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Abstract

In recent years our understanding of neutron stars has advanced remarkably, thanks to research 
converging from many directions. The importance of understanding neutron star behavior and 
structure has been underlined by the recent direct detection of gravitational radiation from 
merging neutron stars. The clean identification of several heavy neutron stars, of order two 
solar masses, challenges our current understanding of how dense matter can be sufficiently 
stiff to support such a mass against gravitational collapse. Programs underway to determine 
simultaneously the mass and radius of neutron stars will continue to constrain and inform 
theories of neutron star interiors. At the same time, an emerging understanding in quantum 
chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at 
high baryon densities is leading to advances in understanding the equation of state of the 
matter under the extreme conditions in neutron star interiors.

We review here the equation of state of matter in neutron stars from the solid crust through 
the liquid nuclear matter interior to the quark regime at higher densities. We focus in detail on 
the question of how quark matter appears in neutron stars, and how it affects the equation of 
state. After discussing the crust and liquid nuclear matter in the core we briefly review aspects 
of microscopic quark physics relevant to neutron stars, and quark models of dense matter 
based on the Nambu–Jona–Lasinio framework, in which gluonic processes are replaced 
by effective quark interactions. We turn then to describing equations of state useful for 
interpretation of both electromagnetic and gravitational observations, reviewing the emerging 
picture of hadron-quark continuity in which hadronic matter turns relatively smoothly, with 
at most only a weak first order transition, into quark matter with increasing density. We 
review construction of unified equations of state that interpolate between the reasonably well 
understood nuclear matter regime at low densities and the quark matter regime at higher 
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densities. The utility of such interpolations is driven by the present inability to calculate the 
dense matter equation of state in QCD from first principles. As we review, the parameters 
of effective quark models—which have direct relevance to the more general structure of the 
QCD phase diagram of dense and hot matter—are constrained by neutron star mass and radii 
measurements, in particular favoring large repulsive density-density and attractive diquark 
pairing interactions. We describe the structure of neutron stars constructed from the unified 
equations of states with crossover. Lastly we present the current equations of state—called 
‘QHC18’ for quark-hadron crossover—in a parametrized form practical for neutron star 
modeling.

Keywords: neutron stars, hadrons, quarks
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1. Introduction

Neutron stars provide a cosmic laboratory in which the phases 
of cold dense strongly interacting nuclear matter are realized  
see, e.g. [1–4]. Indeed, while heavy ion collision experiments 
and lattice quantum chromodynamics (QCD) simulations pro-
vide insight into the properties of hot and dense QCD, neutron 
stars are the only known window into the rich structure of cold 
dense QCD. Recent astrophysical inferences of neutron star 
masses, M, and radii, R, in low mass x-ray binaries [5–14], 
and the wealth of new data, on masses and radii of isolated 
neutron stars as well, expected from the NICER (the Neutron 
Star Interior Composition Explorer) experiment [15–20] on 
the International Space Station will significantly constrain the 
neutron star equation of state. Such constraints are crucial for 
understanding observations of dynamical neutron star phe-
nomena, from neutron star seismology [21] to binary neutron 
star inspirals, now detected gravitationally [22] and subse-
quent mergers detected by multi-messenger electromagnetic 
signals [23]. Reliable equations of state, at zero and elevated 
temperatures, are crucial for predicting the gravitational wave 
signatures of neutron star-black hole and neutron star-neutron 
star mergers [24–30] to be detected at gravitational wave 
observatories present and future, including LIGO [31–33], 
Virgo [34], GEO [35], KAGRA [36], LIGO-India [37], and 
LISA and other spaced-based observatories [38], as well as 
via pulsar timing arrays [39]. The purpose of this review is to 
outline our current understanding of the microscopic physics 
of dense matter in the interior of neutron stars, and from this 
standpoint to construct families of equations of state useful 
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for interpretation of both electromagnetic and gravitational 
observations.

In addition, as the only source of ‘data’ on cold high den-
sity matter in QCD, neutron stars provide a rich testing ground 
for microscopic theories of dense nuclear matter, providing an 
approach complementary to probing dense matter in ultrarela-
tivistic heavy ion collision experiments at the Relativistic 
Heavy Ion Collider (RHIC) in Brookhaven and the Large 
Hadron Collider (LHC) at CERN. A major challenge is to 
understand the facets of microscopic interactions that allow 
the existence of massive neutron stars. Discoveries in recent 
years of neutron stars with M ∼ 2 solar masses (M�), includ-
ing the binary millisecond pulsar J1614-2230, with mass 
1.928 ± 0.017M� [40] (the original mass measurement was 
1.97 ± 0.04M� [41]), and the pulsar J0348  +  0432 with mass 
2.01 ± 0.04M� [42] present a direct challenge to theoretical 
models of dense nuclear matter9.

The existence of such massive stars has important implica-
tions for dense matter in QCD. For example, they require a stiff 
equation of state, i.e. with large pressure for a given energy (or 
mass) density, and thus rule out a number of softer theoretical 
models, and at the same time impose severe constraints on the 
possible phases of dense QCD matter. In particular, massive 
neutron stars are difficult (but not impossible) to explain in the 
context of hadronic models of neutron star matter in which the 
emergence of strange hadrons around twice nuclear saturation 
density softens the equation of state and limits the maximum 
stable star mass.

1.1. Phases of dense matter

Figure 1 summarizes the phases of dense nuclear matter in 
the baryon chemical potential μB—temperature T plane [47]. 
(The baryon chemical potential, increasing with increasing 
baryon density, here nucleons, is the derivative of the free 
energy density with respect to the density of baryons.) At low 
temperature and chemical potential the degrees of freedom 
are hadronic, i.e. neutrons, protons, mesons, etc; and at high 
temper ature or chemical potential matter is in the form of a 
quark-gluon plasma (QGP) in which the fundamental degrees 
of freedom are quarks and gluons. The nature of the trans-
itions from hadronic to a QGP are sketched in figures 2 and 3.  
The temperatures in neutron stars, characteristically much 
smaller than 1 MeV (or 1010 K), are well below the temper-
ature scale in figure 1, of order 10–102 MeV; matter in neutron 
stars lives essentially along the chemical potential axis in this 
figure. The exception is at neutron star births in supernovae 
where temperatures can be tens of MeV, and in final gravi-
tational mergers where temperatures could reach  ∼102 MeV. 

Figure 1. Schematic phase diagram of dense nuclear matter, in 
the baryon chemical potential μB-temperature T plane. At zero 
temperature, nucleons are present only above μB ∼ MN, the nucleon 
mass. At the low temperatures inside neutron stars, matter evolves 
from nuclear matter at low densities to a quark-gluon plasma at high 
density. BCS pairing of quarks in the plasma regime leads to the 
matter being a color superconductor. (Low temperature BCS pairing 
states of nucleons are not shown.) At higher temperatures, matter 
becomes a quark-gluon plasma, with a possible line of first order 
transitions, the solid line, terminating at high temperatures at the 
proposed Asakawa–Yazaki critical point [48]. In addition, the solid 
line may terminate in a low temperature critical point [49].

Figure 2. Schematic picture of the transition from nuclear to 
deconfined quark matter with increasing density. (i) For nB � 2n0, 
the dominant interactions occur via a few (∼1–2) meson or quark 
exchanges, and description of the matter in terms of interacting 
nucleons is valid; (ii) for 2n0 � nB � (4–7) n0, many-quark 
exchanges dominate and the system gradually changes from 
hadronic to quark matter (the range (4–7) n0 is based on geometric 
percolation theory—see section 5.5); and (iii) for nB � (4–7) n0, 
the matter is percolated and quarks no longer belong to specific 
baryons. A perturbative QCD description is valid only for 
nB � 10−100n0.

Figure 3. Schematic picture of the crossover transition from the 
hadronic to quark-gluon plasma phase with increasing temperature. 
(i) For T � Tc, the system is a dilute gas of hadrons; (ii) for 
Tc � T � (2–3) Tc, thermally excited hadrons overlap and begin to 
form a semi quark-gluon plasma (see text below); and (iii) for T � 
(2–3) Tc, the matter is percolated and a quasiparticle description 
of quarks and gluons, including effects of thermal media, becomes 
valid.

9 In addition the extreme black widow millisecond pulsars PSR J1957  +  20 
[43], PSR J2215  +  5135 [44], and PSR J1311-3430 [45, 46] possibly have 
masses as large as 2.5 M�; however the masses remain uncertain owing to 
the need for more complete modeling of the heating of the companion stars 
by the neutron stars.
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The main problem on which we focus in this review is the 
description of such matter, and the resulting models of neu-
tron stars, i.e. the profiles of baryons density, etc, as a func-
tions of radius from the center of the star.

1.2. Neutron star models—the TOV equation

We briefly recall that to construct a model of a neutron star—
once one specifies the equation of state, which gives the pres-
sure, P, as a function of the mass density, ρ = ε/c2, where ε is 
the total energy density and c is the speed of light—one inte-
grates the general relativistic Tolman–Oppenheimer–Volkov 
(TOV) equation of hydrostatic balance [50, 51]:

∂P(r)
∂r

= −GN
ρ(r) + P(r)/c2

r (r − 2GNm(r)/c2)
[m(r) + 4πr3P(r)/c2],

 (1)
where GN is Newton’s gravitational constant and

m(r) =
∫ r

0
4πr′2dr′ρ(r′) (2)

is the mass inside radius r. Therefore, the mass (M) of the 
neutron star is given by M = m(R) with R the stellar radius. In 
practice, to calculate the pressure, P(ρ), one first calculates the 
energy density, ε, as a function of the baryon density, nB, and 
then uses the thermodynamic relation P = n2

B∂(ε/nB)/∂nB. 
Equivalently, one can also calculate P directly as a function 
of the baryon chemical potential, μB. Generally, we discuss 
the equation of state in the form P(μB). As we show in appen-
dix A, when the basic scale of the energy entering the equa-
tion of state is the proton mass, mp, the typical scale of the 

neutron star mass is given by M ∼ mp/α
3/2
G = 1.86M�, and 

the scale of radii is given by (�/mpc)α−1/2
G = 17.2 km, where 

αG = m2
pGN/�c � 0.589 × 10−38 is the gravitational fine 

structure constant.

1.3. Microscopic calculations of dense nucleonic matter

Microscopic calculations of the equation of state of neutron-
star matter, ε(nB), have been based on a variety of inputs. The 
approach most firmly founded on experiment in the region 
of nuclear saturation density, n0 � 0.16 nucleons per fm3, or 
equivalently a mass density � 2.7 × 1014 g cm−3, is to use 
nucleon-nucleon scattering data below 350 MeV and the 
properties of light nuclei to determine two-body potentials 
together with a three-nucleon potential [52, 53]. Quantum 
Monte Carlo calculations based on such potentials give an 
excellent account of the binding energies as well as excitation 
energies of light nuclei [54]. Quantum Monte Carlo calcul-
ations have been applied to neutron star structure, and the 
radius in particular, in [55].

Calculations of dense matter, which have primarily been 
carried out in the limits of pure neutron matter and sym-
metric nuclear matter, have uncertainties owing both to 
the interactions used, especially at densities above n0, and 

the calcul ational methods employed [56, 57]. As discussed 
below, extensions to neutron star matter in beta equilibrium 
have been based on interpolation between these two limits, 
which introduces further uncertainties for matter in neutron 
stars.

Not only are the explicit three-body interactions in nuclear 
matter not well determined [55] (see [56] for a detailed anal-
ysis of the significant uncertainties in pure neutron matter 
introduced by three body forces), one must ask at higher den-
sity when higher body interactions, e.g. four body, become 
important. Most naively one can argue that the relative 
importance of higher body forces is determined dimension-
ally, since the ratio of the energy density En+1 from n  +  1 
body forces to that from n body forces will be  ∼(4πr3

0/3)nB, 
where r0 is a characteristic length of order the range of the 
nuclear force, a hard core radius, ∼  0.5 fm or the range of 
two pion exchange, ∼(2mπ)

−1 = 0.7 fm. Then the measure 
of importance of the next order forces becomes the parameter 
(4πr3

0/3)nB ∼ (0.1 − 0.2)nB/n0. An alternative way to esti-
mate the importance of higher body forces would be via chi-
ral perturbation theory. Comparison of four-body interaction 
energies, based on a subset of possible processes [58], with 
three-body interaction energies [59], suggest that the relative 
importance of four body compared with three is ∼ 0.5nB/n0 .  
Although a more accurate estimate from chiral perturba-
tion theory remains an open problem, these estimates indi-
cate that at the densities achieved in neutron star interiors, 
nB � (3 − 6)n0, a well defined expansion in terms of two-, 
three-, or more, body forces may not exist. Furthermore, 
beyond baryon densities a few times n0 the forces between 
particles should no longer be describable by static few-body 
potentials. At the same time, however, the density remains 
much too low to treat the matter as weakly interacting quark 
matter; indeed perturbative QCD (pQCD) begins to become 
applicable for baryon chemical potentials μB � (3−6) GeV, 
corresponding to baryon densities nB � (10−100)n0 [60–63].

In addition to the limitations inherent in any few-body 
potential model, equations of state based on nucleons alone 
fail to account for the rich variety of hadronic degrees of free-
dom that enter with increasing density, including Δ’s, strange-
ness [64–70], and meson condensates [71] including pionic 
[52, 72–76] and kaonic [77–80]. The presence of hyperons in 
neutron stars is difficult to predict, owing to the uncertainty of 
the forces between hyperons and nucleons as well as between 
other hyperons. While elementary hadronic models indicate 
the emergence of hyperons at densities  ∼(2–4) n0, mixing 
of strange degrees of freedom at such low densities softens 
the equation of state; the presence of hyperons is not obvi-
ously compatible with the stiff equation of state required by 
the existence of � 2M� stars [81]. Attempts have been made 
to avoid the softening of the equation of state by introduc-
ing repulsive forces between strange hadrons and nucleons 
and between hyperons as well as Λ-nucleon-nucleon forces, 
which shift the emergence of strangeness to higher densities 
[68, 69, 82–84]. Lattice gauge theory—solving QCD on a 
space-time lattice using Monte Carlo techniques [85]—will 
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in the future be able to provide first principles information 
on hyperon–nucleon and hyperon–hyperon interaction poten-
tials [86].

Another approach to high density matter has been based 
on nucleons interacting via elementary meson exchanges (e.g. 
[87, 88]; see [89] for a general summary of equations of state). 
In such models, multiple meson exchanges and virtual bary-
onic excitations, which comprise the intermediate states in 
such theories, again raise the question of whether well-defined 
‘asymptotic’ laboratory hadrons are the proper degrees of 
freedom to describe the system at high density.

1.4. Quark degrees of freedom

More realistically, one expects in dense matter a gradual onset 
of quark degrees of freedom, not accounted for by nucleons 
interacting via static potentials. Indeed, as illustrated in fig-
ure  2, at a sufficiently high density the matter should per-
colate, in the sense that their quark constituents are able to 
propagate throughout the system [90–92]. The deconfinement 
of nuclear matter with increasing density has many similari-
ties to the manner in which atomic gases, when compressed, 
become gases of itinerant electrons in a background of ions. 
Strong nuclear and electromagnetic interactions drive dense 
matter toward both local color and electrical neutrality. At low 
densities, this results in strong correlations between particles, 
with correlations weakening with increased density. In the 
hadronic regime, three quarks bind together to produce a color 
singlet object. In the regime between hadronic and quark mat-
ter, colored quarks and diquarks appear virtually during quark 
exchanges between baryons—essentially the baryon-baryon 
interactions. In the quark matter regime a diquark or a pair of 
quarks can easily find an extra quark nearby to produce local 
color neutrality, so that the extra quark is weakly correlated 
with the diquark or pair, as shown in figure 2.

With increasing baryon density or temperature, the effective 
degrees of freedom of matter change, possibly accompanied 
by phase transitions. The phases of QCD are characterized 
by a variety of condensates in which a macroscopic num-
ber of particles (and antiparticles) are strongly correlated by 
the strong interaction [71]. The emergence of condensates 
reduces the energy of the system, and in addition, condensates 
break symmetries in QCD, leading to states with lower sym-
metry than is present in the QCD Hamiltonian. The conden-
sates, which depend on temperature and baryon density, play 
an important role in the structure of hadrons, as well as in 
neutron stars, since the condensation energies are a large frac-
tion of the energy density in a neutron star core.

Chiral symmetry breaking, caused by the chiral condensa-
tion of paired quarks and antiquarks with different chirality 
(or handedness)—characterized most simply by a non-van-
ishing chiral condensate 〈q̄q〉, where q is the quark field—is 
largely responsible for hadron masses and the existence of the 
nearly massless Nambu–Goldstone bosons [93], e.g. the pion 
as well as the kaon. As reviewed in [94], chiral condensation 
persists from the vacuum, to nuclear matter [95], to high den-
sity quark matter. At high baryon density the condensate 〈q̄q〉 
is expected to go to zero; however, owing to the formation 

of further condensates, e.g. by diquark-anti diquark pairs (see 
below), chiral symmetry is expected to continue to be broken 
at high densities [96–99].

In addition, QCD color-magnetic interactions favor the 
formation of a diquark condensate of quark pairs in quark 
matter at low temperatures, characterized by a non-vanishing 
expectation value 〈qq〉, and similar to the Bardeen–Cooper–
Schrieffer (BCS) condensate of electron pairs in a supercon-
ductor [100]. Such a condensate breaks the U(1) symmetry 
associated with baryon conservation, and leads to low temper-
ature quark matter being a color superconductor.

