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Abstract 

Feature-driven topology optimization has been extensively studied in the past decade, and the majority of 
the works have treated it as the multi-component/void layout optimization problem. A major limitation of 
this treatment is that the number of components/voids should be defined in advance. To overcome this 
limitation, this paper presents a novel void feature control method, through which the specified void 
feature (in any geometric form) could be well-contained by each interior void in the finalized topology 
design, regardless of the quantity. Numerical stability of this method is discussed and an auxiliary 
algorithm has been developed to enhance it. Other than that, the proposed method also serves the purpose 
of void length scale control, which is also a hot issue in the topology optimization field. To be specific, by 
tailoring the specified void feature size, the void length scale is guaranteed to be larger than that. To the 
authors’ knowledge, the void length scale control was rarely studied under the level set framework. 
Through a few numerical case studies, it is proven that the void feature control method is effective while 
only limited compromise of the structural performance has been observed.  
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1. Introduction 

Topology optimization has been actively investigated in the past few decades. So far, the SIMP (Solid 
Isotropic Material with Penalization) [1,2], ESO (Evolutionary Structural Optimization) [3], and level set 
[4,5] are the main topology optimization methods. These methods all have their unique characteristics and 
at the same time, are tightly associated. A broad range of design problems governed by different physical 
disciplines have been solved through these methods, i.e. solid mechanics [1,3–6], fluid dynamics [7–10], 
and thermal dynamics [1,11–14], etc. A few comprehensive literature surveys can be found in [15–20]. 

On the other hand, topology optimization is still not fully developed in several aspects, which include the 
feature-driven topology optimization and length scale control issue and will be highlighted in this work.  

Feature-driven topology optimization is motivated by the need that engineering features are commonly-
used design elements, which occasionally are forced to be preserved during freeform topology 
optimization process [21–23]. Hence, feature-driven topology optimization, so far, has mainly been 
treated as a multi-component/void layout optimization problem, where the components/voids only have 
DoF (degrees of freedom) of movement, rotation, and scaling. A major limitation is that the 
component/void feature quantity is pre-determined but cannot be dynamically changed during solution of 
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the optimization problem. In some other works [24,25], approaches have been developed to create void 
features to replace freeform topological changes. Even though they are not mature enough, these methods 
have the potential to facilitate post-treatment of CAD modeling and editing, and at the same time, 
enhance the manufacturability.  

Length scale control is more tightly related to design for manufacturability issues [18,26]. As well known, 
small voids are non-manufacturable because of the cutting tool access difficulty, and small components 
have the risk of breakage during the machining process. Even for additive manufacturing process, voids 
and components that are too small are non-preferable design features given the poor build quality and 
possible failures. The length scale control issue has been extensively tackled based on both SIMP [27–36] 
and level set [37–43] methods. In this work, we have the specific interest in the level set method, and thus, 
the length scale control techniques under the level set framework are highlighted. From the authors’ 
perspective, level set method has its unique characteristic in length scale control, because of the signed 
distance information, which makes it trivial to timely evaluate the length scales. Therefore, we have 
witnessed a series of works producing strip-like topology design solutions with well constrained length 
scales [37–39,42,44]. On the other hand, the void length scale control has rarely been implemented based 
on the level set method, except the authors’ recent work [43].  

In summary, both feature-driven topology optimization and length scale control have been extensively 
studied, but there is still room for further development. Hence, we contribute a novel void feature control 
method, which can be utilized to control the length scale of void. To be specific, constraints have been 
developed to realize the void feature control, which realizes the effect that the specific void feature (in 
any geometric form) is well-contained by each of the interior voids in the final topological design. An 
auxiliary algorithm has been developed based on our previous work [43] to enhance the numerical 
implementation stability. This method characterizes in the aspect that, the quantity and positions of the 
void features are not required to be pre-specified, while this information of the void features is tightly 
bonded to the topology evolution history and determined by the finalized topology structure. At the same 
time, the void length scale is constrained to be larger than that of the selected void feature size. More 
details will be presented in the later sections.  

 

2. Literature survey 

2.1 Feature-driven topology optimization 

Feature control in topology optimization originates from the perimeter control, where the number and 
shape of the void features are significantly influenced by the assigned perimeter upper limit; and the 
specific perimeter control methods have been developed under different topology optimization 
frameworks, e.g., [45] for density method, [4] for level set method, and [46,47] for phase field method. 
Constraining the perimeter indirectly reduces the number of void features remaining in the topology 
optimization result and vanishes the high-curvature areas; and its concept contributed to the further 
development of TO technology.  

