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Various types of analog switching device have been demon-
strated as synapses for neuromorphic computing1–7. Most 
rely on filamentary switching mechanisms, such as oxide-

based resistive random access memory (RRAM) and conductive-
bridging RAM (CBRAM). Oxide-based RRAM operation is based 
on alignment of anion vacancies inherent in amorphous-phase 
binary oxides to form conductive filaments6,8–11. While these devices 
exhibit reasonably good retention and endurance, they suffer from 
a small on/off ratio and unavoidable temporal (cycle-to-cycle) and 
spatial (device-to-device) variation due to uncontrollable filament 
dynamics in an amorphous solid5,6,8–11. Resistive switching using 
single-crystalline-based ternary oxide films has been attempted, 
where dislocations become active filaments due to the self-doping 
effect of crystalline defects in SrTiO3 (ref. 12). However, the amor-
phous binary oxide has still been a mainstream because the switch-
ing performance is not superior to that of amorphous binary oxides. 
On the other hand, CBRAMs operate on the basis of metal conduc-
tive bridging through an amorphous solid electrolyte4,13–17. Owing 
to the high mobility of metal cations, the switching on/off current 
ratio of CBRAMs is substantially higher than that of the oxide-
based RRAMs4,18–20. However, uncontrollable ion transport through 
defects in an amorphous films results in three-dimensional sto-
chastic filament formation resulting in switching variation13,14,18,21. 
These make large-scale analog neural computing impractical with-
out transistors at each resistive switching device. Thus, securing a 
strategy to confine the filament is an essential step22.

Here we demonstrate single-crystalline SiGe epitaxial random 
access memory (epiRAM) with minimal spatial/temporal variations 
with long retention/great endurance, and a high analog current  
on/off ratio with tunable linearity in conductance update, thus  

justifying the suitability of epiRAM for transistor-free neuromor-
phic computing arrays. This is achieved through one-dimensional 
confinement of conductive Ag filaments into dislocations in SiGe 
and enhanced ion transport in the confined paths via defect-selec-
tive etch to open up the dislocation pipes. In SiGe epiRAM, the 
threading dislocation density can be maximized by increasing the 
Ge content in SiGe or controlling the degree of relaxation23, and we 
discovered that 60-nm-thick Si0.9Ge0.1 epiRAM contains enough dis-
locations to switch in tens of nanometre scale devices. When this 
nanometre device is sampled after switching, Ag filaments confined 
in the dislocation are visualized via cross-sectional transmission 
electron microscopy (TEM). In addition, the epitaxy of p–i–p back-
to-back diodes in SiGe epiRAM permits self-selection behaviour 
that can suppress the sneak path during large-scale array opera-
tion, and precise doping modulation during epitaxy allows one to 
modulate the set voltage and read current by varying the Schottky 
barrier height at the Ag/Si interface. Our simulation based on all of 
those characteristics of epiRAM shows 95.1% accurate supervised 
learning with the Modified National Institute of Standards and 
Technology (MNIST) handwritten recognition data set, which is 
comparable to a software training baseline of 97%. Thus, our find-
ing is an important step towards developing large-scale and fully 
functioning neuromorphic hardware.