Finally, the breaking of scale symmetry in QCD is related 
to formation of a gluon condensate—characterized by a non-
vanishing expectation value 〈Fμν

a Fa
μν〉, where Fa

μν  (with μ, ν  
the space-time and a the color indices) is the gluon field tensor 
[101].

The possible astrophysical role of quarks in stars, and neu-
tron stars in particular, has been discussed ever since the first 
proposal of the quark model of hadrons [102–104]. Because 
of the difficulty in describing hadrons and quarks within a sin-
gle framework, the conventional description of the onset of 
quark matter has been to regard (hadronic) nuclear and quark 
matter as distinct phases, to calculate their energy densities 
using very different models, and then choose the phase with 
the lower energy density at given baryon density. In order to 
guarantee pressure and chemical potential continuity across 
the transition, one must make a bitangent Maxwell construc-
tion, which leads to a first order phase transition from nuclear 
to quark matter, e.g. [104–107]. Stars fabricated with such a 
‘hybrid’ equation  of state— hybrid stars—consist typically 
of a small quark matter core surrounded by hadronic matter. 
Ranea-Sandoval et al [108] presents an illuminating analysis 
of why the quark cores are typically small. The conventional 
picture is based on a thermodynamic comparison of hadronic 
matter and quark matter at too high a density for the descrip-
tion of hadronic matter to be physical, and at too low a density 
to apply perturbative QCD to the quark phase. An alterna-
tive description is that with increasing density, neutron star 
matter undergoes an essentially continuous transformation 
from the hadronic to quark regimes, a scenario we refer to as 
hadron-quark continuity [49, 98, 109–115]. In this scenario, 
as the density increases, quark degrees of freedom gradually 
emerge, with partial restoration of chiral symmetry and the 
onset of color superconductivity.

In the picture of QCD exhibiting a continuous evolution 
from hadronic to quark matter at low temperature neutron 
star cores are composed of deconfined u, d, and s quarks. 
Strangeness, rather than appearing in matter as hyperons, 
whose interactions are poorly known, it appears as strange 
quarks. Importantly, equations  of state exhibiting hadron-
quark continuity are consistent with current observational 
inferences of neutron star radii, as well as neutron star 
masses  ∼2M�. The emerging description of dense matter, on 
which we focus in this review, is that at low densities mat-
ter is hadronic, and at high densities is quark matter; in the 
intermediate regime, where one does not at present have tools 
to calculate, one can make physically constrained plausible 
interpolations between these two limits, arriving at what we 
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shall refer to as a unified equation of state10 to describe mat-
ter across the entire range of densities found in the interior of 
neutron stars [120–126]. Figure 4 illustrates the construction 
of a unified equation of state.

The QCD phase transition at finite temperature and low bar-
yon density [127–130], illustrated in figure 3, is an example of 
the continuity from hadrons to quarks and gluons. The smooth-
ness of the evolution of the matter at the transition temperature 
Tc has been established by lattice Monte Carlo calculations 
[131–134]. At low temperature, space is filled with a dilute gas 
of hadrons; as the temperature increases this hadronic gas grad-
ually fills the space, until near Tc the hadrons begin to merge, 
continuously transforming the matter structure and leading to 
a breakdown of its description purely in terms of hadrons. Yet, 
a quasiparticle description based on quarks and gluons does 
not apply either, for while the hadrons have broken down, the 
strong correlations remain. Thus, the system may be described 
as a strongly correlated quark-gluon plasma [135, 136] or a 
‘semi-QGP’ [137–139] in which both hadronic-like and quark-
like degrees of freedom can exist. Indeed perturbative QCD 
(pQCD) calculations indicate that the quasi particle picture of 
a QGP begins to apply only beyond (2–3) Tc [140, 141]. This 
crossover behavior of low density QCD matter has a number of 
features that are likely to be found in the hadron-quark trans-
ition at low temperature. However, it is important to note that 
while at zero baryon chemical potential physical gluons can 
be thermally excited as one approaches Tc, in cold dense mat-
ter gluons appear only virtually, through quantum fluctuations. 
The properties of gluons at low temper atures, which are much 
less well known than those at high temperature, is an important 
subject on which light may be shed through studies of neutron 
stars [122–124, 142].

Calculations of neutron star masses and radii require inte-
gration over vastly different density scales, from the crust 

region to the core. The outer regions of a neutron star, which 
are better understood, consist of a solid crust and a nuclear 
matter liquid just inside the crust, spanning baryon densities 
up to  ∼2n0. The neutron star interior, for which densities are 
nB ∼ (2−10)n0 is the most difficult to describe from first 
principles. In this regime quarks and gluons begin to play an 
important role, but the density is not high enough to apply 
results from pQCD. Thus, one is required to introduce some 
degree of phenomenological modeling. Understanding the 
role of confinement and percolation in this regime is a critical 
and outstanding problem, which renders practical modeling 
for nB ∼ (2−10)n0 difficult without introducing assumptions 
on confining forces and percolation. At higher densities, where 
matter is a well defined quark-gluon plasma, one faces the dif-
ficulty that lattice gauge theory for QCD is at present unable 
to describe matter at the relevant baryon chemical potentials 
[85]. Thus one must introduce models of interacting quark 
matter in this regime. Only at much higher densities, beyond 
those expected in neutron stars, can one apply perturbative 
QCD for dense matter directly.

1.5. Modelling hadronic and quark matter

To illustrate the evolving physics with increasing density, we 
will generally work with a low density nuclear equation  of 
state at nB � 2n0 and a high density quark matter equation of 
state at nB � (4 − 7)n0. In actual calculations we take the 
specific value 5n0. For concreteness, we adopt the Akmal–
Pandharipande–Ravenhall (APR) equation  of state [52] for 
nucleons as a representative nuclear equation of state, while 
noting that its extremely stiff character at densities well above 
saturation density provides a rough upper limit for neutron 
star masses in a purely hadronic description. Since cold dense 
matter in QCD cannot be calculated directly in lattice gauge 
theory [85], one must resort to phenomenological models of 
QCD in describing interacting quarks in neutron stars. For a 
quark model at high density as a template, we adopt the three 
quark-flavor Nambu–Jona–Lasinio (NJL) model [143–147], 
which captures much of the physics needed in neutron stars, 
and which has been employed previously in studies of dense 
QCD matter [47, 94, 112, 113, 148–151]. The fundamental 
actors in the model are quarks; while the model does not 
manifestly take gluon degrees of freedom into account, their 
effects in cold matter are to a large degree modeled by let-
ting the quarks interact via a number of effective interactions 
reflecting non-perturbative QCD processes involving quarks 
and gluons at low energy. We summarize in section 4.4 the 
effective interactions relevant for QCD phenomenology in 
neutron stars.

Although we do not review models of the intermediate 
density nuclear matter lying between the low density hadronic 
and high density quark regimes, the equation of state in this 
confinement-dominated regime is, as we shall see, strongly 
constrained. At higher densities, where baryons merge 
with one another, a detailed description of confining forces 
becomes unnecessary, and the remaining interactions can be 
inferred from hadronic and nuclear phenomenology, by apply-
ing the hadron-quark continuity picture in which the structure 

Figure 4. A unified equation of state using a nuclear equation of 
state for nB � 2n0 and a quark matter equation of state for 
nB � (4−7)n0, interpolated in the intermediate region. The 
dotted curves, the extrapolations of the nuclear and quark matter 
equations of state, indicate how such extrapolations become 
unreliable.

10 Our usage of this term should not be confused with its prior use in the 
literature, e.g. [116], to describe equations of state arising from a consistent 
physical model in the crust and liquid interior, e.g. in [117–119].
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and model parameters are adiabatically connected to those in 
the vacuum. The requirement that the neutron star equation of 
state be very stiff, i.e. has a sufficiently large pressure for 
given energy density—to allow 2M� neutron stars—tightly 
constrains the range of effective parameters of these models. 
In this way neutron star constraints translate into constraints 
on model parameters, with possible density dependence, for 
delineating properties of low energy QCD matter [3, 114, 115, 
123, 125, 126, 152].

1.6. Determining the mass-radius relation observationally

We briefly discuss three current observational developments—
determinations of the neutron star mass-radius relation; binary 
neutron star mergers, as seen both in gravitational and electro-
magnetic radiation; and measurements of the thermal proper-
ties of neutron stars—developments which are rapidly leading 
to a greater understanding of the properties of neutron star 
interiors.

Accurate determination of the mass-radius relation of neu-
tron stars strongly constrains the equation of state of neutron 
star matter. Beyond simple estimates of radius based on spec-
troscopic analyses of photons from neutron stars in quiescence 
(see [20] and references therein), further information on the 
relation can be gained from following the evolution of ther-
monuclear x-ray bursts on the surfaces of accreting neutron 
stars in binaries [5, 6, 20]. In addition the NICER experiment 
[15–20] is currently directly measuring the mass and radii of a 
number of neutron stars.

The photon flux, F∞ per unit area, from a neutron 
star at distance D, is related to the surface flux, Fs, of the 
star of radius R by 4πD2F∞ = 4πR2Fs/(1 + z)2, where 
1 + z = 1/(1 − 2GNM/Rc2)1/2 is the redshift. For black-
body emission from the surface at an apparent temperature 
Teff, Fs = σT4

eff , where σ is the Stefan–Boltzmann constant. 
In reality, Teff is not the true surface color temperature, Tcolor, 
deduced from thermal fits of the spectra, since it depends on 
the physics in the atmosphere, e.g. its composition and the 
surface gravity; the two temperatures are phenomenologically 
related by Tcolor = fcTeff  where fc ∼ 1.3 − 2. The apparent 
angular size of the neutron star seen by the observer is [154],

Aapp ≡ F∞
σT4

color,∞
=

R2
∞

D2f 4
c

, (3)

in terms of the color temperature seen at the point of obser-
vation, Tcolor,∞ = Tcolor/(1 + z). The effective radius deter-
mining the angular size is R∞ = R(1 + z), which can be 
understood in terms of light bending by the neutron star [153]. 
From observations of F∞, D, and Tcolor,∞ one can constrain 
the relation between M and R. The distance D typically has 
large uncertainties, ∼50%, while the uncertainty is the level 
of 5 − 10% for neutron stars in globular clusters.

There are two important caveats in this procedure. The first 
is that neutron stars in strong magnetic fields � 1012 G are 
not black-body emitters; atoms at the surface are expected to 
be highly distorted by the magnetic field, making the surface 
radiation dependent on its polarization [155–157]. The second 

is the assumption that the radiation is from the neutron star 
surface uniformly, not from a hot spot on the surface, nor from 
further out in the atmosphere.

Observations of thermonuclear x-ray bursts on neutron star 
surfaces (see [5, 6, 11–13, 20, 154], and references therein) 
further constrain the mass-radius relation. In bursts in which 
the radiation flux exceeds the local Eddington limit (where the 
radiative force on the atmosphere balances the gravitational 
force) the photosphere of the neutron star is lifted; when it 
returns to the neutron star surface, the flux at the ‘touchdown’ 
point, seen from infinity is,

FEdd,∞ =
GNMc

(1 + z)κeD2 , (4)

where κe is the electron-scattering opacity in the atmosphere. 
Combining measurements of the touchdown flux, which is 
independent of Teff , with information from the quiescent flux 
F∞ leads to useful constraints on M versus R.

The ongoing NICER experiment [15] aims to determine 
the masses and radii of several nearby rotating neutron stars 
by accurately monitoring their x-ray pulse profiles in time. 
Neutron stars with strong magnetic fields have hot spots at 
the magnetic polar caps, heated by charged particles moving 
along the magnetic flux lines. The pulse profiles are periodi-
cally modulated by brightness changes associated with these 
temperature non-uniformities on the neutron star surface. The 
key is that gravitational bending of light by the strong gravita-
tional field of neutron stars, dependent on M/R, allows one to 
partially ‘see’ the back side of the neutron stars. Figure 5 sche-
matically illustrates the basic mechanism for a single hot spot. 
With stronger bending, more of the star is visible, and thus the 

Figure 5. Gravitational lensing, which is stronger for neutron stars 
with larger compactness M/R, permits one to see part of the back 
side of a neutron star. The inset shows the x-ray flux from a single 
(red) hot spot on a rotating neutron star, the solid (green) line, as a 
function of the phase of the rotation. In the absence of gravitational 
lensing, the flux from a point hot spot, shown as the dotted (red) 
line, would vanish for part of a rotational cycle; lensing shrinks the 
invisible region, allowing the spot to be seen for a larger fraction 
of the phase, and reduces the contrast between the flux from the 
brightest and darkest regions. Combining general relativistic effects, 
the velocity deduced from Doppler shifts of the spot color, and the 
rotational frequency allows one to constrain the neutron star mass 
and radius.
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measurable ratio of the amplitudes between the brightest and 
darkest points in the profile decreases. The bending for slowly 
non-rotating stars, described by the Schwarzschild metric, 
depends only on M/R, and thus to get information on M and 
R separately requires looking at sufficiently rapidly rotating 
stars, above  ∼300 Hz in practice, in which corrections from 
the Kerr metric of rotating neutron stars come into play [183]. 
The pulse profiles reflect both general relativistic and Doppler 
effects; comparison with waveform modeling, including as 
a function of color, allows one to extract M and R, as well 
as other parameters such as the quadrupole moment and 
moment of inertia, which play a role in determining the met-
ric of a strongly gravitating rotating star [18, 19]. Eventually 
NICER should determine neutron star radii and masses to an 
accuracy  ∼5–10%.

1.7. Binary neutron star mergers

The recent multi-messenger detection of the merger of 
two neutron stars GW170817 [22, 23] opens a new path to 
determining neutron star properties both by comparing the 
measurable gravitational signals with those computed by 
fully general relativistic simulations with given QCD equa-
tions of state [24–29], as well as utilizing the electro magnetic 
signals accompanying the merger [158–162, 164–166]. A 
binary neutron star system at large distance is described by 
Newtonian mechanics, but as the stars approach each other 
in the late inspiral phase the stars deform each other, prior 
to merging in tens of seconds. The tidal deformability of the 
stars, discussed below, is very sensitive to their compactness. 
When the orbital frequency reaches  ∼500 Hz (the current 
limit of LIGO detectability), the detectable gravitational sig-
nals begin to distinguish between different equations of state. 
The gravitational waveform just before the merger, especially 
its frequency, is again strongly dependent on the compact-
ness of the stars; smaller stars can approach more closely 
before crushing into each other, thus reaching higher orbital 
frequency.

Neutron star-neutron star mergers explore the possible 
existence of very heavy neutron stars and light black holes. 
After the merger, the coalesced star can either collapse into a 
black hole, or, if the star is not too massive (�3 M�) and spin-
ning rapidly, it could remain as a metastable hypermassive 
star, with high differential rotation and temperature  ∼10–100 
MeV. The final object produced by the merger GW170817 has 
a mass of order 2.7 M�, which exceeds the cold non-rotating 
neutron star mass bound proposed in [162, 163]. The observed 
jets favor the object being a black hole [158–161], since jet 
formation takes place through conversion of rotational energy 
into magnetic [28, 29]; others argue for it to be a long-lived 
massive neutron star [164]. The event has also been used to 
place constraints on the radii of the initial neutron stars [165], 
as well as to suggest a lower bound on the tidal deformability 
of the stars [166].

As two neutron stars approach each other in a merger each 
tidally deforms the other. For two stars, A and B of mass MA 
and MB, whose centers are separated by a large distance 
R0 
(with |
R0| � GNMA/c2, GNMB/c2), the quadrupolar tidal 

gravitational field from star B felt at position 
r  in star A 
(measured from the center of A) is

Φtidal(
r ) =
GNMB

2R3
0

(
r2 − 3(
r · R̂0 )

2
)
=

1
2
Eijrir j, (5)

where Eij = ∂2Φtidal/∂ri∂rj is the quadrupolar tidal field ten-
sor. Such a tidal potential distorts star A, producing a quadru-
pole moment,

Qij =

∫
d3r ρ(r)

(
rirj − 1

3
δijr2

)
, (6)

related to the tidal field in linear order by

Qij = −λAEij, (7)

thus defining (relativistically) the tidal deformability λA of 
star A. Explicitly

Qzz = −2Qxx = −2Qyy ≡ −λAEzz = 2λA
GNMB

R3
0

; (8)

dimensionally λA is of order11 R5/GN. The tidal deformability 
can be written in terms of the dimensionless Love number, k2, 
as12

λ =
2
3

k2
R5

GN
. (9)

Gravitational radiation waveforms in neutron star mergers 
depend on the dimensionless tidal deformability, Λ, defined 
by

Λ = 32
λGN

R5
s

=
2
3

k2

(
Rc2

MGN

)5

. (10)

where Rs = 2MGN/c2 is the Schwarzschild radius of the star; 
see section 7. The strong dependence of Λ ∼ (R/M)5 indicates 
that (for fixed k2) the dimensionless tidal deformability is a 
good measure of the neutron star compactness, M/R. For an 
introduction to calculations of λ for general relativistic stars 
see [170], and for the effects of tidal deformations on gravita-
tional merger waveforms see [171–173] and references therein.

Intriguing `I-Love-Q’ relations between the moment of 
inertia, I, of a neutron star, its tidal deformability, λ, and the 
quadrupole moment, Q, induced by rotation, which are rela-
tively insensitive to the detailed internal neutron star structure 
have been laid out in [174].  These relations are helpful in 
constraining interpretations of NICER observations.

