefel manifold updates A by

ARD = gffA® — 5V P (VHpen (AR}, (23)

(k+1)

where 7, > 0 is the step-size, and P,w and VHpw (A®)

are defined above. The step-size rﬁkﬂ) can be chosen by the
Armijo backtracking method (Absil, Mahony, and Sepulchre
2009, , chap. 4.2). In particular, rﬁkﬂ) = (1/2)” where p is the
minimal value among p = 1,2, ..., such that the following

criterion holds:

Hpan (AXD) < Hpuo (A®) — 47| grad Hpeen (A®) 12,
(24)
with some fixed €4 € (0, 1). In the updating formula (23), the
projection P, is critical to ensure that the gradient is correct,
and the retraction guarantees the minimizer is on the manifold.
The above discussion leads to Algorithm 1. The convergence
property of the algorithm will be discussed in Section 2.4. In the
inner loops of this algorithm, we only iterate for D and A once.
In computer implementation, one can also iterate multiple times
in the inner loop; this can help reduce the number of outer loops
at the cost of more computational time for the inner loops.

2.3. Tuning Parameters

The tuning parameters, including the number of spline basis, the
penalty parameter A, and the number of components r, can be
determined using the K-fold cross-validation (CV). We found
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Algorithm 1: Algorithm Using Coordinate Proxi-
mal/Gradient Descent
Input :Y € R", X e RPHDX" T e R" A > 0,7 > 1,
€ > 0.
Output: D(A)”.
for k from 0,1, ... do
« Fixed A, update D**V by (18),with the step-size
7p chosen by backtracking method (19); ;
« Fixed D&V, update AV by (23),;
the step-size 7, is chosen by Amijo backtracking
method (24); ;
+ Check whether the following stopping criterion is
satisfied ;
HMD® A®Y L GDH®) — HD*D AK+Dy
G(A*D) < ¢,

end

that the typical five-fold cross-validation does not produce sta-
ble results. We used 10-fold CV in the simulation studies and
50-fold CV in the real data application, which produced stable
results.

2.4. Convergence Analysis of the Algorithm

Two features of the optimization problem (9) makes conver-
gence analysis of the algorithm challenging: (i) the objective
function is nonconvex, and (ii) the manifold structure on A
imposes nonconvex constraints that the optimization algorithm
needs to respect. The nonconvexity makes it difficult to ensure
an algorithm to converge to the global optimal. Moreover, when
applying a numerical method for optimization on manifold
structure, such as Stiefel manifold, even convergence to a local
optimal cannot be guaranteed (Absil, Mahony, and Sepulchre
2009). In this subsection, we show that every accumulation point
of the parameter sequence generated by Algorithm 1 is a criti-
cal point of (9). Here, the critical point refers to a point whose
gradient is zero or the subgradient contains zero. Convergence
to a critical point is a necessary but not sufficient condition for
convergence to a local optimal. Although this kind of result is
weaker than we desire, similar results are typically seen for com-
plex optimization problems involved in statistics and applied
mathematics, such as Yun, Tseng, and Toh (2011) for coordinate
gradient descent method, Bunea, She, and Wegkamp (2012) for
variable selection under low rank constraint, and Wang, Yin, and
Zeng (2015) for ADMM.

Now we give a precise definition of critical point in our con-
text. Denote dG/dD as the subgradient of G with respect to D. It
has a closed-form such that restricted on the jth g x r submatrix

D;,j=0,...,p,
0, if ax < ||Dj]I,
.

—2Dj+2a)\m .
9G = DZ(T”) if 2 < D]l < an, (25)
N RSt if 0 < D]l <A,

J
B(0, 1), if |D;|l =0,

where B(0, 1) is the unit ball on R?*" centered at 0.
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Definition 1. (D*, A*) € RPTDIX" 5 St(r, K) is said to be a crit-
ical point of H(D, A) + G(D) if

0H(D*, A*) n dG(D*)

0(p+1)q><r € 9D 9D (26)
and
0H (D*, A¥)
Ogxr = Pps{ ———— ¢, 27
K A { 5A } (27)
where 9H(D*, A*)/dD = VH-(D*), 0H(D* A*)/0A =

VHp+(A*), Pa« and dG/9D are defined in (14), (20), (22), and
(25), respectively.