It is known that dislocation pipes provide preferential diffusion 
paths in crystalline solids24. Thus, injection of immiscible cations 
into single-crystalline films with dislocations can restrict filaments  
into dislocation pipes under electrical bias. The crucial step before 
cation injection is widening the dislocations to facilitate ion transport  
using defect-selective etching (see Fig. 1a for the schematics of the 
concept). We have performed heteroepitaxial growth of 60-nm-thick 
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intrinsic Si0.9Ge0.1 onto p-type Si(001) substrates at 750 °C, at which 
SiGe films can be partially relaxed25,26. In ultrathin partially relaxed 
heteroepitaxial films, threading dislocation density is typically very 
high due to incomplete relaxation23. The threading dislocation 
density in our SiGe films is counted to be in the range of 1011/cm2,  
which is dense enough to provide dislocations in well-scaled 
devices25,26 (see Supplementary Fig.  1 for the scanning electron 
microscopy (SEM) image showing the dislocation density). The ver-
tically aligned threading dislocations are imaged by cross-sectional 
TEM (Fig. 1b), where the strain field from threading dislocations 
is observed as diagonal extensions through the epitaxial layer. The 
threading arms extended to the SiGe surface were visualized under 
SEM after a selective defect decoration (see Fig. 1g). Figure 1c shows 
a cross-sectional SEM image of an epiRAM device. Silver (Ag) was 
selected as the active metal due to its limited solid solubility in SiGe 
and its inability to form compounds with Si and Ge (http://www.
factsage.cn/fact/documentation/binary/binary_figs.htm)27,28. Other 
metals that can form compounds with SiGe are not selected because 
it can form a very strong filament that is difficult to reset (http://
www.factsage.cn/fact/documentation/binary/binary_figs.htm)29. 
As displayed in Fig.  1d,e, SiGe epiRAM with dislocations shows 
exceptionally uniform resistive switching with only 1.7% temporal 
set voltage variation (σ/µ) during 100 switching cycles without wid-
ening dislocations (see Methods for the method to define the set 

voltage). Notably, the current in the high-resistance state and that 
in the low-resistance state (LRS) also maintain temporal uniformity 
(see Supplementary Fig. 2). When amorphous Si is used instead of 
crystalline SiGe, undefined conductive paths and miscibility of Ag 
in the amorphous phase result in large temporal set voltage varia-
tion (28%) as shown in Supplementary Fig. 3. This clearly contrasts 
the set voltage uniformity achieved when employing SiGe epitaxial 
films. Switching behaviour is not observed when a dislocation-free 
homoepitaxial intrinsic Si film is used as a switching medium within 
the same device stack, as shown in Fig. 1f. This further suggests that 
threading dislocations in heteroepitaxial SiGe accommodate a Ag 
filament through the epilayer.

While the SiGe epiRAM with untreated dislocations demon-
strates extremely uniform switching behaviour, measured digital 
and analog switching on/off ratios are ~10 and ~3, respectively. The 
small on/off ratio limits the number of distinctive conductive states 
for training large-scale neuromorphic arrays30 (see Supplementary 
Fig. 4 for analog switching). We suspect this originates from incom-
plete filament rupture owing to the tight spatial accommodation 
of Ag into dislocations31,32 (see the inset of Fig. 1d showing incom-
plete reset). To facilitate ionic transport through dislocations, we 
performed defect-selective etching to widen the dislocation pipes. 
SiGe epilayers on Si substrates were dipped into Schimmel etchant33, 
which is conventionally used to selectively etch dislocations in SiGe 
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Fig. 1 | Impact of dislocation on the characteristics of the SiGe epiRAM. a, A conceptual schematic of the epiRAM during switching. b, Cross-sectional 
TEM image of 60 nm SiGe grown on a Si substrate. Scale bar, 25 nm c, Cross-sectional SEM image of an epiRAM device. Scale bar, 100 nm d, Measured 
d.c. I–V characteristics of epiRAM with unwidened dislocations. Inset: zoomed-in image to show difficult reset process. e, The set voltage variation of the 
epiRAM with unwidened dislocations over 100 quasi-static I–V sweeps. Inset: histogram for set voltage distribution. f, Measured d.c. I–V characteristics 
of a Ag/dislocation-free i-Si/p-Si substrate device, where no switching behaviour is observed even when applying a very high voltage. g, Plan-view SEM 
images of epiRAM after etching for 0 s, 5 s and 10 s. Scale bar, 200 nm. h, Semilogarithmic d.c. I–V characteristics of 0 s and 5 s etched epiRAM. i, Linear-
scale d.c. I–V characteristics of 0 s and 5 s etched epiRAM. j, I–V characteristics of epiRAM at high resistance state (HRS) and SiGe at the virgin state.
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for defect density characterization. Fig. 1g shows SEM images of the 
SiGe surface morphology at different etch times; wider threading 
dislocation pipes are observed after longer etching times. The cross-
sectional TEM of epiRAM in the LRS (5-s-etched sample) indicates 
that the silver filament is well confined in the threading disloca-
tion pipe (see Supplementary Fig. 5 for a TEM image showing the 
Ag filament in a widened dislocation). Dislocation-selective etch 
results in the following noticeable changes in the switching behavior 
of epiRAM: at negative bias, the device effectively resets; at positive 
bias, the on/off current ratio increases by three orders of magnitude; 
and the set voltage reduces by 0.7 V (see Fig. 1h,i). To evaluate the 
effectiveness of rupturing the filaments on reset, we compare the 
negative-bias I–V profile of bulk SiGe (with no filament formation 
history) to that of epiRAM after filament rupturing. As shown in 
Fig. 1j, the I–V curve of the epiRAM after the reset overlaps with 
that of bulk SiGe, indicating effective retraction of the Ag (ref. 30; see 
Supplementary Fig. 6). This is further supported by the substantially 
reduced off-current at the positive bias. Moreover, the increased on-
current and lowered set voltage of etched epiRAM indicate facili-
tated ionic movement into the dislocation pipes after etching. As a 
result, etched epiRAM with widened dislocations exhibits a higher 
on/off ratio (104) than non-etched epiRAM.