11 A simple, qualitative and instructive estimate of λ is that for a non-
relativistic self-gravitating spherical star of uniform density with mass 
MA and unperturbed radius R. A prolate deformation of the surface 
of the star by δR = P2(cos θ)εR, produces a quadrupole moment, 
Qzz = (2/5)MAR2ε, and increases the gravitational energy of the sphere by 
ΔEdef = (3/25)GNM2

Aε
2/R. In addition the energy of the star in the external 

tidal field (5) is ΔEtidal = −(3/5)GNMAMBR2ε/R3
0. Minimization of 

ΔE = ΔEdef +ΔEtidal with respect to ε yields ε = (5/2)(MB/MA)(R/R0)
3, 

so that Qzz = MBR5/R3
0, and thus λA = R5/2GN, k2  =  3/4 [167], and 

ΛA = 16(R/Rs)
5. See [168] for a discussion of tidal deformation in terms of 

energetics. Fully relativistic calculations for stars with realistic equations of 
state yield much smaller Λ than predicted by this schematic calculation, 
since more mass lives at smaller radii than in a uniform density sphere.
12 The conventional geophysical definition of k2 is a factor of 2 larger [169] 
than that here.
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1.8. Neutrino cooling and transport

Understanding transport and neutrino cooling properties of 
cold dense matter is essential to determining the phase struc-
ture and low energy degrees of freedom in neutron stars [175–
177]. The interiors of stars older than a few hundred years are 
nearly isothermal; however the surface temperatures depend 
on the thermal transport from the interior through the crust to 
the surface (see [176]). When external heating of a star, e.g. by 
accretion from a companion, is not large, the long-time evo-
lution of neutron star temperatures is dictated by the neutrino 
luminosity for the first  ∼105−106 years, after which photon 
luminosity from the surface dominates.

Neutrino cooling by hadronic matter depends strongly on 
the fraction of nucleons that are protons. If the proton frac-
tion is less than some 10–15%, the proton and electron Fermi 
momenta are too small for the direct process of neutrino emis-
sion, n → p + e− + ν̄e, p → n + e+ + νe, to conserve both 
energy and momentum. Neutrino emission takes place rather 
with transfer of momentum to a bystander nucleon, via the 
modified URCA processes, n + n → n + p + e− + ν̄e, and 
p + n → n + n + e+ + νe, leading to the standard, or mini-
mal cooling scenario [178–180]. For larger proton fraction, 
and hence Fermi momentum, the direct URCA processes, 
n → p + e− + ν̄e, p + e− → n + νe, are kinematically 
allowed in cooling, leading to a rapid or enhanced cooling 
scenario. Owing to the extra nucleons in the modified URCA 
process the cooling rate is suppressed by a factor ∼(T/Tf )

2 
compared with the direct URCA process, typically some five 
to six orders of magnitude, where Tf is the Fermi temperature 
of the nucleons.

BCS pairing of nucleons has important physical effects 
on the cooling of stars. By suppressing the density of 
states, the rates of neutrino emissions are reduced by a fac-
tor  ∼exp(−2Δ/T), with Δ the pairing gap. With pairing, 
processes involving pair formation or breaking, such as 
n + n → [nn] + ν + ν̄ , also lead to neutrino emission, where 
the initial n are excited quasiparticles, and [nn] indicates a 
condensate pair; these can become important in the regime 
where pairing suppresses the modified URCA process. On the 
other hand, the heat capacity of paired matter is similarly sup-
pressed. The net effect of pairing on the cooling of neutron 
stars depends in detail on models of the equation of state of 
matter and pairing, as well as on their masses [176, 179].

‘Exotic’ matter, e.g. pion and kaon condensates, hyperon 
mixing as well as quark matter, can lead to enhanced cool-
ing via direct URCA processes. Owing to the theoretical 
uncertainty of the possible phases inside neutron stars and the 
uncertainties of the age and surface temperatures of observed 
neutron stars, it is not yet possible at the moment to conclude 
whether fast cooling by direct URCA processes as well as by 
exotic components is taking place. In any case, the cooling of 
neutron stars needs to be investigated using equations of state 
compatible with observed  ∼2M� neutron stars.

Accretion of matter onto neutron stars leads to thermonu-
clear bursts on the surface [6, 20, 154]; observation of the cool-
ing of accretion-heated neutron stars, from a few days to a few 
tens of years after outbursts, is a innovative way to constrain 

neutrino luminosity and probe the outer regimes of neutron 
stars [181]. The basic idea is that, following the injection of 
heat, the neutron star interior acts as a calorimeter. Using this 
approach, Cumming et al [182] have deduced a lower bound 
to the integrated heat capacity of neutron stars from observa-
tions of accretion outbursts, from which they argue against 
matter below 2n0 having a very low specific heat (e.g. as with 
a color-flavor locked quark core); this result is consistent with 
the present unified equations of state discussed below.

1.9. Outline

In this review we first describe the more familiar properties 
of neutron stars, the crust in section 2, and the liquid nuclear 
matter in the outer core in section 3. Although these regions 
have been well studied for many years, open questions 
remain, as we discuss. We then turn to describing quark mat-
ter at high density in section 4, describing effective models 
for the quark and gluon sectors. In the following section 5 we 
discuss general aspects of a unified equation of state capa-
ble of connecting the low density hadronic and high density 
quark matter regimes, and continue in section 6 with a more 
detailed analysis of two separate possible unifications, one 
with a conventional first order hadron-quark phase transition, 
and another realizing hadron-quark continuity. We then out-
line the relationship between the structure of the QCD phase 
diagram and the neutron star equation  of state, discussing 
hadron-quark continuity. We review explicit constructions 
of unified equations of state valid at all densities for a num-
ber of quark model parameter sets, in terms of interpolating 
between a low density nuclear equation of state at nB � 2n0 
and a high density quark matter equation of state at nB � 5n0 
(figure 4). In this construction we take the crossover between 
the two regimes to occur around nB ∼ (2 − 3)n0, below 
which the strangeness density is small and various hadronic 
equations of state exhibit very similar properties. In section 7 
we turn to the astrophysical consequences of the unified 
equations of state, and indicate connections between effec-
tive quark model parameters and neutron star mass and radius 
observations. We compare several model equations of state 
reflecting hadron-quark continuity to existing constraints 
obtained from astrophysical data and find consistency with 
current inferences [11, 12]. Finally, in section  8 we sum-
marize the impact of parameter variations on the maximum 
stable neutron star mass and discuss how observational data 
of massive neutron stars can provide additional constraints on 
microscopic model param eters. In addition, we mention open 
problems, including the need to develop finite temperature 
equations  of state for modeling gravitational waveforms in 
neutron star-neutron star and neutron star-black hole mergers. 
In appendix A we review scaling properties of the TOV equa-
tion, and in appendix B we review effects of a repulsive quark 
vector interaction on quark masses, chiral symmetry break-
ing, and pairing gaps. Lastly in appendix C, we present the 
equations of state with hadron-quark crossover in a param-
etrized form—called QHC18—useful for modeling neutron 
stars. We generally adopt units � = 1, and in discussing QCD 
will also generally take c  =  1.
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2. The crust

The crust plays an important role in observable phenomena in 
neutron stars, even though its mass and thickness are relatively 
small. Such phenomena include thermal conduction, which 
establishes the temperature drop between the core and sur-
face; superfluid neutron dynamics at densities above neutron 
drip, which have been invoked to understand pulsar glitches 
and quasi-periodic oscillations; and more generally the elastic 
properties of the crust, which play a role in oscillations of the 
star; see, e.g. [20, 184–187] and references therein. Although 
as we indicate below, the mass and especially the thickness of 
the crust are insensitive to the details of the equation of state, 
the equation of state itself, as well as dynamical phenomena 
in the crust, remain an important problem. The crust can be 
divided into three regions, see figure 6: a sequence of nuclei 
below the surface which become increasingly neutron rich 
with depth into the star; the neutron drip regime, in which the 
continuum neutron states in the matter are occupied; and at 
the highest densities in the crust, a sequence of ‘pasta’ nuclei, 
including rods and sheets, which account for essentially half 
the mass of the crust. Representative calculations of the equa-
tion of state in the crust, particularly below the pasta region, 
include [118, 188, 189], while details of the pasta phases can 
be found in [190–200]. At a baryon density of order one half 
nuclear matter density, n0, the matter undergoes a first order 
phase trans ition from a solid crust to liquid nuclear matter.

Up to densities of order 1011 g cm−3 one can use the prop-
erties of laboratory nuclei to deduce the sequence of increas-
ingly neutron rich nuclei with depth [201]. Beyond this point, 
however, the details of the nuclei that are present, as well as the 
neutron drip point, at mass density  ∼4 × 1011 g cm−3 where 
continuum nuclear states are first occupied, are sensitive to 
the shell structure of very neutron-rich nuclei. The spin–orbit 
force, which is critical in determining the usual closed shell 
structure at neutron or proton numbers 20, 28, 50, 82, …, is 
expected to decrease in more neutron-rich nuclei [202]; the 
details are still very much in flux, both experimentally and 
theoretically [203].

To determine the nature of the nuclei beyond neutron drip 
one must generalize the description of isolated nuclei to allow 

for the neutron gas outside the nuclei. Common methods are 
microscopic calculations based on Skyrme interactions [204, 
205], on generalized liquid drop models [117, 206], and on 
chiral effective field theory [57]. Even though the gross prop-
erties of matter in the crust are much better understood than 
they are at higher densities, there are still a number of uncer-
tainties, typically at the 10% level, in the structure of the nuclei 
owing to uncertainties in the effective interactions used. The 
superfluid properties of the nuclei immersed in the neutron 
fluid [205, 207–209] as well as the superfluid properties of the 
neutron fluid itself [210, 211] are also uncertain.

Determining the position of the inner edge of the crust is 
simple in principle: given the pressure, P, as a function of the 
baryon chemical potential, μB, for the phase with nuclei and 
for the uniform liquid phase, the ground state for matter with 
a given μB is the phase with the higher pressure. The phase 
transition occurs when P and μB of the two phases are equal 
and, since nB = ∂P/∂μB, the density discontinuity across the 
transition is given by the difference of the slopes of the P ver-
sus μB curves for the two phases. This calculation, demanding 
detailed calculations of the pasta phases, is complex in reality. 
One simple approach to estimating the position of the bound-
ary is to compare the nucleonic pressure in the liquid interior 
with the pressure of a pure neutron gas (in which μB is the 
neutron chemical potential μn) at the same μB, and locating 
the baryon chemical potential where the two curves cross. In 
this comparison one holds the electron density fixed, and the 
electron contribution to the pressures plays no role. Again the 
slopes of P versus μB at this point give the densities across the 
transition. This procedure is simply equivalent to neglecting 
the surface and Coulomb energies of the nuclei in the phase 
with nuclei, so that its thermodynamics is determined only by 
the dripped neutron fluid. Detailed calculations are given in 
[212].

A second way to estimate the position of the transition is 
again to start in the uniform phase and decrease the density 
until matter becomes unstable to formation of small amplitude 
modulations of the proton and neutron densities. In the absence 
the Coulomb interactions, the electron density remains uni-
form, and the conditions for stability to long-wavelength den-
sity fluctuations are first that the partial neutron and proton 
compressibilites are positive,

εnn > 0 and εpp > 0, (11)
where ε(nn, np) is the energy per unit volume of uniform 
nuclear matter and εij = ∂2ε/∂ni∂nj = ∂μi/∂nj = ∂μj/∂ni; 
these conditions are generally satisfied for energy functions 
commonly employed. The second condition is that

εnnεpp > ε2
np. (12)

When the two terms in equation  (12) become equal, matter 
becomes unstable to long-wavelength sinusoidal proton and 
neutron density waves. In nuclear matter at densities �n0, εnp 
is negative as a consequence of the strong attractive s-wave 
interaction between neutrons and protons. Thus the neutron 
density is large where the proton density is large. The insta-
bility argument can be extended to finite wavelengths by 

Figure 6. The crust of a neutron star, between the stellar radius R 
and the radius of the liquid core Rc. The mass density and properties 
of matter change vastly in the crust region. As the density increases, 
the nuclei in the crust undergo neutron drip, and then become 
unstable and forming various ‘pasta’ phases. At higher density 
(nB � 0.4n0) the matter becomes liquid nuclear matter.
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including the Coulomb interaction and surface energy [117]; 
the onset of instability occurs at a lower density when these 
effects are included. As found in [213], the density in the 
liquid at which the instability occurs is in the range (0.075–
0.088) fm−3 � (0.47−0.55) n0, similar to that found in [212]; 
the estimate based on comparing pure neutron matter with the 
matter in the liquid interior occurs at a somewhat higher den-
sity [212] (but still below n0).

The thickness of the crust as well as its mass can be deduced 
from the TOV equation (1) without having a detailed knowl-
edge of the equation of state in the crust. Hartle [214] gave 
initial estimates of the mass and thickness of the crust, and 
we give improved versions of his arguments here [215, 216]. 
We focus first on the thickness of the crust. For matter at zero 
temper ature containing a single component, or in full chemi-
cal equilibrium, one has dP = nBdμB and ρc2 + P = μBnB; 
the TOV equation can then be rewritten as

∂ lnμB(r)
∂r

= −GN

c2

m(r) + 4πr3P(r)/c2

r(r − 2Gm(r)/c2)
. (13)

In evaluating the right side in the crust, we can to a good 
approximation replace m(r) by the total mass, Mc, of the liq-
uid core of the star, and neglect the pressure term 4πP(r)r3/c2 
compared with Mc.

When μB(r) is continuous, as in fully catalyzed matter, we 
can readily integrate equation (13) from the outer edge of the 
core, at radius Rc, to the surface of the star, at radius R, to find

μB(Rc)

μB(R)
=

(
1 − Rsc/R
1 − Rsc/Rc

)1/2

, (14)

where μB(R) is the chemical potential at the surface of the star 
and Rsc = 2McGN/c2  is the Schwarzschild radius of the core. 
Solving for R we find,

R − Rc

Rc
=

ζ

[Rsc/(Rc − Rsc)]− ζ
, (15)

where

ζ ≡
(

μB(Rc)

μB(R)

)2

− 1. (16)

Both μB(Rc) and μB(R) are very close to the nucleon mass. 
For example in [117], μB(Rc)− mn � 15 MeV, while at the 
stellar surface, μB(R)− mn � −8 MeV, the binding energy 
of nucleons in the outermost nuclei (57Fe, ideally). Thus 
ζ � 2(μi − μB(R))/mnc2, and for the numbers just cited, ζ � 
0.05. On the other hand, Rsc/Rc ∼ 0.3M/M�, so that to a 
good approximation the ζ can be neglected in the denomina-
tor of equation (15), and we find

R − Rc

Rc
� 2

μB(Rc)− μB(R)
mnc2

Rc − Rsc

Rsc
; (17)

this equation gives the thickness of the crust in terms of the 
radius and Schwarzschild radius of the core, and the baryon 
chemical potential difference between the inner and outer 
radius of the crust. Remarkably, the thickness of the crust is 
insensitive to the details of the equation of state in the crust. 

For the numbers taken above, we find a crust thickness of 
order 0.5 km.

The calculation above assumes that the baryon chemical 
potential is continuous in the crust, as it must be for fully cata-
lyzed matter. In chemical equilibrium the neutron chemical 
potential and pressure are continuous across a phase trans-
ition between different species of nuclei, although the baryon 
and electron densities need not be continuous. We comment 
briefly on the situation when matter in the outer regions of 
the crust is not in full chemical equilibrium, as in accreting 
stars, where, e.g. the neutron star can have a layer of hydro-
gen above the fully catalyzed matter. Across such a transition 
between elements the pressure is continuous; however, in gen-
eral, the baryon chemical potential can have a discontinuity, 
Δμ in going from larger to smaller radii, since the baryons 
are bound in nuclei. For a single discontinuity, μc − μB(R) in 
equation (17) is replaced by μi − μB(R)−Δμ. In other words 
only the continuous changes in the chemical potential from 
the edge of the core to the edge of the star determine the thick-
ness of the crust.

If the matter is fully catalyzed out to a pressure Pχ, beyond 
which the star has a layer of atoms of a given species (A, Z ), 
then the thickness of this added layer is simply

ΔR � 2
mn

[μAZ(Pχ)− μAZ(0)]
(

Rc

Rsc
− 1

)
; (18)

the chemical potential difference here is given by the equa-
tion of state P(μ) in the added layer.

To estimate the mass of the crust, we again neglect the 
pressure terms on the right of the TOV equation, replace m(r) 
by Mc, and integrate the resulting equation from Rc to R. Since 
the pressure vanishes at the stellar radius, we find

Pc = Rsc

∫ R

Rc

r2dr
ρ(r)c2

r3(r − Rsc)
.

 
(19)

The integral is dominated by the contributions from close 
to the inner radius of the crust, and thus we may to a good 
approximation replace the factor r3(r − Rsc) in the denomina-
tor of the integrand by R3

c(Rc − Rsc). The crust mass,

Mcrust =

∫ R

Rs

4πr2ρ(r)dr, (20)

is then approximately

Mcrust � 4πR3
c

Pc

c2

(
Rc

Rsc
− 1

)
, (21)

again not dependent on the details of the equation of state in 
the crust. For a characteristic value of Pc � 0.5 MeV fm−3, 
we find Mcrust ∼ 10−2M�.

