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ABSTRACT
Engineering design games model decision-making activities

by incorporating human participants in an entertaining plat-
form. This article distinguishes between design decisions at op-
erational and strategic timescales as important features of en-
gineering design games. Operational decisions consider static
and short-term dynamic decisions to establish a player’s situ-
ation awareness and initial entertainment. Strategic decisions
consider longer-term dynamic decisions subject to large uncer-
tainties to retain player engagement. However, constraints on
cognitive load limit the ability to simultaneously address both
lower-level operational design decisions and higher-level strate-
gic decisions such as collaboration or sustainability. Partial au-
tomation can be introduced to reduce cognitive load for oper-
ational decisions and focus additional effort on strategic deci-
sions. To illustrate tradeoffs between operational and strategic
decisions, this paper discusses example cases for two existing
games: Orbital Federates and EcoRacer. Discussion highlights
the role of automation and entertainment in engaging human
participants in engineering design games and makes recommen-
dations for design of future engineering design games.

1 INTRODUCTION
Research in engineering design increasingly considers a

broad class of real-world systems going beyond traditional
boundaries of engineered artifacts to interact with and contribute
to key societal functions [1]. In addition to the short-term, well-
bounded operational decisions, design of engineering systems

requires careful consideration of their large scale, long lifetime,
and complex features such as adaptation, self-organization, and
emergence [2]. Pursuing objectives such as sustainability re-
quires an integrated perspective to understand interdependencies
at multiple levels of abstraction [3]. These types of strategic
decisions make significant resource commitments with often-
irreversible investments and a broad scope of intended impact [4]
and demand a different class of analysis methods than opera-
tional decisions more common to engineering design.

Human intuition is a useful resource to leverage when ad-
dressing the complexity of engineering system design. Games
and interactive simulations are natural models of human
decision-making, interaction, and feedback with a long history
of applications in military, policy, educational, and business ac-
tivities [5] and, more recently, in engineering design [6]. Abt
describes games as “an activity among two or more indepen-
dent decision-makers seeking to achieve their objectives in some
limiting context” [7] which, slightly extended, also considers
individuals interacting with an unknown or uncertain environ-
ment. This characterization broadly applies to design activities,
whether decision-makers represent disciplinary experts in a sin-
gle organization or multiple firms with conflicting objectives.

The human participant represents a significant opportunity
to incorporate social factors into a design problem but also a
critical challenge to overcome limited cognitive load, high costs,
and long timescales. Focusing a game on lower-level operational
decisions consumes significant time and cognitive load, limit-
ing the ability to address higher-level strategic issues. Mean-
while, focusing on higher-level strategic decisions by automating
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other decisions omits technical details and may fail to initially
engage human participants into the problem. A careful balance
of automation allows participants to tackle strategic issues while
maintaining situation awareness of technical design.

To facilitate the study of engineering design problems using
games, this paper distinguishes between decisions at operational
and strategic timescales, followed by specific recommendations
for their representation in games. First, this paper contributes a
model of engineering decision-making as a bi-level problem with
operational decisions at the lower level and strategic decisions at
the higher level. Next, model implications regarding automation
and entertainment are discussed in the context of engineering de-
sign games. Two example cases describe how operational and
strategic decisions fit within design games previously developed
by the authors. Finally, a discussion draws comparisons across
the two cases and summarizes key conclusions.

2 ENGINEERING DECISION-MAKING
Outputs of design activities describe technical artifacts (e.g.

constructs, models, methods, and instantiations) to be evalu-
ated for utility or value provided to users [8]. Rational design
decision-makers select the expected value-maximizing artifact
alternatives; however, large design spaces and uncertain mapping
between design decisions and value complicate the process [9].
While design can broadly be defined as a decision-making pro-
cess, this section distinguishes between decisions for the physical
system (static design decisions) and decisions for its behavior in
time (dynamic decisions) at operational and strategic timescales.

2.1 Static Design Decisions
Static design decisions reflect the most common notion of

design as a structural artifact description. In particular, the sys-
tem architecture maps stated or desired features in the functional
domain to elements of form or structure in the physical domain.

