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Testing Alphas in Conditional Time-Varying

Factor Models with High Dimensional Assets

Shujie Ma, Wei Lan, Liangjun Su, and Chih-Ling Tsai

Abstract

For conditional time-varying factor models with high dimensional assets, this article pro-

poses a high dimensional alpha (HDA) test to assess whether there exist abnormal returns on

securities (or portfolios) over the theoretical expected returns. To employ this test effectively,

a constant coefficient test is also introduced. It examines the validity of constant alphas and

factor loadings. Simulation studies and an empirical example are presented to illustrate the
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finite sample performance and the usefulness of the proposed tests. Using the HDA test, the

empirical example demonstrates that the FF three-factor model (Fama and French, 1993)

is better than CAPM (Sharpe, 1964) in explaining the mean-variance efficiency of both the

Chinese and US stock markets. Furthermore, our results suggest that the US stock market

is more efficient in terms of mean-variance efficiency than the Chinese stock market.

Keywords: Conditional alpha test; High dimensional data; Mean-variance efficiency; Spline

estimator; Time-varying coefficient
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1 Introduction

Since the seminal works of Sharpe (1964) and Lintner (1965), the capital asset pricing model

(CAPM) has played a fundamental role in modern finance. To measure investment perfor-

mance, Jensen (1968) introduced the intercept term (i.e., ‘Jensen’s alpha or just ‘alpha’)

into CAPM. Later, Fama and French (1993, 2015) extended the single-factor model, CAPM,

to the three-factor and five-factor models, respectively. In these models, the excess return

(the stock return minus the risk-free rate) for stock i at time t is denoted by Rit, and the

risk premium on d-dimensional tradable systematic risks (d factors) at time t is denoted as

ft � Rd. To incorporate the alpha into the general factor model, one can linearly relate the

excess return of an asset (or a portfolio) to the factors (denoted by ft) through the intercept

αi and the factor loadings βi � Rd:

E(Rit‖ft) = αi + β�
i ft, (1)

where i = 1,×××, N and t = 1,×××, T . It is worth noting that αi should be zero for all N

assets (or portfolios) in both CAPM and the Fama and French (FF) factor model.

To evaluate the marginal return associated with an additional strategy that is not ex-

plained by existing factors, many researchers employ the specification test for a factor model

by testing

H0 : α = 0 v.s. H1 : α F= 0,

where α = (α1,×××, αN)
� � RN is a vector of intercepts involved in the factor model. For

example, Gibbons, Ross and Shanken (1989, GRS hereafter) proposed an exact multivariate

F -test for testing α = 0 under the joint normality assumption. Ever since, much effort has

been devoted to this approach; see MacKinlay and Richardson (1991), Zhou (1993), and

Beaulieu et al. (2007), to name just a few. However, the GRS test is only applicable when

the number of assets (N) is smaller than the number of observations (T ). In reality, N

can be (much) larger than T . For example, in the Chinese stock market, there are about

N = 2, 500 stocks but only about T = 1, 500 observations even for daily data, going back as

far as 2007. In addition, a large T is likely to increase the possibility of structural changes
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in the factor loadings, which may adversely affect the performance of the GRS test (Pesaran

and Yamagata, 2012).

To employ the GRS test, one needs to assume that the factor loadings are constant over

time. This assumption can be quite restrictive in empirical finance. Much empirical evidence

indicates that the factor loadings in the classical CAPM and the FF three-factor model vary

substantially over time even at the portfolio level (see, e.g., Lewellen and Nagel, 2006; Ang

and Chen, 2007). As a result, the GRS test can lead to inaccurate conclusions when the

factor loadings are time-varying.

As discussed above, we have identified two limitations for using the GRS test; one is that

the number of assets N is fixed, and the other is that the factor loadings are constant over

time. To address the first one, Pesaran and Yamagata (2012) employed the thresholding

covariance estimator of Fan et al. (2011) and proposed two novel Wald-type tests for testing

the validity of CAPM. Accordingly, their tests are applicable to the N > T case under

certain conditions. However, the Wald-type tests often suffer from low power due to the

accumulation of errors in estimating high-dimensional parameters. Thus, Fan et al. (2015)

proposed a power enhancement screening procedure to strengthen the power under sparse

alternatives (i.e., the null hypothesis is violated only by a very small number of components).

Although the new tests of Pesaran and Yamagata (2012) and Fan et al. (2015) are not

constrained by the limitation of N < T , they still require the factor loadings be constant.

To deal with the second limitation, Li and Yang (2011) and Ang and Kristensen (2012)

considered conditional factor models and proposed nonparametric Wald-type tests to assess

the significance of long-run conditional alphas (i.e., the average of alphas over a relatively

long period) in the presence of time-varying factor loadings. However, their tests are only

applicable when the number of assets N is fixed and the number of observations T tends to

infinity. In practice, N can be very similar to or even greater than T . As a result, their tests

can break down because either the covariance matrix of the estimators is not invertible or

the sample covariance estimator is highly biased. Consequently, those tests can only resolve

the second limitation, but not the first one.
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To the best of our knowledge, there is no available test that can simultaneously address

the aforementioned two limitations. The aim of this paper is to fill this gap in the literature.

Specifically, we propose the High Dimensional Alpha (HDA) test for long-run conditional

alphas while allowing for time-varying factor loadings. Similar to Fan et al. (2015), we

consider large panels of assets and develop double asymptotics as both the number of assets

N and the number of observations T tend to infinity. Moreover, the dimensionality N is

allowed to grow faster than the sample size T . To allow for structural changes over the long

run, we consider a time-varying factor model in which the factor loadings are assumed to be

unknown smooth functions of time t. We estimate the factor loadings by linear combinations

of spline basis functions.

Our HDA test circumvents the limitation of the Wald-type test because the latter is not

applicable to the high-dimensional testing problem. Following the lead of Goeman et al.

(2011), Lan et al. (2014), and Guo and Chen (2016), we could consider a score-type test.

However, there are two major hurdles here. First, these authors considered the hypothesis

test for a set of high-dimensional coefficients in parametric regression settings while we

consider high-dimensional tests in semiparametric models because the factor loadings are

modeled as a function of time in our setting. Second, the aforementioned works require that

the dimension of nuisance parameters grow with the sample size at a slow rate, while the

number of nuisance parameters in our model can be much larger than the time period T .

Due to these major difficulties, it is challenging to apply the results of these existing studies.

Instead, we propose a U-type statistic based on the residuals obtained from the null model,

develop a bias-corrected estimator for the variance of the U-type statistic, and construct an

asymptotically pivotal HDA test statistic. The detailed procedures for building up the test

statistic associated with its theoretical property will be discussed in Section 2.3.

In practice, one may wonder whether the alphas and betas are varying over time before

employing the HDA test. For this purpose, we subsequently propose a Constant Coefficients

(CC) test to assess the constant alphas and factor loadings in the spirit of the generalized

Chow (1960) F -test of Chen and Hong (2012) and Ang and Kristensen (2012). We show

that this test statistic is asymptotically normally distributed under the null hypothesis of

constant alphas and betas. When we fail to reject the null hypothesis in the CC test, we
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can apply an existing test (e.g., Fan et al.’s (2015) test) to examine the significance of the

alphas. Otherwise, we should employ the HDA test to obtain a robust conclusion.