The baryon density at the transition, in the range  
(0.47–0.55) n0 [213], is uncertain. The related uncertainty in 
Pc at the transition leads, as one sees from equation (21), to an 
uncertainty in the mass of the crust at a level  ∼8%. Although 
the lattice appears to be stable [217, 218], an additional 
 subtlety in the physics of the crust is the question of whether 
protons in the crust can also drip out of the nuclei [212].
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3. Liquid nuclear matter in the outer core

The historic approach to describing nuclear matter in the outer 
region of the core is first to calculate the energy densities of 
both symmetric nuclear matter and neutron matter and then 
interpolate between them to describe matter at the finite proto n 
fraction expected for matter in beta equilibrium between the 
protons, electrons and neutrons, viz.,

μn = μp + μe, (22)

where the rest masses are included in the chemical poten-
tials μi. As described briefly in the introduction, the basic 
calcul ational method is to first determine nucleon-nucleon 
potentials from scattering data supplemented by three-body 
interactions, and to then employ large scale computational 
methods to solve the many-body Schrödinger equation  in 
the presence of these potentials; a representative such calcul-
ation is that of Akmal, Pandharipande, and Ravenhall (APR) 
[52]. It is common to employ an energy density of symmetric 
matter consistent with the empirical nuclear binding energies 
and compressibilities, thus reducing theoretical uncertainties. 
A further approach is via chiral effective field theory [219], 
which provides a systematic development of two and higher 
body interactions [213, 220, 221].

Various microscopic calculations of (pure) neutron mat-
ter, reviewed in [222], are in relatively good agreement up to 
nuclear matter density n0, where the dominant two-body inter-
action between nucleons is well characterized by nucleon–
nucleon scattering data, Zero range three body interactions in 
neutron matter give no contributions to the energy density, as a 
consequence of the Pauli principle, which prevents three neu-
trons being at the same point, because two of them must be in 
the same spin state. However, realistic three-body interactions 
have a finite range, and thus at densities of interest in neu-
tron stars, they give comparable contributions to the energy 
densities of neutron matter and symmetric nuclear matter, and 
greatly stiffen the neutron matter equation of state. While the 
limit of validity of nuclear matter calculations based on inter-
acting nucleons is uncertain, it is not unreasonable to use them 
up to a density  ∼2n0.

To interpolate between pure neutron matter and symmetric 
nuclear matter, one can to first approximation take the energy 
density of uniform nuclear matter to be a quadratic function 
of the neutron excess, δ = 1 − 2x, where x = np/nB is the 
proto n fraction; then,

E(nB, x) � E(nB, 0)− 4x(1 − x)nBS(nB), (23)

where S(nB) = (E(nB, 0)− E(nB, 1/2)) /nB is the density-
dependent symmetry energy. This interpolation leads typi-
cally to a value of S(n0) at nuclear saturation density close to 
the empirical symmetry energy for nuclei with roughly equal 
numbers of neutrons and protons, ≈32 MeV [213]. An alter-
native approach is to take the kinetic energy to be that of the 
free gas at given nB and x, with possible effective mass correc-
tions [52], and apply a quadratic interpolation only between 
the interaction-energy density of pure neutron matter and 
symmetric nuclear matter [52, 213]. To determine the proton 
fraction in the liquid interior, one then imposes the condition 

of beta equilibrium (22). Typically the proton fraction just 
within the liquid interior varies from about  ∼3% at the crust-
core boundary to  ∼5% at n0. Initial direct Monte Carlo calcul-
ations of asymmetric nuclear matter are given in [223].

It should be noted that BCS pairing of nucleons in the outer 
regions of the core does not produce significant corrections to 
the equation of state there, since energy gaps Δ are  ∼MeV, so 
that condensation energies, of order Δ2/EF, are small com-
pared with the Fermi energy, EF. Such pairing is not taken 
into account in the APR equation of state. Uncertainties in the 
equation  of state arise from uncertainties in the three-body 
interactions with increasing density [213], and also from the 
onset of neutral pion condensation, which APR finds to occur 
at  ∼0.2 fm−3 in matter in beta equilibrium, and at  ∼0.3 fm−3 
in matter in symmetric nuclear matter. The transition to the 
pion condensed state found in APR is first order13. However, 
APR did not consider spatially non-uniform neutral conden-
sates (e.g. ∼cos kz for small amplitude condensation), nor 
did they examine the order parameter of the condensed state; 
as a consequence the energy of the ‘pion condensed phase’ 
reported in APR is an upper bound to the energy of the pion 
condensed state. The transition in APR is to a uniform phase 
characterized by a large tensor correlation length and enhance-
ment of spin-isospin correlations [76].

4. Quark matter at high density

As an introduction to more detailed applications in section 5.3, 
we begin in this section by discussing the elementary physics 
of quark matter, the expected form of neutron star matter at 
densities well beyond n0.

4.1. Noninteracting quark matter

The simplest model of quark matter takes into account the 
bare quark kinetic energy density, εK, and the bag constant, 
B, which is the energy density difference between the non-
perturbative vacuum in QCD and the perturbative vacuum. 
The zero of energy is commonly taken to be that of the non-
perturbative vacuum, compared to which the perturbative vac-
uum has a positive energy, B. For illustration, let us consider a 
gas of massless quarks with Nf flavors. At low temperature the 
quarks form a degenerate Fermi sea, with quark density

nq = 2NcNf

∫ pF

0

d3p
(2π)3 = NcNf

p3
F

3π2 , (24)

where Nc = 3 is the number of quark colors, the 2 is for spin, 
and pF is the quark Fermi momentum. The bare quark kinetic 
energy density is then

εK = 2NcNf

∫ pF

0

d3p
(2π)3 | p| = NcNf

4π2 p4
F. (25)

13 This result is consistent with a general argument of Dyugaev [224, 225] 
that as condensation is neared the pion-pion scattering amplitude in the 
medium changes from repulsive to attractive owing to exchange of soft pion 
modes.
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Then the total energy density is ε = εK + B. Since the quark 
chemical potential is μq = ∂ε/∂nq = pF, the baryon chemical 
potential μB = 3μq, the pressure and the energy density read

P( pF) = ap4
F − B, ε( pF) = 3ap4

F + B, (26)

where a = NcNf /12π2. These expressions give the equa-
tion of state which is valid for non-interacting massless quarks 
at high density. The bag constant, B, is the difference in the 
energy densities of the perturbative vacuum—devoid of all 
particles and condensates—and the non-perturbative vacuum, 
which is the true ground state of QCD, including chiral and 
gluon condensates.

With this equation of state, the maximum mass of a hypo-
thetical quark star made of free quarks, for Nc = Nf = 3, 
scales with B [65] (see also appendix A) as

Mmax � 1.78
(

155 MeV
B1/4

)2

M�, (27)

while the corresponding radius scales as

R � 9.5
(

155 MeV
B1/4

)2

km. (28)

4.2. The bag constant

Various estimates of B have been made, for a variety of phys-
ics models and choices of which energies to include in B (and 
which to include in the quarks). As a result of these variations, 
comparison of the precise values obtained in different models 
is not generally meaningful. For example, in the early MIT 
bag model, B � (145–155) MeV4 � (60–80) MeV fm−3. The 
bag constant calculated in the NJL model (see equation (57) 
below) is ≃(218 MeV)4  =  296 MeV fm−3 [105]. On the other 
hand, Novikov et al [227], in a QCD based calculation, find 
B � (250–300 MeV)4 � (500–1000) MeV fm−3, an order 
of magnitude larger than the MIT value. We note here that 
it may not be possible to calculate the properties of the glu-
ons, at least in the density range relevant for neutron stars, 
by applying perturbative QCD, i.e. the gluons might remain 
non-perturbative. The properties of such matter have been dis-
cussed in the context of quarkyonic matter [228], discussed in 
section 5.5.

4.3. Condensates in the QCD vacuum and quark matter

The strong interactions of quarks and gluons in QCD cause a 
variety of condensation phenomena. Fundamental is the for-
mation of a chiral condensate, made of quark-antiquark pairs 
with different chirality, e.g. a left-handed (i.e. spin antiparal-
lel to momentum) quark and right-handed antiquark (figure 
7). The approximate chiral symmetry of QCD, as a conse-
quence of which left and right handed quarks comprise essen-
tially independent sectors, is broken by the chiral condensate 
because it couples quarks of different chiralities. Since quarks 
and antiquarks are bound in the condensed ground state, the 
creation of a quark excitation requires the breaking of a pair, 
and the associated energy cost; as a consequence, a quark 

acquires an effective, or constituent, quark mass, M. This 
mass, dependent on the strength of the QCD interactions, has 
a characteristic magnitude, ΛQCD ∼ 200 MeV, the dynamical 
scale of QCD, much larger than the bare, or current, quark 
mass, mq, entering the QCD Hamiltonian. The emergence of 
the chiral condensate changes the structure of the Dirac sea, 
giving rise to a non-perturbative QCD vacuum. The difference 
in energy density between the (perturbative) chirally symmet-
ric and (non-perturbative) symmetry-broken Dirac seas, with 
different effective masses Meff, at zero temperature and baryon 
chemical potential formally defines the bag constant:

B ≡ ε(Meff = mq)− ε(Meff = M). (29)

At high baryon density, quark-antiquark pairing is no 
longer energetically favored in the presence of the quark 
Fermi sea, figure 8, since to create an antiquark (a hole in the 
Dirac sea), the quark originally occupying the Dirac sea must 
now occupy a previously unoccupied high energy state out-
side the Fermi sea. One could imagine at first sight that chiral 
symmetry would then be restored. However, in the presence 
of a quark Fermi sea, pairings employing the degrees of free-
dom near the Fermi surface become possible, and these can 
continue to break chiral symmetry [229, 230]. Of particular 
importance is diquark pairing, in which two quarks (or two 
quark-holes) near the Fermi surface are paired as electrons are 
Cooper paired in an ordinary superconductor, figure  9. The 
diquark pairs, macroscopic in number, form a diquark con-
densate, and as a condensate of paired electrons gives rise to 
electromagnetic superconductivity, a condensate of diquarks, 
which has color charges, gives rise to color superconductivity. 

Figure 7. Chiral symmetry breaking via quark-antiquark pairing. 
Condensation of pairs opens a gap M in the quark dispersion 
relation, changing the structure of the Dirac sea. The energy density 
of the symmetry-broken Dirac sea is smaller than that of the 
symmetric sea by B ∼ Λ4

QCD (see text).

Figure 8. Quark-antiquark pairing at high baryon density. In 
creating a hole in the Dirac sea, the quark in the Dirac sea must, by 
the Pauli principle, be outside the Fermi sea.
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A quark excitation requires the breakup of a condensed pair, 
costing energy 2Δ, where Δ is the pairing gap. Condensation 
reduces the energy density of the system by the energy gain 
for a single pair, Δ, times the phase space available for such 
pairs, ∼4πp2

FΔ, where pF is the quark Fermi momentum. This 
energy reduction, ∼Δ2p2

F  plays a very important role in quark 
matter equations of state, as we discuss below. The modeling 
of these effects will be discussed in section 4.4.

The diquark pairing interaction is most attractive in the 
color-antisymmetric, flavor-antisymmetric, and spin-singlet 
channel. Flavor asymmetry implies that quarks in a pair must 
have different flavors. At densities relevant to neutron stars, 
this complicates the pairing, because the (u, d, s)-quarks have 
different quark masses and electric charges, introducing a 
considerable imbalance in the size of their Fermi seas. Many 
possibilities for the preferred pairing structures have been 
discussed (reviewed in [100]), but here we discuss only the 
simplest candidates; two flavor, or 2SC pairing, in which u- 
and d-quarks pair at chemical potentials not large enough for 
significant strangeness to appear, and the color-flavor-locked, 
or CFL phase, in which the chemical potential is sufficiently 
high that the u, d, and s all quarks participate in the pairing. 
The detailed structure of these condensates is given in equa-
tion (34), below.

4.4. Nambu–Jona–Lasinio model for interacting quarks

Owing to the inability of lattice gauge theory calculations to 
describe cold matter at finite baryon density, due the fermion 
sign problem [85], one needs to adopt phenomenological 
models of interacting quarks in order to describe dense quark 
matter in neutron star cores [47, 112, 113, 148–151]. We 
discuss here the frequently employed Nambu–Jona–Lasinio 
(NJL) model [143, 145, 146], which replaces the full QCD 
interactions with effective quark-quark interactions, while at 
the same time suppressing explicit gluonic degrees of free-
dom. In this subsection we write down the NJL model and 
discuss the physics of the effective interactions14. In describ-
ing the NJL model we adopt standard Dirac notation with the 
Minkowski metric gμν = diag(1,−1,−1,−1), and γ0  and γ5 
both Hermitian.

The Lagrangian of the three-flavor NJL model is

L = q(γμpμ − m̂q + μqγ
0)q + L(4) + L(6), (30)

where q is the quark field operator with color, flavor, and 
Dirac indices, q̄ = q†γ0, m̂q the quark current mass matrix, 
μq the (flavor dependent) quark chemical potential and 

L(4) = L(4)
σ + L(4)

d + L(4)
V  and L(6) = L(6)

σ + L(6)
σd  are four 

and six-quark interaction terms, chosen to reflect the symme-
tries of QCD.

The first of the four-quark interactions, a contact interac-
tion with coupling constant G  >  0,

L(4)
σ = G

8∑
j=0

[
(qτjq)2 + (qiγ5τjq)2] = 8G tr (φ†φ), (31)

describes spontaneous chiral symmetry breaking, where τj 
( j = 0, . . . , 8) are the generators of the flavor-U(3) symme-
tries, and in equation (31),

φij = (qR)
j
a(qL)

i
a (32)

is the chiral operator with flavor indices i, j (with summation 
over the color index a); the right and left quark chirality comp-
onents are defined by qR,L = 1

2 (1 ± γ5)q.
The second of the four-quark terms describes the scatter-

ing of a pair of quarks in the s-wave, spin-singlet, flavor- and 
color-antitriplet channel; this interaction leads to BCS pairing 
of quarks:

L(4)
d = H

∑
A,A′=2,5,7

[ (
qiγ5τAλA′CqT) (qTCiγ5τAλA′q

)
+

(
qτAλA′CqT) (qTCτAλA′q

) ]
,

= 2Htr(d†
LdL + d†

RdR),

 

(33)

with H  >  0. Here τA and λA′ (A, A′ = 2, 5, 7) are the antisym-
metric generators of U(3) flavor and SU(3) color, respectively, 
and

(dL,R)ai = εabcεijk(qL,R)
j
bC(qL,R)

k
c (34)

are diquark operators of left- and right-handed chirality, 
with C = iγ0γ2 the charge conjugation operator. The diquark 
pairing interaction leads as well as an attractive correlation 
between two quarks inside confined hadrons and, in constitu-
ent quark models, plays a role in the observed mass splittings 
of hadrons [234–237]. This interaction, in weak coupling, 
arises from single gluon exchange; however at the densities 
of interest in neutron stars, the non-linearities of QCD prevent 
direct calculation of this interaction, and so one must treat it 
phenomenologically.

In addition

L(4)
V = −gV(qγμq)2, (35)

with gV > 0, is the Lagrangian for the phenomenological vec-
tor interaction, as in equation (58), which produces universal 
repulsion between quarks [231].

The six-quark interactions represent the effects of the 
instanton-induced QCD axial anomaly, which breaks the 
U(1)A axial symmetry of the QCD Lagrangian. The resulting 
Kobayashi–Maskawa–’t Hooft (KMT) interaction leads to an 
effective coupling between the chiral and diquark condensates 
of the form [238, 239]:

14 Readers not well acquainted with the effective theories of QCD described 
here can skip the details of this subsection and continue on to section 5.

Figure 9. Quark-quark pairing, which leads to color 
superconductivity at high baryon density. The condensation of pairs 
opens a gap Δ near the quark Fermi surface.
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L(6)
σ = −8K(detφ+ h.c.), (36)

L(6)
σd = K′(tr[(d†

RdL)φ] + h.c.), (37)

where K and K′ are positive constants. Provided that K′ � K  
(which one expects on the basis of the Fierz transformation 
connecting the corresponding interaction vertices) the six-
quark interactions encourage the coexistence of the chiral and 
diquark condensates.

4.5. Mean field equation of state

Having reviewed the structure of the NJL model, we now dis-
cuss its application to constructing the equation of state for 
dense quark matter. For simplicity, we restrict our consider-
ations to mean-field theory. The quark density is

nq =
∑

i=u,d,s

〈q†i qi〉, (38)

with an implicit sum over color and spin. Similarly the flavor-
dependent chiral condensate is

σi = 〈qiqi〉, (39)

with i = u, d, s; with our conventions σ is generally negative. 
The diquark mean fields are

dj = 〈qTCγ5Rjq〉, (40)

with matrices

(R1, R2, R3) ≡ (τ7λ7, τ5λ5, τ2λ2) . (41)

The three diquark condensates correspond to (ds, su, ud) 
quark pairings, respectively. In the 2SC phase, only ud-pairs 
condense, while in the CFL phase all (ds, su, ud)-pairs are 
present.