Design decision-making relates functional and physical do-
mains to assess utility or value provided to users. For example,
Axiomatic Design Theory (ADT) [10] models a system archi-
tecture as a vector y = [y1, . . . ,yM] of M functional requirements
(FRs) and a vector x = [x1, . . . ,xN ] of N design parameters (DPs),
also referred to as design variables, related by design model M
in Eqn. (1).

y = M(x) (1)

DPs can be interpreted as individual design decisions and FRs as
resulting attributes to be compared against desired requirements.
The design model M embodies physical and natural laws which
relate physical form (DPs) to function (FRs). A simple linear
design model may represent M as the vector product of x and a
M×N matrix with elements mi j ≈ ∂yi/∂x j.

FIGURE 1. MODEL OF STATIC AND DYNAMIC DECISIONS

Value-centric or value-driven design processes rely on a sys-
tem value model to map a set of DPs to a single scalar FR
V (x) ∈ y(x) expressing decision-maker preference or value [11].
From this perspective, design decisions aim to solve the opti-
mization problem in Eqn. (2) to find the value-maximizing de-
sign alternative x⋆ from the set of candidates in design space X.

x⋆ = argmax
x∈X

V (x) (2)

While it is desirable to quantify the overall value of a design x
from a static perspective, most measures of performance depend
also on dynamic behavior addressed in the following section.

2.2 Dynamic Design Decisions
Dynamic decisions govern the behavior of a system over

time and are critical to evaluate design decisions based on an-
ticipated performance. A decision rule or policy z ∈ Z pre-
scribes specific temporal behaviors z(t) in response to stimuli at
time t. Relating dynamic decisions to static design decisions re-
quires elaboration of a discrete-time dynamic system formaliza-
tion based on [12]. Fig. 1 illustrates a model with such formal-
ization by defining the model state qx, state transition function δ ,
and output function λ .

The model state qx(t) captures all information relevant to
the static design x as a function of time t starting from initial
conditions, i.e. qx(0). The model state represents a snapshot in
time including the complete system configuration, accumulated
resources including key performance measures, and contextual
features of the environment.

A state transition function δ in Eqn. (3) propagates the
model state in time as a function of the current state qx(t) and
behavioral inputs z(t).

qx(t +1) = δ (qx(t),z(t)) (3)

The state transition function describes how a behavior influences
or changes model state including how system functions change
internal or external state variables, how to tabulate key perfor-
mance measures, and how contextual uncertainty resolves over
time.
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A Mealy-type output function λ in Eqn. (4) returns temporal
system attributes y(t) as a function of the model state qx(t) and
behavioral inputs z(t).

y(t) = λ (qx(t),z(t)) (4)

The output function describes how the model state and behaviors
relate to derived quantities of interest, allowing only fundamental
or elementary information to be maintained as model state.

To reinforce these concepts, consider concepts from the in-
frastructure system-of-systems (ISoS) framework which helps
define behavioral rules for infrastructure models [13]. State vari-
ables record key information such as resource contents and spa-
tial locations of infrastructure elements. Behavioral functions
modify state variables by adding (generating) or removing (con-
suming) resources from contents or transporting an element to
change its spatial location. Key performance metrics such as net
present value are based on time-discounted financial resources.

A revised view of design includes both the static design ar-
chitecture and the dynamic decision policy expressed as a 2-tuple
(x,z) ∈ X×Z. Finding a decision policy z for design x resem-
bles an optimal control problem to maximize a scalar measure of
preference or value Vx,z(t) ∈ y(t) evaluated at end-of-life time T
in Eqn. (5).

V (x) = max
z∈Z

Vx,z(T ) (5)

Note this expression abstracts time from a design decision, con-
verting the dynamic decision into a static one.

2.3 Bi-level Model of Engineering Decision-making
This section develops a bi-level model of engineering design

decision-making to repartition dynamic decisions to operational
and strategic timescales such that z = (o,s) ∈ Os × S. On op-
posite ends of a spectrum, strategic decisions involve significant
resource commitments and changes to the scope of an engineer-
ing system while operational decisions do not [4]. Strategic de-
cisions effectively constrain the set of available operational deci-
sions Os illustrated in Fig. 2. The distinction between operational
and strategic timescales is similar to past literature identifying
epochs as temporal regions with a fixed context and eras as se-
quences thereof [14]. Despite these descriptions, some judgment
is required to designate a dynamic decision as either operational
or strategic and is dependent on the specific design problem.