To assess the finite sample performance of our proposed tests, we conduct extensive

simulations that demonstrate that both the HDA and CC tests perform well in terms of size

and power. In empirical analysis, we study the market efficiency of both the Chinese and US

stock markets via the conditional CAPM and conditional FF three-factor model. The CC

test indicates that the alphas and betas are varying with time. Hence, we apply the HDA

test to assess the validity of the two conditional pricing models. The results show that the

FF three-factor model is better than CAPM in terms of explaining the variation of stock

returns. In addition, based on the FF three-factor model, we often cannot reject the null

hypothesis of market efficiency from the 53 and 300 rolling windows used for studying the

Chinese and US stock markets, respectively. These results are more prominent for the US

stock market, which suggests that the US stock market is more efficient than the Chinese

stock market in terms of the mean-variance efficiency.

The rest of the paper is organized as follows. Section 2 presents the model and proposes

the HDA test for assessing the market efficiency. Section 3 introduces the CC test for

examining the constancy of factor loadings. Monte Carlo studies and empirical analyses for

both the Chinese and US stock markets are given in Sections 4 and 5, respectively. Section

6 concludes. All technical details and some additional simulation and application results are

relegated to the on-line supplemental materials.

2 Methodology

In this section, we present the conditional time-varying factor model and propose the HDA

test for assessing the market efficiency.
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2.1 Conditional Factor Model and Hypothesis

To explain the excess returns Rit of asset i at time t, we consider the following conditional

factor model (Ang and Kristensen, 2012),

Rit = αit + β�
it ft + eit = αit +

̂ d

j=1
βijtfjt + eit, (2)

where i = 1,×××, N, t = 1,×××, T, αit is the conditional alpha of asset i at time t, ft =

(f1t,×××, fdt)
� is a d⊗1 observable vector of common factors with fixed d, βit = (βi1t,×××, βidt)

�

is a d⊗ 1 vector of time-varying factor loadings, and eit is the idiosyncratic error term. For

the classic CAPM, the single common factor is the market risk, while for the FF three-factor

model, the common factors are the market risk, SMB and HML, where SMB and HML mea-

sure the historic excess returns of small-cap stocks over big-cap stocks and of value stocks

over growth stocks, respectively (see Fama and French, 1993). Furthermore, if αit and βit

are not varying with time t, then the expected excess returns of model (2) are the same as

that of model (1).

In model (2), the number of parameters is greater than the number of observations

without additional assumptions on the model structure. To identify the parameters in model

(2), we follow Li and Yang (2011) and assume that αit and βijt are two smooth functions

of time such that αit = αi(t/T ) and βijt = βij(t/T ). Our main interest is to test whether

the average pricing error is equal to zero or not. To this end, we adopt the approach of

Lewellen and Nagel (2006), Li and Yang (2011), and Ang and Kristensen (2012), and define

the average alpha as δ0i = T−1
∑T

t=1 αit for i = 1,×××, N . Accordingly, we can rewrite model

(2) as

Rit = δ0i + δi(t/T ) +
̂ d

j=1
βij(t/T )fjt + eit,

where δi(t/T ) = αi(t/T ) T−1
∑T

t=1 αi(t/T ). Then the null and alternative hypotheses for

testing the average alphas across the N assets are, respectively,

H0 : δ
0
i = 0 for all i = 1,×××, N v.s. H1 : δ

0
i F= 0 for some i = 1,×××, N. (3)

To construct the test statistic, we need to estimate δi(t/T ) and βij(t/T ) under H0.
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Remark 1: It is worth mentioning that Jensen’s alpha test is used for a similar purpose

in a different context associated with the mean-variance efficiency. In fact, Jensen’s alpha

test is often used for testing the validity of CAPM (see, e.g., Jensen (1968) and Pesaran and

Yamagata (2012)). On the other hand, Gibbons et al. (1989) pointed out that if a particular

portfolio is mean-variance efficient (i.e., it minimizes variance for a given level of expected

return), then the following first order condition must be satisfied for the given assets:

E(Rit) = αit + βiE(rmt)

for some constant βi and αit = 0, under the conditions that rmt and the asset returns Rit’s are

jointly normally distributed and linearly independent (see Gibbons et al., 1989). Here, rmt

is the excess return on the portfolio whose mean-variance efficiency is being tested. Accord-

ingly, if the market portfolio exists, then testing the mean-variance efficiency is equivalent

to testing αit = 0, which is essentially the same as the Jensen’s alpha test.

2.2 Parameter Estimation

To proceed, we first introduce some notation. For any vector v =(v1, ..., vm)
� � Rm, let

‖‖v‖‖be its L2 norm and ‖‖v‖‖∞ = max1≤i≤m ‖vi‖. In addition, let 1m be the m ⊗ 1 vector of

ones. For any positive numbers an and bn, let bn � an denote a−1
n bn = o(1), an ≈ bn denote

limn→∞ anb
−1
n = 1, and let an ≡ bn denote limn→∞ anb

−1
n = c for some finite positive constant

c. For an m ⊗ n matrix A =(aij), let tr (A) denote the trace of A, PA = A(A�A)−1A�,

and MA = Im PA, where Im is the m ⊗ m identity matrix. Moreover, denote ‖‖A‖‖∞ =

max1≤i≤m

∑n
j=1 ‖aij‖and A = maxζ∈Rn,||ζ||=1 Aζ . For any symmetric matrix A � Rn×n,

let λmin(A) and λmax(A) be the smallest and largest eigenvalues of A, respectively. We

use (N, T ) ∞ ∈ to denote that N and T approach to infinity jointly. The operators
d
∞

and
p
∞ denote convergence in distribution and in probability, respectively, and plim denotes

probability limit. Without further specification, the notations o(×), op(×), O(×) or Op(×) hold

as (N, T )∞ ∈ .

We employ the polynomial spline approach to estimating the unknown parameters αi(t/T )

and βij(t/T ). Let 0 = ξ0 < ξ1 < ×××< ξn < 1 = ξn+1 be a partition of [0, 1] into subintervals
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I� = [t�, t�+1), 0 ≥ � ≥ n 1 and In = [ξn, ξn+1] that satisfy

max0≤�≤n ‖ξ�+1 ξ�‖/min0≤�≤n ‖ξ�+1 ξ�‖≥ m̃

for some constant 0 < m̃ < ∈ , where n ≤ n(N, T ) is the number of interior knots which

satisfies n ∞ ∈ as (N, T ) ∞ ∈ (see Su and Jin, 2012). For any t, define its location as

�(t) satisfying ξ�(t) ≥ t/T < ξ�(t)+1. Consider the space of polynomial splines of order q on

[0, 1], and then denote the normalized B spline basis of this space (de Boor, 2001, p.89)

as B(t/T ) = }B1(t/T ),×××, BL(t/T )|
�, where L = n + q. To estimate δi(×), we consider

the centered spline basis functions, {B�(t/T ) = B�(t/T ) T−1
∑T

t=1 B�(t/T ), and denote{B(t/T ) = } {B1(t/T ),×××, {BL(t/T )|
�. Then, the unknown functions δi(×) and βij(×) can be

well approximated by the B-spline functions (see Schumaker, 1981) such that

δi(t/T )�λ�
i0
{B(t/T ) and βij(t/T )�λ�

ijB(t/T ),

where λi0 � RL×1 and λij � RL×1 are the coefficients of the B-spline functions. Under H0,

the estimators λ̃i = (λ̃�
ij, 0 ≥ j ≥ d)� can be obtained by minimizing

LNT (λ) =
̂ N

i=1

̂ T

t=1

}
Rit λ�

i0
{B(t/T )

̂ d

j=1
λ�

ijB(t/T )fjt
2

,

where λ = (λ�
i , 1 ≥ i ≥ N)� and λi = (λ�

ij, 0 ≥ j ≥ d)�. Let Z = (Z1,×××,ZT )
� where

Zt =
}
Ztk, 1 ≥ k ≥ (1 + d)L

�
=

} {B(t/T )�, f�t 
B(t/T )�
�
� R(1+d)L×1.