Filament confinement in dislocations results in exceptionally 
low temporal variation while the uniform distribution of disloca-
tions throughout the SiGe film allows for low spatial variation 
(measured for 500 devices). These low variations are essential for 
accurate pattern learning and recognition when implemented 
into neuromorphic hardware3,34,35. We characterized the temporal 
variation of an epiRAM device by measuring the set voltage over 
700 switching cycles. The measured temporal variation (σ/µ) is as 
low as 1% (see Fig. 2a). This cycle-to-cycle uniformity of epiRAM 
makes a clear contrast to that of many amorphous-based device 

architectures even after modification to improve temporal/spatial 
uniformity by metal doping, field localization by nanoparticles, 
or confinement of cation transport by nanopore graphene36–40. 
However, additional widening of dislocation channels (more than 
5 s of etching) increases switching variation, possibly because of 
excessive stochastic pathways due to loss of the confinement effect 
(see Fig. 2b and Supplementary Fig. 7). In addition to exceptional 
temporal uniformity, epiRAM exhibit excellent spatial uniformity 
contributed by the well-distributed dislocations across the wafer 
(see Fig. 1g). The set voltage was mapped for 100 devices from two 
batches (Fig. 2c). All measured epiRAM devices show comparable 
resistive switching with spatial variation of only 4.9% and uniform 
batch-to-batch performance (see Fig. 2d). It should be noted that 
epiRAM unprecedentedly exhibits a high device yield with excellent 
temporal and spatial uniformity and such high uniformity is main-
tained in nanoscale devices (see Supplementary Fig. 8), thus justify-
ing suitability of our epiRAM for implementation in high-density, 
large-scale neuromorphic arrays. As shown in Supplementary 
Fig. 8, all measured 25-nm-sized devices exhibit comparable perfor-
mances to 5-μ​m-sized devices with high uniformity. This suggests 
that the threading density in our SiGe films (~1011 cm–2) is sufficient 
enough to operate dense nanoscale devices. More interestingly, the 
I–V characteristics of epiRAM with size between 25 nm and 5 μ​m 
are comparable, and the Ge composition in SiGe does not severely 
alter the I–V characteristics (see Supplementary Figs.  9 and 10).  
These findings imply that switching occurs only in a localized area 
and a limited number of dislocations are probably responsible for 
the majority of ionic movement among all existing dislocations 
under the electrode. In addition, the I–V characteristics are main-
tained when the epiRAM is formed in the form of a crossbar, sug-
gesting the suitability of epiRAM for neuromorphic computing  
(see Supplementary Fig. 11).
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For accurate artificial neural network training, the analog on/off  
ratio must be sufficiently high to access multiple synaptic 
weight values in neural network algorithms30,34. First, we have 
characterized the analog current on/off ratio of the epiRAM  
(5 s etch) by applying a pulse train consisting of set (5 V, 5 μ​s), reset 
(−​3 V, 5 µ​s) for potentiation–depression (P–D) pulses and read 
pulses (2 V, 1 ms) after each P–D pulse. As shown in the P–D plot 
in Fig.  3a, a remarkably high analog on/off ratio of 240 is mea-
sured at 1,000 P–D pulses (500 potentiation/500 depression); the 
ratio decreases with reduced number of P–D pulses (180 for 400 
P–D pulses and 100 for 200 P–D pulses). All 100 epiRAM devices 
fabricated in one batch exhibit a very high analog on/off ratio of 
more than 100 with an average value of 132 at 200 P–D pulses 
(see the analog switching map in Supplementary Fig. 12). EpiRAM 
also exhibits low temporal and spatial switching threshold varia-
tions for both set and reset transitions for the voltage pulse mode, 
which justifies the suitability of epiRAM for neuromorphic opera-
tion (see Supplementary Fig. 13).