On the other hand, the geometric feature, e.g. moving components, is not directly involved if only 
considering perimeter control. Hence, later, topology optimization involving specific geometric feature 
control are focused and several effective methods have been developed. 
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Under the SIMP framework, early efforts mainly focused on concurrent multi-component layout and 
support structure optimization [21,23], which optimized the components’ positions through parametric 
sensitivity analysis and support structure through SIMP method. The multi-component overlap was 
prevented through the so-called finite circle method [23]. However, this approach has the limitation that 
the component-support interface areas were repeatedly re-meshed because of the moving components. To 
fix this issue, improvements were made in their later works [48,49] and [50], by adopting the level set 
based component representation and the X-FEM which altogether eliminates the repeated re-meshing. 
Recently, several modified non-overlap constraints have been developed, including the modified finite 
circle method through KS function-based constraint aggregation [51], the structural skeleton-based 
constraint [52], and the virtual boundary offset-based constraint [53].  

In some recent works under the SIMP framework, Almeida et al. [54] proposed the inverse projection 
scheme to control the length scale of the voids (containing a circular void feature in prescribed size). Ha 
et al. [55] and Guest [56] developed a Heaviside projection based component layout design method which 
enabled the creation of small components and realized the non-overlap control. Recently, Norato et al. [57] 
inherited the idea from [58] by filling the design domain completely with components. A geometry 
projection method was developed to optimize the component feature parameters. 

Feature-driven topology optimization under the level set framework can trace back to [25,59,60]. They 
used parametric level set functions to represent the void features, which were combined through R-
functions to form complex CSG (Constructive Solid Geometry) models. Parametric sensitivity analysis 
was performed to update the void features. Gopalakrishn and Suresh [61] developed the feature-specific 
topological derivative algorithm to introduce both internal and boundary features into the 2D design 
domain. Zhou and Wang [62] manipulated the geometric features in a different way that, boundary 
velocity fields of the geometric features were regulated via least squares fitting to reserve the shape 
characteristics; by doing so, they realized the concurrent feature control and freeform support structure 
design. This least squares fitting idea was inherited by [24] to generate void features through a boundary-
based approach, where the finalized topology design can be physically produced through 2.5D machining. 
Recently, Guo et al. [58] and Zhang et al. [63] conducted topology optimization based on the Moving 
Morphable Components (MMC). The pre-specified MMCs were optimized of the DoF including 
movement, rotation, and scaling, which finally produces the pure component feature-based design 
solution. Later, this method was extended to cover curved components [64]. Zhou [65] modified the 
method by enabling the complex mechanical parts as the moving components. 

In summary, the feature-driven topology optimization is still immature, especially given that quantity of 
the components/void features has to be pre-determined and dynamic change during the optimization 
process is near impossible. Hence, the void feature control method proposed in this work addresses this 
issue. 

2.2 Length scale control 

Under the SIMP framework, Poulsen [30] developed the local integral constraints to address the 
minimum length scale control of both the component and void phases, which principally checked the 
monotonic density variations. Guest et al. [29] developed a circular density filter, which coupled with the 
Heaviside function, realized the minimum component length scale control. Later, in order to realize the 
length scale control of both the component and void phases, a modified double Heaviside projection was 
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developed [27]. Sigmund [33] developed a series of morphology-based density filters which realized both 
the single-phase and double-phase minimum length scale controls. However, as mentioned in the same 
paper, the sensitivity analysis of the double-phase minimum length scale control is too costly, which is 
even compatible to the finite element analysis (FEA). Based on the erode and dilate operations, a robust 
topology optimization method [31,32,34] was developed, in which multiple design realizations were 
evaluated while the worst case was optimized. The double-phase minimum length scale control can be 
achieved in case that the multiple realizations keep a consistent topology [31,34,36]. A limitation of this 
method is that multiple FEAs are performed in each optimization loop.  

Other than the minimum length scale control, Guest et al. [28] realized the maximum component length 
scale control by restricting any circular areas in diameter of the maximum length scale not fully filled. 
Zhang et al. [35] realized the simultaneous maximum and minimum component length scale control 
through the structural skeleton based constraints.  