We need the following regularity condition.
(C0) 0H (D, A)/9aD is uniformly Lipschitz continuous, that is,
there exists a positive constant L, such that

H d0H(D, A) B dH(E,A) <LID—Z|

oD 0=

forVE,D e R¢*DI*" and A € St(r, K).

This condition is satisfied if the largest eigenvalue of Hess (H )
is uniformly bounded, where Hess(H) is the Hessian opera-
tor of function H. It is used to guarantee the boundedness of
step-size 1p.

Theorem 1. Assume the condition (C0) holds, then all accumu-
lation points of the sequence {(D®, A®))} generated by Algo-
rithm 1 are critical points of (9).

Note that the objective function (9) is nonnegative. Since we
check convergence by looking at the value of the objective func-
tion and each outer loop iteration reduces the objective function
byatleaste > 0, Algorithm 1 stops in finite number of steps. The
proof of Theorem 1 is given in Appendix A.

2.5. Asymptotic Analysis

In this subsection, we study the asymptotic behavior of the esti-
mator when the sample size n goes to infinity. Denote s to be the
number of relevant covariates. We allow p, g, s, K, and r (r < K)
to grow with n.

Without loss of generality, let 7 = [0, 1] and for notational
convenience, we let the relevant covariates to be the intercept
and the first s predictor variables. We use C to refer to a generic
constant that may change values from context to context. We
need the following regularity conditions.

(C1) Theindex variable T has a continuous density supported
on [0, 1] and the density is bounded away from zero and
infinity on [0, 1].

IX;l <Ca.s., 0 < j < p. Moreover, the eigenvalues of
E[XosXE|T = t] are bounded away from zero and infin-
ity, uniformly for ¢t € [0, 1], where Xo., = (Xo, ..., X;)T.
The noise matrix E = (E,, ..., E,)T has independent
and identically distributed rows, with the vector E; being
sub-Gaussian in the sense that its moment-generating
function satisfies E exp(tEl ) < exp(Ct?||y||?) for any
n € R1

The rows of the true parameters Dy in model (7) has
Euclidean norms bounded by a constant.

(C2)

(C3)

(C4)

(C5) Forg = Bov, 1 < v < r,where ,’s denote the true prin-
cipal component functions, g satisfies a Lipschitz con-
dition of order d > 1/2: |g'l) (t) — gl (s)| < C|s —
t|9714l where |d] is the biggest integer strictly smaller
than d and g{l4) is the | d]th derivative of g. The order
of the B-spline used satisfies m > d + 1/2.

These assumptions are commonly used in the literature on
sparse nonparametric models. In particular, (C5) implies the
L, norm of fo(]l.) =y _ doji.vBov is bounded, where dyj;,, is
the (jg + I, v)th entry of the true parameter matrix Dy. Under
the smoothness assumption for o, as given in Condition (C5),
there exists ag, = (do1v, . - ., dokv) © € RK such that

K
Bou(t) =D aoebi (), 1Bov — Bovlleo = OK™),  (28)

k=1

where [[Blloc = sup;c(o) [B(t)| is the Lo norm of the
function .

Let Cp be the true parameter of C, that is, Cy =
(Cgo, ey Cgp)T = D()AT, A() = (am, ey ao,), and let a, < bn
mean a, = o(b,) for positive numbers b,,.

Theorem 2 (Convergence rates for estimation of Cp). Assume
Conditions (C1)-(C5) hold, K — oo, Ks? log(Ks)/n — 0,and

Kqlog(Kpq) N r(K+sq—r)

q
sq 2 . )2
+ — A min gl |

» » K A% < mir ZE_I Il fo; |

sz
R (29)
Then theri is a local minimizer C of (11) that satisfies
i. P(Cjzo,j>s)—> 1, asn — 00,
ii.
- (sq+ K —r)r s
IC - Coll* = 0, (—‘1 = BED)
Moreover, the estimated coefficient functions have the fol-
lowing convergence rate:

ZH};@ _fo(j')Hz _ OP((SGH-I;—r)r +%) -
=1

P
j=0

where fo(j‘) is the true coefficient function,0 < j < p,1 <l <gq.