While epiRAM exhibits an extremely high analog on/off ratio, 
the conductance response following P–D is nonlinear, a character-
istic that is typical of other filamentary-type switching devices (see 
Fig.  3a). Such nonlinearity is more prominent when the epiRAM 
conductance saturates at its maximal value following maximized 
potentiation pulses and abruptly decays following depression (see 
Fig. 3a). At maximum potentiation, Ag+ drift is no longer facilitated 
in widened dislocations at a given external voltage due to limited 
spatial capacity within the dislocation. Thus, we attempted to mod-
erate potentiation of epiRAM with mild Ag+ injection by intention-
ally decreasing the on/off ratio during the potentiation cycle to 
avoid saturation (total 200 P–D pulses with a pulse width of 5 µ​s).  

As shown in Fig. 3a,b, this successfully allows for a linear conduc-
tance response (see Fig.  3b) with an on/off conductance ratio of  
>100, which is sufficiently high for accurate training in MNIST pat-
tern recognition34,41. This trade-off between linearity and the num-
ber of P–D pulses is reproducibly observed across the devices and 
its statistics are shown in Supplementary Fig. 14. This finding sug-
gests that the dislocation has the spatial capacity to accommodate 
Ag, and that a  linear conductance change can be obtained by not 
reaching its capacity with reduced P–D pulse numbers. Such a trend 
can also be observed in the P–D curve of epiRAM depending on the 
dislocation widening time with Schimmel etching in a fixed P–D 
pulse number. As shown in Supplementary Fig. 15, the linear con-
ductance update observed in epiRAM with Schimmel etching for 
200 P–D pulses disappears in epiRAM without Schimmel etching 
due to extremely limited space in dislocations.

The single-crystalline nature of heteroepitaxial SiGe epiRAM 
also displays long retention and great endurance. Conductive fila-
ments are structurally retained for 48 h at 85 °C for epiRAM with 
widened dislocations (etched for 5 s) at the LRS after d.c. sweeps, 
which proves the long data retention capability of epiRAM (see 
Fig.  3c). The long data retention further indicates the following: 
the Ag filament is effectively confined in the dislocation by sup-
pressing Ag diffusion into the bulk SiGe due to the lack of solid 
solubility of Ag in SiGe; and widened dislocation with 5 s etch pro-
vides optimal space to accommodate Ag ions (see Supplementary 
Fig. 16 for details about optimal dislocation spacing for data reten-
tion). This contrasts the case of conventional CBRAMs, where 
the metal in the filament can pressurize an amorphous switching 
medium42 and easily diffuse into the amorphous phase, yielding 
reduced retention. The filament dynamics in epiRAM (that is, ion 
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and electron transport at elevated temperatures) are described 
in Supplementary Fig.  17. The immiscibility of Ag into SiGe in 
epiRAM also substantially enhances the endurance as shown in 
Fig. 3d (analog operation is capable of switching for over 109 set/
reset pulses with a stable switching performance). On the other 
hand, the filament metal in conventional CBRAMs can progres-
sively diffuse into porous amorphous switching medium and can 
be piled up into the amorphous switching medium as the switching 
cycle increases, yielding limited endurance.