Level set method is also effective in length scale control, especially given the signed distance information, 
which greatly facilitates the length scale measure and control. Chen et al. [38] and Luo et al. [41] 
employed a quadratic energy functional as part of the objective function, which successfully realized the 
strip-like topology design with controlled thickness. Liu et al. [40] developed a simplified thickness 
control functional to realize the close-to-uniform rib thickness distribution. Guo et al. [39] realized the 
concurrent maximum and minimum component length control through the structural skeleton based 
constraints which is similar to the algorithm in [35] in principle. The signed distance information 
facilitated the narrow-band structural skeleton extraction and related global constraints were constructed 
to restrict the component length scales. Xia and Shi [42] modified the structural skeleton based method. 
The trimmed structural skeleton and the concept of maximal inscribable ball were employed to evaluate 
the length scale. Discrete point-based structural skeleton was extracted instead of a narrow band which 
facilitated the distance evaluation from skeleton. In this way, the length scale constraints were directly 
applied to the structural boundary points. Allaire et al. [37] explored the length scale control in depth 
under different schemes of maximum length scale only, minimum length scale only, and simultaneous 
control. Wang et al. [44] realized the component length scale control through proposing and addressing 
the contour-offset based constraints. Very recently, Liu et al. [43] proposed the minimum void length 
scale control method which constrained the void length scales by double lower bounds, so that the 
topology design can be milled by a rough-to-finish process. To the best of the authors’ knowledge, this is 
the only work conducted so far to control the void length scale under the level set framework.  

Literature surveys about the length scale control can be found in [18,26]. 

In summary, a variety of length scale control methods have been developed subject to different length 
scale control scenarios. Under the level set framework, focuses have only been put on the component 
length scale control, while the void length scale control was rarely explored, except the authors’ recent 
work [43]. Therefore, the void feature control method developed in this paper serves the purpose of void 
length scale control, by forcing the interior voids containing the specific void features. 
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3. Void feature control 

The purpose of void feature control is to guarantee that each of the interior voids in the finalized topology 
design contains a pre-specified void feature. An instance is demonstrated in Fig. 1, where each interior 
void contains a circular void feature. It is worth noticing that, only the interior voids are controlled but not 
the boundary voids.  

 

Figure 1. L-bracket design subjected to the circular void feature control 

To realize the void feature control, related technical details will be presented in the rest of this section. 

3.1 Level set representation of the void features 

Level set function, Φሺࢄሻ:	ܴ௡ 	⟼ ܴ, represents any structure in the implicit form, as: 

ቐ
Φሺࢄሻ ൐ 	ࢄ			,0 ∈ 	Ω/ ∂Ω
Φሺࢄሻ ൌ 	ࢄ			,0 ∈ 	 ∂Ω						
Φሺࢄሻ ൏ 	ࢄ			,0 ∈ 			Ω/ܦ	

 (1) 

where Ω represents the material domain, ܦ indicates the entire design domain, and thus ܦ/Ω represents 
the void.  

First, individual void features can be represented by parametric level set functions. For instance, a circular 
void feature can be modeled by: 

Φ௙ሺࢄሻ ൌ ݔሺሺݐݎݍݏ െ ଴ሻଶݔ ൅ ሺݕ െ ଴ሻଶሻݕ െ ܴ௖ (2) 

and a square void feature by: 

Φ௙ሺࢄሻ ൌ െ݉݅݊	ሼ
	௦ܪ
2
െ ሺݔ െ ,଴ሻݔ

௦ܪ
2
൅ ሺݔ െ ,଴ሻݔ

௦ܪ
2
െ ሺݕ െ ,଴ሻݕ

௦ܪ
2
൅ ሺݕ െ  ଴ሻሽ (3)ݕ

in which (ݔ଴,  ௦ is the squareܪ ଴) is the feature primitive center coordinates; ܴ௖ is the circle radius andݕ
length.  

3.2 Constraint for the void feature control 
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Figure 2. Violation of the void feature control 

Figure 2 demonstrates an example of the void feature control violation, where we can see that the circle 
on the right-side intersects the structural boundary. This means that this circular void feature is not well 
contained by the related interior void. In order to prevent this type of violation, the void feature control 
constraint is developed; see Eq. (4), and later will be embedded into the optimization problem formulation.  

෍න ሻቁࢄቀെΦ௙೔ሺܪ ∗ ሻ൯݀Ωࢄ൫Φሺܪ
஽

௡

௜ୀଵ

൑ 0 (4) 

where ݊ represents the number of interior voids, and ܪሺ ሻ is the Heaviside function which is applied to 
realize the domain integration. 

3.3 Identification of the interior voids 

In order to properly apply the constraints, it is critical to properly identify interior voids during the 
optimization process. The identified ݊ value is going to change dynamically as the topology evolves.  