2.3.1 Operational Design Decisions. Dynamic de-
cisions on an operational timescale follow a strategy-specific pol-
icy o ∈ Os to determine how to structure and use a design’s func-
tional properties to achieve near-term objectives. For example,

FIGURE 2. BI-LEVEL MODEL TO REPARTITION DECISIONS

operational functions within the ISoS framework include stor-
ing, transforming, and transporting resources and transporting
elements between locations subject to nominal efficiency factors.

Operational design decisions evaluate system value in
Eqn. (6) assuming a fixed strategy s ∈ S as a well-defined context
such as a nominal operational regime or mode of interaction with
other decision-makers.

Vs(x) = max
o∈Os

Vx,(o,s)(T ) (6)

Thus, operational design decisions can be framed as a search for
the best strategy-specific design x⋆s ∈ X (and dependent opera-
tional policy) in Eqn. (7) as a slight refinement to the previous
static formulation in Eqn. (2).

x⋆s = argmax
x∈X

Vs(x) (7)

Operational design decisions incorporate idealized dynamic de-
cisions but are inherently constrained to a specific strategy.

2.3.2 Strategic Design Decisions Dynamic deci-
sions on a strategic timescale conforming to a strategic policy
s ∈ S determine how to modify a system’s architecture to achieve
long-term objectives. At the strategic level, most quantities in-
cluding contextual or environmental factors and interactions with
other decision-making agents are highly uncertain. Strategic de-
cisions are related to the design’s non-functional properties (“il-
ities”) such as flexibility, adaptability, and resilience [15]. For
example, strategic functions within the ISoS framework include
transforming elements to commission, decommission, or recon-
figure operations and exchanging resources with other decision-
making agents governed by social contracts.

Strategic design decisions evaluate system value in Eqn. (8)
to compose results of operational design decisions.

V (s) = max
x∈X

Vs(x) =Vs(x⋆s ) (8)

Analogously, strategic design decisions can be framed as a search
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for the best strategy s⋆ ∈ S in Eqn. (9).

s⋆ = argmax
s∈S

V (s) (9)

From this perspective, strategic design decisions take place on a
higher level of abstraction assuming lower-level design and op-
erational decisions have already been addressed. Note that some
static design decisions that can change the architecture of the de-
sign problem are also part of the strategic decisions.

Distinguishing between two levels of decision-making helps
to frame efforts to study design decision-making. In particular,
studying strategic design decision-making in Eqn. (9) requires
abstraction or automation of operational decisions which, in turn,
reduces feedback available to the design decision-maker from
operational design activities in Eqn. (7). The desired balance
between operational and strategic decisions depends on several
factors discussed in the next section.

3 ENGINEERING DECISION-MAKING IN GAMES
Games present a natural medium to study engineering

decision-making by placing human players in a synthetic envi-
ronment to engage with and receive rapid feedback from engi-
neering problems. Digital and online games, in particular, pro-
vide an opportunity to collect large quantities of information by
tapping into a global community of players.

Developers of engineering design games must carefully bal-
ance operational and strategic decision-making to achieve game
objectives. Fundamental differences make it difficult to achieve
depth at all levels simultaneously and there are also challenges
to considering strategic decision-making in isolation. Cognitive
limits of players, game elements and mechanisms to foster en-
gagement must be considered along with the goal of the engi-
neering design research when developing games for that purpose.
This section discusses automation and entertainment as two im-
portant dimensions of engineering game design.

3.1 Automation of Design Decisions
Interaction with human players simultaneously represents

an enormous opportunity and significant challenge to employing
engineering design games. Humans use games as a new form
of information feedback within a synthetic environment to learn
about complex systems [16]. However, human decision-making
is slow, expensive, and limited by high cognitive loads in unfa-
miliar environments representing information at different levels
of abstraction than those developed through expertise [17].

Studies of design as a decision-making activity require con-
sideration of both static and dynamic decisions. Analysis in sta-
ble contexts may only depend on operational decisions; however,

broader studies of strategic issues can be burdened by opera-
tional decisions. Automating operational decisions using opti-
mization methods such as linear programming (LP), integer pro-
gramming (IP), and dynamic programming (DP) can facilitate
strategic analysis by increasing the level of abstraction for human
input. Resulting strategic analyses benefit from a wider class of
methods including scenario planning, real options, and game the-
ory to reason across highly uncertain contexts.

