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A B S T R A C T

In the context of an aging population, tools to help elderly to live independently must be developed. The goal of

this paper is to evaluate the possibility of using unobtrusively collected activity-aware smart home behavioral

data to automatically detect one of the most common consequences of aging: functional health decline. After

gathering the longitudinal smart home data of 29 older adults for an average of >2 years, we automatically

labeled the data with corresponding activity classes and extracted time-series statistics containing 10 behavioral

features. Using this data, we created regression models to predict absolute and standardized functional health

scores, as well as classification models to detect reliable absolute change and positive and negative fluctuations

in everyday functioning. Functional health was assessed every six months by means of the Instrumental

Activities of Daily Living-Compensation (IADL-C) scale. Results show that total IADL-C score and subscores can

be predicted by means of activity-aware smart home data, as well as a reliable change in these scores. Positive

and negative fluctuations in everyday functioning are harder to detect using in-home behavioral data, yet

changes in social skills have shown to be predictable. Future work must focus on improving the sensitivity of the

presented models and performing an in-depth feature selection to improve overall accuracy.

1. Introduction

Increasing life expectancy is causing a general aging of the popu-

lation. As a result, there is a current need to develop systems aimed at

early detection of diseases and health issues associated with aging. One

consequence of abnormal cognitive aging is the loss of functional skills

[1,2]. Therefore, there is also a current need to create tools and tech-

nologies to help the elderly live independently. The current study

evaluated the use of unobtrusive sensor technology collected in older

adults’ homes to automatically assess overall functional health. The

term “automatic” implies that data is collected unobtrusively in real

time, with no user input (e.g., no buttons to push, no test questions,

etc.), and treated with specific algorithms to extract useful information

from it.

Currently, daily functioning in older adults is primarily assessed

through self-report and informant-report questionnaires [3]. Self- and

informant-report prove advantageous because these questionnaires are

easily administered and considered reasonably accurate given that

raters have the opportunity to consider multiple observations of activ-

ities performed over periods of time in the real-world. The main dis-

advantage, however, is bias can be introduced by the reporter for

several reasons including lack of insight or awareness, not being present

to capture all behavior changes, and the intrinsic tendency to answer

questions in a certain manner [4–6]. Furthermore, raters may fail to

recall pertinent information. Alternatively, performance-based assess-

ments that simulate everyday activities in the laboratory are beneficial

because they provide objective, quantifiable, and norm-referenced

measures of functional ability. However, a major drawback to these

assessments is that they take the person out of their natural environ-

ment, modifying their usual behavior as a result and missing compen-

satory strategies that they might be applying in their daily life [7,8].

Arguably, the ideal strategy to accurately and reliably capture func-

tional decline is to observe daily behavior of individuals where they

spend most of their time: at home.

Technology to unobtrusively and ubiquitously monitor peoples’ in-

home behavior is already available as smart homes [9]. Smart homes

https://doi.org/10.1016/j.jbi.2018.03.009

Received 8 April 2017; Received in revised form 25 February 2018; Accepted 14 March 2018

⁎ Corresponding author.

E-mail addresses: aalberdiar@mondragon.edu (A. Alberdi Aramendi), alymae@wsu.edu (A. Weakley), aaztiria@mondragon.edu (A. Aztiria Goenaga),

schmitter-e@wsu.edu (M. Schmitter-Edgecombe), djcook@wsu.edu (D.J. Cook).

Journal of Biomedical Informatics 81 (2018) 119–130

Available online 15 March 20181532-0464/ © 2018 Elsevier Inc. All rights reserved.

T



represent a useful infrastructure to continuously monitor older adults’

behavior in a completely transparent way, gathering real-life data

throughout the day and therefore overcoming the main disadvantages

of the usual assessment methods. The collected data and machine

learning-generated activity labels can provide a complete view of older

adults’ behavior in a real-world environment, improving the efficiency

and ecological validity of the resulting functional health assessments

[10].

Smart home-based behavioral data have already been found to be

useful in assisting the elderly in several ways. On one hand, feasibility

of systems that use smart home behavioral data to aid in independently

living has been demonstrated. For example, prompting technologies

designed for elderly with mild cognitive impairment (MCI) [11] or

Alzheimer’s disease [12] have been developed and tested cross-sec-

tionally in smart home testbeds. On the other hand, longitudinal

monitoring of smart home-based behavioral data has shown to be useful

to monitor older adults’ health state as well as the onset and progress of

some age-related diseases and disorders. The overall cognitive ability of

older adults has been predicted by unobtrusively collecting in-home

behavioral data [13,14], and more importantly, diseases like MCI [15]

and dementia [16] have also been found to correlate with smart home-

based behavioral data. Assessment of the psychological health of older

adults has also been in the spotlight of some research, confirming the

possibility of detecting depression, emotional states [17] or even

loneliness [18] of older adults by analyzing their behavioral data. Other

overall health predictors such as physical activity have also been as-

sessed by means of such data [17].

Nonetheless, the potential of unobtrusively collected in-home be-

havioral data to assess older adults’ functional health is yet to be ana-

lyzed. In this work, we hypothesize that functional difficulties can be

detected using unobtrusively collected smart home behavioral data. To

verify our hypothesis, we aim to create prediction models for functional

health as measured by the Instrumental Activities of Daily Living-

Compensation (IADL-C) scale [19] using a longitudinal activity-labeled

smart home dataset. We also aim to evaluate performance of the pre-

diction models, as well as selection of behavioral features that con-

tribute the most to IADL-C data prediction. The signal processing ap-

proach followed in this work is based on the computation of temporal

statistics measuring change in the behavior of the older adults. For that

purpose, the Clinical Assessment using Activity Behavior (CAAB) al-

gorithm, which has already been validated in another work for the

automatic assessment of cognitive and mobility skills of older adults

[20], has been used. Unlike most work in the literature that makes use

of group data and absolute behavioral patterns, in this work inter-

subject variability is reduced by computing behavioral characteristics

separately for each participant. In turn, it also allows to take into ac-

count the temporal nature of functional health changes. This approach

has not been tested for the detection of daily function decline yet. In

fact, we believe that this is the first work aiming at predicting func-

tional health of older adults as measured by the IADL-C scores using

unobtrusively collected smart home behavioral data. Furthermore, this

work introduces standardization techniques based on a Reliable Change

detection to spot and detect time-periods of significant functional

change in the older adults. Our study affirms that unobtrusively col-

lected behavioral data can be useful to automatically assess the daily

functioning skills of older adults as measured by the IADL-C ques-

tionnaire, as well as to detect reliable changes in functional health.

2. Methods

2.1. Data collection

In collaboration with the Center for Studies in Adaptive Systems

(CASAS) and the Neuropsychology and Aging Laboratory at

Washington State University (WA, USA), we had access to the un-

obtrusively collected in-home behavioral data of 40 older adults living

in 38 smart homes (2 of which were inhabited by two people), as well

as to their biannual functional health assessment data. The smart homes

used in this study were common apartments enhanced with passive

infra-red (PIR) presence sensors. The number of sensors installed in

each apartment differed (mean number of sensors installed were 16.52

with a standard deviation of 4.53, ranging from 11 to 26 sensors) de-

pending on the size and shape of the house, but were in all cases

strategically placed in specific locations of the houses, including, on top

of kitchen devices (stove, sink and refrigerator), office and living room

chairs and the bed, as well as installed in the ceiling of different rooms

covering the whole room area (e.g. living room, bathroom, dining

room, kitchen, laundry, office, bedroom, corridors, etc.). These sensors

tracked the movements and activities of the inhabitants by triggering

raw sensor-data streams every time a sensor event was detected inside

an apartment.