The inverse of the mean field single particle propagators 
can be read off from the mean field Lagrangian,

S−1(k) =

(
γνkν − M̂ + μ̂γ0 γ5ΔkRk

− γ5Δ
∗
k Rk γνkν − M̂ − μ̂γ0

)
, (42)

where the effective mass matrix is diagonal, with elements

Mi = mi − 4Gσi + K|εijk|σjσk +
K′

4
|di|2, (43)

while the three diquark pairing amplitudes,

Δk = −2dk

(
H − K′

4
σi

)
, (44)

and the effective chemical potential matrix,

μ̂ = μq − 2gVnq + μ8λ8 + μQQ, (45)

are color and flavor dependent.
The inverse propagator (42) is a 72 × 72 matrix at each 

momentum, whose eigenvalues, εj  can be calculated by 
numerical inversion [148]. The eigenvalues are four-fold 
degenerate (2 for spin times 2 from the Nambu–Gor’kov pair-
ing structure). The single particle contribution to the thermo-
dynamic potential density,

Ω(μq, T) = ε− Ts − μqnq, (46)

which is the negative of the pressure, P, is then

Ωsingle = −2
18∑

j=1

∫ Λ d3k
(2π)3

[
T ln

(
1 + e−|εj|/T

)
+

Δεj

2

]
,

 (47)

where Δεj = εj − εfree
j , with εfree

j  the eigenvalues in the non-
interacting quark system; here Λ is an ultraviolet cutoff. The 
dependence on μq is hidden in the eigenvalues εj . As in mean 
field treatments, ‘condensate’ terms, here

Ωcond =
3∑

i=1

[
2Gσ2

i +

(
H − K′

2
σi

)
|di|2

]
,

− 4Kσ1σ2σ3 − gVn2
q

 

(48)

appear in Ω (as a consequence of avoiding double counting).
While the quark matter thermodynamic potential is for-

mally Ωbare
q = Ωsingle +Ωcond, one must further choose the 

‘zero’ of Ω so that it vanishes in the vacuum, μq = T = 0. 
This choice is important because the absolute energy, not just 
energy differences, directly enters in the general relativistic 
TOV equation (1) for neutron star structure. The correctly nor-
malized quark-matter thermodynamic potential is thus

Ωq(μq, T) ≡ Ωbare
q (μq, T)− Ωbare

q (μq = T = 0). (49)

In addition one must include effects of leptons—electrons 
and muons—that may be present in the matter; the τ lepton’s 
large mass prevents it from playing a role in dense matter. The 
Lagrangian for the leptons is

Ll =
∑
l=e,μ

ψl(γ
νpν − ml)ψl, (50)

with ψl the lepton field operator and ml the lepton mass. The 
lepton contribution to the thermodynamic potential is

Ωl = −2T
∑
l=e,μ

∑
λ=±

∫
d3k
(2π)3 ln

(
1 + e−(El+λμQ)/T

)
, (51)

with El =
√

k2 + m2
l .

4.6. Electric and color neutrality constraints

The matter comprising neutron stars must be both electri-
cally and color neutral, since any long range charge or color 
imbalance would be prohibitively expensive energetically. To 
achieve electrical neutrality in quark matter one must allow 
for the possibility of electrons and muons being present.

In modeling the equation  of state, neutrality is simplest 
to achieve by introducing the charge chemical potential, 
μQ, and color chemical potentials, and tuning these chemi-
cal potentials to keep the color and charge densities zero. The 
charge chemical potential couples to the charge density in the 
Lagrangian through a term

LQ = μQ

⎡
⎣q†Qq −

∑
l=e,μ

ψ†
l ψl

⎤
⎦ , (52)

where Q = diag(2/3,−1/3,−1/3) is the quark charge opera-
tor in flavor space.
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Dependent on the particular diquark pairing scheme, the 
diquark pairing interaction, (33), can lead to a violation of 
color neutrality. For example, pairing of only red and green 
quarks (as in the 2SC phase) leads to a decreased energy per 
particle of these colors, and thus an increase of red and green 
quarks compared with unpaired blue quarks, leaving the 
system with a net anti-blue color density. In realistic QCD 
this color imbalance is exactly cancelled by the appearance 
of a non-zero coherent gluon field [240, 241]. However, this 
mechanism is outside the scope of the NJL model, and thus 
one must restore color neutrality by hand [240–244], most 
generally by introducing eight independent color chemi-
cal potentials. For the diquark pairing structures discussed 
in equation (40) all color densities except n3 = 〈q†λ3q〉 and 
n8 = 〈q†λ8q〉 automatically vanish. Thus, including the term 
[149, 242–244]

L3,8 = μ3q†λ3q + μ8q†λ8q, (53)

is sufficient ensure color neutrality.

4.7. Minimizing the thermodynamic potential

The total thermodynamic potential is Ω = Ωq +Ωl . The ther-
modynamic state of the system is determined by minimizing 
the free energy with respect to the six condensates {σi, dk} and 
the quark density nq, under the conditions of electrical and 
color charge neutrality expressed by the conditions

nj = − ∂Ω

∂μj
= 0, (54)

with j = Q, 3, 8. In addition the condensates are determined 
by the six ‘gap equations’,

0 = − ∂Ω

∂σi
= − ∂Ω

∂di
, (55)

where all derivatives are taken at fixed quark chemical poten-
tial. Finally the quark density is

nq = − ∂Ω

∂μq
. (56)

In order to construct the equation of state, one can solve these 
10 equations  self-consistently, using the method outlined in 
[245], to construct first the energy density ε(μq, T) and the 
pressure P(μq, T), then finally the desired P(ε).

4.8. Parameter sets

The NJL model for dense quark matter contains two distinct 
sets of parameters: {Λ, mu, md, ms, G, K} and {gV, H, K′}. The 
first set is fixed by matching to QCD vacuum phenomenol-
ogy. To be specific, we consider primarily the set by Hatsuda 
and Kunihiro (HK) [146] (table 1), which gives the vacuum 
effective masses for the light quarks, Mu,d � 336 MeV, and 
the strange quark, Ms � 528 MeV. The NJL model with this 
set of parameters yields (e.g. [105]) the ‘bag constant’ (see 
equation (29)),

BNJL ≡ [ ε(Meff = mq)− ε(Meff = M) ]T=μq=0

� (218 MeV)4 = 296 MeV fm−3.
 (57)

The second set of parameters is not well fixed by QCD 
vacuum phenomenology, but it is natural to expect their val-
ues to be characterized by the QCD momentum scale ΛQCD, 
in the absence of anomalous mechanisms to suppress these 
couplings. In addition, the K′ terms couple the diquark con-
densate to the chiral condensate, and thus the value of K′ is 
strongly correlated with the values of gV and H; most, if not 
all, of the effects of its variation can be absorbed into varia-
tions of gV and H. In the present analysis we assume as a first 
orientation that the values of these coefficients are of the same 
order of magnitude as the first set of parameters.

Attempts have been made to estimate the magnitude as 
well as the medium dependence of gV in the NJL model (with 
and without coupling to a Polyakov loop15) by using lattice 
QCD inputs or other phenomenological considerations, see 
e.g. [142, 231, 249, 250]. In the following we describe only 
the situation with gV constant in the regime where quarks are 
relevant for neutron stars, nB � 5n0, since dependence of gV 
on the baryon density arises primarily from the modifications 
of the gluons by the matter, which is argued to be small [251].

Detailed results for the equation of state in the quark phase 
are given in section 6 and in appendices B and C.

5. Constructing the neutron star equation  

of state: general considerations

Having laid out the basic physics in both the lower density 
hadronic regime and the higher density quark regime, we turn 
now to an examination of the general characteristics of the 
equation  of state, paying particular attention to its stiffness 
and the corresponding implications for neutron star structure. 
The most convenient thermodynamic potential for studying 
the equation of state is the pressure, P, as a function of the 
baryon chemical potential, μB. The pressure must be a con-
tinuous function of μB, and since the baryon density is given 
by nB = ∂P/∂μB, the pressure is monotonically increasing; 

Table 1. Three common parameter sets for the three-flavor NJL 
model: the average up and down bare quark mass mu,d, strange bare 
quark mass ms, coupling constants G and K, and three-momentum 
cutoff Λ [144, 146, 147].

Λ (MeV) mu,d (MeV) ms (MeV) GΛ2 KΛ5

HK 631.4 5.5 135.7 1.835 9.29
RHK 602.3 5.5 140.7 1.835 12.36
LKW 750.0 3.6 87.0 1.820 8.90

15 The Polyakov loop [127, 130, 246], which is essentially an order param-
eter for confinement, plays an important role in determining the structure of 
the QCD phase diagram at finite temperature [148, 149]. The effective po-
tential for this order parameter fitted to the lattice QCD data at zero density 
[247, 248], vanishes in the zero temperature limit.
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furthermore the curvature, ∂2P/∂μ2
B = ∂nB/∂μB, must be 

positive, else the system is unstable against density fluctua-
tions. The thermodynamically preferred phase maximizes the 
pressure at given μB, and thus in the presence of competing 
phases the one with the higher pressure is favored. In addition, 
a kink, or discontinuous change of slope, in P(μB) indicates 
a first order transition (illustrated in figure 18 below), while a 
sudden change in curvature (with continuous slope) indicates 
a second order transition.

5.1. The stiffness of the quark matter equation of state

We ask now the effects of the bag constant, pairing, and the 
vector repulsion on the stiffness of the quark matter equa-
tion of state. To see the physics we write the total energy den-
sity in the schematic form

ε = An4/3
B + B − Cn2/3

B + Dn2
B, (58)

where the first term is the kinetic energy for massless quarks 
(we ignore corrections to the kinetic energy from finite quark 
masses), B is the bag constant, C ∝ Δ2 [232] measures the 
energy contribution of pairing, and D ∝ gV measures the 
strength of the density-density repulsion, gVn2

q [231]. We 
assume here that B and Δ are density independent for simplic-
ity (although at high density, Δ ∼ μqg−5 exp(−3π2/g

√
2) 

[233], where g is the scale dependent QCD coupling constant); 
then differentiating (58) yields the baryon chemical potential,

μB =
∂ε

∂nB
=

4
3

An1/3
B − 2

3
Cn−1/3

B + 2DnB, (59)

and the pressure,

P = n2
B
∂(ε/nB)

∂nB
=

1
3

An4/3
B +

1
3

Cn2/3
B + Dn2

B − B. (60)

We note that in general a term in the energy density of the 
form αnγ

B, leads to a term in the pressure (γ − 1)αnγ
B. To see 

how the pairing interaction and the repulsive interaction affect 
the stiffness of the equation of state, P(ε), that is, the magni-
tude of the pressure for a given energy density, we must evalu-
ate their pressure at a fixed energy density. Thus we ask how 
the pressure varies as α is varied at fixed energy density. In 
order to keep ε fixed with varying α one must vary the density 
nq; thus

∂P
∂α

∣∣∣
ε
=

∂P
∂α

∣∣∣
nB

− c2
s
∂ε

∂α

∣∣∣
nB

= (γ − 1 − c2
s )n

γ
B, (61)

where c2
s = ∂P/∂ε|α is the square of the thermodynamic 

sound speed.
Since for the repulsive interaction Dn2

B, one has γ = 2 and 
α = D, we conclude that increasing the strength of this inter-
action will always lead to higher pressure and thus a stiffer 
equation of state, as long as the causality condition, c2

s � 1 is 
satisfied. We also observe that increasing a density-independ-
ent pairing gap, Δ (corresponding to γ = 2/3, with α = −C) 

increases the pressure: ∂P/∂C|ε =
( 1

3 + c2
s

)
n2/3

B , and stiffens 
the equation of state.

We see from this exercise that the effect of interactions on 
the stiffness of the equation of state depends not only on the 
sign of the interaction, but also on the power of the density it 
involves. Generally, as indicated in equation (61), increasing 
the strength of a repulsive interaction with γ > 1 + c2

s stiff-
ens the equation of state, as does increasing the strength of an 
attractive interaction with γ < 1 + c2

s. A larger value of the 
bag constant, for which γ = 0, softens the equation of state.

5.2. Graphic determination of the stiffness of the equation  
of state

Figure 10 demonstrates how to determine graphically the 
relative stiffness of an equation of state from its P(μB) curve 
[123]. The slope of the curve at a given point (μB∗, P∗) is the 
baryon density, nB, for the specified μB. Thus, from the zero 
temperature thermodynamic identity, P = μBnB − ε, we find 
that the tangent curve intercepts the P axis at the point −ε∗, 
the negative of the energy density at chemical potential μB∗. A 
stiff equation of state is characterized by a large pressure for 
given energy density ε (or mass density ρ = ε/c2), or equiva-
lently by a small energy density for given pressure.

The smaller the slope of P at given μB, the stiffer the equa-
tion of state. Similarly, the smaller is μB for a given P and 
slope, as illustrated by the two curves P1 and P2 in figure 11, 
the stiffer is the equation  of state. To see the effects of the 
various terms in equation (58) graphically, we write the terms 
generically, as before, as αnγ

B and note the thermodynamic 
identity (see equation (61)),

∂P
∂α

∣∣∣
μB

=
∂P
∂α

∣∣∣
nB

− nB
∂μB

∂α

∣∣∣
nB

= −nγB, (62)

where we regard nB as a function of μB. Thus increasing 
the bag constant (γ  =  0) decreases the pressure at fixed μB, 
and softens the equation of state, as illustrated in figure 11. 
Similarly, increasing the strength of the repulsive vector inter-
action (γ = 2) leads to a lower slope and a stiffer equation of 
state, as shown by the shift from P1 to P3 in figure 12. On the 
other hand increasing the pairing strength increases the pres-
sure at fixed μB, and at the same time it increases the slope of 

Figure 10. Graphical analysis of the equation of state, P(μB). 
The slope of the tangent line a given point (μB∗, P∗), is the baryon 
density, nB∗ = ∂P/∂μB|μB∗, and its intercept on the P axis is the 
negative of the energy density ε∗.
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P versus μB, with the net effect of stiffening the equation of 
state, as illustrated by the shift from P1 to P4 in figure 13.

5.3. Hybrid equations of state

Hybrid equations of state assume that matter can be in one of 
two distinct phases, hadronic or quark. The favorable phase, 
hadronic at low densities and quark at high densities, has the 
higher pressure at fixed chemical potential, with a first order 
transition between the two phases. Figure 14 shows the con-
struction of a hybrid equation of state in P versus μB. To ensure 
the existence of hadronic matter at low density one demands 
that the quark pressure, PQ, intersects the hadronic pressure, 
PH, from below, while to ensure the existence of quark matter 
at high density, one requires that PQ be greater than PH above 
the chemical potential where the two curves intersect.

In figure 14 we also show two quark equations of state, P3 
and P5, which are stiffer than P1 (P5 corresponds to either P2 in 
figure 11 or P4 in figure 13, while P3 corresponds to the curve 

in figure 12). The conventional hybrid construction rejects P5 
because it does not allow hadronic matter at low density. (In 
the strange matter hypothesis, where three-flavor quark mat-
ter is assumed more stable than nuclear matter at low density 
[65, 66, 252, 253] the equation of state would be of the form 
P2.) The relatively stiff quark equation of state P3 would also 
be rejected in constructing a hybrid equation of state because 
it does not intersect the hadronic pressure PH, and therefore 
would not in this construction be considered an acceptable 
model of quark matter at high density. Thus, large classes of 
stiff quark matter equations of state—precisely those consistent 
with stable massive neutron stars—must be rejected in a con-
ventional hybrid equation of state construction. Quark equa-
tions of state consistent with such a construction are generally 
soft, so that within the conventional description, one concludes 
that massive neutron stars can at most have a small quark mat-
ter core (e.g. see figure 18 of [52]); [254] summarizes quali-
tatively possible conditions on the quark matter equation  of  
state that would support neutron stars of two solar masses.

Figure 12. Increasing the vector repulsion decreases the pressure 
at fixed μB and decreases the slope at fixed P. The result is that P3, 
with larger vector repulsion, is a stiffer equation of state than P1.

Figure 13. Increasing the pairing increases the pressure at fixed 
μB and increases the slope at fixed P. The net result is that P4, with 
larger pairing, is stiffer than P1.

P

PH

P1

P3

P5

~ MN μH Q μB

Figure 14. Conventional construction of a hybrid equation of state 
from independent hadronic (PH) and quark (P1) equations of state. 
In such a construction a first order phase transition occurs at μH→Q, 
and stiff quark equations of state, e.g. P5 (see P2 in figure 11 and P4 
in 13) and P3 (see figure 12), which are incompatible with such a 
construction are excluded.

Figure 11. Comparison of two equations of state in which the 
pressure curves have the same shape, but P2 is shifted toward lower 
chemical potential, relative to P1. The equation of state P2 is stiffer 
than P1 because ε1∗ < ε2∗. A reduction of the bag constant, B, 
would lead precisely to such a shift from P1 to P2.
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In the conventional construction of a hybrid equation  of 
state one looks for an intersection of the pressures of the had-
ronic and quark matter equations of state as functions of the 
baryon chemical potential (or equivalently the energy per bar-
yon, ε/nB, as functions of 1/nB, the volume per baryon), and 
makes a Maxwell construction to equate pressures and bar-
yon chemical potentials between the two phases. An implicit 
assumption in this procedure is that both equation of states are 
reliable in the vicinity of the intersection. However, the typi-
cal intersection, corresponding to nB ∼ (2 − 5)n0, is exactly 
in the region where the hadronic equation of state becomes 
uncertain due to many-body forces and hyperon forces, and 
the quark equation  of state becomes uncertain due to the 
effects of confinement. The unified approach, to which shortly 
we turn in section  5.6, allows one to relax the requirement 
on the intersection and obtain a description of dense matter 
which permits certain classes of stiff equations of state with 
quark matter.

The fundamental problem with conventional hybrid equa-
tion of state constructions is that they assume that both had-
ronic and quark matter equations of state are reliable near their 
intersection. When the intersection occurs at small chemical 
potential, one implicitly assumes that the quark pressure at 
low density is reliable; but no viable quark model calculations 
are available in the low density regime, due to the difficulty 
of modeling critically important confining effects. Similarly, 
when the intersection occurs at large chemical potential, one 
accepts the hadronic equation of state at high density, where 
many-body forces are rapidly enhanced, rendering the equa-
tion  of state seriously uncertain, even if one continues to 
assume that hadronic degrees of freedom correctly describe 
the matter. One cannot reliably compare hadronic and quark 
matter pressures across the entire density domain.

These considerations suggest that the conventional hybrid 
construction places overly stringent requirements on the form 
of quark matter equation of state by accepting the predictions 
of hadronic models above their regimes of validity. The uni-
fied approach, to which shortly we turn in section 5.6, allows 
one to relax these requirements and obtain a description of 
dense matter which permits certain classes of stiff quark equa-
tions of state.