On the basis of measured characteristics of epiRAM, we have 
simulated an artificial neural network to perform supervised 
learning with the MNIST handwritten recognition data set43. 
For the simulation, we utilized a three-layer neural network with 
28 ×​ 28 pre-neurons, 300 hidden neurons and 10 output neurons44. 
The multilayer perception (MLP) algorithm with stochastic gra-
dient descent weight update is used in the simulation based on 
our epiRAM properties including non-ideal factors: finite on/off 
ratio, finite number of conductance levels, device-to-device varia-
tion, cycle-to-cycle variation, wire resistance and read noise. The 
784 neurons of the input layer correspond to a 28 ×​ 28 MNIST 
image, and the 10 neurons of the output layer correspond to 
10 classes of digits (0–9)44. The detail of the three-layer MLP is 
shown schematically in Fig. 4a. The inner product (summation) 
of the input neuron signal vector and the first layer of the syn-
apse matrix is transferred after activation and binarization as the 
input vector for the second synapse array. The schematic in Fig. 4b 
shows a synapse layer composed of epiRAM crossbar arrays and 
the peripheral circuit. Based on the inner product outcome of the 
input signal vector and the synapse vector by the read current, 
the amount of delta weight is calculated, which provides feedback 
into arrays to adjust the synapse weights by write pulses. After 
training with one million patterns randomly selected from 60,000 
images from a training set, the recognition accuracy is tested with 
a separate set of 10,000 images from the testing set45,46. Our simu-
lation proves that the neural network formed with epiRAM can 
achieve, on average, 95.1% recognition accuracy (96.5% as a maxi-
mum), which is comparable to the accuracy of 97% obtained by 
the software baseline as shown in Fig. 4c44,47. The impact of vari-
ous device parameters on the recognition accuracy considered for 
our simulation and specific values for epiRAM are displayed in 
Supplementary Fig. 18.

One of the additional key advantages in epiRAMs is the layer-
by-layer controllability of films involved in the devices during epi-
taxial growth. For example, the Schottky barrier height between  

Ag and Si can be precisely controlled by modulating the doping 
concentration of the Si epilayer right before SiGe epitaxy. As shown 
in Supplementary Fig. 19, the set voltage and read current can be 
modulated by varying the Schottky barrier height at the Ag/Si inter-
face. Tunability of I–V characteristics with Schottky barrier heights 
in epiRAM could allow optimization of recognition accuracy and 
power consumption, and prevention of sneak paths. In addition, 
the layer-by-layer growth of p–i–p back-to-back diodes in SiGe 
switching medium permits self-selection behaviour as shown in 
Supplementary Fig. 20.

In conclusion, our unique design for resistive switching 
devices demonstrates characteristics required for implementing 
neuromorphic hardware. The confinement of the conducting fila-
ment into widened dislocations in SiGe offers superior spatial and 
temporal uniformity, long retention, excellent endurance, a high 
on/off ratio and linear weight update. In addition, the epitaxial 
growth of single-crystalline switching medium benefits from 
technologies in bandgap engineering to improve self-selection 
and low power consumption of the device. In possessing these 
properties, epiRAM-based neuromorphic arrays can achieve 
95.1% learning accuracy. The development of epiRAM opens an 
avenue to realize fully functioning large-scale neural network 
beyond the conventional von Neumann computing algorithm. In 
addition, epiRAM meet properties required for digital non-vola-
tile memory (see Supplementary Fig. 21).

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41563-017-0001-5.
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Methods
Epitaxial growth. SiGe was epitaxially grown on p+ Si(001) substrates in a 
low-pressure chemical vapour deposition (LPCVD) reactor equipped with a close-
coupled showerhead. Silane (SiH4) and germane (GeH4) were used as precursors 
for Si and Ge sources. Growth of 60-nm-thick SiGe films was performed at 
100 Torr at 750 ̊ C. Diborane was used as the precursor gas for p-type-doped Si and 
SiGe layer deposition. Hydrogen was used as a carrier gas.