Functional health assessments were collected through the IADL-C

questionnaire [19] developed for the early detection of functional

deficits and use of compensatory strategies in older adults. The ques-

tionnaire assesses IADLs across a number of everyday domains, in-

cluding phone use, traveling, shopping, cooking, medication manage-

ment, finances, communication, organization, and social functioning

patterns of the participants. As detailed in the IADL-C psychometric

paper, a factor analysis grouped the 27-item IADL-C questionnaire into

four factors representing different functional abilities: (1) money & self

management, (2) home daily living, (3) travel & event memory, and (4)

social skills. The four factor analysis derived factors and their respective

functional description, Spearman correlation test–retest reliability

coefficients, and standard deviations are presented in Table 1. A total

“Global Functional Health” score including all four factors is also in-

cluded.

Smart home sensor data was collected continuously for the duration

of the study, which took place from 2011 to 2016, with data collection

ranging from <1month to 60months (mean (M) length of the data

collection process among the different apartments was 19.95months,

with a standard deviation (SD) of 17.98months). For the following

analyses, data coming from homes with multiple persons were removed

(N=2), due to difficulties estimating each individuals activity level.

Subjects who had no functional health assessment data (N=2) or who

had less than 6months of behavioral data collected (N=5) were also

removed. Therefore, the final dataset contained the behavioral and

functional health assessment data of 29 older adults who were living

independently and alone in their own smart home residences

(M=26months, SD=17.5 months, range=6–60months).

2.2. Preprocessing

2.2.1. Day-level behavior feature extraction

The smart home data were a collection of raw sensor-data streams,

which collected all sensor events that took place in each residence

during the study period, along with their specific timestamps, sensor

IDs and type of event (activation/deactivation). To make the raw

sensor-data streams interpretable, we first applied the AR activity re-

cognition algorithm specified in [20], which assigned a specific activity

to each sensor entry. This algorithm applies an adaptive length sliding

window to the raw sensor data stream to map each one of the sensor

events to a value from a predefined set of activity labels in real-time.

Table 1

IADL-C Scores’ description, test-retest reliability and standard deviations.

Score Description rscore SDscore

IADL-C Total Global functional health 0.91 1.64

IADL-C Factor 1 Money and self-management 0.91 1.64

IADL-C Factor 2 Home daily living 0.76 1.21

IADL-C Factor 3 Travel and event memory 0.70 1.25

IADL-C Factor 4 Social skills 0.70 1.03
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The predefined set of activities consists of specific basic (such as

walking or sitting) and instrumental activities of daily living (ADLs)

(e.g., cook, eat or personal hygiene activities). This approach takes into

account contextual information (such as the activity performed in the

previous time-window) in addition to the actual sensor events that fall

within the window when identifying the activity being performed.

Accumulated sensor events in a window, as well as time of first and last

sensor events, temporal span of the window and mutual information-

based influences of all other sensors on the sensor generating the event

to be labeled are used as predictors. Threefold cross validation testing

of an activity model learned with this AR algorithm has shown an ac-

curacy exceeding 98% on 30 testbed smart homes in a previous work.

Once the activity-level information was available, we computed 10

daily behavior features for each subject. Python scripts were created for

this purpose. The computed day-level activity-features are shown in

Table 2.

In order to estimate the daily distance that the subjects were tra-

veling inside their homes, we first created sensor mapping-files based

on the floor plan and sensor layout for each residence (see example in

Fig. 1), where the x-y coordinates of the motion sensor’s positions were

specified. For 3 of the apartments, we did not have specific information

of the positioning of the sensors nor of the distribution within the

houses: in these cases, the positions of the sensors were estimated by

considering the apartments to be of a similar shape to the rest and

checking the activation order of the sensors in the raw sensor data files.

Once the positioning of the sensors was specified, we estimated the total

walking distance traveled by the inhabitants. For that purpose, we as-

sumed that the inhabitants walked in a straight line from the coverage

area of one sensor to the coverage area of another sensor, activating

them when they come to be under their same position. Then, we

computed the Euclidean distances between randomly-selected locations

within the coverage areas of the consecutively activated motion sensors

using their x-y coordinates, and we sum all the distances between the

sensors activated throughout the day to obtain the daily total walking

distance. Note that this approach does not take into account the ex-

istence of walls or other obstacles between the sensors, so it just pro-

vides an approximation of the real covered distance.

2.2.2. Between-assessments behavior statistics’ computation

Once daily activity features for each subject were computed, we

used the Clinical Assessment using Activity Behavior (CAAB) [20] al-

gorithm to extract the behavioral statistics of each between-assessment

period. RStudio for R [21] was the selected environment for this pur-

pose.

The CAAB algorithm has been introduced in [20]. In brief, each

subject’s between-assessment daily behavior data were taken and five

summarizing time-series statistics were computed for each behavioral

feature of Table 2 in this period: variance, skewness, kurtosis, auto-

correlation and change. Because standard assessment was performed

every six months, these statistics represent the behavior observed in a

smart home for a six month period ending at the assessment date. For

this purpose, a log transformation and a Gaussian detrending was first

applied to each time-series (behavioral variable) and then the changing

time-series statistics for each variable were computed by means of a

sliding window of length 7 days. The average of each time-series sta-

tistic for the 6-month period was computed and was used for the final

predictions. This process can be seen in Fig. 2. The resulting pre-

processed dataset was a collection of 50 (5 time-series statistics of 10

behavioral features) biannual summary behavior statistics of length

± SD24.0 13.68( ) months.

2.2.3. Functional health scores’ set-up

Our object is to create prediction models that map smart home-

based behavior features to health assessment values. In this study our

target variables are the IADL-C total and subscore values self-reported

by the participant at the end of each corresponding 6-month period.

Self-reported questionnaires can be highly subject-dependent for

several reasons. In order to take into account the inter-subject varia-

bility that each subjects’ age, gender, education or habits might provoke

in the scores, we also considered the use of standardized scores for each

one of the IADL-C scores for each subject. The standardized scores were

computed as the percent change in relation to their baseline values.

Baseline IADL-C scores were collected at the first testing session just

prior to the beginning of behavioral monitoring with the sensors. The

standardized scores were computed as:

=
−

IADLscore i
IADLscore i IADLscore

IADLscore
( )

( )
*100std

baseline

baseline (1)

Eq. (1): Standardized self-reported assessment score at time-point i,

computed successively for i=0 (baseline), 2, …I (last assessment

point).

With the objective of determining if there was an absolute change in

participants’ functional health assessment scores both compared to

their baseline values (RCIbaseline) and to the previous assessment point

(RCIconsecutive), we computed the Reliable Change Indexes (RCI) for our

IADL-C scores as defined by Christensen and Mendoza [22]. The RCI

verifies that the difference between the scores under comparison is

greater than a certain level discarding changes that might have ap-

peared due to other reasons such as measurement unreliability. In order

to calculate the RCIs for the total IADL-C score and the four IADL-C

factors shown in Table 1, we gathered test–retest reliability (rscore) and

standard deviations (SDscore) that the test has shown in its development

cohort [19], as shown in Table 1. The RCIs for each subject were thus

computed as:

=
−

RCI i
Score Score

SEm
( )

2
baseline

i baseline

(2)

Eq. (2): Reliable Change Index from baseline to assessment time-point i,

computed successively for i=0 (baseline), 1, …I (last assessment

point).