Then, we have

λ̃i = (λ̃�
ij, 0 ≥ j ≥ d)� = (Z�Z)−1Z�Ri,

where Ri = (Ri1,×××, RiT )
� � RT×1. Accordingly, the estimators of δi(t/T ) and βij(t/T )

are δ̃i(t/T ) = λ̃�
i0
{B(t/T ) and β̃ij(t/T ) = λ̃�

ijB(t/T ), respectively.

It is worth mentioning that the choice of basis functions does not affect the large-sample

theories, according to our proofs. We choose B-spline basis functions because they are more

computationally efficient and numerically stable in finite samples compared with other basis

functions such as the truncated power series and trigonometric series (see Schumaker, 1981).

Note that the above estimators depend on the number of interior knots, which is often
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unknown in practice. Thus, we follow the approach of Ma et al. (2014) and Ma and Song

(2015) and employ the Bayesian information criterion (BIC) to select n by minimizing

BIC (n) = log

]
(NT )−1

̂ N

i=1

̂ T

t=1

}
Rit λ̃�

i0
{B(t/T )

̂ d

j=1
λ̃�

ijB(t/T )fjt
2
∑

+
logNT

NT
(d+ 1)(n+ q).

2.3 High Dimensional Alpha (HDA) Test

Under the null hypothesis, the estimate of Rit is R̃it = δ̃i(t/T ) + β̃i(t/T )
�ft. Then, the

resulting residuals are

ẽit = Rit R̃it = Rit δ̃i(t/T ) β̃i(t/T )
�ft. (4)

After simplification, we further have

ẽit = δ0i + }δi(t/T ) δ̃i(t/T )| + }βi(t/T ) β̃i(t/T )|
�ft + eit.

Under H0, δ
0
i = 0, and it can also be shown that δi(t/T ) δ̃i(t/T )

p
∞ 0 and βi(t/T )

β̃i(t/T )
p
∞ 0 as T ∞ ∈ . Accordingly, under H0, ẽit

p
∞ eit. This motivates us to consider the

following statistic

JNT = N−1
̂ N

i=1

)
T−1/2

̂ T

t=1
ẽit

[2

(5)

= N−1T−1
̂ N

i=1
ẽ�i 1T1

�
T ẽi = N−1T−1

̂ T

t,s=1
Ẽ�

t Ẽs,

where ẽi = (ẽi1,×××, ẽiT )
� and Ẽt = (ẽ1t,×××, ẽNt)

�.

It is worth noting that, from simple mathematical derivation, we further have

JNT = (1�
TMZ1T )

2T−1N−1GNT ,

where GNT = α̃�α̃, α̃ = (α̃1,×××, α̃N)
�, and (α̃i, λ̃i) = argminαi,λi

∑T
t=1(Rit αi λ�

i Zt)
2.

Thus, we can obtain JNT through GNT . It is also of interest to note that the GRS test

statistic of Gibbons et al. (1989) for testing the efficiency of CAPM is proportional to

α̃�Σ̃−1α̃, where the N ⊗ N matrix Σ̃ is the residual covariance matrix. Accordingly, the
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GRS test statistic can be regarded as the weighted version of GNT via the inverse of residual

covariance matrix. However, the GRS test statistic is well defined only when N < T 1

and the factor loadings are time-invariant. Accordingly, it is not applicable to our high-

dimensional setting, in which N is larger than T , or when Σ̃ is not invertible. To resolve

this issue, Pesaran and Yamagata (2012) proposed replacing Σ̂ with its diagonal version

D = diag(Σ̂), which is invertible even when N is larger than T . We name the resulting test

statistic the PY test. It is worth noting that the PY test is designed for the models with

time-invariant factor loadings, and it may not be applicable when the factor loadings are

time varying; see simulation results in the supplementary materials.

To accommodate time varying factor loadings and to avoid using Σ̃−1 in the high-

dimensional setting, we propose to use a standardized version of JNT as the test statistic.

For this purpose, we need to calculate the mean and variance of JNT under H0, given below:

μ0
NT = N−1T−1

̂ N

i=1

̂ T

t=1
E(e2it)E(η

2
t ), and

σ2
NT = 2N−2T−2tr(Σ2)

̂
t �=s

E(η2t η
2
s),

where

ηt = 1 Z�
t (Z

�Z)−1Z�1T , (6)

Σ = E EtE
�
t

[
, and Et = (e1t,×××, eNt)

�. Let μNT = N−1T−1
∑N

i=1

∑T
t=1 e

2
itη

2
t be an empir-

ical approximation of the mean. Then, we centralize JNT to yield

J∗
NT = JNT μNT . (7)

In our proposed test, we allow both N and T to be large. We need the conditions on the

error vector Et and its associated covariance matrix Σ given below.

(C1) (i) Assume that Et = ΓWt for t = 1,×××, T , where Γ is an N ⊗ v matrix for some

v ∼ N and Wt = (wt1,×××, wtv)
� are v-variate independent and identically distributed

random vectors satisfying E(Wt) = 0 and Var(Wt) = Iv;

(ii) Assume that E(w4
tk) = 3+Δ for some finite constant Δ and for any 1 ≥ k ≥ v. In

addition, assume

E(wγ1
tk1

wγ2
tk2
×××wγu

tku
) = E(wγ1

tk1
)E(wγ2

tk2
)×××E(wγu

tku
)
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for a positive integer u such that
∑u

k=1 γk ≥ 8 and k1 F= k2 F= ×××F= ku.

Condition (C1) is also used in Bai and Saranadasa (1996) and Chen and Qin (2010).

Instead of assuming that the error terms are normally distributed, Condition (C1)(i) states

that Et can be expressed as a linear transformation of a v-variate Wt with mean 0 and

variance matrix Iv that satisfies Condition (C1)(ii). As commented in Chen and Qin (2010),

(C1)(i) is similar to factor models in multivariate analysis, but it allows v ∼ N . Thus the

rank and eigenvalues of Σ are not affected by the transformation. Simple calculations show

that Σ = ΓΓ�.

(C2) (i) tr (Σ4) = o }tr2 (Σ2)| as N ∞ ∈ ;

(ii) T−2
∑T

t=1 E E�
t ΣEtE

�
t ΣEt

[
= o }tr2 (Σ2)| .

Condition (C2)(i) is the same as Condition (3.7) given in Chen and Qin (2010), which

is satisfied under various conditions on the eigenvalues of Σ. If all eigenvalues are bounded,

then (C2)(i) is trivially true. Note that our asymptotic results are established for N ∞ ∈ ,

since we focus on studying the high-dimensional case with large N . For fixed N , theories

can be derived with modifications of the proofs. As shown in the online Appendix, we have

T−2
∑T

t=1 E E�
t EtE

�
t Et

[
= T−1}tr(Σ)| 2+2T−1tr(Σ2)}1+o(1)| . This result, together with

the fact that ‖‖Σ‖‖2 ≥ tr (Σ2), implies that

T−2
̂ T

t=1
E E�

t ΣEtE
�
t ΣEt

[
≥ T−1}tr(Σ)| 2‖‖Σ‖‖2 + 2T−1tr2 Σ2

[
}1 + o(1)| .

Accordingly, if T−1}tr(Σ)| 2‖‖Σ‖‖2 = o }tr2 (Σ2)| , then Condition (C2)(ii) holds. Let ς1 ∼

×××∼ ςN be the eigenvalues of Σ. This condition is equivalent to T−1(
∑N

i=1 ςi)
2ς21 =

o}(
∑N

i=1 ς
2
i )

2| which implies (C2)(ii). This is trivially true when
∑N

i=1 ςiς1 has the same

order as
∑N

i=1 ς
2
i .