EpiRAM fabrication. Proceeding epitaxial growth, an etching technique,  
called the Schimmel etch, was performed. Devices were immersed in a mixture  
of 44% 32 M Cr solution and 64% hydrofluoric acid for 5 s. Then, 100 nm of Al  
was evaporated and annealed to form an ohmic contact. A 100-nm-thick SiO2 layer 
was deposited by plasma-enhanced chemical vapour deposition and etched back 
by buffered oxide etch (5:1) solution after traditional photolithography (active area: 
5 µ​m by 5 µ​m unless specified). Ag (100 nm)/Pd (20 nm) was deposited for  
the top electrodes and 5 nm Ti/100 nm of Au was deposited for the  
contact pads.

Device measurements. Quasi-static d.c. current–voltage (I–V) measurements 
were executed with a B1500A semiconductor device parameter analyser with a 
B1517A high-resolution source/measure unit. EpiRAM devices were tested with 
bidirectional I–V sweep measurements with current compliance ranging from  
10 μ​A to 50 mA. Retention measurements were performed in a vacuum at elevated 
temperature with a LakeShore model TTP4-1.5K probe station. Pulse data were 
collected by a custom-built measurement system.

Analog measurements. For reproducible training, stabilization steps composed  
of repeating 30 sets of 200/400/1,000 P–D pulses were applied to stabilize Ag 
within dislocations. We measured the linearity of the conductance change as this 
can eliminate the need for peripheral circuits to compensate for nonlinearity in 
neuromorphic circuits. Linearity of the P–D plots is determined after the  
stabilization step as the training proceeds to the stabilization. The potentiation 
slope changes depending on the stabilization history because the strength of the 
post-stabilized Ag filament in the dislocation can vary depending on the number of 
depression pulses.

Transmission electron microscopy. Cross-section TEM samples were prepared by 
an NVision 40 dual-beam focused-ion-beam imaging system with an OmniProbe 
nanomanipulator. Platinum was deposited using the electron beam and ion beam. 
The cross-section area of interest was milled and glued to a lift-out grid, and then 
thinned and polished down to ~100 nm. Cross-sectional imaging was performed 
with a JEOL 2100 transmission electron microscope.

Threshold voltage definition. We measured the threshold voltage where the 
current passed 300 μ​A during the set process (constant-current threshold voltage), 
which is a popularly accepted method to measure threshold voltage48.

Array simulation. The simulation is conducted on the basis of the platform  
“+​NeuroSim”. The source code is written with C+​+​ programming language and 
is able to run on LINUX operation systems. A three-layer MLP neural network 
(784 ×​ 300 ×​ 10) is used with 28 ×​ 28 MNIST images. After training with one 
million patterns (randomly selected from the 60,000-image training set), the 
system is used to recognize a separate 10,000-image testing set with non-ideal 
factors including finite on/off ratio, spatial/temporal variation, read noise, wire 
resistance, and quantization of read currents. The original patterns from the 
MNIST database are converted to black-and-white patterns with a threshold 
of 128 for pixel values ranging from 0 to 255. A logistic function is used as the 
activation function. The optimized learning rate for the first and second layer of 
the synapse is 0.4 and 0.2, respectively. The read voltage is 2 V and the read-out 
current is quantified to 8 bits by the analog-to-digital conversion circuit. The 
cycle-to-cycle variation describes the variation of conductance values at each 
level. We assume the conductance at each level obeys a normal distribution. 
The cycle-to-cycle variation is defined as the standard deviation divided by 
the maximum conductance34,49. The device-to-device variation describes 
the variation of the parameter A, which is explained in the Supplementary 
Information and ref. 49. We assume that the fitting parameter A obeys a normal 
distribution. Device-to-device variation is defined as the standard deviation 
divided by the average value of A. Wire resistance between each crosspoint is 
5Ω​ based on standard 14 nm CMOS technology. Read noise is chosen as 5%. 
The read-out current is quantified, normalized, and transferred to subsequent 
controlling logic circuits to calculate the delta weight. The conductance update 
is implemented with half-voltage operation and the entire array is written line-
by-line. The peripheral circuit and most of the neuron circuit have been verified 
by HSPICE simulation; only the delta weight calculation is performed by 
software. The recognition accuracy is calculated every 8,000 images during each 
training process and the accuracy at each data point for the analysis in the paper 
is the average value for the last ten accuracy points.

Data availability. The data from this study are available from the corresponding 
author on reasonable request.
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