Generally, the level set field satisfies the signed distance regulation through the solution of Eq. (5), 
through which the absolute level set value at any point represents its shortest distance to the structural 
boundary and the sign indicates the point to be either solid (൐ 0), or void (൏ 0).  

|ሻࢄΦሺ׏| ൌ 1 (5) 

Referring to the signed distance information, the peak point concept is proposed. To be specific, we 
define the ith interior void as Ω௩௜  and its boundary as ∂Ω௩௜ . Peak point of the ith interior void is 

represented by ܲ௩௜ , which is defined as: ൛ࢄ ൌ ൯ࢄሺܲ௩௜ሻ|Φ൫ࢄ ൏ Φሺࢄሻ, ࢄ	ݕ݊ܽ	ݎ݋݂ ∈ Ω௩௜ൟ . The jth 

boundary void is represented by Ω௕௩௝ and its boundary by ∂Ω௕௩௝. Peak point of the jth boundary void is 

represented by ܲ௕௩௜, which is defined as: ൛ࢄ ൌ ൯ࢄሺܲ௕௩௝ሻ|Φ൫ࢄ ൏ Φሺࢄሻ, ࢄ	ݕ݊ܽ	ݎ݋݂ ∈ Ω௕௩௝ൟ. 

Noted that the signed distance regulation |׏Φሺࢄሻ| ൌ 1 is not true for points that are equidistant from at 
least two points on the interface. Therefore, |׏Φሺࢄሻ| ൌ 1  does not hold at the peak point. This is 
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commonly the case in level set topology optimization because only the signed distance information within 
a narrow band around the interface is used for design update. 

The quick two-dimensional search is conducted and the peak points should satisfy the constraints in Eq. 
(6).  

ە
۔

ۓ
Φ௞,௟ െ Φ௞ିଵ,௟ ൑ 0
Φ௞,௟ െ Φ௞ାଵ,௟ ൑ 0
Φ௞,௟ െ Φ௞,௟ିଵ ൑ 0
Φ௞,௟ െ Φ௞,௟ାଵ ൑ 0

 (6) 

Two situations may be encountered: The peak point ܲ௩௜ is located inside the design domain or at the 
boundary. Only the former indicates the peak point of an interior void, while the latter means the peak 
point of a boundary void, which will not be further processed.  

Note that the voids are identified through finding the peak points, and at the same time, the boundary 
voids are filtered by analyzing the peak point positions. In addition, the peak point concept also facilitates 
the spatial position search of the candidate void features; see the later Eq. (7), and will be used by the 
auxiliary algorithm; see the later Section 6.   

3.4 Identification of the void feature parameters 

So far, both the void feature control constraint and interior voids have been identified. In order to properly 
apply the constraints to each of the identified interior voids, parameters of each void feature should be 
decided as well, by referring to Eq. (4). This can be fulfilled by solving the simple optimization problem 
as presented in Eq. (7):   

 ݀݅݋ݒ	ݎ݋݅ݎ݁ݐ݊݅	௧௛݅	݄݁ݐ	ݎ݋݂

,ݔሺ	݊݋݅ݐ݅ݏ݋݌	ݎ݁ݐ݊݁ܿ	݄݁ݐ	݂݀݊݅  	,݁ݎݑݐ݂ܽ݁	݀݅݋ݒ	݀݁݀ݑ݈ܿ݊݅	݄݁ݐ	݂݋	ሻߠሺ݊݋݅ݐܽݐ݊݁݅ݎ݋	݀݊ܽ	ሻݕ

 :ݏ݂݁݅ݏ݅ݐܽݏ	݄݄ܿ݅ݓ

݉݅݊.			 න ܪ ቀെΦ௙೔ሺࢄሻቁ ∗ ሻ൯݀Ωࢄ൫Φሺܪ
஽

 

(7) 

The principle of Eq. (7) is to find the location and orientation of the included void feature, which to the 
lowest degree affects the structural mechanical performance. Besides, sizing parameters of the void 
feature is not treated as optimization variables. It is also worth noticing that, the search starts by 
overlapping the feature center position with the related peak point, in order to make the search process 
robust.  
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4. Optimization problem and its solution 

A typical compliance minimization topology optimization problem subject to the void feature control is 
formulated in Eq. (8). The structural compliance is to be minimized subject to the material volume 
fraction constraint. 