(C3) (i) TL−2rN }tr (Σ2)|
−1/2

= o(1), where r > 3/2 is the smooth order of the factor

loading functions given in Assumption (A1) in the online Appendix;

(ii)}tr (Σ2)| −1/2maxi
∑N

j=1 ‖σij‖= o(1), where σij denotes the (i, j)th element of Σ;

(iii) T−1+�N1+�L}tr (Σ2)| −1/2 = O(1) for an arbitrarily small � > 0.
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Condition (C3) (i) and (iii) indicate that the number of spline basis functions L needs

to satisfy [TN}tr (Σ2)| −1/2]1/(2r) � L � TN−1}tr (Σ2)| 1/2 as (N, T ) ∞ ∈ . Furthermore,

they imply that N}tr (Σ2)| −1/2 � T (2r−1)/(2r+1). By assuming that tr (Σ2) ≡ N1+a for some

0 ≥ a ≥ 1, we need N1−a� T 2(2r−1)/(2r+1) for r > 3/2. When a = 1, this is true for all N

and T . When 0 ≥ a < 1, N is allowed to be larger than T since 2(2r 1)/(2r + 1) > 1 for

r > 3/2. When tr (Σ2) ≡ N1+a, we require that maxi
∑N

j=1 ‖σij‖= o(N1/2+a/2) in order to

satisfy (C3)(ii).

Now, let { r denote the collection of all functions on [0, 1] such that the qth order derivative

satisfies the Hölder condition of order γ with r ≤ q + γ. That is, there exists a constant

C0 � (0,∈ ) such that for each φ � { r,

((φ(q) (u1) φ(q) (u2)
((≥ C0 ‖u1 u2‖

γ

for any 0 ≥ u1, u2 ≥ 1. Let HNT,t = σ}f , }eit, ei,t−1,×××|
N
i=1| be the σ-algebra generated from

}f , }eit, ei,t−1,×××|
N
i=1| , where f = }f

�
1 ,×××, f

�
T |

�. DenoteE−t = }ei1,×××, eit−1, ei,t+1,×××, ei,T |
N
i=1.

To state the main results in this section, we add the following assumptions.

(A1) δi (×) � { r and βij (×) � { r for some r > 3/2.

(A2) (i) There exist constants 0 < cf ≥ Cf < ∈ such that

cf ≥ λmin}E}(1, f
�
t )

�(1, f�t )| | ≥ λmax}E}(1, f
�
t )

�(1, f�t )| | ≥ Cf

holds uniformly for t � [1, T ]; (ii) There exists a constant 0 < M < ∈ such that

E‖‖ft‖‖
4(2+κ) ≥ M for some κ > 0; (iii) The process }ft, t ∼ 1| is strong mixing with

mixing coefficient α (×) satisfying
∑∞

k=0 α(k)
κ/(2+κ) < ∈ .

(A3) (i) E(eit‖HNT,t−1) = 0 for each i = 1,×××, N ; (ii) E EtE
�
t ‖E−t

[
= E(EtE

�
t ) = Σ for

all 1 ≥ t ≥ T , Σ is a positive definite matrix, and σii � (0,∈ ) for every 1 ≥ i ≥ N ;

(iii) }ft|
T
t=1 and }Et|

T
t=1 are independent.

Assumption (A1) is the smoothness assumption on the unknown functions, which is com-

monly used in the nonparametric smoothing literature; see He and Shi (1996). Assumption
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(A2)(i) is the same as Condition (C2) in Wang et al. (2008), and this assumption is a typi-

cal condition on the design matrix for regression. Following Fan et al. (2011) and Fan et al.

(2015), we assume that the factors }ft|
T
t=1 follow the strong mixing condition. Moreover, As-

sumptions (A2)(ii) and (iii) are weaker than Assumptions 3.2 and 3.3(ii) given in Fan et al.

(2011). Assumption (A3)(i) is a typical assumption for a martingale difference sequence.

Assumption (A3)(ii) ensures that the covariance of the error terms satisfies the homogeneity

assumption. Assumption (A3)(iii) follows from Assumption 3.1(ii) of Fan et al. (2011).

We now state our first main result, which is about the asymptotic property of σ−1
NTJ

∗
NT .

Theorem 1. Suppose that Conditions (C1), (C2), (C3)(i)-(ii), and Assumptions (A1)-(A3)
hold. Assuming L3T−1 = o(1), under the local alternative

H1,NT : δ0i ≤ δ0i,NT =N−1/2T−1/2}tr(Σ2)| 1/4c0i (8)

for any i = 1,×××, N , where N−1
∑N

i=1(c
0
i )

2 ∞ c0 � [0,∈ ) as N ∞ ∈ , we have

σ−1
NT

}
J∗
NT N−1T−1

̂ N

i=1
δ0i
[2

(1�
TMZ1T )

2 d
∞ N(0, 1),

as (N, T )∞ ∈ . Moreover, there are some constants 0 < cM ≥ CM < ∈ such that

2c2MN−2tr Σ2
[
}1 + o(1)| ≥ σ2

NT ≥ 2C2
MN−2tr Σ2

[
}1 + o(1)| .

The above theorem shows that, under H0, σ
−1
NTJ

∗
NT follows the standard normal distribution

asymptotically (i.e., σ−1
NTJ

∗
NT

d
∞ N(0, 1)). Under the local alternative (8), σ−1

NTJ
∗
NT has the

asymptotic normal distribution with mean γ0 =plim(N,T )→∞σ−1
NTN

−1T−1
∑N

i=1 (δ
0
i )

2
(1�

TMZ1T )
2

and variance 1. In addition, based on the result in Theorem 1, we have σ2
NT ≡ N−2tr (Σ2).

It is worth noting that σ−1
NTJ

∗
NT is usually unknown since it involves population param-

eters. Thus it cannot be used as a test statistic in practice. We therefore need to find

consistent estimators of J∗
NT and σ2

NT . In the proof of Theorem 2 below we show that J∗
NT

can be consistently estimated by

J̃∗
NT = JNT N−1T−1

̂ N

i=1
ẽ2itη

2
t

in the sense that J̃∗
NT J∗

NT = op(σNT ). As for σ2
NT , we need to estimate the unknown

quantity tr(Σ2). A natural estimate is given by tr(Σ̃2), where Σ̃ = T−1
∑T

t=1(Ẽt
¯̃
Et)(Ẽt
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¯̃
Et)

� and
¯̃
Et = T−1

∑T
t=1 Ẽt. However, as demonstrated by Srivastava (2005), tr(Σ̃2) is not

a consistent estimator of tr(Σ2). To address this issue, we adopt the approach of Lan et al.

(2014), and consider the following bias-corrected estimator

t̂r(Σ2) = T 2(T + (1 + d)L 1)−1(T (1 + d)L)−1
}
tr(Σ̃2) tr2(Σ̃)/(T (1 + d)L) .

Based on this estimator, we will demonstrate in the proof of the following theorem that σ2
NT

can be estimated consistently by

σ̃2
NT = 2N−2T−2

̂
t �=s

η2t η
2
s t̂r(Σ

2)

in the sense that σ̃2
NT σ2

NT = op(σ
2
NT ). Accordingly, we propose to use σ̃−1

NT J̃
∗
NT as the test

statistic, and the asymptotic distribution is given below.

Theorem 2. Suppose that Conditions (C1)-(C3) and Assumptions (A1)-(A3) hold. Assume
that L3T−1 = o(1) and LrT−3/2 = o(1). Then under the local alternative given in (8), we

have σ−1
NT (J̃

∗
NT J∗

NT ) = op(1), σ̃
2
NT = σ2

NT}1 + op(1)| , and

σ̃−1
NT

}
J̃∗
NT N−1T−1

̂ N

i=1
δ0i
[2

(1�
TMZ1T )

2 d
∞ N(0, 1)

as (N, T )∞ ∈ .