Recall that for notational convenience the relevant covari-
ates are the intercept and the first s predictor variables in the
statement of the theorem. Property (i) says that with probabil-
ity goes to one, the irrelevant covariates will not be included in
the selected model. This property indicates the consistency in
variable selection and is sometimes referred to as the support
recovery property. In the assumption (29) on X, the lower bound
is used to avoid over-fitting and the upper bound to guarantee
support recovery.

The proof of the theorem in fact shows that the estimator
defined with the knowledge that which s covariates are relevant
also has the rate of convergence given in (31) and the irrele-
vant covariates can be consistently identified by the penalized
least-square method. Therefore, our asymptotic result shows
that the penalized estimator defined without knowledge of rele-
vant covariates has the same convergence rate as when we know
which covariates are irrelevant. Thus, we can say the estimator
has the nonparametric oracle property as defined by Storlie et al.



(2011). This theorem allows s, g, and r to vary with n. If they do
not vary with #, the rate of convergence is Op(K/n + K~2%), the
standard rate of convergence for the spline regression; and when
K, ~ n'/24+D "we obtain the well-known optimal rate of con-
vergence n~24/2d+D of Stone (1982).

Remark 1. Theorem 1 showed that all accumulation points of
the sequence generated by Algorithm 1 are critical points. The-
orem 2 gives the asymptotic property of a local minimizer of
(11) and corresponding function estimators. Since Theorem 1
does not imply that Algorithm 1 converges to a local minimum
of the optimization problem, Theorem 2 cannot be combined
with Theorem 1 to show the statistical property of the estimator
generated by Algorithm 1. How to fill in this theoretical gap is
an open question.

2.6. Simulation Study

We conducted a simulation study to evaluate the proposed
method. We considered two cases: (i) the data are generated
from a reduced MVCM model (5) where the coefficient func-
tions are exactly spanned by principal component functions;
(ii) the data are generated from an MVCM where the coeffi-
cient functions are represented by principal component func-
tions plus some random noises. In the second case, the MVCM
is not in the reduced form (5). In the first case, we found that
the K-fold CV can accurately select the true number of compo-
nents and it can also identify the number of irrelevant covari-
ates with high accuracy. In the second case, there does not exist
a true fixed number of principal components, and the K-fold
CV helped find a reduced MVCM that is a good approximation
to the true model. In both cases, the reduced MVCM has clear
advantages over the full MVCM and the linear model in esti-
mation of functional coefficients and identification of relevant
covariates. Details of the simulation setups and results are given
in the supplementary materials.

3. Framingham Heart Study

The Framingham Heart Study (FHS; Dawber, Meadors, and
Moore 1951) is a project in health research to identify the
common factors that contribute to cardiovascular diseases. We
used a subset of the data with 325 patients, which have mea-
surements on 15 phenotypes in addition to the SNP informa-
tion. The 15 phenotypes are shown in Table 1, and were used
as the response variables in our application of the MVCM.
To remove the effects of big differences in the scales of the
response variables, we normalized the response variables to
have mean 0 and standard deviation 1. The index variable used
in MVCM is the level of sedentary activity in term of hours
per day. After matching the SNP data with the phenotypes
and deleting observations with missing values, there are 292
patients remaining in our study. With a large number of SNPs
(32,164 SNPs for chromosome 6 that we focused on), clearly it
is crucial to identify a small number of them that are impor-
tant in explaining the response variables. Each SNP has three
possible allele combinations coded as —1, 0, 1. For details on
genotyping, see http://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000007.v20.p8.
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Table 1. The response variables for the FHS data.

Variable name Description

weight

height
bi.deltoid.girth
right.arm.girth.upper

weight (to nearest pound)

height (in inches to next lower 1/4 inch)

bi-deltoid girth (inches with 2 decimals)

right arm girth-upper third (inches with 2 decimals)

waist.girth waist girth (inches with 2 decimals)
hip.girth hip girth (inches with 2 decimals)
thigh.girth thigh girth (inches with 2 decimals)

systolic.blood.pressure
diastolic.blood.pressure

systolic blood pressure-nurse
diastolic blood pressure-nurse

phy.sys.bp.1st.read physician systolic pressure 1st reading
phy.dia.bp.1st.read physician diastolic pressure 1st reading
phy.sys.bp.2nd.read physician systolic pressure 2nd reading
phy.dia.bp.2nd.read physician diastolic pressure 2nd reading
ventricular.rate ventricular rate (per minute)

grs.angle grsangle

To reduce the large number of SNPs to a manageable size, we
first applied our method by treating one SNP as a predictor at a
time to select the top 500 SNPs mostly related to the responses,
where the R? is used to rank the SNPs. In this screening process,
we fixed the spline order at m = 4 and used K = 8 B-splines as
the basis. The selected 500 SNPs were used in the comparative
study to be reported below.