ሺ࢛,Φሻܬ							.݊݅ܯ ൌ 	න
1
2
ሺΦሻ݀Ωܪሺ࢛ሻࢋሺ࢛ሻࢋࡰ

஽
 

.ݏ ,ሺ࢛ܽ						.ݐ ࢜,Φሻ ൌ ݈ሺ࢜,Φሻ, ∀࢜ ∈ ܷ௔ௗ 

න ሺΦሻ݀Ωܪ
஽

൑ ௠ܸ௔௫ 

෍න			:4	݁݊݅ܮ ܪ ቀെΦ௙೔ሺࢄሻቁ ∗ ሻ൯݀Ωࢄ൫Φሺܪ
஽

௡

௜ୀଵ

൏ 0 

ܽሺ࢛, ࢜,Φሻ ൌ 	න ሺΦሻ݀Ωܪሺ࢜ሻࢋሺ࢛ሻࢋࡰ
஽

 

݈ሺ࢜,Φሻ ൌ න ሺΦሻ݀Ωܪ࢜࢖ ൅ න Φ|݀Ωߘ|ሺΦሻߜ࢜࣎
஽஽

 

(8) 

in which ܽሺ࢛, ࢜,Φሻ is the energy bilinear form and ݈ሺ࢜, Φሻ is the load linear form; ࢛ is the deformation 

vector, ࢜  is the test vector, and ܷ௔ௗ ൌ ሼ࢜ ∈ ࢜|ଵሺΩሻௗܪ ൌ Γ஽ሽ	݊݋	0  is the space of kinematically 
admissible displacement field; ࡰ	is the elasticity tensor and ࢋሺ࢛ሻ is the strain. ௠ܸ௔௫ is the upper bound of 
the material volume. ߜሺ ሻ is Dirac Delta function, which is applied to realize the boundary integration. It 
is worth noticing that, line 1-3 and line 5-6 together form the typical compliance minimization problem 
under the level set framework. For more details, interested readers can refer to [5,38,66].  

Other than that, line 4 is the newly propose void feature control constraints, which has been discussed in 
the last section.  

About solution of this problem, the Augmented Lagrange Multiplier method is employed and the adjoint 
sensitivity analysis is performed. Typically, if only the compliance-minimization problem is considered 
but not the void feature control, the sensitivity result is well known as presented in Eq. (9) [5].  

ᇱܮ ൌ න ሺΦሻߜܴ ௡ܸ|ߘΦ|݀Ω
஽

 

ܴ ൌ െࢋࡰሺ࢛ሻࢋሺ࢛ሻ ൅  ߣ

௡ܸ ൌ െܴ 

(9) 

where ߣ is the Lagrange multiplier for the material volume fraction constraint.  

If the void feature control constraint is considered simultaneously, the sensitivity result becomes: 
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ᇱܮ ൌ න ሺΦሻߜܴ ௡ܸ|ߘΦ|݀Ω
஽

 

ܴ ൌ െࢋࡰሺ࢛ሻࢋሺ࢛ሻ ൅ ߣ ൅ ሻቁࢄቀെΦ௙೔ሺܪ෍ߣ

௡

௜ୀଵ

 

௡ܸ ൌ െܴ 

(10) 

It is worth noticing that, Φ௙೔ሺࢄሻ has been identified through solving Eq. (7). Hence, the void feature 
parameters would not be treated as variables when solving the optimization problem. 

Based on the sensitivity result, the Hamilton-Jacobi equation is solved through the finite difference 
upwind scheme [67] to update the level set function. 

In summary, the work flow to solve the optimization problem is presented below: 

Step 1: Initialize the problem setup; 

Step 2: Perform finite element analysis to calculate the state variables; 

Step 3: Identify the quantity and peak point positions of the interior voids by solving Eq. (6), and 
determine the position and orientation of the void features by solving Eq. (7); 

Step 4: Calculate the sensitivity result for design update; 

Step 5: Check convergence. If yes, end the optimization process; if not, update the level set function and 
repeat Step 2-5.  

 

5. Numerical Examples 

In this section, a few numerical examples will be studied to prove the effectiveness of the proposed void 
feature control method. 

For all the numerical examples, the finite element analysis (FEA) is performed based on the fixed 
quadrilateral mesh and the artificial weak material is employed for voids in order to avoid the stiffness 
matrix singularity, which is: 

௩ࡰ ൌ 10ିଷ(11) ࡰ 

where ࡰ௩ is the elasticity tensor of the void. 

The volume constraint is addressed by the Augmented Lagrange multiplier, as presented in Eq. (12). 

௞ାଵߣ ൌ ௞ߣ ൅ ௞ሺනߤ ߗሺΦሻ݀ܪ
஽

െ ௠ܸ௔௫ሻ 

௞ାଵߤ ൌ 0	݁ݎ݄݁ݓ		௞ߤߙ ൏ ߙ ൏ 1 

(12) 

where ߤ is the penalization factor and ߙ is its adjustment parameter. 
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5.1 Michell structure problem 

First, the Michell structure problem is studied. The boundary condition is shown in Fig. 3, where the two 
bottom corners are fixed and a unit force is loaded at the bottom center. The objective is to minimize the 
structural compliance under the maximum material volume fraction of 0.3. The solid material employs the 
Young’s Modulus of 1.3 and the Poisson’s ratio of 0.4 by assumption.  