Under H0, the above theorem yields a test statistic Z̃NT = σ̃−1
NT J̃

∗
NT , which has N(0, 1)

distribution asymptotically. This allows us to devise a test when N and T are large, so we

name it the High Dimensional Alpha (HDA) test. Consequently, for any given significance

level ν, we can reject the null hypothesis if Z̃NT > z1−ν , where z1−ν denotes the ν-th upper

quantile of a standard normal distribution. Furthermore, one can employ Theorem 2 to

evaluate the power of the HDA test. The following remark presents the asymptotic power

of the HDA test.

Remark 2: From the result in Theorem 2, we obtain that under the local alternative given

in (8), P (Z̃NT > z1−ν)
p
∞ 1 Φ(z1−ν γ0) as (N, T ) ∞ ∈ , where Φ(×) stands for the

cumulative distribution of a standard normal distribution.

Remark 3: The above procedure for testing αi = 0 is also applicable for testing αit = 0 at

each time t by establishing the asymptotic distribution of êit. As discussed by Lee (2001),
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however, the market efficiency should be considered a process rather than a destination.

Hence, in some aspects, it is practically valuable to test the average αit over relatively long

periods.

3 Constant Coefficient Test

The proposed HDA test can be used to test alphas without assuming constant factor loadings.

If the null hypothesis (of the alphas over a long period being consistently zero) is rejected,

one would naturally ask whether the conditional alphas and factor loadings are homogeneous

over time for each stock. In fact, testing the alphas under the homogeneity assumption

on factor loadings has been extensively studied in the literature; see, e.g., Gibbons et al.

(1989), MacKinlay and Richardson (1991), Zhou (1993), Beaulieu et al. (2007), Pesaran and

Yamagata (2012), and Fan et al. (2015). In the varying coefficient scenario, one may consider

the generalized likelihood ratio (GLR) approach proposed by Fan et al. (2001). Since the

generalized F -test can be easily adapted to the B-spline-based estimation procedure by

utilizing matrix projections, we borrow the idea from Chen and Hong (2012) and Ang and

Kristensen (2012) of exploiting a generalized version of Chow’s (1960) F -test. Accordingly,

we derive a spline-based generalized F -test statistic, which has a simpler expression. Hence,

it is easier to compute than the kernel-based test statistic given in Chen and Hong (2012) and

Ang and Kristensen (2012). We also obtain the asymptotic distribution of the spline-based

generalized F -test statistic in Proposition 1 below. It is worth noting that this test is only

for testing each individual stock, and thus it is not a high dimensional testing problem.

For each stock i, define θit = (αit,β
�
it )

� � Rd+1. Then, consider the following hypotheses:

H i,c
0 : θi1 = θi2 = ×××= θiT , v.s. H i,c

1 : θit1 F= θit2 for some t1 F= t2.

To test the null hypothesis, we estimate model (2) using the ordinary least squares method

and the spline-based estimation method, respectively, under H i,c
0 and H i,c

1 . Denote their cor-

responding residual sum of squares by RSS
(i)
0 and RSS

(i)
1 . In addition, define Ft = (1, f�t )

� �

Rd+1 and F = (F1,×××,FT )
� � RT×(d+1). Let Zt =

}
F�

t 
 B(t/T )�
�
� R(1+d)L×1. After

simple calculations, we have RSS
(i)
0 = R�

i MFRi and RSS
(i)
1 = R�

i MZRi. In the spirit of the
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generalized Chow (1960) F -test of Chen and Hong (2012) and Ang and Kristensen (2012),

we propose the following test statistic

C
(i)
T = RSS

(i)
0 RSS

(i)
1

[
/RSS

(i)
0 = R�

i

}
MF MZ Ri/}R

�
i MFRi| .

The following proposition studies the theoretical property of C
(i)
T .

Proposition 1. Suppose that Assumptions (A1)-(A3) hold, L = o(T 1/3), and L−1 = o(1).
For each i = 1,×××, N , under the null hypothesis of H i,c

0 , we have

}2(L 1)(d+ 1)| −1/2}(T d 1)C
(i)
T (L 1)(d+ 1)|

d
∞ N(0, 1)

as (N, T )∞ ∈ .

Define C̄
(i)
T = 2}(L 1)(d+1)| −1/2}(T d 1)C

(i)
T (L 1)(d+1)| . Then, by Proposition 1

we should reject the null hypothesis of H i,c
0 for stock i if C̄

(i)
T > z1−ν for any given significance

level ν. Since this test is useful for testing the constancy of coefficients across time, we name

it the constant coefficient (CC) test.

To assess the market efficiency, we can first employ the CC test for testing the null

hypothesis of H i,c
0 . If H i,c

0 is rejected for some i = 1,×××, N , then one should use the HDA

test for large N and the test of Li and Yang (2012) or Ang and Kristensen (2012) for small

N . If the null hypothesis is not rejected for any i = 1,×××, N , it is more efficient to consider

a GRS-type test since GRS tests are designed for homogeneous factor loadings.

Remark 4: The CC test can be modified to test the constancy of conditional alphas and the

constancy of conditional betas separately (Ang and Kristensen, 2012; Li and Yang, 2011).

Specifically, we can test the following two hypotheses individually,

H i,α
0 : αi1 = αi2 = ×××= αiT , v.s. H i,α

1 : αit1 F= αit2 for some t1 F= t2;

H i,β
0 : βi1 = βi2 = ×××= βiT , v.s. H i,α

1 : βit1 F= βit2 for some t1 F= t2.

Applying the same techniques as those for deriving the CC test, we can obtain the corre-

sponding test statistics. Their asymptotic normality can be established by following the

same procedure as used in the proof of Proposition 1.
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4 Simulation Studies

To evaluate the finite sample performance of the HDA and CC tests, we present three

simulated examples that mimic the US stock market. We also conduct simulated experiments

for mimicking the Chinese stock market. Since the simulation results yield similar findings,

we relegate them to the supplementary materials to save space.

4.1 Three Examples

Example 1: One-factor model with time-varying coefficients. Following Li and Yang

(2011), we generate the data from the conditional CAPM with the intercept alphas:

Rit = αit + βitft + eit (i = 1,×××, N, t = 1,×××, T ), (9)

where ft is the excess market return. We generate ft by mimicking the US stock market data

described in the next section. Specifically, we assume that ft follows an AR(1)-GARCH(1,1)

process,

ft 0.34 = 0.05(ft−1 0.34) + h
1/2
t ζt,

where ζt follows a standard normal distribution, ht is generated from the process

ht = 0.32 + 0.67ht−1 + 0.13ht−1ζ
2
t−1,

and the above coefficients are obtained by fitting the model to the US stock market data.

We next consider factor loadings and alphas. Specifically, we borrow the setting from

Su and Wang (2017) and set the conditional factor loadings to be βit = G(10t/T, 2, 2), so

that βit is a non-random smooth function of t/T for i = 1,×××, N and t = 1,×××, T , where

G(z, κ1, κ2) =
]
1+exp} κ1(z κ2)|

∣−1
denotes the Logistic function with tuning parameter

κ1 and location parameter κ2. In addition, the conditional alphas are set to be αit = cit/T for

i = 1,×××, N and t = 1,×××, T . Thus, under the null hypothesis, ci = 0 for all i, which leads

to the conditional CAPM. We lastly generate the error term Et = (e1t,×××, eNt)
� � RN .