=
− −RCI i

Score Score

SEm
( )

2
consecutive

i i 1

(3)

Eq. (3): Reliable Change Index between assessment time-points i and

Table 2

Day-level activity features included in the study.

Type Day-level features

Duration of specific

activities (6 features)

Time spent per day in cooking, eating, relaxing,

carrying out personal hygiene activities, being out of

home and nighttime toileting activities

Sleep-related (2 features) The daily sleep duration and frequency

Mobility-related

(2 features)

The total number of activated sensors and the total

distance covered walking inside the apartment per day

M009

LS009

MA021

LS021

MA018

LS018

M010

LS010

T102

D002

M002

LS002

M001

LS001

MA020

LS020

T101

D001

M003

LS003

M008

LS008

M011

LS011

M006

LS006

MA019

LS019

M013

LS013

M007

LS007

M005

LS005
M004

LS004

T105

T106

Fig. 1. Floor plan and sensor layout of one of the residences of the study.
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i− 1, computed successively for i=1, 2, …I (last assessment point).

where SEm or Standard Error of Measurement represents the ex-

pected variation of the observed test scores due to measurement error

and is computed as = −SEm SD r1score score , rscore is the test–retest re-

liability measuring the consistency of the test-scores over time, Scorei is

the test score at assessment point i, Scorebaseline is the test score at the

first/baseline assessment and −Scorei 1 is the test score at the previous

assessment point.

Therefore, we assigned two new labels to each smart home behavior

data instance for the total IADL-C score and each of the four factor

subscores. These labels indicate whether the subject suffered a sig-

nificant change in his/her global functioning and in specific tasks

compared with both the baseline assessment and the previous assess-

ment point. This results in a total of 10 labels for each data instance.

Finally, to test the potential of activity-labeled smart home-based

behavioral data to detect improvement or decline in everyday func-

tioning, for each subject’s IADL-C total score and subscores we com-

puted the difference between each consecutive assessment point. Then,

we labeled as positive all the data instances where the subjects self-

reported improved everyday functioning (⩾0) on the IADL-C while we

labeled as negative the behavioral data instances where the subjects

self-reported a decline (<0) in everyday functioning. Thus, five new

labels for each behavior data instance are derived from this last step.

We will use machine learning algorithms to learn mappings from

the feature vectors to each of these 15 target classes, as well as to

predict self-reported IADL-C scores and their standardized versions.

2.3. Functional Health change prediction

The preprocessed dataset resulting from the previous steps was

analyzed using Weka [23]. For the four different types of scores which

have been introduced in 2.2.3, regression and classification algorithms

were built and evaluated, depending on the nature of the scores’ data

(numeric or nominal labels).

2.3.1. Regression analyses

First, we performed a regression analysis between the functional

health assessment scores and smart home based behavioral data, both

for the absolute IADL-C scores and the standardized values. For this

purpose, several regression algorithms were implemented using all the

behavioral statistics achieved in the previous step and were validated

for the prediction of each one of the available IADL-C scores. A 10-fold

cross validation (CV) was used for validation purposes, as well as a

leave-one-subject-out cross-validation (LOSOCV) for the absolute

scores’ case. In the case of LOSOCV, we repeatedly train the model

using data for n− 1 subjects and test on data for the held-out partici-

pant (subject n), repeating the process n times and reporting the

average of the performance results. We compared the results obtained

with the following algorithms: Linear Regression, Linear Support Vector

Regression (SVr), SVr with a Radial Basis Function (RBF) kernel, M5

Rules Regression and k Nearest Neighbours (kNN).

2.3.2. Classification analyses

We then created detection models for the Reliable IADL-C changes

using several classification algorithms: AdaBoost, kNN, Linear SVM and

Multilayer Perceptron (MLP). The algorithms were trained and vali-

dated following a 10-fold cross validation, as well as with a LOSOCV.

This process was repeated both for the whole set of behavioral features

gathered in the smart homes, and for task-specific behavioral features:

sleep-related features, overnight features, mobility, mobility and outing

patterns and cooking and eating habits. Table 3 shows the features

considered for each task-specific analysis. As a reliable change in pre-

diction scores might be considered to be a rare or unusual event,

common classification algorithms might be biased towards the majority

class. However, detection of the reliable change event may be the main

goal for many applications. To boost detection of these rare events, we

tried two approaches that might be more suitable for such unbalanced

classification problems: (1) a one-class linear SVM algorithm and (2)

the previous algorithms trained with SMOTE-based [24] oversampled

datasets. While the former relies on only using minority-class data in-

stances for model training, the latter consists of adding synthetically-

created minority-class instances, yielding more class-balanced datasets

for training purposes. A rejection rate of 0.1 was used for the one-class

linear SVM, which was the empirically selected value in a preliminary

test on Reliable baseline total IADL-C change detection. SMOTE algo-

rithm was used to oversample the number of reliable change instances

of the original datasets in order to ensure a proportion of at least

40–60% between the two classes. Finally, we aimed at creating pre-

diction models for the daily functioning improvement and decline be-

tween consecutive assessment points. For this purpose, we added a fifth

classifier to the previous ones, the C4.5 decision tree algorithm. We

trained and validated the five classification algorithms using the labels

indicating a positive or negative change in these skills.

BAP behavior

data instance

averaging

sliding window

(7 days) variance

skew

kurtosis

autocorrela on

change

BAP 1

variance1

skew1

kurtosis1

autocorrela

change1

AP3AP2AP1

log-transform & 

gaussian detrending

t

t

-series 

st s

Day-level behavior

feature

º

º

Fig. 2. Between-assessment summary statistics’ computation (AP: Assessment Point, BAP: Between-Assessment Period).
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2.3.3. Evaluation

For all the aforementioned regression and classification models,

corresponding pairwise random algorithms were built and evaluated

following the same process. The random algorithms provided a basis of

comparison to ensure that performance results are not due to chance.

These random algorithms were built using a uniformly distributed

random data-matrix of the same size as the real behavioral data, while

respecting each variable’s data range as in the original dataset. The

smart home algorithms’ performance was compared to their homo-

logous random classifiers’ performance to search for statistically sig-

nificant improvements using smart home based behavioral data. For

this purpose, a corrected paired t-test was used. In case of SMOTE-based

classifiers, a single run of the algorithms was available, and therefore, a

McNemar’s test was performed to search for statistically significant

improvements compared to the corresponding pairwise random classi-

fiers.

The selected metrics for the regression analyses were the correlation

coefficients (r), Root Mean Squared Errors (RMSE) and Mean Absolute

Errors (MAE) that compare the actual scores’ values and the predicted

values using the alternative models. In case of the classification

problems, we compared the accuracy (Acc.) and weighted F-scores of

the cross-validated results. This last metric was selected to overcome

the biased impression that the accuracy can give about a classifier in

face of an imbalanced dataset. Therefore, we consider that a certain set

of features has prediction ability for the posed classification problem if

a t-test shows enough statistical significance indicating that the actual

classifier’s accuracy or F-score beats the corresponding pairwise

random classifier. In case of reliable IADL-C change detection, the cost

of missing a true positive might be considered to be higher than having

a false positive depending on the application. Equally, the detection of a

decline in functional health between assessments might be more im-

portant than the detection of an improvement in functional health.