5.4. Thermodynamics of finite temperature QCD at zero 
baryon density

To further motivate the unified construction of the equation of 
state of cold dense matter, and the emerging role of hadron-
quark continuity in the phase diagram, we briefly consider 
implications of the lattice results [133, 134, 255, 256] for the 
structure of the equation  of state at zero chemical potential, 
P(T) = Ts − ε, with s the entropy density, above and below 
the crossover at zero chemical potential, figure 3. These calcul-
ations indicate that matter composed of light quarks with finite 
masses undergoes a rapid continuous crossover with increas-
ing temperature from a hadronic to a quark-gluon phase at the 
pseudocritical or ‘deconfinement’ temperature Tc ∼(150–155) 
MeV, with smooth restoration of approximate chiral symme-
try. (Were the u, d, s-quarks all massless, then at very high 

temperatures chiral symmetry would be completely restored 
in a first order phase transition, distinguishing the symmetry 
broken phase and the symmetry restored phase (see e.g. [47]).

At zero baryon density and low temperatures, matter is 
well described by the non-interacting hadron resonance gas 
(HRG) model [133, 134, 257]. However, as the temperature 
approaches Tc the hadron resonance gas model strongly over-
estimates the pressure compared with lattice calculations. 
Physically, this discrepancy arises from the large overlap of 
thermally excited hadrons, whose interactions can no longer 
be neglected. On the other hand, at temperatures �(2–3) Tc, 
the matter can be described reasonably well by a weakly inter-
acting quasiparticle picture of quarks and gluons, a perturba-
tive or pQCD gas16. However, with decreasing temperature 
the gas pressure calculated by taking interaction effects into 
account perturbatively is well above that calculated on the lat-
tice, since the lack of confining effects allows an artificially 
enhanced population of quarks and gluons without triggering 
the kinetic energy cost of their confinement into hadrons or 
glueballs. The behavior of the extrapolated pressures are illus-
trated in the upper panel of figure 15.

While we understand both the low and high temperature 
limits qualitatively, the intermediate temperature regime, 
Tc � T � (2 − 3)Tc, has a qualitative trend considerably dif-
ferent from the hadron resonance gas or the perturbative QCD 
gas models [258]. Matter in this region is a strongly correlated 
quark-gluon plasma [135–139]. The message from under-
standing finite temperature matter at nB = 0 is that were one 
simply to adopt the resonance gas picture at low temperature 
and the perturbative QCD picture at high temperature and 
then apply a Maxwell construction to find the phase transition 
between the two phases, the transition would necessarily be 
first order and the resulting hybrid equation of state near the 
critical point would depend highly on model artifacts (com-
pare the intersection of the dotted lines in the top panel of fig-
ure 15 with the smooth lattice results). However, if one instead 
restricts the use of each model equation of state to its domain 
of applicability, and interpolates between the two pictures one 
can obtain a physically sensible pressure. By analogy, in finite 
density matter, as depicted in the bottom panel of figure 15, 
a smooth interpolation between hadronic and quark matter 
allows a wider range of equations of state, while avoiding the 
artifacts introduced by applying models beyond their regimes 
of validity. One should keep in mind, however, that such con-
struction depends on the choice of the interpolating functions, 
which brings its own source of ambiguity.

5.5. Hadron-quark continuity and percolation

The existence of the crossover from the hadronic to the quark 
phase at zero baryon chemical potential raises a very instruc-
tive question [259], as it seems to imply that since quarks are 
free in the plasma phase above the crossover at low μB and 
finite T, by continuity free quarks would have a probability, 

16 The lattice results do not appear to reproduce the non-interacting Stefan–
Boltzmann limit, which one sees only at temperatures beyond those consid-
ered in the calculations. One can understand this difference by considering 
terms in pQCD to order g5, where g is the QCD coupling constant.
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albeit small, to be present in matter below the crossover, e.g. 
there could be free quarks running around in air. This situa-
tion is reminiscent of the very tiny possibility of finding free 
electrons in air, as a result of thermal ionization. But since 
there cannot be free quarks in confined low density matter, the 
correct conclusion is that even above the crossover, there are 
no free quarks (except in the very high T asymptotically free 
regime); rather the matter must consist of complicated clusters 
of gluons and quarks both above and below the crossover, as 
illustrated in figure 2 for matter at finite μB and zero temper-
ature, and figure 3 for matter at μB = 0 and finite temperature.

The crossover, and deconfinement more generally, can be 
characterized as a percolation transition-in which the region in 
which the quarks can roam freely changes from finite in extent 
to the system size-as first proposed in [90] in terms of classical 

percolation theory for dense matter at zero temper ature and 
further amplified by Satz and coworkers [91, 92] in terms of 
quark mobilities; also [260]. As seen in figure 2, percolation at 
finite μB and zero temperature proceeds as baryons exchange 
many quarks and lose their identities. Eventually baryons over-
lap and quark matter is formed. The regions of space in which 
quarks can move around are color singlets, from nuclear to 
quark matter domain. Similarly at finite temper ature (for μB 
small compared with the nucleon mass) the clusters, figure 3, 
are isolated as single thermal pions which become more and 
more connected as T increases, through the gluon and quark 
exchanges responsible for the interactions of the pions, until 
the clusters fill enough of space that a single quark can prop-
agate from one end to the other. As at finite density, the regions 
of space in which quarks can move around are always net color 
singlets. At the percolation transition the sizes of the color sin-
glet regions change from always being finite in the hadronic 
regime to being the size of the entire system, e.g. the collision 
volume in a heavy-ion collision17.

A critical aspect of hadron-quark continuity is the possibil-
ity that the quark and hadron phases have the same symme-
try structure. While phases with different (exact) symmetries 
are separated by a first or second order phase transition, the 
symmetries of the superfluid baryon phase in hadronic mat-
ter can, as Schäfer and Wilczek [109] elegantly discussed, be 
smoothly connected to those in the CFL phase in quark mat-
ter; thus there need not be a sharp phase transition separating 
the hadron and quark matter phases18.

In contrast, the conventional picture of dense nuclear mat-
ter is that there exists a first order (chiral) phase trans ition 
beginining at zero temperature and terminating at a high 
temperature the critical point [48, 268] (see figure 1), as in 
a liquid-gas phase transition where one can go continuously 
from liquid to gas around the critical point (in water at 373 C). 
If the low temperature part of the first order line is in fact a 

17 While it is easiest to visualize the transition as classical percolation in 
which regions of space available to the quarks overlap, a more precise 
picture of the transition is in terms of the probability of quarks being able to 
traverse the system, as in figure 2. One must take into account the quantum 
nature of the hadrons in discussing their overlap. For example even though 
the electron wavefunction in a simple hydrogen atom has an exponentially 
small tail extending to infinity, one would not claim that any two hydrogen 
atoms in a gas at whatever distance are always overlapping. Similarly, in 
hadrons, the pion and other q̄q structures (as well as the wee partons) extend 
well beyond the hadron core. Understanding the quantum percolation trans-
ition in dense matter and its relation to Anderson localization of particles in 
a disordered system remains an open question [261].
18 Hadron-quark continuity in states of finite angular momentum between 
hadronic matter and superfluid quark matter in the CFL phase is more 
subtle. While superfluid hadronic matter and quark matter each carry angular 
momentum in quantized vortices, owing to quarks having baryon number 
1/3, a triply quantized vortex in the hadronic regime would carry the same 
angular momentum per baryon as a singly quantized U(1)B vortex in the 
quark regime [262]. Thus in a rotating neutron star in which the nuclear 
superfluid evolves with depth into a CLF quark phase, one would at first 
expect that at some point a surface of boojums (where three low density 
hadronic vortices merge into one high density CFL vortex) between the 
low density hadronic and high density quark matter regions. However, in 
the CFL phase, a single U(1)B vortex is unstable against transforming into 
three color flux tubes [263–265], suggesting that at the boojum three low 
density vortices transform into three color flux tubes [266]. In fact, however, 
each low density vortex can transform directly to a single such non-Abelian 
vortex without a boojum, consistent with hadron-quark continuity [267].
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Figure 15. Schematic representations of the pressure of dense 
matter at finite temperature and zero baryon chemical potential 
(upper panel) and finite baryon density and zero temperature 
(lower panel). The bold lines represent model predictions within 
the domain of applicability of each picture, while dotted lines 
show extrapolations beyond the domains of validity. Upper panel: 
pressure of the hadron resonance gas (HRG), the perturbative 
quasiparticle gas of quarks and gluons (pQCD gas), and lattice 
QCD calculations. Lower panel: pressure of hadronic matter with 
two- and three-body forces, and of a deconfined quark gas. The 
interpolated pressure is constructed using the hadronic gas pressure 
below μBL and the quark gas pressure above μBU.
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crossover, there must exist a second, low temperature critical 
point (as shown in figure 1) [49, 269, 270]. It is also possible 
that the crossover at high temperature and low baryon density 
is directly connected to the low temperature crossover, with-
out the need for the conventional first order line19.

As matter goes from having hadronic to quark degrees of 
freedom, it may pass through spatially inhomogeneous phases 
[281, 282]. While this is an intriguing possibility, we will not 
treat it in this review, except to mention one unconventional 
state, quarkyonic matter, which has both aspects of nuclear 
and quark matter [228]. This state is conjectured from studies 
of dense matter in QCD with a large number of colors Nc; in 
this limit screening of gluons by quarks is suppressed by a 
numerical factor 1/Nc, and thus the gluons remain confined 
until the quark chemical potential μq = μB/Nc reaches ∼
N1/2

c ΛQCD � MN/Nc. In the limit of a large number of colors, 
the dominant pairing in the quarkyonic matter is, instead of 
diquark pairing, the formation of a spatially inhomogeneous 
chiral condensate of quark particle-hole pairs, called chi-
ral spirals. This idea is applied to neutron stars in [142]. In 
the real world with Nc = 3, the extent to which gluons are 
screened due to quark excitations remains unclear [251, 283].

5.6. Unified construction

In the unified procedure to construct the equation  of state 
one explicitly restricts the hadronic and quark matter equa-
tions of state to their respective domains of validity, avoiding 
the potentially unphysical implications of the conventional 
construction. The hadronic equation of state is used only at 
low densities, nB < nBL (‘L’ for lower), where two- and three-
body forces dominate and the composite nature of hadrons is 
not manifest. A reasonable choice of the maximum density 
nBL is  ∼2n0. We denote the corresponding chemical potential 
as μBL. Similarly, the deconfined quark-matter equation  of 
state is used only at relatively high densities, beyond where 
baryons first percolate and quarks can no longer be thought of 
as belonging to specific baryons. For a typical baryon radius of 
rB ∼ 0.5 fm, geometric percolation should occur at a baryon 
density  ∼0.08/r3

B ∼ 4n0  [90], and thus a reasonable choice of 
the lowest density at which to use a quark matter equation of 
state is nBU ∼ (4 − 7)n0; we label the corresponding chemical 
potential μBU (‘U’ for upper). (In the calculations in section 6 
we choose nBU = 5n0 as a specific illustrative value.)

In the density range nBL < nB < nBU neither a purely had-
ronic nor quark matter picture is applicable. Given the present 
intractability of directly calculating the equation of state in this 

domain, a simple approximate approach is to interpolate P(μB) 
between the two limiting regimes in a thermodynamically con-
sistent way, requiring that the interpolated pressure matches 
the hadronic and quark values at μL

B and μU
B , while satisfying 

the thermodynamic constraint ∂nB/∂μB = ∂2P/∂μ2
B > 0, as 

well as the (reasonable) causality condition that the adiabatic 
speed of sound at zero frequency, c2

s = ∂P/∂ε not exceed the 
speed of light20. These conditions place significant restrictions 
on the acceptable interpolations of the pressure in the interme-
diate density regime, and provide insights into the qualitative 
properties of this critical domain in neutron star structure.

As noted, the primary distinction between hybrid and uni-
fied constructions of the equation of state is that in the latter 
no direct comparison of the hadronic and quark pressures is 
made, since the domains of validity of the hadronic and quark 
descriptions do not overlap. Accordingly, a number of the stiff 
quark matter equations of state excluded by the conventional 
construction (see figure 14 and related discussion above) are 
allowed within a unified construction. Furthermore, the uni-
fied construction can encompass hadron-quark continuity.

A simple but reasonably general function to interpolate the 
equation of state between the hadronic and the quark matter 
regimes is a polynomial which smoothly joins the hadronic 
and quark pressure curves between μ = μBL  and μ = μBL ,

P(μB) =
N∑

m=0

Cmμ
m
B for μBL < μB < μBU, (63)

where μBL and μBU are chosen so that nB(μBL) ∼ 2n0 and 
nB(μBU) ∼ 5n0. The coefficients Cm are chosen to satisfy 
matching conditions at the boundaries of the interpolating 
interval. In general, we require that

P(μBL) = PH(μBL),
∂P
∂μB

∣∣∣∣
μBL

=
∂PH

∂μB

∣∣∣∣
μBL

, · · ·

P(μBU) = PQ(μBU),
∂P
∂μB

∣∣∣∣
μBU

=
∂PQ

∂μB

∣∣∣∣
μBU

, · · · .
 

(64)

The number of derivatives to be matched at each boundary is 
a matter of choice. Matching up to the second derivative at 
each boundary ensures that the pressure, baryon number den-
sity, and baryon number compressibility (or susceptibility), 
∂nB/∂μB, are continuous. In this case one has six boundary 
conditions so one needs to include polynomials up to N  =  5.

As discussed in section 5.6, the interpolated pressure as a 
function of μB is constrained by the stability condition that 
P(μB) be without an inflection point, and the requirement 
that c2

s/c2 = ∂P/∂ε = (1/c2)∂ lnμB/∂ ln nB � 1, so that the 

19 The Asakawa–Yazaki critical point is being searched for in experimental 
programs at the RHIC heavy ion collider at Brookhaven National Laboratory 
[271], the SPS at CERN [272], SIS at GSI in Germany, and will be searched 
in the future program at FAIR at GSI, NICA at JINR in Dubna [273], and 
J-PARC in Japan [274]. Recently possible experimental signatures for the 
(conventional) critical point were found in analyses for the critical fluctua-
tions [275] and the finite volume scaling [276]. Owing to controversies in 
the interpretation of those results [277–279], further studies are called for. 
It should be emphasized that the current state-of-the-art lattice QCD studies 
based on a Taylor expansion in μB/T  around μB = 0 disfavor a critical point 
in the region where the expansion is trustworthy, μB/T � 2 [280]. So far the 
existence of the first order phase transition has not been established.

20 However, [284–287] indicate that this requirement of causality on cs 
is still suggestive; we are not aware of a rigorous proof that cs � c is 
necessary for causal propagation of signals and information. In particular, 
Lorentz invariance itself does not impose such a constraint [284, 287], and 
it is possible to devise models that exhibit superluminal sound speed cs 
(and sometimes even superluminal group velocity as well), yet with causal 
propagation of signals [284–286]. The first argument that the sound speed in 
dense matter can exceed c/

√
3 is given by Zel’dovich [288]. The assumption 

of cs � c was used early on to obtain a maximum possible neutron star mass 
of 3.2 M� [289], compared with a mass of  ∼5M� in [290] which did not 
assume cs � c; refined upper bounds were given in [214, 291].
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thermodynamic sound speed does not exceed the speed of 
light. The stability condition is depicted in figure 16, where 
one can interpolate smoothly between the schematic hadronic 
equation  of state PH and the quark matter equation  of state 
PQ1, with ∂2P/∂μ2

B > 0; however, an interpolation between 
PH and the quark matter equation of state PQ2 necessarily has 
an inflection point, violating the stability criterion. A situa-
tion in which the speed of sound exceeds the speed of light is 
shown in figure 17, where the slope is constant; in this region 
P varies but ε remains constant, so that c2

s = ∂P/∂ε → ∞. In 
general a P(μB) which grows too slowly violates the causality 
condition.

5.7. First order phase transitions

The possibility of a first order transition is not excluded in the 
unified construction. However, such a transition more severely 
constrains the interpolated pressure than does a continuous 

hadron-quark evolution. Figure  18 compares the interpo-
lated pressure curves for a continuous (smooth curve) and a 
first-order (kinked curve) hadron-quark phase trans ition. The 
boundary matching conditions severely restrict the strength 
of a possible first order phase transition, as measured by the 
change in slope of the hybrid pressure curve at the transition. 
In particular, except for relatively small changes in slope it 
is impossible to match the slopes of both the hadronic and 
quark matter curves without introducing an unphysical inflec-
tion point. In addition, the slope of the hadronic pres sure 
curve is smaller in the case of a first order transition than for 
a continuous evolution, giving rise to a correspondingly larger 
sound speed. Thus, for specified hadronic and quark matter 
equations of state, an interpolation with a kink, a first order 
transition, has a greater chance of violating the causality con-
straint. These conditions strongly restrict both the location 
and strength of a possible first order hadron-quark transition 
[232]. This constraint, a consequence of accounting for mas-
sive neutron stars, would indicate that there should not be a 
strong first order chiral restoration transition in QCD at low 
temperature (see section 5.5).