To examine the performance of HDA and CC for various error distributions, we generate
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the variable Et via Et = Σ1/2Z∗
t for t = 1,×××, T , where each component of Z∗

t is indepen-

dently simulated, respectively, from a standard normal distribution (N(0,1)), a standardized

exponential distribution (exp(1)), and a mixture distribution 0.1N(0, 9) + .9N(0, 1). As for

Σ = (σj1j2) � RN×N , we consider the following two settings: one is borrowed from Fan and

Li (2001) with σj1j2 = 0.5|j1−j2|, which implies that ej1t and ej2t are approximately uncor-

related when the difference ‖j1 j2‖ is sufficiently large; the other is borrowed from Fan et

al. (2015), where Σ = diag(A1,×××, AN/4) is a block-diagonal correlation matrix, and each

diagonal block Aj for j = 1,×××, N/4 is a 4 ⊗ 4 positive definite matrix whose correlation

matrix has equi-off-diagonal entry ρj generated from Uniform[0,0.5]. Since the two settings

yield very similar patterns, we only present the results of the first setting here, while the

results for the second setting are relegated to the supplementary materials.

The above process is simulated over the periods t = 24,×××, 0, 1,×××, T with the initial

values Ri,−25 = 0, h−25 = 1, z−25 = 0 and σ2
−25 = 1. To offset the start-up effects, we drop

the first 25 simulated observations and use t = 1,×××, T in our studies.

Example 2: Three-factor model with time-varying coefficients. To study three

factor effects on the tests, we consider the following Fama-French conditional factor model:

Rit = αit +
̂ 3

j=1
βijtfjt + eit (i = 1,×××, N, t = 1,×××, T ), (10)

where f1t, f2t and f3t represent the three factors, i.e., the market factor, SMB (small [size]

minus big) and HML (high [value] minus low). To mimic the US stock market, these factors

are correspondingly simulated from the following AR(1)-GARCH(1,1) processes,

Market factor: f1t 0.34 = 0.05(f1t−1 0.34) + h
1/2
1t ζ1t,

SMB factor: f2t 0.04 = 0.07(f2t−1 0.04) + h
1/2
2t ζ2t,

HML factor: f3t 0.06 = 0.04(f3t−1 0.06) + h
1/2
3t ζ3t,

where ζjt (j = 1, 2 and 3) are simulated from a standard normal distribution, hjt (j = 1, 2

and 3) are, respectively, generated through the following processes,

Market factor: h1t = 0.32 + 0.67h1t−1 + 0.13h1t−1ζ
2
1t−1,
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SMB: h2t = 0.33 + 0.51h2t−1 + 0.03h2t−1ζ
2
2t−1,

HML: h3t = 0.26 + 0.72h3t−1 + 0.05h3t−1ζ
2
3t−1,

and the above coefficients are obtained by fitting the model to the US stock market data

presented in Section 5.

The conditional factor loadings are βijt = ajG(10t/T, 2, 2) + bj for i = 1,×××, N , j =

1, 2, 3, and t = 1,×××, T , where (a1, b1) = (0.5, 0.5), (a2, b2) = (0.1, 0.5), and (a3, b3) =

(0.2, 0.5). In addition, the conditional alphas are set to be αit = cit/T for i = 1,×××, N and

t = 1,×××, T . Thus, under the null hypothesis, ci = 0 for all i, which leads to the conditional

three-factor model. Finally, the error terms Et, initial values, and the simulated observations

have the same settings as in Example 1.

Example 3: Three-factor model with random coefficients. In the above two exam-

ples, the factor loadings are set to be non-random smooth functions of t/T as described in

Subsection 2.1. To assess the robustness of the proposed test for the random factor load-

ings, we consider the same model settings as in model (10) of Example 2, except that the

conditional alphas αit and the conditional factor loadings βijt are generated from the unob-

servable state variable zt via αit = cizt and βijt = aj + bjzt for i = 1,×××, N , j = 1, 2, 3, and

t = 1,×××, T . Furthermore, zt follows an AR(1)-ARCH(1) process, zt = 0.8zt−1 + ut, where

ut = σtεt, εt follows a standard normal distribution, and σ2
t = 0.1 + 0.6σ2

t−1 with σ2
0 = 1.

4.2 Performance of the HDA Test

To evaluate the size performance of the HDA test, we set ci = 0 for all i in the above three

examples. Then, three different sample sizes (T = 100, 200, 500) and four different numbers

of stocks (N = 3, 200, 500, 1, 000) are considered. For each setting, all simulations are

conducted via 1,000 realizations with nominal level α = 5%. The GRS test of Gibbons et al.

(1989) and the tests of Pesaran and Yamagata (2012) are only applicable when the factor

loadings are constant over time. Hence, we only compare our HDA test with the LY test

from Li and Yang (2011).
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Table 1 presents the sizes of the HDA test across three sample sizes and four different

numbers of stocks for Examples 1–3, respectively. Here, the number of interior knots n is

determined by the BIC criterion, as discussed in Subsection 2.2, and the order of B-splines

is set at 3. The results in Table 1 indicate that HDA performs well regardless of T = 100,

200 or 500, N = 3, 200, 500 or 1,000, and the error distribution being normal, exponential,

or a mixture. Hence, HDA is not only applicable to the case N > T , but also robust to

various (N, T ) specifications and error distributions. It is worth noting that the results of

Example 3 yield a similar pattern to those in Examples 1–2. This implies that HDA is also

robust to the specification of the factor loadings. In contrast, the LY test exhibits serious

size distortion when N is relatively large. For example, the empirical sizes are equal to 1 for

N ∼ 200. This finding is not surprising since the LY test is not designed for N > T , and it

performs well when N = 3. As a result, we only consider HDA in the evaluation of power.

To study the power of the HDA test, we consider the following two different types of

alternative hypotheses for Examples 1–2. The first one is the dense alternative under which

αit = cit/T = ct/T for some constant c and i = 1,×××, N . The second one is the sparse

alternative under which αit = cit/T = ct/T for some constant c if i ≥ 20; αit = 0, otherwise.

This alternative setting is motivated by the empirical finding of Fan et al. (2015) that the

market inefficiency is only induced by a very small portion of stocks. In both alternative

settings, the signal strength c ranges from 0 to 0.2 with an increment of 0.01. For the sake

of illustration, we only consider the normally distributed random errors with N = 200.

Figures 1 depicts the empirical powers of the HDA test over three sample sizes (T =

100, 200, 500), two different data generation processes (Examples 1 and 2), two types of

alternatives (dense and sparse), and 20 (=0.2/0.01) signals of c. The results indicate that

the empirical power of HDA steadily increases to 1 as the signal strength c gets larger. In

addition, the power of HDA becomes large as the sample size T increases. In sum, the HDA

test performs satisfactorily and comparably under both dense and sparse alternatives, and

it is indeed consistent.
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4.3 Performance of the CC Test

To study the finite sample performance of the CC test, without loss of generality, we consider

the case of a single stock (i.e., N = 1). We adopt the settings given in Examples 1–2, except

for βit = 1 + bzt in Example 1 and βijt = 1 + bzt in Example 2 with i = 1. In addition, we

set b = 0 for assessing the size of the test, and b = 0.1 and 0.3 for examining the power of

the test. Table 2 reports the test results. From Table 2 we observe that the empirical sizes

of the CC test are all around 0.05 regardless of the time length T and the error distribution.

Furthermore, the empirical power of the CC test increases to 1 as b or T becomes larger. In

sum, the CC test performs well in terms of both size and power.

5 Real Data Analysis

In this section, we employ the proposed tests to assess the mean-variance efficiency of both

the Chinese and US stock markets. It is worth mentioning that our proposed HDA test is

applicable even for N ≫ T , which allows us to target a large pool of stocks directly so that

there is no need to group a large number of stocks into a small number of portfolios. The goal

of this empirical study is two-fold: (i.) investigate the efficiency of the Chinese and US stock

markets during the study period; (ii.) explore the differences between the Chinese and US

stock markets based on the results of mean-variance efficiency. Since the US stock market

is more mature than Chinese stock market, we first study the efficiency of the Chinese stock

market and then compare the results with that of the US stock market.