Therefore, we also analyze the sensitivity (Sens.) of the smart home-

based algorithms to evaluate their ability to predict these events of

interest.

Fig. 3 gives an overview of the whole research procedure followed

in this paper.

3. Results

3.1. Regression analyses

Table 4 shows the results of the regression algorithms developed

using all the behavioral features for the absolute IADL-C test scores,

while Table 5 shows the regression results for the standardized IADL-C

scores. There is more statistical evidence for the absolute test scores to

be predictable with activity-labeled smart home data, and overall,

correlations between the actual test-scores and the predicted values

from the algorithms are higher in this case than in the case of stan-

dardized test scores. When comparing regressors, the SVr algorithm

with a RBF kernel worked the best for prediction of the absolute IADL-C

scores, achieving a statistically significant prediction in all five cases.

Table 3

Task-specific grouping of the daily features.

Group Day-level features

Sleep-related The daily sleep duration and frequency

Overnight patterns Sleep-related features+ time spent per day in nighttime

toileting activities

Mobility-related The total number of activated sensors and the total distance

covered walking inside the apartment per day

Mobility & outings Mobility-related+ time spent per day in being out of home

Cooking & eating Time spent per day in cooking and eating

Fig. 3. Flow-chart of the whole method.
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Other algorithms have also asserted the possibility of making these

predictions, mostly for the total IADL-C scores and the F3 and F4 sub-

scores. In the case of the standardized scores, smart home data con-

tributed to the prediction of all five IADL-C scores, but the largest effect

is seen in the global functional health score.

Table 6 shows the LOSOCV regression results for predicting the

absolute IADL-C score and subscores using all behavioral features. As

expected, correlations between the actual and predicted IADL-C scores

are greatly reduced, suggesting the increased difficulty of creating valid

general models and the importance of including personal information to

adapt the models to each subject.

3.2. Classification analyses

3.2.1. Reliable change detection

Table 7 shows the results of the classification algorithms for the

reliable IADL-C change detection using all the behavioral features

gathered in the smart homes. In this case, the kNN and linear SVM

algorithms showed to be the most useful, as the former demonstrated

statistically significant improvement compared to random classifiers for

reliable change detection of F4 from the baseline, while the latter de-

monstrated detection power for changes in the total score and F3 sub-

score from the baseline. Overall, we can appreciate a lack of sensitivity

for the positive reliable change detection, but the AdaBoost classifier

did perform superior to a random classifier for the detection of a con-

secutive reliable change in the total IADL-C scores. Results suggest that

change in IADL-C scores from baseline are easier to detect than changes

between consecutive assessment points.

Table 8 shows the results of LOSOCV classification of RCI change

detection using all behavioral features. Overall, results are slightly de-

cayed, but there is still some statistical evidence of improved perfor-

mance compared to random classifiers. These results suggest that the

computation of the reliable change in IADL-C scores is a good way to

standardize the values and that this approach can be used to create

models for the general population.

Table 9 shows the results classifying reliable change detection using

task-specific features. These results suggest that not all of the tasks

contribute in the same way for reliable IADL-C change detection: Spe-

cifically, cooking and eating patterns are useful in this study for the

detection of the total and F4 subscores. The total score, F3 and F4

subscores have shown to be detectable by mobility and outing patterns

while sleeping and overnight patterns are related to the changes in the

total IADL-C scores and F1 and F4 subscores. Interestingly, mobility

features and the combination of mobility and outing patterns showed to

be useful for the applications where we are more interested in reliably

detecting the change in global IADL-C scores, as their contribution to

the sensitivity of the classifiers has shown to be statistically significant

for three of the experiments. Sleep-related features have shown to be

Table 4

Regression results for the absolute IADL-C test scores using all behavioral features and 10-fold CV (∗: statistically significant improvement (p < 0.05) in comparison

to the corresponding pairwise random algorithm).

Linear regression Linear SVr RBF SVr M5 Rules kNN

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

IADL-C 0.21 21.58∗ 15.99∗ 0.17∗ 22.86∗ 15.81∗ 0.22∗ 20.91 13.58 0.29∗ 20.24∗ 14.78∗ 0.01 32.57 21.01

IADL-C F1 0.14 15.14 11.65 0.13 15.17∗ 11.56∗ 0.29∗ 12.90∗ 9.20∗ 0.27 12.93∗ 10.15∗ 0.02 17.61 12.77

IADL-C F2 0.06 6.59 4.93 0.06 6.28∗ 4.31∗ 0.12∗ 5.60∗ 3.15∗ 0.10 5.76 4.16 0.03 10.32 5.90

IADL-C F3 0.22 4.42∗ 3.32∗ 0.19∗ 4.63∗ 3.22 0.26∗ 4.26∗ 2.55∗ 0.23 4.27 3.17 0.02 7.58 4.75

IADL-C F4 0.00 1.69∗ 1.03∗ 0.18∗ 1.62 0.79 0.19∗ 1.57 0.65∗ 0.00 1.69∗ 1.03∗ 0.04 1.59∗ 0.66∗

Table 5

Regression results for the standardized IADL-C test scores using all behavioral features and 10-fold CV (∗: statistically significant improvement (p < 0.05) in

comparison to the corresponding pairwise random algorithm).

Linear regression Linear SVr RBF SVr M5 rules kNN

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

IADL-C 0.12 36.52 28.50 0.10 33.89∗ 26.64∗ 0.11 25.92∗ 17.97∗ 0.07 33.96 23.80 0.14 43.14 33.10

IADL-C F1 0.21 46.25 36.57 0.22 45.19 36.40 0.21 31.60 23.99∗ 0.11 35.78 27.52 0.04 43.67 34.24

IADL-C F2 0.03 42.49 33.00 0.06 34.26 25.96 0.03 28.80 18.56∗ 0.02 41.37 26.83 0.12 48.52 34.58

IADL-C F3 0.02 80.20 59.63 0.11 65.33 45.15 0.01 53.96 31.76∗ 0.22∗ 67.56 44.07 0.07 110.24 66.79

IADL-C F4 0.00 58.32∗ 35.62∗ 0.00 58.44 30.19 0.02 54.71 23.35∗ 0.01 58.21 35.23 0.19∗ 59.30 25.96

Table 6

Regression results for the absolute IADL-C test scores using all behavioral features for LOSOCV (∗: statistically significant improvement (p < 0.05) in comparison to

the corresponding pairwise random algorithm).