Different types of void features are involved in the numerical examples. Figure 4 demonstrates the 
optimization results with the different-sized circular void features; Figure 5 shows the optimization results 
with the different-sized square void features with only the freedom of movement; and Figure 6 presents 
the optimization results with the different-sized rectangle void features with DoF of both movement and 
rotation. The optimization result without void feature control is demonstrated in Fig. 7.  

In summary of these numerical examples, it is observed that, (i) the void features are well contained by 
the void areas, regardless of the specified feature type; and (ii) the design optimality is sacrificed by 
imposing the void feature control, and generally, a larger void feature would cause more optimality loss.  

 

Figure 3. The Michell structure problem (100*50) 
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Figure 4. Optimization results with the different-sized circule void features (a) Circular void feature of 
R=9 (compliance = 8.93); (b) Circular void feature of R=11 (compliance = 9.37); (c) Circular void feature 

of R=13 (compliance = 10.22) 

 



12 
 

Figure 5. Optimization results with the different-sized square void features (a) Square void feature of 
L=18 (compliance = 9.25); (b) Square void feature of L=22 (compliance = 10.28); (c) Square void feature 

of L=26 (compliance = 11.45) 

 

Figure 6. Optimization results with the different-sized rectangle void features (a) Rectangle void feature 
of L=18 and H=8 (compliance = 8.96); (b) Rectangle void feature of L=22 and H=10 (compliance = 9.03); 

(c) Rectangle void feature of L=26 and H=12 (compliance = 9.42); (d) Convergence history of the 
objective function and material volume fraction for (c); (e) Convergence history of the “line 4 constraint” 

for (c) 
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Figure 7. Optimization result without void feature control (compliance = 8.77) 

 

5.2 L-bracket problem 

The boundary condition of the L-bracket problem is shown in Fig. 8. The objective is still to minimize the 
structural compliance subjected to the maximum material volume fraction of 0.4. The solid material 
employs the Young’s Modulus of 1.3 and Poisson ratio of 0.4.  

Two types of void features are studied in the numerical examples. Figure 9 demonstrates the optimization 
results with the different-sized circular void features; Figure 10 shows the optimization results with the 
different-sized rectangle void features with DoF of both movement and rotation. Through the numerical 
studies, similar conclusions can be drawn as compared to the Michell structure example. It is worth 
noticing that, occasionally, minor violations can be found in the numerical examples, because the 
staggered boundary contour is smoothed.  

 

Figure 8. The L-bracket structure problem (80*80) 
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Figure 9. Optimization results with the different-sized circular void features (a) Circular void feature of 
R=7 (compliance = 71.00); (b) Circular void feature of R=8 (compliance = 71.39) 

 

Figure 10. Optimization results with the different-sized rectangular void features (a) Rectangular void 
feature of L=14 and H=6 (compliance = 70.11); (b) Rectangular void feature of L=18 and H=8 

(compliance = 70.26) 

On the other hand, given the rectangle void feature control, numerical instability appears when we further 
increase the feature size. See Fig. 11 for an example. This problem arises in the case that, the candidate 
void feature size is much larger than the related interior void area, which causes the void feature 
simultaneously occupying two disconnected void areas. In such a situation, the solid area connecting the 
two separate voids will shrink while the void feature control constraint can never be satisfied.  

A solution has been proposed to address this issue, which is demonstrated in the next section. 
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Figure 11. An example which fails of convergence (L=22 and H=10) 

 

6. The modified problem formulation and solution 

To address the stability issue, an auxiliary step is recommended before applying the void feature control 
constraints, and the optimization problem is expanded into two consecutive sub-problems.  

Specifically, the auxiliary step is conducted to enlarge the void areas, and as discussed in the last section, 
the stability issue can be addressed if the void areas are sufficiently large as compared to the specified 
void feature size.  