5.1 Data Description

The Chinese stock market data are collected from the WIND database (one of the most

authoritative databases in China), which contains securities in the Shanghai-Shenzhen 300

Index. We use this dataset because the 300 stocks in this index are the most frequently

traded stocks in China; hence, these data are not significantly impacted by a survivorship

bias (see Brown et al., 1995). After eliminating the stocks with missing observations to avoid
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analyzing an unbalanced panel, there remain T = 153 weekly observations for each of the

N = 292 stocks from 11/25/2011 to 12/31/2014. As a result, each observation represents

a particular firm’s weekly excess return (the stock return minus the risk-free interest rate).

The weekly return of the 1-year deposit is chosen to proxy the risk-free interest rate rft.

Following the literature on the study of the Chinese stock market, we use the Shanghai

Composite Index (the value-weighted return on all Shanghai A-share stocks) as the proxy

for the market portfolio rmt. Then, according to the definition given by Fama and French

(1993), the factor SMB is the average return of the three smallest portfolios minus the average

return on the three biggest portfolios, and the factor HML is the average return on the three

highest value stock portfolios minus the average return on the three lowest value portfolios.

Note that all the stocks used in this study are listed in the Shanghai and Shenzhen A-share

stock market.

To make a comparison with the US stock market, we also collect data for securities in the

Standard & Poor’s 500 (S&P 500) index from the period 01/08/2010 to 08/25/2017. After

eliminating the assets with missing observations, there remain T = 399 weekly observations

for each of the N = 442 firms. The three factors are obtained from Ken French’s data

library web page. The one-month US treasury bill rate is chosen as the risk-free rate, and

the value-weighted returns on all NYSE, AMEX, and NASDAQ stocks obtained from CRSP

are used as a proxy for the market return.

Table 3 reports the descriptive statistics that include the mean, median, and standard

deviation (SD) for the market factor, SMB and HML for both the Chinese and US stock

markets. According to Table 3, we find that the returns on SMB and HML in the Chinese

stock market are much larger than those in the US stock market. It is of interest to note

that Aboody and Lev (2000) and Abosede and Oseni (2011), respectively, noticed that

SMB and HML can be related to information asymmetry. In addition, Dai et al. (2013)

indicated that the Chinese stock market suffers from more information asymmetry, such

as insufficient information disclosure mechanisms and regulatory instruments, than stock

markets in western countries. Hence, we conjecture that higher information asymmetry

in Chinese market maybe leads to the larger observed returns on SMB and HML, but a

thorough and rigorous study on this subject needs to be explored in future research and is
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not the focus of this paper.

5.2 Are Alphas and Betas Time-Varying?

Before assessing the market efficiency of the Chinese stock market (US stock market), it is

reasonable to check whether the alphas and betas are time-varying. To this end, for each

individual stock, we employ the CC test to examine the constancy of the alphas and factor

loadings in both CAPM and the FF three-factor model. The results show that the p-value

for testing the constancy of the alphas and factor loadings in each of the 292 (442) stocks

is close to 0, regardless of the model. This strong evidence indicates that the alphas and

betas are time-varying in both the Chinese and US stock markets, which suggests that the

conditional time-varying factor model is more suitable than the traditional time-invariant

factor model.

5.3 Mean-Variance Portfolio Efficiency

We first employ the HDA test to assess the market efficiency of the Chinese stock market

based on N = 292 stocks with T = 153 corresponding observations for each stock recorded

between 11/25/2011 and 12/31/2014. Specifically, we consider the following rolling window

procedure with window length h = 100 to examine the dynamic movement of the market

efficiency. Due to theoretical considerations, T cannot be too small. Accordingly, the rolling

window h cannot be small either. Hence, we consider window length h = 100. For the sake

of convenience, we also use h = 100 to study the US stock market.

For each τ � }1,×××, 153 h| , we separately estimate CAPM and the FF three-factor

model using the data from period τ to τ + h 1. As a result,

rit rft = α̂it + β̂it(rmt rft) + êit (CAPM) ;

rit rft = α̂it + β̂i1t(rmt rft) + β̂i2tSMBt + β̂i3tHMLt + êit (FF )

for 1 ≥ t ≥ τ + h 1.
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Based on the estimated residuals êit obtained by separately fitting CAPM and the FF

three-factor model to the data in each window, we calculate the HDA test statistics and

their corresponding p-values. Here, the number of interior knots n is determined via BIC

discussed in Subsection 2.2, and the order of B-splines is set at 3 for all estimation windows.

For the sake of comparison, we also consider the PY test (Pesaran and Yamagata, 2012).

The p-values across the 53 (300) windows obtained from the HDA and PY tests by testing

the market efficiency of the Chinese (US) stock market based on CAPM and the FF three-

factor model are, respectively, presented in Figures 2 and 3, while the descriptive statistics

of these p-values are given in Table 4.

For the Chinese market, the left panel in Figure 2 depicts the p-values of the HDA and

PY tests for CAPM across the 53 window periods, while the right panel is for FF. According

to Figure 2 and Table 4, PY shows a similar pattern to HDA in explaining that the majority

of the p-values from FF are larger than those from CAPM. However, these two tests can

lead to very different conclusions in terms of market efficiency for some periods under our

scrutiny. For example, the left panel in Figure 2 shows that, for 19 window periods (2, 4,

5, 7, 8, 9, 11, 13, 14, 16, 33, 34, 36, 40, 41, 43, 44, 49 and 50), the p-values obtained from

HDA in the CAPM model are less than 5%; this indicates that the markets are inefficient

over these window periods. In contrast, the p-values obtained from PY in the corresponding

window periods are greater than 5%.

We next conduct the analysis for the US stock market data. Panels A and B in Figure 3

depict the p-values of the HDA and PY tests for CAPM and FF, respectively, across the 300

window periods. To highlight the difference between HDA and PY, Panels C and D present

the p-values for the sub-window periods ranging from 101 to 150. Table 4 indicates that the

averaged p-values obtained from HDA are smaller than those from PY; this can also be seen

in Figure 3. In particular, panel D in Figure 3 suggests that, for 8 window periods (108, 110,

111, 112, 134, 135, 149 and 150), the p-values obtained from HDA in the FF model are less

than 5%. Accordingly, the markets are inefficient in these window periods. On the other

hand, the p-values obtained from PY in those corresponding periods are all greater than 5%.

It is also worth noting that the alphas and betas are time-varying, as confirmed by the
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CC test in Section 5.2. This, together with the above discussion, implies that HDA is a

better and more capable approach than PY to detecting mean-variance inefficiency in these

two markets.

In addition to compare HDA and PY, we note from Figures 2 and 3 that most of the

p-values from the FF three-factor model are larger than the 5% significance level, and they

are also higher than those from CAPM. Hence, the FF three-factor model is better than

CAPM in explaining the mean-variance efficiency of both the Chinese and US stock market.

However, in the US stock market these findings are even more prominent than in the Chinese

stock market. This suggests that the US stock market is more efficient than the Chinese

stock market in terms of mean-variance efficiency. This finding is also confirmed by Table 4;

the mean of the p-values from the FF three-factor model obtained for the US stock market

is much larger than that for the Chinese stock market.