Automating operational decisions also carries downsides.
For example, the U.S. defense wargaming community expended
considerable efforts in the 1980s to automate player decisions
and permit multi-scenario analysis of strategic issues [18]. How-
ever, later reports call to re-insert humans into a family of strate-
gic analysis tools, recognizing analytic techniques alone cannot
address strategic uncertainties and human participation spurs in-
novation and improves feedback to real decision-makers [19].
From this perspective, participating in operational decisions
gives players situation awareness to understand the context of
more abstract strategic decisions [20].

Strategic design games must carefully balance automation to
abstract tedious or well-understood behaviors (the characteriza-
tion of which is subjective to each participant) while maintaining
situation awareness for players.

3.2 Entertainment in Engineering Design Games
Entertainment is an essential game element to engage play-

ers and represents a technique to facilitate data collection in en-
gineering design. Access to a large community of self-motivated
players presents significant opportunities to advance research by
collecting large data volumes and creative solutions. However,
designing games that are both useful for research and entertain-
ing for participants presents a challenge as the two objectives
often impose conflicting objectives.

A body of literature addresses important game design ele-
ments for entertainment purposes. For example, several prin-
ciples to improve engagement include understanding the player
and social elements, user interface, game theme and characters,
and game mechanics [21]. However, few works translate enter-
tainment game design principles to more specific classes includ-
ing engineering design games. These more meaningful applica-
tions require a trade-off between triadic game elements of play,
meaning, and reality [22]. Play is most closely related to enter-
tainment but is linked to a freedom to fail in a game’s virtual
world. Meaning refers to the mechanics that foster learning and
intuition during game play, linking actions within a game to re-
search objectives set outside. Reality refers to the actual engi-
neering problem of interest, establishing literal correlation be-
tween games and the reality they model. Game design decisions
frequently create conflicts among these elements and a balance
must be sought for successful implementations [22].

Focusing only on players’ decisions as a subset of all game
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FIGURE 3. ORBITAL FEDERATES GAME BOARD

design features, operational and strategic decisions should be
considered separately as they serve different entertainment pur-
poses. While operational design decisions help players gain fa-
miliarity with the game in the short term, strategic decisions pro-
vide multiple contexts to these decisions and maintain long-term
interest. Games completely lacking operational decisions may
suffer from abstraction and fail to initially engage players and
games lacking strategic decisions may suffer from repetition and
fail to maintain player engagement.

3.3 Examples from Existing Games
To illustrate the balance between automating decisions while

maintaining player entertainment and engagement, the follow-
ing sections provide examples of two existing design games cre-
ated by the authors. Each case describes the static and dynamic
decisions implemented in the games, discusses how automation
could be incorporated to abstract operational decisions, and what
strategic analysis could be enabled. Subsequent discussion sum-
marizes the key insights from both games, and synthesizes key
contributions to inform both development and use of engineering
games to study design decision-making.

4 EXAMPLE CASE: ORBITAL FEDERATES
Orbital Federates is a multi-player engineering design game

to study strategic issues of collaboration in federated satellite
systems (FSS) [23]. Originally developed as a tabletop board
game illustrated in Fig. 3, later work implemented an automated
Python simulation to analyze strategic design decisions [24].

Players in Orbital Federates design and operate simplified
models of space systems to accumulate revenue by completing
data contracts from third parties. Randomly-generated contracts
demand data from spatially- and temporally-specific observa-

tions of phenomena to be down-linked to ground stations. Play-
ers use their own systems or collaborate with others to complete
contracts. Expected net present value (time-discounted revenue
less costs) is a clear measure of design value in Orbital Federates.

4.1 Operational Design Decisions
Static design decisions determine the overall FSS structure

including surface-based ground stations and space-based satel-
lites. Ground stations are located at one of six radial sectors
partitioning the Earth’s surface. Satellites are located above an
initial sector at an orbital altitude determining temporal propaga-
tion. Low orbits have the shortest period (three turns per orbit)
than medium orbits (six turns per orbit) and stationary orbits re-
main fixed above one location.