6. Explicit construction of unified equations  

of state

The two fundamental ingredients in constructing a unified 
equation  of state that can explain neutron stars of masses 
� 2M� are first a large vector repulsion gV and second a large 
diquark pairing interaction H. As we will discuss, the char-
acteristic diquark coupling, H, is larger than the convention-
ally assumed H/G  =  3/4 expected from the Fierz transform 
of the one-gluon-exchange interaction. In fact, en route with 
decreasing density to the strong two and three quark corre-
lations that eventually become-well defined nucleons, the 

Figure 18. Interpolated equation of state for both hadron-quark 
continuity (smooth curve) and a first order phase transition (kinked 
curve). In the latter case, for which P(μ) must lie below the smooth 
curve, the slope increases discontinuously at the transition. In the 
small panel we show the corresponding dependence of the sound 
speed on the energy or mass density; generally, the kinked curve 
yields a larger sound speed in the hadronic regime, with the sound 
speed vanishing in the transition region.

Figure 16. Schematic interpolation of the hadronic (PH) and quark 
(PQ1, PQ2) equations of state. For PQ1 the interpolated pressure is 
physically acceptable. However, for PQ2 one cannot construct an 
interpolated pressure without introducing an inflection point. Such 
an unphysical feature implies a mechanical instability and PQ2 must 
therefore be discarded from consideration.

Figure 17. Schematic interpolation violating the causality conditon. 
The linear interpolated pressure implies a constant baryon and 
energy density (see figure 10); the latter condition leads to the 
unphysical result c2

s = ∂P/∂ε → ∞.
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system may have larger pairing correlations than at higher 
density, so that H/G  >  1 (and Δ ∼ 100−200 MeV) at densi-
ties of interest.

The vector repulsion (35) plays a major role in stiffening 
the equation of state calculated in the NJL model, as shown 
in figure 19. While the equation of state is considerably softer 
than the nucleon-based APR equation of state for small vec-
tor couplings, for sufficiently large gV, it can be as stiff as 
APR across a wide range of densities, thus enabling NJL 
equations of state at sufficiently large gV to explain massive 
neutron stars. However, increasing gV moves the NJL pres-
sure curve, as a function of μB, away from the APR pressure 
curve in the positive μB direction, making it harder to interpo-
late between the two phases without introducing an unphysi-
cal inflection point, as seen in the P(μB) curve for H  =  0 in 
figure 20. This figure shows the interpolated P(μB) for H  =  0 
and 1.5 G, with gV = 0.8 G  and K′ = 0. For H  =  0, the APR 
and NJL curves are rather widely separated in μB and it is 
difficult to construct a sensible interpolated equation of state; 
figure  21 shows the corresponding plots of nB versus μB, 
while figure  19 shows the pressure as a function of energy 
or mass density. With increasing H the NJL pressure toward 

lower chemical potential, enabling one, with large gV and H, 
to construct a physical interpolation between the hadronic and 
quark regions21.

To demonstrate explicitly the construction of a unified 
equation of state, we assume the APR hadronic equation of 
state below a baryon density, nL ≡ nB(μBL) � 2n0, above 
which the underlying hadronic description begins to break 
down. We also assume a quark matter equation of state above 
a density nU ≡ nB(μBU) � 5n0, to choose a specific repre-
sentative value, and carry out a polynomial interpolation for 
μB between μBL and μBU. Within the range of the NJL model 
parameters we discuss, the variation of nU from 4n0 to 10n0 
does not produce significant qualitative changes in the result-
ing equation of state.
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Figure 19. Effects of the vector repulsion on the pressure versus 
energy density (top) and pressure versus quark chemical potential 
(bottom) for vector couplings gV/G = 0, 0.5, 1.0, without 
pairing, H = K′ = 0. The NJL curves are shown as bold lines for 
nB > 5n0, and as thin lines below. The APR equation of state (solid 
line for nB < 2n0 and double dotted line above) is also plotted 
for comparison. One sees here clearly in the upper panel how 
increasing gV stiffens the equation of state.

21 Were we to include in the quark phase a possible negative residual pres-
sure, Pg, originating from a (non-perturbative) condensate of gluons, for Pg 
as large as  ∼Λ4

QCD ∼ 200 MeV fm−3, the total pressure of the quark matter 
would become too soft to allow a sensible interpolation between the APR 
and NJL models.
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The detailed effects of the vector repulsion on nB as a func-
tion of μB are shown in figure 22; as expected, increasing the 
repulsion decreases nB for given μB. To investigate the effects 
of vector repulsion on the equation  of state, we explore a 
range of couplings, 0.5G � gV � 1.0G. Increasing the vec-
tor repulsion also reduces the tendency of high densities to 
restore chiral symmetry, an effect discussed in appendix B. 
When gV exceeds a critical value, dependent on H, one cannot 
interpolate between the hadronic and quark regimes without 
introducing a mechanical instability, as seen in figure 20.

We next discuss how the interpolation depends on the 
model parameters. Figure  20 shows the interpolated P(μB) 
for H  =  0 and 1.5 G, with gV = 0.8 G  and K′ = 0. For H  =  0, 
the APR and NJL curves are rather widely separated in μB 
and it is difficult to construct a sensible interpolated equa-
tion of state; figure 21 shows the corresponding nB versus μB. 
With increasing H the NJL pressure curve shifts toward lower 
chemical potential, enabling one to construct a physical inter-
polation between the hadronic and quark regions by employ-
ing large gV and H.

The diquark pairing interaction significantly affects the 
pressure; a larger H leads to larger pairing gaps, which as 
discussed in section  5.1, leads to a stiffer equation  of state 
(for c2

s > 1/3, as is the case in the high density quark regime 
for gV > 0). This effect is illustrated in figure 23, where with 
increasing H the pressure as a function of μB is shifted toward 
lower chemical potential, tending to eliminate the unphysi-
cal inflection point. In addition, increasing H increases the 
baryon density at given μB. Both behaviors result from the 
reduction, with increasing density, of the average single quark 
energy by the pairing, or color-magnetic, interaction. Such a 
reduction is expected from constituent quark models [234], 
where the color-magnetic interaction reduces the baryon mass 
from approximately three times the constituent quark mass 

(∼3 × 336 MeV) down to the nucleon mass, 938 MeV; in uni-
form quark matter pairing near the Fermi surface leads to an 
energy reduction δε ∼ −p2

FΔ
2.

We examine here a range of diquark pairing strengths, 
0.8G � H � 1.5G, notably larger as mentioned in section 4.8, 
than in previous studies of hybrid equations of state. Note that 
the pressure P(μB) of the quark phase for H = 1.5 G with 
gV = G (top panel, figure 23) is larger than that of the had-
ronic APR equation of state. In the hybrid construction, these 
pressures must be rejected, thus restricting H to a smaller 
range [105]. The direct effects of increasing H on the stiff-
ness of the equation of state P(ε) are shown in figure 24, for 
H/G = 0, 1.0, 1.3, 1.5, with gV = G and K′ = 0. The flat line, 
which appears at nB � 5n0, reflects the first order phase trans-
ition from the 2SC pairing state to CFL pairing, with accompa-
nying softening of the equation of state. In typical NJL studies 
with small H, the softening associated with the appearance of 
condensates leads to a smaller maximum neutron star mass 
[105]. As seen in figure 24, the paired phase becomes stiffer 
than the unpaired phase at high density, a behavior consistent 
with the schematic discussion in section 5.1; at larger H, the 
stiffening occurs at lower density. In particular, at H � 1.5 G, 
the paired phase at nB � 5n0 is stiffer than the phase at H  =  0.

As noted in [122], increasing K′ slightly stiffens the quark 
matter equation of state; however, its impact is much smaller 
than those of gV and H, as long as we consider a reasonable 
value of K′ ∼ K  [148, 149]. Thus, for the sake of simplicity, 

 0

 2

 4

 6

 8

 10

 1  1.2  1.4  1.6  1.8  2

n B
/n

0

μB [GeV]

H=K’=0

NJLnB>5n0
, gV/G= 0.0

0.5
1.0

APRnB<2n0

Figure 22. Effects of the vector repulsion on the baryon density nB, 
in units of nuclear matter density, n0 = 0.16 fm−3, as a function of 
the baryon chemical potential, for vector couplings gV/G = 0, 0.5 
and 1.0. The baryon density in the APR nucleon equation of state 
is shown for comparison. The bold line at nB > 5n0 is the quark 
pressure, and at nB < 2n0 the APR pressure. The discontinuity 
in the solid part of the APR curve is at their onset of pion 
condensation. The sudden rise of the curve for gV = 0 indicates 
chiral symmetry restoration transition in the NJL model.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1  1.2  1.4  1.6  1.8  2

P
 [G

eV
/fm

3 ]

μB [GeV]

gv/G=1.0, K’=0

NJLnB>5n0
, H/G= 0.0

1.0
1.3
1.5

APRnB<2n0

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.8  1  1.2  1.4  1.6  1.8  2

n B
/n

0

μB [GeV]

gv/G=1.0, K’=0

NJLnB>5n0
, H/G= 0.0

1.0
1.3
1.5

APRnB<2n0

Figure 23. Effects of diquark pairing on the pressure P (top 
panel) and normalized baryon density nB/n0 (bottom panel) as 
functions of the baryon chemical potential, for vector coupling 
gV = 1.0 G , axial anomaly coupling K′ = 0, and diquark couplings 
H/G = 0, 1.0, 1.3, and 1.5. With increasing H, the P and nB curves 
shift toward lower chemical potential.

Rep. Prog. Phys. 81 (2018) 056902



Review

25

we restrict the present considerations to K′ = 0, but note that 
a non-zero K′ allows one to choose larger gV.

Figure 25 shows the squared sound speed as a function 
of ε; in this figure  the interpolation region is roughly from 
ε ∼ 0.3–1 Gev fm−3. The large sound velocity in the high den-
sity quark regime is driven both by the large gV and H.

In appendix B we review the effects of gV and H on the 
quark effective masses generated by chiral symmetry break-
ing, on the restoration of chiral symmetry, and on the pairing 
gaps generated by the diquark condensation.

As figure 20 shows, for large gV with large H, the equa-
tion of state satisfies the stability constraint, and in addition 
can support neutron stars with masses above 2.0 M�, with a 
subluminal sound velocity. Figure 26 shows the interpolated 
P(ε) for parameters, gV = 0.8 G , H = 1.5 G, K′ = 0, with 
beta equilibrium included; the equation of state in this form 
directly enters the TOV equation. For the given interpolation 
range, we note that the interpolated pressure P(ε) increases 
rather rapidly to merge into PNJL(ε). This rapid stiffening is a 
rather generic feature of hadron-quark interpolations that yield 
equations of state stiff enough to satisfy the 2M� constraint. 
However the causality constraint, ∂P/∂ε � 1, restricts the 
rate at which matter can stiffen, so the freedom to choose the 
model parameters is significantly limited. In fact, model stud-
ies show that the physical interpolation almost uniquely fixes 
the value of H for a given gV. For gV/G = 0.5, 0.8, and 1.0, we 
are required to choose H/G � 1.4, 1.5, and 1.6, respectively. 
Below, we show the results for these sets of parameters.

In appendix C we give parametrized forms for representa-
tive unified equations of state in terms of simple functions. We 
call the set of such equations of state QHC18—for quark-had-
ron crossover (2018 version)—and give them together with 
instructions for use on the website: Home Page of Relativistic 
EOS table for supernovae (http://user.numazu-ct.ac.jp/∼sumi/
eos/index.html).

7. Neutron stars with unified equations of state

We turn now to the implications of the unified construction 
of the equation  of state (QHC18) on astrophysical proper-
ties of neutron stars, and the constraints indicated by current 
observations, notably the measurements of the two neutron 
stars with masses  ∼2M� [41, 42], early inferences of the 
mass-radius relation [5, 11, 12], and the tidal deformability of 
neutron stars bounded from above by the binary neutron star 
merger, GW170817 [22].

We integrate the TOV equation (1) for a given value of the 
central baryon density to construct a family of stars whose 
masses and radii are functions of nBc. As illustration we use 
the interpolated equations  of state in the liquid interior for 
three sets of parameters (gV, H) = (0.5, 1.4)G , (0.8, 1.5)G, 
and (1.0, 1.6)G, for which we we able to construct sensible 
interpolated equations of state (see section 6) with the inter-
polation window from nL = 2.0n0 to nU = 5.0n0.

At densities nB from 0.26 n0 to 2.0 n0 in the liquid inter ior we 
use the APR equation of state, and in the crust for nB � 0.26n0, 
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we take the Togashi equation  of state [119], which includes 
the same detailed physics for the inner crust nuclei as APR 
includes in the nuclear matter liquid in the inter ior. Combining 
these two equations  of state provides a consistent physical 
description from the inner crust into the liquid interior22.

The unified equations of state and hence the neutron star 
models constructed from them will be refined over time with 
improving certainty in our theoretical understanding of the 
nuclear matter equation  of state, the quark matter param-
eters—and indeed the quark model itself—as well as in the 
interpolation from nuclear matter to quark matter.

The neutron star mass as a function of central baryon den-
sity is shown in figure 27. The choice gV = 0.5 G  is not stiff 
enough to satisfy the 2M� constraint, and we are required 
to take larger values of gV. At the maximal mass the baryon 
density is � 5n0 or higher, where we expect a quark matter 
description to be valid.

Figure 28 shows the neutron star mass-radius relation. 
Since the overall radii of neutron stars are primarily deter-
mined by the equation  of state at nB � 2n0, neutron stars 
with masses  ∼1.4 M� have similar radii, 11.3–11.5 km, for 
the three parameter sets. The relative smallness of the radii, 
compared to those found with typical relativistic mean field 
equations of state, e.g. [88], reflects the relative stiffness of 
mean-field equations of state at low density. The mass-radius 
relations of the unified equations of state reviewed here are 
reasonably similar to that obtained with a pure nuclear matter 
equation of state, e.g. APR. The similarity of radii in hybrid 
and pure nuclear matter stars is analyzed in [232].

While the masses of certain neutron stars, e.g. those in 
binary orbits with another neutron star or a white dwarf, can 
be inferred observationally to good accuracy, observational 
determination of neutron star radii is much less precise, and 
does not at this stage permit a detailed comparison with the 
neutron star models shown in figure 28. Data from the NICER 
experiment [15] will make such a comparison more feasible. A 

complete and accurate mass versus radius curve would allow 
a determination of the equation of state [292]; in this spirit, 
observations of burst and quiescent low mass x-ray binaries 
in globular clusters have been used to infer masses and radii 
of some fourteen neutron stars [5, 11–13] (and references 
therein); see discussion in section 1.6. These measurements, 
while not sufficiently accurate to determine the equation  of 
state, do indicate constraints on it. Raithel et  al [293] dis-
cusses the Bayesian analysis and accuracy of inference of an 
equation of state from M versus R data sets.

Figure 29 shows the pressure versus baryon density corre-
sponding to the three curves in figure 28. As implied by the 
arguments in section  5.1, increasing gV as well as H tends 
to increase the pressure at fixed baryon density. The unified 
equations of state with quark matter at high density are softer 
than the APR equation  of state; such asymptotic softening 

22 As discussed in appendix C, the SLy(4) equation of state for the crust, 
based on Skyrme effective interactions, does not join in a thermodynami-
cally consistent manner onto the APR equation of state.

Figure 27. Neutron star mass as a function of central baryon 
density, nBc, using the unified equation of state (QHC18) for 
gV = 0.8G, H  =  1.5G and K′ = 0, with nU = 5n0.

Figure 28. Mass-radius relation for neutron stars with the same 
equations of state (QHC18) as in figure 27.
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is expected from consistency with perturbative calculations 
valid at nB � 100n0. The shaded regions in this figure show 
a range of equations of state [5, 11, 12] that are compatible 
with the available mass-radius data inferred from bursts in low 
mass x-ray binaries; overall, the unified equations of state are 
consistent with this range. While there are possible discrepan-
cies using the equations of state of [11] in the vicinity of n0, 
analysis of the differences in the inferences from the data is 
beyond the scope of this review. Nonetheless, resolving dis-
crepancies with observation both through better mass-radius 
determinations, as NICER will provide, as well as through 
improvements to the theory of nuclear matter in beta equilib-
rium remains an open challenge.

Figure 30 shows the dimensionless neutron star tidal 
deformability Λ, equation (10), as a function of the neutron 
star mass for the three parameter sets used in computing the 
M-R relations; Λ was calculated using the procedure summa-
rized in [170]. For a 1.4M� star, the range of Λ is 240–270, 
similar to what one finds using the APR equation  of state 
throughout the star.

The gravitational waveforms as detected in binary neutron 
star mergers are sensitive to the combination,

Λ̃ =
16
13

(M1 + 12M2)M4
1Λ1 + (12M1 + M2)M4

2Λ2

(M1 + M2)5 , (65)

of the masses and Λ’s of the individual neutron stars, as 
derived in a post-Newtonian calculation [172].

The GW170817 merger measured the chirp mass, 

Mchirp = (M1M2)
3/5(M1 + M2)

−1/5 � 1.188+0.004
−0.002M�. The  

assumption of small spin (�0.05) for each neutron star, which 
is probable from the population analyses, weakly constrains 
the mass ratio η = M1/M2 (for M1 � M2) to 0.7–1.0, but even 
with this uncertainty, η together wtih Mchirp tightly constrains 
the total mass, M1 + M2 � 2.74+0.04

−0.01M�. Figure  31 shows 
the result of our equations of state for Λ̃ as a function of η 
with fixed Mchirp = 1.188M�. The resulting Λobs depends 
weakly on η and is ≃ 290-320, consistent with the upper 
bound Λ̃ � 800 (90% confidence level) found from analysis 
of GW170817 [22].

8. Summary

As we have reviewed here, the unified construction of equa-
tions of state (as exemplified by QHC18) avoids artifacts aris-
ing from extrapolating the hadronic and non-confining quark 
matter equations of state outside their ranges of validity, as 
in the conventional hybrid construction of the equation  of 
state. The unified construction allows quark matter to be suf-
ficiently stiff to produce at least 2M� neutron stars, and at 
the same time takes strange quarks into account. The require-
ment of stiffness disfavors a strong first order phase transition 
(although a weak one in the interpolated domain cannot be 
ruled out), indicating that hadronic and quark matter are likely 
not distinctly different, but rather smoothly connected, with 
the quark interactions as strong as those in the QCD vacuum.