For robustness check of HDA, we further consider a short window of length h = 60

for both the Chinese and US stock market data as suggested by Pesaran and Yamagata

(2012) and a relatively longer window of length h = 200 for the US stock market data; the

results yield a similar pattern to that with h = 100. To save space, we present them in

the supplementary materials. Finally, although we believe our findings make a contribution

to the literature, one avenue of further research would be extending them to account for

survival bias when there are missing observations (see Brown et al., 1995).

6 Conclusion

In this paper, we propose the HDA test to examine the market efficiency in conditional

time-varying factor models. We also introduce the CC test to assess the constant alphas and

factor loadings. Monte Carlo studies demonstrate that both tests perform satisfactorily and

the numerical results also support theoretical findings. Moreover, the usefulness of these two

tests is illustrated by two empirical examples.

To further broaden the usefulness of our proposed tests, we conclude this article by identi-
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fying the following possible research avenues. First, if the goal is to identify the significance

of alphas for all possible assets, then one can apply our HDA test in a multiple testing

procedure to control the false discovery rate (see, e.g., Benjamini and Hochberg, 1995; Fan

et al., 2012). Second, our CC test can be extended to simultaneously test the significance

of constant coefficients across all assets. Third, although we only consider CAPM and the

Fama-French three-factor model in our applications, the proposed tests can be applied to

other factor models with fixed d such as the Fama-French five-factor model (Fama and

French, 2015). One can also extend out test to allow the number of factors d to increase

with the number of time series observations, T, if necessary. Fourth, our HDA test is valid

even for N ≫ T , but we do require that T tends to infinity in order to establish the desired

asymptotic theory. For practical reasons, it is also useful to derive a test for finite T . Lastly,

one can extend the proposed high dimensional testing procedure to Black’s CAPM (Black,

1972), as suggested by an anonymous referee.

7 Supplementary Materials

The online supplementary appendix contains the proofs of the main results in the paper and

some additional results for the simulation study and empirical analyses.
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Table 1: The empirical sizes of the HDA and LY tests from Examples 1–3 for testing conditional

alphas with a nominal level of 5%, where Normal Distribution, Exponential Distribution, and

Mixture Distribution refer to the distribution from which the error term Et is generated.

Normal Distribution Exponential Distribution Mixture Distribution
Example N T HDA LY-test HDA LY-test HDA LY-test

1 3 100 0.054 0.061 0.064 0.053 0.045 0.047
200 0.056 0.052 0.044 0.054 0.048 0.052
500 0.051 0.036 0.051 0.057 0.039 0.049

1 200 100 0.042 1 0.045 1 0.065 1
200 0.047 1 0.066 1 0.039 1
500 0.043 1 0.058 1 0.058 1

1 500 100 0.057 1 0.053 1 0.066 1
200 0.058 1 0.045 1 0.050 1
500 0.053 1 0.061 1 0.056 1

1 1000 100 0.052 1 0.064 1 0.050 1
200 0.057 1 0.056 1 0.064 1
500 0.051 1 0.052 1 0.053 1

2 3 100 0.055 0.049 0.044 0.061 0.062 0.048
200 0.052 0.056 0.052 0.046 0.051 0.046
500 0.061 0.058 0.053 0.055 0.057 0.058

2 200 100 0.065 1 0.062 1 0.045 1
200 0.045 1 0.048 1 0.044 1
500 0.042 1 0.037 1 0.035 1

2 500 100 0.048 1 0.065 1 0.063 1
200 0.054 1 0.067 1 0.054 1
500 0.051 1 0.035 1 0.046 1

2 1000 100 0.061 1 0.047 1 0.052 1
200 0.051 1 0.053 1 0.056 1
500 0.044 1 0.046 1 0.049 1

3 3 100 0.052 0.064 0.065 0.062 0.065 0.054
200 0.046 0.052 0.056 0.049 0.045 0.054
500 0.055 0.058 0.057 0.066 0.062 0.061

3 200 100 0.052 1 0.053 1 0.067 1
200 0.047 1 0.058 1 0.066 1
500 0.043 1 0.045 1 0.059 1

3 500 100 0.055 1 0.053 1 0.058 1
200 0.045 1 0.062 1 0.054 1
500 0.042 1 0.045 1 0.048 1

3 1000 100 0.061 1 0.065 1 0.056 1
200 0.058 1 0.055 1 0.063 1
500 0.045 1 0.040 1 0.049 1
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Table 2: The empirical sizes and powers of the CC test from Examples 1–2 for testing the
constancy with a nominal level of 5%, where Normal Distribution, Exponential Distribution,
and Mixture Distribution refer to the distribution from which the error term Et is generated.

Normal Distribution Exponential Distribution Mixture Distribution
Example T b = 0 b = 0.1 b = 0.3 b = 0 b = 0.1 b = 0.3 b = 0 b = 0.1 b = 0.3

1 100 0.047 0.269 0.546 0.043 0.210 0.477 0.054 0.178 0.482
200 0.042 0.354 0.704 0.053 0.336 0.711 0.048 0.365 0.703
500 0.050 0.439 0.855 0.043 0.424 0.851 0.047 0.437 0.842

2 100 0.040 0.347 0.636 0.047 0.329 0.606 0.055 0.327 0.619
200 0.042 0.494 0.779 0.052 0.448 0.802 0.053 0.447 0.776
500 0.057 0.558 0.989 0.055 0.543 0.977 0.050 0.556 0.990

Table 3: Descriptive statistics for the Fama and French three-factor model in the Chinese
and US stock markets.

Market FF-Factors Mean (%) Median (%) SD (%)

China MF 0.24 0.29 2.37
SMB 0.14 0.20 1.52
HML 0.09 0.06 1.46

US MF 0.34 0.37 1.53
SMB 0.04 0.08 0.71
HML 0.06 0.02 1.13

Table 4: Descriptive statistics for the p-values of HDA and PY obtained from FF three-factor
model and CAPM in the Chinese and US stock markets.

FF CAPM
Market Tests Mean(%) Median(%) SD(%) Mean(%) Median(%) SD(%)

China HDA 0.18 0.05 0.18 0.12 0.04 0.17
PY 0.30 0.04 0.17 0.17 0.09 0.14

US HDA 0.41 0.39 0.20 0.19 0.08 0.17
PY 0.60 0.54 0.18 0.32 0.27 0.16

31



Figure 1: The empirical powers of the HDA test under N = 200 with three sample sizes
T = 100, 200 and 500, where Panels A and C depict the power functions for Examples 1 and
2, respectively, with the dense alternative, while Panels B and D are the power functions for
Examples 1 and 2, respectively, with the sparse alternative.
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Figure 2: The dynamic movement of market efficiency in the Chinese stock market based
on the p-values obtained from the HDA and PY tests by testing the conditional CAPM (left
panel) and the conditional Fama-French three-factor model (right panel).

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CAPM

time

p−
va

lu
e 

   
(%

)

1 9 18 27 36 44 53

HDA
PY

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FF

time

p−
va

lu
e 

   
(%

)

1 9 18 27 36 44 53

HDA
PY

33



Figure 3: The dynamic movement of market efficiency in the US stock market based on the
p-values obtained from the HDA and PY tests by testing the conditional CAPM (panels A
and C) and the conditional Fama-French three-factor model (panels B and D). Note that
panels A and B present the p-values across the whole study period, while panels C and D
depict the p-values across the sub-window of periods 101 to 150.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

A

time

p−
va

lu
e 

   
(%

)

1 43 85 127 173 213 253 300

HDA
PY

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

B

time

p−
va

lu
e 

   
(%

)

1 43 85 127 173 213 253 300

HDA
PY

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

C

time

p−
va

lu
e 

   
(%

)

101 108 115 122 129 136 143 150

HDA
PY

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

D

time

p−
va

lu
e 

   
(%

)

101 108 115 122 129 136 143 150

HDA
PY

34