Ground station and satellite designs specify a set of hard-
ware modules which provide the following functions:

1. Sensor: generate and store up to one data unit specific to an
observed phenomenon (e.g. visual or infrared spectra).

2. Storage: store up to one additional data unit.
3. Inter-satellite link (ISL): transmit and receive up to one

data unit per turn between two satellites.
4. Space-to-ground link (SGL): transmit and receive up to one

data unit per turn between satellites and ground stations.
5. Shielding: protect a satellite from damaging events.

Links designate either a proprietary or open protocol to restrict
communication within one player’s systems or allow potential
services between players. Ground stations allow up to three mod-
ules while satellite buses allow up to two (small), four (medium),
or six (large). System designs incur a fixed cost to cover essential
platforms, hardware modules, and launch (for satellites).

Dynamic decisions at an operational timescale allow play-
ers to execute FSS functions enabled by hardware modules each
turn. Key operational decisions include the following:

1. Contracting a demand by agreeing to deliver its requested
data within a fixed time window.

2. Sensing a phenomenon to generate data for a contract.
3. Storing or retrieving data in a sensor or data storage unit.
4. Transmitting or receiving data between two links for relay

(ISL) or down-link (SGL).
5. Exchanging financial resources between players for FSS

data services such as relay, down-link, or storage.
6. Resolving a contract by delivering data to a ground station.

Tabletop game play uses tokens to support operational decision-
making by denoting data contents and remaining link capacity.
While players generally search for efficient paths to deliver data,
they must also balance the uncertain availability of future con-
tracts and manage scarce resources such as down-link capacity.
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4.2 Strategic Design Decisions
Strategic decisions in Orbital Federates emphasize two di-

mensions. First, players follow a capacity expansion strategy
to scale up space and ground systems throughout a game. Us-
ing revenue collected from completed contracts, players can pur-
chase and operate new systems to augment existing capacity.
While existing ground stations can be modified, for example to
add a second link to increase bandwidth, existing satellites can-
not be changed. Alternative strategies may lead players to pursue
few large and expensive monolithic satellites or more numerous
smaller and inexpensive distributed satellites.

Second, players follow a collective action strategy to guide
whether and how to interact with other players, for example, to
purchase and sell relay and down-link services. Using links with
open protocols requires significantly more upfront capital than
proprietary alternatives and is only beneficial if other players
also participate as a federation. Once required functionality is
in place, players must also agree on mechanisms to distribute
financial resources in return for services.

4.3 Automating Operational Decisions
Operational decisions contribute high cognitive load in Or-

bital Federates, especially for large FSS, due to large dimension-
ality of the operational decision space Os. Efficient routing of
resources through a network is well-characterized by a mixed-
integer linear programming (MILP) optimization model imple-
mented in the Python variant of Orbital Federates. The model is
formulated and sequentially solved at each time step to determine
operational decisions.

The MILP relies on a time-expanded network to maximize
value of resolved contracts over a short-term timescale (typically
six turns). It is characterized by a network flow glyph in Fig. 4
for system i illustrated over two time steps. Binary decision
variables model data operations for notional contract c including
zsense

ic to sense data, ztransport
kipc to receive data from system k using

protocol p, ztransport
i jpc to send data to system j using protocol p,

zstore
ic to store data, and zresolve

ic to resolve data. Integer constraints
restrict functions based on storage and link capacity, spatial link
availability, logical requirements (e.g. only satellites can sense
data, only ground stations can resolve data), establish boundary
conditions including existing data Eic, and maintain net data flow
conditions.

The objective function maximizes net revenue from com-
pleted contracts over a six-turn horizon. While stochastic pro-
gramming could accommodate uncertain future demand avail-
ability, this deterministic MILP assigns a penalty for storing data
as an opportunity cost. Several variants of the MILP opera-
tions model characterize strategies including independent opera-
tions by a single player, centralized operations to maximize total
net revenue across multiple players, and federated operations to
maximize individual revenue subject to a fixed price for oppor-

System i
at t = t0

Existing
Contract c

Contract c
(Accepted)

Eic

System i
at t = t0+1

System j
(Receiver)

System k
(Transmitter)

Contract c
(Resolved)

Accept and 
Sense Resolve

TransmitReceive

Store

System j
(Receiver)

System k
(Transmitter)