Linear regression Linear SVr RBF SVr M5 rules kNN

r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE r RMSE MAE

IADL-C 0.03 17.52 15.20 0.01 17.15∗ 14.87∗ 0.02 14.15 12.75 0.02 16.52∗ 14.58 0.05 27.51 22.41

IADL-C F1 0.02 11.37 10.05 0.01 13.19 11.63 0.12 9.44 8.65 0.06∗ 11.61 10.20 0.00 15.24 12.95

IADL-C F2 0.08 5.03 4.50 0.13 4.68∗ 4.07∗ 0.03 3.34∗ 2.94∗ 0.06 4.24 3.81 0.00 8.50 6.51

IADL-C F3 0.07 6.14∗ 4.82∗ 0.03 3.16∗ 2.77∗ 0.01 2.78∗ 2.33∗ 0.02 3.14∗ 2.82 0.07 6.14 4.82

IADL-C F4 0.03 1.06∗ 0.91∗ 0.09 0.93 0.71 0.11 0.82 0.58 0.03 1.06∗ 0.91∗ 0.00 0.88∗ 0.59∗
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contributive for changes in F1 subscore from baseline. While kNN and

MLP were found to be the best algorithms for the prediction models in

this case, we can specially notice the biased behavior and lack of sen-

sitivity of the linear SVM models. Finally, the results of employing ac-

tivity-specific features in LOSOCV evaluation, shown in Table 10, verify

the validity of RCI scores to create inter-individual models based on

smart home data.

3.2.2. Sensitivity improvement

Table 11 shows the results of reliable IADL-C detection using the

one-class linear SVM algorithm. Overall, an improvement in terms of

sensitivity can be appreciated compared to the results obtained with

other classification algorithms at the expense of accuracy and F-score

values. These algorithms show a higher number of false alarms, and

therefore they might be only useful when detection of the reliable

change is critical.

Finally, Table 12 shows the results for reliable change detection

using all behavioral features and SMOTE-based oversampled datasets

for training purposes. As shown, sensitivity of the models is improved

compared to the initial models, at the expense of precision. None-

theless, some of these results maintain a favorable trade-off between

sensitivity and overall performance of the classifiers, overcoming the

barrier of 60% accuracy and even 70% for sensitivity, and thus, can be

very interesting for automated functional health assessment. The kNN

algorithm yields improved performance in comparison with random-

data based algorithms for all IADL-C scores, while AdaBoost, linear

SVM and MLP algorithms also yield statistically improved performance

for total, F2, F3 and F4 subscores.

3.2.3. Positive/negative change detection

Table 13 shows the results of the classification algorithms for the

detection of positive and negative changes in IADL-C total score and

subscores between consecutive assessment points. In this case, the C4.5

algorithm has shown enough statistical significance to accept that we

are able to detect the improvement and decline of participants’ social

skills (F4 subscores) from smart home data, while kNN algorithm has

shown increased sensitivity for the detection of decline in overall daily

functioning.

4. Discussion

The problem addressed in this paper is highly challenging:

Specifically, our aim was to predict older adults’ functional health from

unobtrusively collected behavioral data inside their own apartments.

Despite the difficulty of the task, our results have demonstrated the

possibility of predicting functional health and changes in everyday

functioning from activity-labeled smart home data.

Although we could have assumed that subscore F2, reflecting home

daily living, would be the most correlated score to the behavior data,

regression analyses proved this to be false. The absolute total IADL-C

score, as well as the F1 and F3 subscores, which reflect the money/self-

management skills and travel/event memory abilities, appeared most

related to the sensor behavior data. In prior work [19], informants

reported that individuals with mild cognitive impairment experienced

the greatest changes in the money/self-management domain followed

by the travel/event memory domain. Therefore, early identification of

functional difficulties in these domains based on sensor data could be of

importance for early intervention. In addition, all of the IADL-C scores

were predicted from unobtrusively collected behavior data with sta-

tistically significant performance. Furthermore, absolute scores were

more predictable than the standardized ones, suggesting that IADL-C

scores are directly comparable between subjects. The importance of

Table 7

Reliable IADL-C change detection results with a 10-fold CV using all behavioral features (∗: statistically significant improvement (p < 0.05) in comparison to the

corresponding pairwise random algorithm).

AdaBoost kNN LinearSVM MLP

Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens.

−RCI totalbaseline 68.46 0.65 0.23 64.61 0.67 0.31 73.59∗ 0.62∗ 0.05 59.59 0.63 0.25

−RCI F1baseline 57.83 0.53 0.16 62.11 0.65 0.38 65.77 0.56 0.07 63.27 0.60 0.33

−RCI F2baseline 91.91 0.90 0.00 86.38 0.88 0.00 94.23 0.91 0.00 86.44 0.88 0.05

−RCI F3baseline 81.31 0.77 0.12 67.16 0.68 0.07 84.29 0.77∗ 0.00 75.44 0.73 0.16

−RCI F4baseline 93.82 0.92 0.00 94.31 0.93∗ 0.00 95.06 0.93 0.00 92.82 0.91 0.00

−RCI totalconsecutive 66.94 0.64 0.25∗ 63.32 0.60 0.20 71.08 0.61 0.07 62.49 0.63 0.26

−RCI F1consecutive 65.27 0.58 0.11 71.33 0.67 0.28 69.87 0.58 0.02 64.92 0.60 0.24

−RCI F2consecutive 87.13 0.84 0.01 80.79 0.81 0.00 90.13 0.85 0.00 81.17 0.83 0.11

−RCI F3consecutive 83.08 0.78 0.00 68.28 0.69 0.03 85.96 0.80 0.00 74.03 0.70 0.01

−RCI F4consecutive 94.23 0.91 0.00 93.56 0.91 0.00 94.23 0.91 0.00 90.17 0.91 0.08

Table 8

Reliable IADL-C change detection results with a LOSOCV using all behavioral features (∗: tatistically significant improvement (p < 0.05) in comparison to the

corresponding pairwise random algorithm).

AdaBoost kNN LinearSVM MLP

Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens..

−RCI totalbaseline 67.77 0.65 0.22 67.77 0.67 0.31 68.60∗ 0.61 0.03 57.85∗ 0.59 0.28

−RCI F1baseline 61.16 0.60 0.35 67.77 0.67 0.40 64.46 0.55 0.05 62.81 0.63 0.45

−RCI F2baseline 90.08 0.89 0.00 87.6 0.88 0.00 94.21 0.91 0.00 85.12 0.87 0.00

−RCI F3baseline 79.24 0.77 0.16 67.77 0.69 0.11 84.30∗ 0.77 0.00 72.72 0.73 0.16

−RCI F4baseline 94.22 0.92 0.00 95.04 0.93 0.00 95.04 0.93 0.00 94.21∗ 0.92 0.00

−RCI totalconsecutive 66.12 0.62 0.15 63.63 0.61 0.21 67.77∗ 0.60 0.06 63.63 0.61 0.21

−RCI F1consecutive 63.64 0.59 0.11 69.42 0.67 0.29 64.46 0.56 0.00 64.46 0.63 0.29

−RCI F2consecutive 88.43 0.85 0.00 83.47 0.82 0.00 90.08 0.85 0.00 80.17 0.80 0.00

−RCI F3consecutive 85.12 0.79 0.00 69.42 0.71 0.06 85.95∗ 0.79 0.00 76.04 0.75 0.06

−RCI F4consecutive 94.22 0.91 0.00 94.21 0.91 0.00 94.21 0.91 0.00 89.26∗ 0.89 0.00
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Table 9

Results for 10-fold CV classification of Reliable IADL-C change detection using activity-specific features (∗: statistically significant improvement (p < 0.05) in

comparison to the corresponding pairwise random algorithm).

AdaBoost kNN LinearSVM MLP

Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens.