In the quark matter equations of state discussed here, both 
the repulsive vector and attractive color-magnetic interactions 
play important roles in constructing physically acceptable 
unified equations of state. The M > 2M� constraint requires 
those interactions to be as strong as the NJL scalar interaction 
responsible for chiral symmetry breaking.

As discussed throughout this review, many outstanding 
questions remain regarding neutron star properties in general, 
and in the context of hadron-quark continuity in particular. 
First, an exhaustive analysis of the parameter ranges of inter-
actions in quark matter that is consistent with both hadron-
quark continuity and current astrophysical data has yet to be 
performed. Second, in order to describe the location and width 
of the crossover region accurately and further refine neutron 
star models, one needs better understanding of the interac-
tions, e.g. the axial anomaly-induced Kobayashi–Maskawa–’t 
Hooft (KMT) interaction, that drive the hadron-quark crosso-
ver. Third, much work remains to be done in addressing the 
possibility of additional quark pairing structures and inhomo-
geneous phases which may exist in the cores of the densest 
neutron stars (e.g. pion condensation, quarkyonic matter, etc), 
and how such structures can span the hadronic to quark mat-
ter crossover. Eventually one would like to go beyond simple 

Figure 30. The dimensionless tidal deformability Λ of a neutron 
star as a function of the neutron star mass M, for the same 
equations of state (QHC18) as in figure 27.
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NJL models of quark matter. Finally, as both the quantity and 
quality of observational neutron star data are improved, con-
straints on quark models and their parameters will continue to 
become more stringent. It is encouraging that current obser-
vational inferences are consistent with hadron-quark continu-
ity. Through precise astrophysical observation, assessment of 
such continuity can be continually refined.

The effects of the underlying quark picture on the dynami-
cal properties of neutron stars have yet to be fully explored. 
The color-magnetic interaction and the resulting quark pair-
ing correlations are expected to play a significant role in the 
non-equilibrium properties in neutron star interiors, e.g. in 
neutrino emission and thermal transport processes involved in 
cooling of stars. It is important to delineate possible signa-
tures of large quark matter cores in the cooling.

A major issue is to determine the effects of finite temper-
ature on the equation of state of neutron stars, in order to under-
stand how signals of neutron star structure are produced in the 
gravitational radiation emerging from binary neutron star and 
neutron star-black hole mergers [25–30]. Neutron star temper-
atures in mergers can be as large as 102 MeV [27, 30, 294].  
A initial estimate of the effects of finite temperature on the 
equation of constraint consistent with the present point of view 
of the hadronic to quark matter crossover is given in [295].
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Appendix A. Scaling the TOV equation

Here we derive a simple expression for the scale of masses 
and radii of neutron stars, as well as quark stars made purely 
of quarks. We assume that the equation of state is governed 
by a basic energy scale, ε0, which is if the order of the QCD 
scale parameter ΛQCD ∼ 200 MeV, and rescale the mass den-
sity and pressure by

ρ = ε4
0ρ̃, P = ε4

0P̃, (A.1)

where ρ̃  and P̃  are dimensionless in units with � = c = 1, In 
addition we let ζ be the scale of the radius, writing

r = ζ r̃. (A.2)

Then the mass within radius r, m(r) =
∫ r

0 4πr2ρ(r)dr , scales 
as ζ3ε4

0. Clearly by choosing Gζ2ε4
0 = 1, or restoring � and c,

ζ =
�

3/2c7/2

ε2
0G1/2

N

=

(
mpc2

ε0

)2
�

mpcα1/2
G

, (A.3)

all the dimensional factors in the TOV equation cancel out; 
here

αG =
m2

pGN

�c
� 0.589 × 10−38 (A.4)

is the gravitational fine structure constant, with mp the proto n 
mass. After rescaling, the TOV equation  (1) reduces to the 
dimensionless form:

∂P̃(r)
∂r̃

=
1
r̃2

(ρ̃+ P̃)(m̃(r̃) + 4πr̃3P̃)
1 − 2m̃(r̃)/r̃

, (A.5)

where m̃(r̃) =
∫ r̃

0 4πr̃2ρ̃(r̃)dr̃ .
We see then that the total mass scales as

M ∝ mp

α
3/2
G

(
mpc2

ε0

)2

= 1.86
(

mpc2

ε0

)2

M�. (A.6)

(Note that M�/mp = 1.189 × 1057.) Similarly the radius 
scales as

R ∝ ζ = 17.2
(

mpc2

ε0

)2

km. (A.7)

The actual masses and radii found from integrating the TOV 
equation are given by the scales set by equations  (A.6) and 
(A.7) times numerical factors of order unity; M̃ =

∫
4πr̃2ρ̃dr̃ 

for the mass and r̃  for the radius. With the choice ε0 = mpc2 
the scale of neutron star masses is close to the expected 
maximum neutron mass, somewhat above two solar 
masses, while the scale of the radius is also consistent with 
expected neutron star radii, ∼10–12 km. Note also that the 
compactness M/R scales as c2/G = 6.9M�/10 km, where 
M�/10 km = 2.0 × 1027 g cm−1.

For the particular choice of the free quark equation of state, 
equation (26), the natural scale is ε0 = B1/4, and we find that 
the mass and radius scale as 1/B1/2 as in equations (27) and 
(28); the prefactors there result from actual integration of the 
TOV equation.

Appendix B. Effects of vector repulsion and the 

pairing on the constituent quark masses  

in quark matter

The phenomenological vector repulsion between quarks in 
quark matter has significant effects not only on the pressure 
but also on the broken chiral symmetry. For simplicity, we 
consider quark matter alone, and neglect the transition to 
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hadronic matter at low densities. We also neglect the anomaly-
induced coupling between the chiral and diquark condensates, 
K′, for the moment. Then with increasing quark chemi-
cal potential μq = μB/3, a non-zero quark density begins 
to develop when μq exceeds the constituent u and d quark 
masses, Mu, Md � 336 MeV.

For gV = 0, the quark density increases rapidly and causes 
the chiral condensate σ and hence the constituent quark mass 
M to decrease rapidly, as illustrated in figure B1 for H  =  0. 
Such a rapid change results in a first order chiral phase trans-
ition in which both the quark number and the chiral conden-
sate become discontinuous; see figures  22 and B1. On the 
other hand, increasing gV from zero makes it more energeti-
cally costly for additional quarks to enter the system; the vec-
tor repulsion requires a larger chemical potential in order to 
achieve a specified baryon density. As a result, the slope of 
nB(μB) decreases, as seen in figure 22, and the melting of the 
chiral condensate proceeds more smoothly, as seen in fig-
ure  B1. For gV exceeding a critical value � 0.4G , the first 
order chiral transition becomes a smooth crossover [48, 249, 
250, 269].

The constituent quark masses Mu,d,s and the pairing gaps 
Δud,ds,su for gV/G = 1 and H/G  =  1.5 are shown in figure B2. 
The first order transition from the 2SC phase to the CFL phase 
occurs around μB ∼ 1.3 GeV in the figure. If the anomaly-
induced coupling K′ is increased from zero, the coexistence of 
the chiral condensate and diquark condensates becomes ener-
getically favorable. As a result, the chiral condensate survives 
to higher chemical potential, while diquark pairing begins to 
develop at lower chemical potential. The quantities Mu,d,s and 
Δud,ds,su in the region nB > 5n0 are denoted by the thick lines. 
All the details associated with the onset of the strange quarks 
and the 2SC-CFL transition at nB < 5n0 are not relevant for 
the unified equation of state, since they occur in the interpola-
tion region.

Appendix C. Parameterized equations of state

In this appendix we present parameterized forms of equa-
tions of state, ε(nB), where ε = ρc2 is the energy density, and 
ρ is the mass density, as well as numerical tables, to use in 
numerical modeling of neutron stars. Separating the star into 
domains—the outer and the intermediate crust regions below 
neutron drip, the neutron drip region, and the nuclear pasta 
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phase region; the low and high density regions of the liquid 
nuclear matter; the crossover; and higher density quark mat-
ter—we use accurate polynomial fits of the numerical equa-
tions of state, with the coefficients in the polynomials tuned 
to each domain.

To satisfy thermodynamic relations in numerical compu-
tation, and to avoid artifacts, we parametrize only the single 
thermodynamic function, ε(nB), writing

ε(ξ) = aξ + d0 + d1ξ ln ξ +

νmax∑
ν=2

dνξ
lν , (C.1)

where ξ ≡ nB/n0, with n0  =  0.16 fm−3, and a, dn’s, 
νmax, and lν’s fitting parameters dependent on the domains. 
Then the chemical potential, μB = ∂ε/∂nB, and pressure, 
P = n2

B(∂ε/nB)/∂nB are given by

μB(ξ) =
1
n0

[
a + d1(1 + ln ξ) +

νmax∑
ν=2

lνdνξ
lν−1

]
, (C.2)

and

P(ξ) = −d0 + d1ξ +

νmax∑
ν=2

(lν − 1)dνξlν . (C.3)

Note how the linear term in the pressure (∼d1) corresponds 
to a logarithmic term in ε and in μB

23. In practice, we 
use the pressure, rather than energy density, to determine 
the di because it is more sensitive to the values of fitting 
parameters.
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Table C1. Fitting parameters for the crust and nuclear liquid regions (see text). The unit of the coefficients are MeV fm−3. Each domain 
starts at the threshold ξth = (nB/n0)th shown in the table.

ξth a d0 d1 d2 d3 l2 l3

Outer crust 10−9 149.9 — −7.112 · 10−2 9.168 −1.522 1.271 0.97508

Intermediate crust 5 · 10−7 148.2 — −3.391 · 10−2 6.922 −3.591 · 10−9 1.224 1.0 · 10−2

Drip 1.5 · 10−3 150.9 — 9.940 · 10−2 3.941 −6.422 · 10−4 2.205 9.353 · 10−2

Pasta 5 · 10−2 150.1 — 0.9845 1.443 1.861 5.059 0.7864

APR (LDP) 0.26 151.5 −6.690 · 10−2 4.914 · 10−2 1.320 — 3.056 —
— 1st order — 1.29 — — — — — — —
APR (HDP) 1.50 151.7 1.220 2.461 0.2666 — 3.856 —

23 The reader may be concerned that the parametrization of pressure in the 
interpolation region equation (63) and that given here are not obviously con-
sistent. However, we use the present parametrization only to fit numerically 
the interpolated P(μB).
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C.1. Crust

In the crust we compare the SLy(4) equation  of state [118, 
189] as given in the numerical tables of Haensel and Potekhin 
[116], and the Togashi equation of state [119] determined via 
variational calculations based on the microscopic AV18 two-
body plus the UIX three-body potentials (numerical tables can 
be found in CompOSE data base, http://compose.obspm.fr/
eos/105/). These equations of state are consistent below the 
nuclear drip regime, while at higher densities the two equa-
tions  of state start to deviate because of the differences in 
interactions and treatments of the nuclei in a neutron gas. The 
difference is important for matching the crust equation of state 
to that in the nuclear liquid. The Togashi equation  of state, 
being based on the same input physics, can be matched with 
APR in a thermodynamically consistent manner, while SLy(4) 
cannot, in the absence of ad-hoc smoothening and reduction 
of data points.

Taking APR to describe the nuclear liquid, we adopt the 
Togashi equation of state for the crust. We chose the matching 
point with APR to be nB = 0.26n0, around which the two equa-
tions of state overlap fairly well. The fit (C.3) is compared with 
the tabulated equation of state in figure C1, where only the data 
points from nB = (10−9 − 10−6)n0  are used (corresponding 
to  ∼(3 × 105 − 3 × 108) g cm−3). The region nB � 10−9n0 
does not affect the overall structure of neutron stars and 
can be ignored here. The region 10−9n0 � nB � 10−6n0 
contributes  ∼20–100 m to the radii and  ∼10−9M� 
to the masses. At nB � 10−7n0 (∼3 × 107 g cm−3)  
the equations  of state are unaffected by magnetic fields as 
strong as 1014 G, and by temperatures �109 K [1].

Table C1 summarizes the crustal fitting coefficients. 
To obtain good fitting quality within the present simple 
parameterization, we divide the crust into four regions: the 
outer crust, from nB = (10−9 − 5 · 10−7)n0, the intermedi-
ate crust from nB = 5 · 10−7n0 to the neutron drip regime 
nB = (5 · 10−7 − 1.5 · 10−3)n0; the neutron drip regime, 
nB = (1.5 · 10−3 − 5 · 10−2)n0; and the fourth interval, 
nB = (5 · 10−2 − 0.26)n0, containing the various nuclear 
pasta phases.

C.2. APR in beta equilibrium

We detail here the APR equation  of state in the range 
0.26n0 < nB < 2n0. The fitting coefficients are summarized 
in table C1. From the parametrizations of the equation of state 

for pure neutron matter and symmetric nuclear matter in the 
APR paper [52], one can approximately calculate the equa-
tion  of state in beta equilibrium by quadratic interpolation, 
equation  (23); in interpolating with the APR parametrized 
forms we use the average of the proton and neutron masses, 
(mp + mn)/2 � 938.92 MeV.

The APR equation  of state has a low and a high den-
sity regime, distinguished by a first order phase trans ition 
associated with the onset of neutral pion condensation; 
in matter in beta equilibrium the density changes discon-
tinuously from nB � 1.29n0 � 0.21 fm−3 to ≃ 1.50n0 �  
0.24 fm−3. The low density parametrization (LDP) is for 
the range 0.26n0 � nB � 1.29n0, and the high density para-
metrization (HDP), the range 1.50n0 � nB � 2.0n0. The error 
estimator δ ≡ Pfit/Pdata − 1, shown in figure  C2, does not 
exceed  ±0.01, for the fits.

C.3. Unified equations of state (QHC18)

In the interpolation region nL = 2n0 � nB � nU = 5n0, we 
parametrize the equations  of state by taking the exponents 
in equation  C.1 to be integers, lν = ν = 2, . . . , νmax, with 
νmax = 6. In the quark matter domain, we fit the data for 
5n0 � nB � 10n0 and find that taking only one term, νmax = 2, 
yields adequate fits (figure C3). Table C2 summarizes the fit-
ting parameters for unified equations of state for K′ = 0 and 
parameter sets (gV/G, H/G) = (0.5, 1.4), (0.8, 1.5), and 
(1.0, 1.6), as used in the calculations shown in figure 28. The 

Table C2. Fitting parameters for the unified equations of state for various sets of (gV, H)/G with K′ = 0 (see text). The unit of coefficients 
are MeV fm−3. The parameters lν’s are fixed to integers, lν = ν . To have a good quality fit in the interpolated domain, it is important to 
include all the digits shown.

ξth a d0 d1 d2 d3 d4 d5 d6

(0.5,1.4) 514.390 1038.33 2088.56 −1688.70 350.282 −51.8325 4.42276 −0.162045
(0.8,1.5) 2.0 −495.283 −715.928 −1761.03 1722.13 −428.157 76.4943 −7.78341 0.335614
(1.0,1.6) 1575.17 3029.17 6352.80 −5460.10 1230.94 −204.048 19.9068 −0.843217
(0.5,1.4) 116.0 54.43 −1.989 10.44 — — — —
(0.8,1.5) 5.0 102.0 55.85 0.6177 13.15 — — — —
(1.0,1.6) 87.28 54.58 3.639 15.03 — — — —

Table C3. Fitting parameters for the quark matter equations of state 
at ξ = nB/n0 � 5.0 for various sets of (gV, H)/G with K′ = 0 (see 
text). The coefficients are in units of MeV fm−3, and lν = ν .

gV/G H/G a d0 d1 d2

1.4 116.0 54.31 −2.020 12.06
0.7 1.5 103.6 53.07 −0.1710 12.39

1.6 88.36 52.73 3.047 12.65
1.4 115.9 54.50 −2.000 12.87

0.8 1.5 102.0 55.85 0.6177 13.15
1.6 85.49 57.77 4.537 13.35
1.4 116.8 52.79 −2.422 13.71

0.9 1.5 105.3 50.06 −1.081 14.08
1.6 87.03 55.01 3.749 14.22
1.4 114.4 57.00 −1.146 14.42

1.0 1.5 99.61 60.04 1.892 14.68
1.6 87.28 54.58 3.640 15.03
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coefficients for the interpolated domain strongly correlate one 
another. To maintain the good accuracy of fits as in figure 28, 
we must keep 5–6 digits in the fitting parameters.

The quark model parameters (gV, H) chosen here are suita-
ble for interpolating with the APR equation of state. For inter-
polation with other nuclear equations of state or other possible 
interpolation schemes, it would be better to use slightly dif-
ferent sets of parameters. For this reason we have generated 
numerical equations  of state for a wider range of (gV, H) 
which are fitted by equation (C.1). Table C3 summarizes the 
fitting parameters.

The present equation of state QHC18, for several choices of 
QCD parameters, is given together with instructions for use on 
the website: Home Page of Relativistic EOS table for superno-
vae (http://user.numazu-ct.ac.jp/∼sumi/eos/index.html).
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 [106] Benić S, Blaschke D, Alvarez-Castillo D E, Fischer T and 
Typel S 2015 A new quark-hadron hybrid equation of state 
for astrophysics I. High-mass twin compact stars Astron. 
Astrophys. 577 A40

 [107] Alvarez-Castillo D, Benić S, Blaschke D, Han S and 
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