Contract c
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TransmitReceive

Store

ziczsense

zkipc        (t0)ztransport zijpc         (t0)ztransport

zic     (t0)zstore

zic         (t0)zresolve

zkipc        (t0+1)ztransport zijpc         (t0+1)ztransport

zic     (t0+1)zstore

zic         (t0+1)zresolve

FIGURE 4. TIME-EXPANDED NETWORK GLYPH

TABLE 1. STRATEGIC DESIGN GAME FOR n = 2 PLAYERS

Player 1 Player 2 Strategy (s2)

Strategy (s1) Independent (φ ) Federated (ψ)

Independent (φ ) V1(φ ,φ) V1(φ ,ψ)

V2(φ ,φ) V2(φ ,ψ)

Federated (ψ) V1(ψ,φ) V1(ψ,ψ)

V2(ψ,φ) V2(ψ,ψ)

tunistic ISL and SGL services between players.

4.4 Analyzing Strategic Decisions
No existing work addresses capacity expansion strategy in

Orbital Federates. Instead, strategic analysis in [24] focuses on
collective strategies for n = 2 players. Each player chooses be-
tween independent operations using proprietary link protocols
(labeled as strategy φ ) and federation operations using open link
protocols for opportunistic fixed-price services (labeled as strat-
egy ψ). The value function from Eqn. (8) takes on a multi-actor
vector form in Eqn. (10) to accommodate the 2-tuple of strategy
decisions s = (s1,s2) and resulting actor-specific value.

V (s) =V (s1,s2) =

[
V1(s1,s2)
V2(s1,s2)

]
(10)

Strategy decisions are selected from the binary alternatives
s1,s2 ∈ S = {φ ,ψ} and the resulting strategic design game in
Table 1 expresses the strategic decision as a normal form game-
theoretic problem.
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FIGURE 5. ECORACER USER INTERFACE

Within the fixed context of each strategy pair (s1,s2), play-
ers follow guidelines in Eqn. (7) to design and operate value-
maximizing systems subject to potential interactive effects. Se-
lection of an ideal strategy is no longer as simple as previously
expressed in Eqn. (9) because one actor’s value depends on the
actions of the other. Resulting strategic analysis identifies stable
strategy sets (e.g. Nash equilibria) or helps to characterize risk
or payoff dominance of multiple equilibria [24].

5 EXAMPLE CASE: ECORACER
EcoRacer shown in Figure 5 is an online competition-based

electric vehicle design and control game [25]. This game has
been developed to compare human problem solving skills with a
computational method and study ways to combine these two to
improve solution quality [26]. Here, we analyze this game in the
context of the bi-level decision-making framework presented in
this paper.

The main goal in the game is to find the best powertrain de-
sign and the corresponding vehicle control strategy to complete
a deterministic race track within a fixed time limit using mini-
mum battery energy. Players are asked to play this game multiple
times to improve their own score against other online players on
a leader board. The original game contains static and dynamic
design decisions at the operational timescale. While this game
does not have decisions at the strategic timescale, the goal of
this example is to discuss the outcomes of lacking such strategic
design decisions. After describing the problem in the original
game, this section discusses potential ways to improve the game
play experience and use the same platform to ask a broader range
of questions by adding an additional layer of strategic timescale.

5.1 Operational Design Decisions
The problem at an operational timescale in the original Eco-

Racer game involves a single static variable that corresponds to
the final drive ratio in the powertrain. This variable is presented
to users with a slider that can take a range of values. This game
keeps the static design problem simple enough to make it easy
to solve by both the human players and the computational meth-
ods for comparison. However, the problem can be extended to
include other powertrain components parameters such as electric
motor parameters or the battery size. The drive ratio static design
decision affects the following performance metrics:

1. Acceleration: increasing the final drive ratio increases the
torque multiplication at the vehicle output and affects the
power delivered to the vehicle combined with the motor
torque limits in a nonlinear way.

2. Top speed: increasing the final drive ratio increases the
speed multiplication at the motor and linearly reduces the
maximum vehicle speed due to the motor speed limits.

3. Powertrain efficiency: the final drive ratio affects the op-
erating points of the motor and changes the powertrain ef-
ficiency due to nonlinear motor losses as a function of the
motor speed and torque.

The first two performance metrics contribute to completing
the race track quickly while the last metric helps achieve a high
game score. Static design decisions alone do not allow players
to evaluate their decisions and an operational problem must be
solved to obtain a combined evaluation. Therefore, game players
may make good static design decision but still receive a low score
due to poor operational decisions.