Only cook and eat

−RCI totalbaseline 70.28 0.62 0.05 49.15 0.50 0.40 73.59 0.62 0.00 65.03 0.61 0.14

−RCI F1baseline 60.73 0.54 0.10 63.38 0.59 0.24 66.92 0.54 0.00 62.47 0.59 0.28

−RCI F2baseline 92.48 0.91 0.04 89.58 0.89 0.00 94.23 0.91 0.00 91.83 0.90 0.00

−RCI F3baseline 84.21 0.77 0.00 55.20 0.60 0.42 84.29 0.77 0.00 78.50 0.74 0.00

−RCI F4baseline 95.06 0.93 0.00 94.49∗ 0.92∗ 0.00 95.06 0.93 0.00 95.06 0.93 0.00

−RCI totalconsecutive 71.53 0.65 0.18 49.28 0.51 0.45 71.92 0.60 0.00 71.67∗ 0.68∗ 0.30

−RCI F1consecutive 69.45 0.62 0.09 64.14 0.60 0.18 71.09 0.59 0.00 63.83 0.60 0.18

−RCI F2consecutive 88.48 0.85 0.00 85.31 0.84 0.09 90.13 0.85 0.00 87.38 0.84 0.02

−RCI F3consecutive 84.88 0.79 0.00 58.28 0.64 0.52 85.96 0.80 0.00 81.41 0.77 0.01

−RCI F4consecutive 93.90 0.91 0.00 91.60 0.90 0.00 94.23 0.91 0.00 93.98∗ 0.91∗ 0.00

Only mobility

−RCI totalbaseline 70.64 0.62 0.03 64.74 0.66 0.60∗ 73.59 0.62 0.00 67.66 0.66 0.34

−RCI F1baseline 56.92 0.53 0.16 48.24 0.48 0.41 66.92 0.54 0.00 56.87 0.54 0.25

−RCI F2baseline 93.57 0.92 0.11 73.37 0.79 0.01 94.23 0.91 0.00 91.08 0.90 0.10

−RCI F3baseline 79.92 0.76 0.07 82.33 0.82 0.38 84.22 0.77 0.00 81.68∗ 0.80 ∗ 0.30

−RCI F4baseline 94.81 0.93 0.00 90.92 0.90 0.00 95.06 0.93 0.00 91.35 0.91 0.00

−RCI totalconsecutive 66.81 0.60 0.09 56.08 0.57 0.60∗ 71.76 0.60 0.00 65.11 0.63 0.31

−RCI F1consecutive 65.47 0.58 0.08 47.56 0.49 0.39 70.94 0.59 0.00 62.16 0.60 0.27

−RCI F2consecutive 87.32 0.84 0.00 70.58 0.75 0.32 90.13 0.85 0.00 81.87 0.81 0.03

−RCI F3consecutive 83.00 0.78 0.02 81.50 0.80 0.24 85.96 0.80 0.00 79.85 0.78 0.12

−RCI F4consecutive 93.74 0.91 0.00 90.26 0.89 0.00 94.23 0.91 0.00 91.16 0.90 0.00

Only mobility and outings

−RCI totalbaseline 71.90 0.64 0.09 71.06 0.72 0.59∗ 73.59 0.62 0.00 70.82 0.69 0.37

−RCI F1baseline 63.18 0.59 0.22 66.01 0.66 0.51 66.17 0.54 0.02 60.68 0.58 0.31

−RCI F2baseline 93.90 0.91 0.00 93.14 0.93 0.30 94.23 0.91 0.00 90.67 0.90 0.11

−RCI F3baseline 82.08 0.76 0.00 78.35 0.78 0.36 84.29 0.77 0.00 74.19 0.73 0.12

−RCI F4baseline 94.74 0.93 0.00 94.23 0.92 0.00 95.06 0.93 0.00 92.92∗ 0.92 ∗ 0.00

−RCI totalconsecutive 70.69 0.64 0.19 59.63 0.60 0.35 71.92 0.60 0.00 65.42 0.64 0.32

−RCI F1consecutive 66.81 0.60 0.12 64.47 0.64 0.38 70.68 0.59 0.00 67.22 0.65 0.34

−RCI F2consecutive 88.72 0.85 0.00 86.49 0.84 0.11 90.13 0.85 0.00 83.94 0.82 0.03

−RCI F3consecutive 85.80 0.79 0.00 76.29 0.76 0.19 85.96 0.80 0.00 79.51 0.77 0.08

−RCI F4consecutive 94.15 0.91 0.00 91.67 0.90 0.00 94.23 0.91 0.00 92.42 0.91 0.01

Only sleep

−RCI totalbaseline 68.96 0.62 0.08 68.49∗ 0.65 0.19 73.59 0.62 0.00 64.74 0.60 0.11

−RCI F1baseline 59.63 0.55 0.19 ∗ 66.12 0.64 0.35 66.92 0.54 0.00 58.9 0.57 0.30

−RCI F2baseline 92.58 0.91 0.00 91.51 0.90 0.02 94.23 0.91 0.00 91.68 0.90 0.02

−RCI F3baseline 81.89 0.78 0.11 82.98 0.80 0.22 84.29 0.77 0.00 78.45 0.74 0.03

−RCI F4baseline 94.32 0.92 0.00 94.81 0.93 0.00 95.06 0.93 0.00 94.32 0.92 0.00

−RCI totalconsecutive 64.46 0.58 0.06 71.19∗ 0.66∗ 0.24 71.92 0.60 0.00 64.75 0.61 0.20

−RCI F1consecutive 68.51 0.62 0.13 66.74 0.62 0.16 71.09 0.59 0.00 64.13 0.59 0.16

−RCI F2consecutive 88.22 0.84 0.00 86.00 0.83 0.00 90.13 0.85 0.00 88.21 0.84 0.00

−RCI F3consecutive 83.57 0.79 0.04 82.56 0.79 0.12 85.96 0.80 0.00 81.94 0.77 0.00

−RCI F4consecutive 92.74 0.91 0.00 93.33∗ 0.91∗ 0.00 94.23 0.91 0.00 91.49 0.90 0.00

Only overnight patterns

−RCI totalbaseline 70.60 0.66 0.19 64.29 0.63 0.27 73.59 0.62 0.00 63.46 0.61 0.21

−RCI F1baseline 57.24 0.52 0.13 57.22 0.56 0.28 66.84 0.54 0.00 59.01 0.57 0.28

−RCI F2baseline 92.24 0.90 0.00 87.05 0.88 0.00 94.23 0.91 0.00 89.19 0.89 0.09

−RCI F3baseline 81.06 0.77 0.11 78.12 0.77 0.27 84.29 0.77 0.00 77.92 0.76 0.20

−RCI F4baseline 94.74 0.93 0.00 94.31 0.92 0.00 95.06 0.93 0.00 93.49 0.92 0.00

−RCI totalconsecutive 65.58 0.60 0.14 69.69 0.68 0.36 71.42 0.60 0.00 66.58 0.65 0.30

−RCI F1consecutive 69.42 0.65 0.25 65.01 0.63 0.27 71.01 0.59 0.00 62.32 0.60 0.24

−RCI F2consecutive 87.72 0.84 0.00 79.96 0.80 0.00 90.13 0.85 0.00 82.52 0.81 0.00

−RCI F3consecutive 83.59 0.79 0.03 81.15 0.80 0.24 85.96 0.80 0.00 79.12 0.76 0.04

−RCI F4consecutive 93.65 0.91 0.00 93.56∗ 0.91∗ 0.00 94.23 0.91 0.00 91.74 0.90 0.00
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Table 10

Results for LOSOCV of Reliable IADL-C change detection using activity-specific features (∗: statistically significant improvement (p < 0.05) in comparison to the

corresponding pairwise random algorithm).