We considered three methods: the reduced MVCM
(rMVCM), the full MVCM (fMVCM), and the linear model
(LINEAR). All three methods involved variable selection using
the SCAD penalty. We used the 50-fold CV to select the penalty
parameters. We also used the 50-fold CV to select K, the
number of spline basis functions. The reason of using a large
fold number of CV is to improve the stability of the penalty
parameter selection. The least CV errors by the rMVCM,
fMVCM, and LINEAR are, respectively, 0.054,0.177,0.129,
while the corresponding R¥s are 0.11, 0.97, 0.80. The CV error
by rMVCM is more than 50% reduction of the CV errors of
the other two. The much larger R*s for fMVCM and LINEAR
associated with larger CV errors indicate strong over-fitting of
these two methods. As to variable selection, rMVCM selected
nine significant SNPs while fMVCM and LINEAR selected
119 and 417, respectively. This result is consistent with the
observations in the simulation study that fMVCM and LINEAR
tend to over-select significant SNPs.

To obtain a biological explanation on the selected SNPs,
we input the submitted ss# of the selected SNPs to the NCBI
database (Sherry et al. 2001) to retrieve the rs# records. Among
the nine selected SNPs by rMVCM, three SNPs have been scien-
tifically confirmed. In particular, the SNP 54896044 has asso-
ciation with hypertension (Burton et al. 2007), while the SNPs
rs9479367 and rs9321440 have associations with multiple dis-
eases or symptoms (Gagliardi 2011; McElroy 2013; Liu et al.
2013).

Figure 2 shows the estimated coefficient functions for the
confirmed SNP rs4896044. We observe that the estimated
coefficients show different nonlinear patterns changing with
sedentary activity hours. For example, for ventricular.rate and
qrs.angle, the estimated coefficients show a decreasing pat-
tern, and have a sharp drop when people have more than
15 sedentary activity hours. For systolic.blood.pressure and
phy.sys.1st(2nd).bp.read, the effect of this SNP shows similar
increasing patterns, changing from negative to positive values
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Figure 2. Estimated varying coefficients of the biologically confirmed SNP rs4896044.

as the value of sedentary activity hours increases; this simi-
larity in patterns could be explained by the high correlations
among these three measurements. For diastolic blood pressure
measurements, the effect is relative flat when the number of
sedentary activity hours is more than 6. On the other hand,
the effect of SNP 754896044 on other variables such as weight,
bi.deltoid.girth and waist.girth are relatively weak since the esti-
mated coeflicients are close to zero for all values of the sedentary
hours.

4. Conclusion

This article extends the widely used varying-coefficient model
to multivariate responses and with a large number of covariates.
We developed a novel estimation method by employing the
noncentered principal components to significantly reduce the
number of unknown functions to be estimated and imposing
sparsity-inducing penalization to automatically select the rel-
evant covariates. The proposed method has a wide range of
applications, and it is particularly useful to identify variables
when their effects may be altered by another variable in high-
dimensional settings, such as gene-environment interactions
in genome-wide association studies (GWAS). Our method
requires the response variables to be continuous. In real data
applications, however, we may have discrete response vari-
ables, such as disease status. Thus, how to incorporate both
continuous and discrete response variables in the dimension
reduction and variable selection procedure is an interesting
future research topic. Moreover, FHS is a continuing project

0 3 6 9 12 15 18
sedentary activity hours

0 3 6 9 12 15 18 0 3 6 9 12 15 18
sedentary activity hours sedentary activity hours

containing longitudinal observations, so extending the pro-
posed method to longitudinal data settings is also of interest,
and needs further investigation.

Supplementary Materials

In the supplemental materials, we provide the technical proofs for the main
theorems and additional simulation studies.
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