Dynamic decisions at an operational timescale in EcoRacer
determine vehicle control. The game provides two inputs to con-
trol the vehicle:

1. Accelerate: provides an increasing motor torque (up to the
limits) to the powertrain and consumes battery energy based
on the power and efficiency of the motor at the correspond-
ing operating point.

2. Brake: provides a fixed negative torque to the powertrain to
decelerate the vehicle and regenerates some energy based on
the motor efficiency at the corresponding operating point.

Given the powertrain design set by the static decisions, play-
ers use these two inputs to control the vehicle fast enough to com-
plete the track and efficiently enough to receive a high score. The
game screen displays the speed of the vehicle, distance to the end
of the track, and remaining battery energy in real time.

5.2 Automating Operational Decisions
Results in EcoRacer are sensitive to operational decisions.

Also, as discussed in [25], a very small portion of the space of
operational decisions can finish the track on time, making the
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game challenging for many players. To aid player engagement
and facilitate a strategic decision-making process discussed in
the next section, these decisions can be automated with existing
methods in both control theory and machine learning.

Parametric vehicle design and control can be modeled as
an optimization problem to minimize battery energy consump-
tion integrated over time by varying the motor torque output as a
time-dependent quantity and gear ratio as a static quantity. Static
design problem can be formulated as a continuous nonlinear op-
timization problem and solved using existing methods. Control
methods require a system of differential equations to model the
relationships between system states and actions. Due to problem
simplicity in EcoRacer, a model with a state variable correspond-
ing to the vehicle position and an action variable for the motor
torque is sufficient to capture the system dynamics. Including
the constraints on the motor torque and speed, existing methods
commonly used in vehicle control, such as dynamic program-
ming [27] and Pontryagin’s minimum principle [28] can be ap-
plied for automated decisions.

As an alternative to the control theory, machine learning re-
lies on finding network relationships between a discretized rep-
resentation of the variables (states and actions) as opposed to
a system of differential equations. Methods such as reinforce-
ment learning use game play data to train the parameters of a
policy or a network governing the actions based on the system
state [29]. Existing implementations of reinforcement learning
can play classic Atari games [30]; however, these methods re-
quire a large amount of game play data created by testing the
trained policy on the game platform.

5.3 Strategic Design Decisions
The dynamic design problem in EcoRacer currently contains

only operational decisions due to the scope of the original work.
As mentioned in [25] many of the players quit after a few plays,
possibly because the game was difficult or non-intuitive. Adding
decisions on a strategic timescale may put the operational deci-
sions into new contexts and help improve the gameplay experi-
ence. Potential extensions with strategic decisions also lead to
new research questions with a broader perspective.

One possible extension could be adding a fleet-level prob-
lem for a car sharing system from a business perspective. Prior
work in [31] addresses the design of autonomous car sharing sys-
tem design problem that includes static design decisions from
vehicle powertrain design, charging system locations, and op-
erational decisions from fleet assignment problems using sys-
tem coordination and design optimization methods. These ap-
proaches might be intractable when the size of each subprob-
lem increase or when strategic decisions are included. A game-
based approach can help to leverage human intuition on complex
system design problems where new strategic decisions includ-
ing managing investments under future uncertainty, finding the

optimal fleet mix, architectural design decisions for a variety of
vehicles in the fleet can be analyzed. In that context, the oper-
ational decisions such fleet management can be used as tools to
improve player engagement but optionally be automated using
the research in design optimization to reduce the cognitive load.

Another layer of analysis could include a real-time competi-
tive decision-making against an intelligent opponent. In the con-
text of car sharing system, the same strategic decisions must be
made in a different way when there is a common customer base
with a competitor. Earlier work in vehicle design have stud-
ied competitive market systems [32, 33]. While methods such
as game-theory can be used to model equilibrium scenarios un-
der rational decision-making, online video games allow includ-
ing human factors to model more realistic strategic decisions.

6 DISCUSSION
6.1 Key Insights from Orbital Federates

The original tabletop variant of Orbital Federates served
as an effective medium to engage players but was too time-
consuming to collect data for quantitative analysis of players’
design decisions. The MILP optimization model facilitates anal-
ysis of collective strategies by automating operational data rout-
ing decisions; however, results have only been used within an
analytic frame without human participation. The strategic design
activity of choosing a collective strategy does not include any
of the engaging activities of selecting static designs or operating
them in a simulated space system. Key areas of future work may
augment human interaction with a digital version of Orbital Fed-
erates to automate some operational decisions while retaining au-
thority over strategic decisions including capacity expansion and
collective action.