AdaBoost kNN LinearSVM MLP

Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens.

Only cook and eat

−RCI totalbaseline 70.25 0.63 0.06 47.11 0.50 0.34 73.55 0.62 0.00 61.98 0.59 0.09

−RCI F1baseline 57.85 0.51 0.05 62.81 0.60 0.23 66.94 0.54 0.00 64.46 0.61 0.25

−RCI F2baseline 90.91 0.90 0.00 89.26 0.89 0.00 94.21 0.91 0.00 90.91 0.90 0.00

−RCI F3baseline 84.29 0.77 0.00 56.20 0.62 0.42 84.30 0.77 0.00 76.86 0.73 0.00

−RCI F4baseline 95.04 0.93 0.00 94.21 0.92 0.00 95.04 0.93 0.00 95.04∗ 0.93 0.00

−RCI totalconsecutive 69.42 0.61 0.06 49.59 0.52 0.44 71.90 0.60 0.00 70.25∗ 0.67 0.26

−RCI F1consecutive 71.07 0.64 0.11 63.64 0.60 0.17 71.07 0.59 0.00 65.29 0.62 0.17

−RCI F2consecutive 85.95 0.83 0.00 85.12 0.84 0.08 90.08 0.85 0.00 85.12 0.83 0.00

−RCI F3consecutive 85.12 0.79 0.00 58.68 0.65 0.53 85.95 0.79 0.00 82.64 0.78 0.00

−RCI F4consecutive 94.21 0.91 0.00 91.74 0.90 0.00 94.21 0.91 0.00 94.21∗ 0.91 0.00

Only mobility

−RCI totalbaseline 73.55 0.62 0.00 71.07 0.71 0.41 73.55 0.62 0.00 70.25 0.70 0.38

−RCI F1baseline 58.68 0.54 0.13 59.50 0.60 0.33 66.94∗ 0.54 0.00 66.94 0.66 0.40

−RCI F2baseline 94.21 0.91 0.00 90.90 0.90 0.00 94.21 0.91 0.00 93.39 0.91 0.00

−RCI F3baseline 84.29∗ 0.77 0.00 79.34 0.77 0.16 84.30 0.77 0.00 75.21 0.73 0.05

−RCI F4baseline 95.04 0.93 0.00 93.39 0.92 0.00 95.04 0.93 0.00 95.04∗ 0.93 0.00

−RCI totalconsecutive 66.94 0.59 0.03 64.46 0.64 0.29 71.49 0.60 0.00 72.73∗ 0.71 0.38

−RCI F1consecutive 67.77 0.63 0.14 66.12 0.65 0.31 71.07 0.59 0.00 61.98 0.57 0.09

−RCI F2consecutive 90.08 0.85 0.00 85.12 0.83 0.00 90.08 0.85 0.00 87.60 0.85 0.08

−RCI F3consecutive 85.95 0.79 0.00 80.17 0.76 0.00 85.95 0.79 0.00 78.51 0.77 0.06

−RCI F4consecutive 94.21 0.91 0.00 91.74 0.90 0.00 94.21 0.91 0.00 93.39 0.91 0.00

Only mobility and outings

−RCI totalbaseline 70.24 0.64 0.09 69.42 0.70 0.47 73.55 0.62 0.00 66.94 0.66 0.31

−RCI F1baseline 57.02 0.55 0.23 64.46 0.65 0.48 66.12 0.53 0.00 65.28∗ 0.64 0.40

−RCI F2baseline 94.21 0.91 0.00 94.21∗ 0.93 0.14 94.21 0.91 0.00 89.26 0.89 0.00

−RCI F3baseline 84.30 0.77 0.00 77.69 0.77 0.26 84.30 0.77 0.00 73.55 0.72 0.05

−RCI F4baseline 94.21 0.92 0.00 93.39 0.92 0.00 95.04 0.93 0.00 0.92 91.73 0.00

−RCI totalconsecutive 71.07 0.68 0.26∗ 59.5 0.60 0.29 71.90 0.60 0.00 68.59 0.67 0.29

−RCI F1consecutive 66.94 0.62 0.14 62.8 0.63 0.34 71.08 0.59 0.00 68.59∗ 0.67 0.31

−RCI F2consecutive 90.08 0.85 0.00 89.25∗ 0.86 0.08 90.08 0.85 0.00 85.12 0.83 0.00

−RCI F3consecutive 85.95 0.79 0.00 77.69 0.76 0.06 85.95 0.79 0.00 80.99 0.79 0.12

−RCI F4consecutive 94.21 0.91 0.00 90.91 0.90 0.00 94.21 0.91 0.00 90.91 0.90 0.00

Only sleep

−RCI totalbaseline 67.76 0.59 0.00 66.12∗ 0.61 0.09 73.55 0.62 0.00 63.63 0.59 0.06

−RCI F1baseline 57.85 0.53∗ 0.13∗ 61.98 0.59 0.25 66.94 0.54 0.00 51.24 0.51 0.23

−RCI F2baseline 91.73 0.90 0.00 94.21∗ 0.93 0.14 94.21 0.91 0.00 91.74 0.90 0.00

−RCI F3baseline 80.17 0.77 0.11 80.99 0.75 0.00 84.30 0.77 0.00 79.34 0.74 0.00

−RCI F4baseline 94.21 0.92 0.00 95.04 0.93 0.00 95.04 0.93 0.00 95.04 0.93 0.00

−RCI totalconsecutive 66.12 0.57 0.00 70.25∗ 0.64 0.12 71.90 0.60 0.00 66.12 0.62 0.15

−RCI F1consecutive 67.77 0.63 0.14 67.77 0.62 0.11 71.07 0.59 0.00 66.94 0.63 0.17

−RCI F2consecutive 89.26 0.85 0.00 88.43∗ 0.86 0.08 90.08 0.85 0.00 90.08∗ 0.85 0.00

−RCI F3consecutive 84.3 0.79 0.00 83.47 0.78 0.00 85.95 0.79 0.00 85.12 0.79 0.00

−RCI F4consecutive 94.21 0.91 0.00 93.39 0.91 0.00 94.21 0.91 0.00 92.56 0.92 0.14

Only overnight patterns

−RCI totalbaseline 68.60 0.65∗ 0.19 61.98 0.60 0.16 73.55 0.62 0.00 61.98 0.57 0.03

−RCI F1baseline 61.98 0.58 0.20 55.37 0.53 0.18 66.94 0.54 0.00 47.93 0.47 0.15

−RCI F2baseline 90.91 0.90 0.00 88.43 0.88 0.00 94.21 0.91 0.00 89.26 0.89 0.00

−RCI F3baseline 80.99 0.78 0.16 76.03 0.74 0.11 84.30 0.77 0.00 80.17 0.78 0.16

−RCI F4baseline 95.04 0.93 0.00 94.21 0.90 0.00 95.04 0.93 0.00 92.56 0.91 0.00

−RCI totalconsecutive 66.12 0.62∗ 0.15∗ 61.16 0.59 0.15 71.07 0.60 0.00 61.16 0.60 0.21

−RCI F1consecutive 71.90∗ 0.68∗ 0.26∗ 64.46 0.62 0.20 71.07 0.60 0.00 64.46 0.62 0.20

−RCI F2consecutive 88.43 0.85 0.00 80.17 0.80 0.00 90.08 0.85 0.00 85.12 0.83 0.00

−RCI F3consecutive 82.64 0.79 0.06 79.34 0.78 0.12 85.95 0.79 0.00 81.82 0.77 0.00

−RCI F4consecutive 93.39 0.91 0.00 93.39 0.91 0.00 94.21 0.91 0.00 90.91 0.89 0.00
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adding personalized data points to the models was also demonstrated,

as correlations obtained with a LOSOCV were shown to be much lower

than using 10-fold CV, where data points from the same people might

be used to both train and test the models. This suggests that general

models would highly benefit from a system that could actively learn

individuals’ behavior and functional health state, increasing their pre-

diction performance while collecting data by being adapted to each

user.