6.1 The auxiliary algorithm 

The auxiliary algorithm is formulated below: 

ሺ࢛,Φሻܬ							.݊݅ܯ ൌ 	න
1
2
ሺΦሻ݀Ωܪሺ࢛ሻࢋሺ࢛ሻࢋࡰ

஽
 

.ݏ ,ሺ࢛ܽ						.ݐ ࢜,Φሻ ൌ ݈ሺ࢜,Φሻ, ∀࢜ ∈ ܷ௔ௗ 

න ሺΦሻ݀Ωܪ
஽

൑ ௠ܸ௔௫ 

Φሺܲ௩௜ሻ			:4	݁݊݅ܮ ൑ െܭଵ, ݅ ൌ 1,2, … , ݊ 

ܽሺ࢛, ࢜,Φሻ ൌ 	න ሺΦሻ݀Ωܪሺ࢜ሻࢋሺ࢛ሻࢋࡰ
஽

 

݈ሺ࢜,Φሻ ൌ න ሺΦሻ݀Ωܪ࢜࢖ ൅ න Φ|݀Ω׏|ሺΦሻߜ࢜࣎
஽஽

 

(13) 

In this problem formulation, the line 4 is newly added as compared to the conventional compliance 
minimization problem. It constrains the level set value at the peak point smaller than the threshold value. 
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The peak point identification was earlier introduced in sub-section 3.3. If the peak point level set value is 
smaller than െܭଵ , a circle of radius ܭଵ  (positive) can be well contained by the related interior void. 
Therefore, by properly setting the ܭଵ  value, the interior void area is enlarged to ensure the stable 
convergence of the following void feature-constrained optimization problem.  

About solution of this constraint, it is not directly solvable because the derived sensitivity result is a local 
velocity located at the peak point inside the void, which cannot be utilized to update the zero-value level 
set contour. Therefore, we switch it into another approximated form as demonstrated in Eq. (14). 

௡ܸሺࢄሻ ൌ െߣ௜, ࢄ ∈ ߲Ω௩௜ 

௜ߣ
௞ାଵ ൌ max	ሺߣ௜

௞ ൅
1
௜ߤ
ሺΦሺܲ௩௜ሻ ൅ ,ଵሻܭ 0ሻ 

(14) 

By utilizing Eq. (14), the entire boundary of the constraint-violating void will uniformly expand. It has 
been numerically proven in our recent publication [43] that, this approximated solution could effectively 
enlarge the void areas while not evidently affect the proper convergence. 

To implement Eq. (14), the main job is to identify the mapping relationship between the peak points and 
the related boundary points, because the peak point and the boundary points belonging to the same void 
should be clustered to facilitate the later sensitivity analysis. The distance could be a direct measure, 
because in general, the boundary point and its closest peak point belong to the same void. However, 
directly applying the distance measure would cause mapping errors; see Fig. 12. The green-color point at 
the boundary is closer to the peak point of the left void but in fact, it belongs to the structural boundary of 
right void. Therefore, mapping based on the simple distance measure is not always reliable. 

 

Figure 12. Incorrect mapping based on the distance standard [43] 

To fix this problem, a directional distance measure is proposed, as demonstrated in Eq. (7). 

 ࢄ	ݐ݊݅݋݌	ݕݎܽ݀݊ݑ݋ܾ	ݕ݊ܽ	ݎ݋݂

,௩௜ܲ	ݐ݊݅݋݌	݇ܽ݁݌	݄݁ݐ	݂݀݊݅  :ݏ݂݁݅ݏ݅ݐܽݏ	݄݄ܿ݅ݓ

݉݅݊.			݂ ∙ หࢄሺܲ௩௜ሻ െ ݅			,หࢄ ൌ 1,2… 

ቊ
݂ ൌ 1,			݂݅	൫ࢄሺܲ௩௜ሻ െ ൯ࢄ ∙ ൯ࢄ൫࢔ ൐ 0

݂ ൌ ൅∝ ,			݂݅	൫ࢄሺܲ௩௜ሻ െ ൯ࢄ ∙ ൯ࢄ൫࢔ ൑ 0
 

(15) 
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Through Eq. (15), a correct mapping can be established in the case that the voids do not employ very 
irregular shapes. In addition, a small batch of mis-mapping would not affect the overall convergence. 

So far, the auxiliary algorithm has been fully explained, and numerical examples will be studied to show 
its effectiveness. 

6.2. Numerical examples 

The L-bracket problem is further studied with the enhanced algorithm. The optimization results are 
demonstrated in Fig. 13. 

 

Figure 13. The modified optimization result subjected to the rectangle void feature control of size L=22 
and H=10 (compliance = 72.35) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 9.5); (b) The 

final optimization result; (c) The overall convergence history 
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Then, the cantilever structure problem is studied subjected to the cross void feature control. As shown in 
Fig. 14, the left side edge is fixed and a vertical unit force is loaded at the middle of the right edge. The 
objective is to minimize the structural compliance under the maximum material volume fraction of 0.5. 
The same material properties used by the previous examples are employed.  