6.2 Key Insights from EcoRacer
EcoRacer provides an online platform that can potentially

reach a large number of players. Operational decisions in Eco-
Racer provide a useful medium to study how human input can
help the search with computational methods since the original
problem can be formulated as an optimization problem with well
defined objectives and design variables. On the other hand, the
game suffers from maintaining long-term engagement for the
majority of players due to lack of consideration of human fac-
tors in the game design. This outcome can partly be attributed
to the lack of strategic decision-making in the game. The current
implementation with only operational decisions provides a single
context which penalizes failures severely. Adding strategic deci-
sions can keep the players engaged longer by providing multiple
contexts. In that case, failures at the operational timescale can
be more tolerable which makes the game play more entertaining
for new users. Also, a strategic timescale creates new research
opportunities useful for a larger community of researchers. Con-
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sidering the cognitive load of the players, a strategic design anal-
ysis can benefit from automating operational decisions using ap-
proaches from control theory and machine learning.

6.3 Cross-case Comparison
Orbital Federates and EcoRacer present two examples of

engineering design games with different decision-making objec-
tives but similar challenges regarding automation and entertain-
ment. Differentiating between operational and strategic design
decisions helps to identify which portions of game play may
benefit from automation contributing to a balance between short-
term and long-term entertainment.

Orbital Federates initially targeted strategic design issues
but suffers from slow operational decisions and long design cy-
cles. Automating portions would help to abstract operational de-
cisions and allow players to focus on strategic issues while re-
taining entertainment. EcoRacer targets operational design deci-
sions but suffers from repetitive game play and lack of long-term
engagement. Automating portions of EcoRacer may reduce repe-
tition but will also require adding strategic design issues to retain
entertainment over longer periods.

7 CONCLUSION
This paper highlights fundamental differences between op-

erational and strategic decisions in the context of engineering de-
sign and, specifically, games as interactive models. Both levels
of decision-making are essential components to study engineer-
ing systems; however, they are not equal. Operational decisions
execute functional behaviors to achieve short-term objectives un-
der well-characterized conditions. Strategic decisions adapt the
system architecture in response to contextual changes.

While strategic games may automate operational decisions
to focus human effort on strategic design issues, there is good
reason to consider some level of operational decision-making.
Operational decision-making may improve short-term partici-
pant engagement by providing a “fun” activity. Over a longer
term, operational decisions become more routine and strategic
decision-making retains participant interest. Early automation of
operational decisions may prevent participants from engaging in
a design problem by losing sight of the operational context.

This paper leads to several interesting questions to be an-
swered with further research using human subjects. This paper
mainly discusses engineering design games from a technical per-
spective with a focus on classifying the types of decisions, but
a discussion on human factors is left to a future study. Triadic
game design highlights play, meaning, and reality as three impor-
tant dimensions to consider when developing engineering design
games. However, more prescriptive approaches on how to in-
corporate these three dimensions in different engineering system
design problems are still missing. For instance, the amount of

automation to incorporate into game design to balance cognitive
load and entertainment is an important element to be addressed
for future research. Also, determining how much variation ex-
ists among game players in terms of their preferences and how
much of the problem context impacts the outcomes are impor-
tant research directions for future work. Addressing these issues
could help the researchers to develop games for their own pur-
poses while achieving a good balance between strategic and op-
erational timescales. Existing literature on entertainment game
design and human factors including situation awareness could
potentially influence this line of research.

Additional work is also required to formalize normative
models of design as search or optimization problems as intro-
duced in this paper. Differentiating between operational and
strategic levels of design and incorporating multi-actor value
functions adds complexity. In particular, combining compu-
tational methods with human input for operational and strate-
gic decision-making in engineering design remains another open
question for future research. While optimization methods can
serve as a platform that can benefit from human inputs in the
operational decision-making, the nature of strategic decisions
makes it challenging and sometimes does not allow formulating
optimization problems with well-defined objectives and design
variables. A potential approach for future research could use hu-
man decision-making skills as a platform that can be supported
by optimization methods.
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