 

Figure 14. The cantilever structure problem (100*50) 

The intermediate and final optimization results subjected to different cross void feature sizes are 
demonstrated in Fig. (15-17). It is interesting to find out that, the optimized results do not keep a 
consistent topology structure, and the primary topology structure (see Fig. 15) could be changed either 
during the auxiliary optimization process (see Fig. 16), or during the void feature constrained 
optimization process (see Fig. 17). 
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Figure 15. The optimization result subjected to the cross void feature control of size L=10 and H=4 for 
each rectangle bar (compliance = 49.41) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 5); (b) 

The final optimization result; (c) The overall convergence history 
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Figure 16. The optimization result subjected to the cross void feature control of size L=14 and H=6 for 
each rectangle bar (compliance = 51.40) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 6); (b) 

The final optimization result; (c) The overall convergence history 
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Figure 17. The optimization result subjected to the cross void feature control of size L=18 and H=8 for 
each rectangle bar (compliance = 61.96) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 7); (b) 

The final optimization result; (c) The overall convergence history 

The last example is the MBB structure problem. As shown in Fig. 18, the two bottom corners are 
vertically fixed and a vertical unit force is loaded at the middle of the top edge. The objective is to 
minimize the structural compliance under the maximum material volume fraction of 0.5. The same 
material properties used by the earlier examples are employed.  
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Figure 18. The MBB structure problem (240*40) 

The intermediate and final optimization results subjected to different cross void feature sizes are shown in 
Fig. (19-20). And the intermediate and final optimization results subjected to different T-shaped void 
feature sizes are demonstrated in Fig. (21-22). It is worth noticing that, only the left half of the MBB 
structure is demonstrated in the results because of the symmetry. 
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Figure 19. The optimization result subjected to the cross void feature control of size L=18 and H=8 for 
each rectangle bar (compliance = 157.88) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 9.5); (b) 

The final optimization result; (c) The overall convergence history 
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Figure 20. The optimization result subjected to the cross void feature control of size L=22 and H=10 for 
each rectangle bar (compliance = 179.69) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 11); (b) 

The final optimization result; (c) The overall convergence history 
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Figure 21. The optimization result subjected to the T-shape void feature control of size L=18 and H=8 for 
each rectangle bar (compliance = 159.23) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 9.5); (b) 

The final optimization result; (c) The overall convergence history 
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Figure 22. The optimization result subjected to the T-shape void feature control of size L=22 and H=10 
for each rectangle bar (compliance = 169.73) (a) Optimization result of the auxiliary algorithm (ܭଵ ൌ 11); 

(b) The final optimization result; (c) The overall convergence history 

 

In summary of the numerical examples studied in this section, the following observations can be made: (i) 
The void feature control effect is satisfactory even in the case of large void feature candidates; and (ii) 
larger void feature generally leads to more compromise of the structural performance.  

In addition, it is worth a discussion about the convergence history, which is divided into three stages 
including the unconstrained optimization, the auxiliary optimization, and the void feature-constrained 
optimization. The unconstrained optimization indicates that for the first N iterations (N equals to 200 or 
300 for the numerical examples in this section), no additional constraints are employed, which evolves the 
structure approaching the optimal topology. Then, the auxiliary optimization enlarges the interior voids to 
ensure stability of the void feature control; however, the structural performance is generally compromised. 
Finally, the void feature-constrained optimization converges the result to the optimum, where satisfactory 
void feature control effect could be achieved.   



27 
 

 

6. Conclusion 

In summary, this paper presents a void feature control method. The algorithm takes extra control of the 
boundary evolution of the interior voids, to guarantee that the specified void feature (could be in any 
geometric form) is well contained by each of the interior voids in the final topological design. In addition, 
an auxiliary algorithm has been developed to enhance the numerical implementation stability, by 
enlarging the interior void areas. This method has been proven effective by a list of numerical examples.  

Specifically about the numerical implementation, the convergence process has been carefully controlled 
by different strategies. It is firstly solved as an unconstrained problem, which drives the structure 
approaching the optimal topology; then, the auxiliary algorithm enlarges the interior voids as a 
preparation step of the void feature control; finally, the void feature control constraints are solved to 
derive the optimal topology design with satisfactory control effect.  

A unique characteristic of this method is that, quantity of the void features does not need to be pre-
specified; instead, it is tightly bonded to the topology evolution process. In the future work, we intend to 
further develop this void feature control method, targeting that, not only the quantity need not to be 
specified, but also the void feature types should not be pre-determined. Potentially, this target can be 
realized by introducing combined feature representations. 
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