In this paper, reliable change in everyday functioning was predicted

both compared to baseline and between consecutive assessment points.

Nonetheless, we cannot forget that we are using the same behavioral

data points for both cases, and that these data points are coming from

each between-assessment period. This means that time-series statistics

of the behavioral features collected in each between-assessment period

not only help in predicting change in the corresponding period but also

change compared with baseline. Reliable changes in the total IADL-C

Table 11

Results for 10-fold CV classification of the Reliable IADL-C change detection using a one-class Linear SVM algorithm (∗: statistically significant improvement

(p < 0.05) in comparison to the corresponding pairwise random algorithm).

Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens.

All features Only cook and eat Only mobility

−RCI totalbaseline 34.71 0.54 0.84 33.06 0.52 0.81 57.03∗ 0.63∗ 0.84∗

−RCI F1baseline 31.41 0.56 0.83 33.06 0.55 0.80 37.19 0.61 0.90

−RCI F2baseline 36.36 0.14 0.43 40.50 0.19 0.57 66.12 0.08 0.14

−RCI F3baseline 36.36 0.41 0.74 31.41 0.39 0.74 50.41∗ 0.48∗ 0.79∗

−RCI F4baseline 80.99 0.40 0.67 70.25 0.32 0.67 82.65 0.42 0.67

−RCI totalconsecutive 28.93 0.51 0.79 31.41 0.50 0.77 36.36 0.57 0.88

−RCI F1consecutive 27.27 0.54 0.86 28.93 0.50 0.77 28.93 0.56 0.89

−RCI F2consecutive 31.41 0.22 0.50 26.45 0.24 0.59 27.87 0.30 0.75

−RCI F3consecutive 28.93 0.35 0.71 39.67 0.36 0.65 41.32 0.47 0.88

−RCI F4consecutive 77.69 0.35 0.57 58.68 0.25 0.57 79.34 0.36 0.57

Only mobility and outings Only sleep Only overnight patterns

−RCI totalbaseline 40.50 0.58 0.88 32.23 0.56 0.91 33.06 0.55 0.88

−RCI F1baseline 32.23 0.55 0.80 31.41 0.57 0.85 33.06 0.57 0.85

−RCI F2baseline 80.17∗ 0.10∗ 0.14∗ 76.86 0.27 0.43 26.45 0.13 0.43

−RCI F3baseline 52.90∗ 0.47∗ 0.74∗ 19.84 0.40 0.84 23.97 0.35 0.68

−RCI F4baseline 68.60 0.31 0.67 83.47 0.43 0.67 83.47 0.43 0.67

−RCI totalconsecutive 33.88 0.53 0.79 31.41 0.55 0.85 28.93 0.50 0.77

−RCI F1consecutive 33.88 0.57 0.89 28.93 0.54 0.86 26.45 0.52 0.83

−RCI F2consecutive 31.41 0.25 0.58 26.45 0.27 0.68 28.10 0.24 0.58

−RCI F3consecutive 37.00 0.45 0.88 18.18 0.37 0.82 21.49 0.36 0.77

−RCI F4consecutive 66.12 0.28 0.57 74.00 0.33 0.57 73.55 0.32 0.57

Table 12

Results for the Reliable IADL-C Change detection for the SMOTE-based oversampled algorithms using all behavioral features (∗: statistically significant improvement

(p < 0.05) in comparison to the corresponding pairwise random algorithm).

AdaBoost kNN LinearSVM MLP

Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens.

−RCI totalbaseline 52.07 0.55 0.63 61.00∗ 0.63∗ 0.66∗ 52.89 0.55 0.66 64.46∗ 0.65∗ 0.34∗

−RCI F1baseline 45.45 0.46 0.60 61.16∗ 0.62∗ 0.75∗ 47.11 0.47 0.75 55.37 0.56 0.70

−RCI F2baseline 92.56 0.92 0.14 80.99∗ 0.84∗ 0.00 89.26 0.90 0.14 86.77 0.88 0.14

−RCI F3baseline 65.29∗ 0.69∗ 0.32∗ 58.68∗ 0.64∗ 0.58∗ 54.54 0.61 0.47 55.37∗ 0.60∗ 0.05∗

−RCI F4baseline 83.00 0.88 0.67 94.22∗ 0.92∗ 0.00 95.04∗ 0.93∗ 0.00 80.17 0.85 0.67

−RCI totalconsecutive 54.55 0.55 0.88 56.00∗ 0.58∗ 0.50∗ 54.54 0.56 0.38 52.07 0.54 0.35

−RCI F1consecutive 53.71 0.55 0.34 58.68∗ 0.61∗ 0.57∗ 48.76 0.51 0.40 57.02 0.57 0.29

−RCI F2consecutive 77.69 0.81 0.33 67.77∗ 0.74∗ 0.25∗ 86.77 0.84 0.00 85.95∗ 0.84∗ 0.08∗

−RCI F3consecutive 53.72 0.61 0.35 54.00∗ 0.61∗ 0.24∗ 62.00 0.66 0.12 54.55 0.61 0.29

−RCI F4consecutive 82.64 0.87 0.57 94.21∗ 0.91∗ 0.00 94.21∗ 0.91∗ 0.00 81.82 0.86 0.86

Table 13

Positive/negative IADL-C change detection results (∗: statistically significant improvement (p < 0.05) in comparison to the corresponding pairwise random algo-

rithm).

AdaBoost kNN LinearSVM MLP C4.5

Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens. Acc. Fscore Sens.

IADL-C 58.70 0.55 0.27 54.01 0.54 0.60∗ 60.90 0.51 0.05 56.92 0.57 0.52 59.03 0.56 0.33

IADL-C F1 60.73 0.59 0.38 57.33 0.57 0.42 56.20 0.48 0.07 55.80 0.55 0.47 53.44 0.50 0.19

IADL-C F2 65.33 0.62 0.17 57.58 0.59 0.48 71.03 0.62 0.04 60.57 0.59 0.27 64.57 0.61 0.22

IADL-C F3 68.47 0.63 0.12 63.90 0.62 0.26 71.74 0.62 0.01 65.95 0.64 0.28 62.94 0.59 0.10

IADL-C F4 85.52 0.82 0.10 84.89 0.84 0.29 88.07 0.83 0.00 80.54 0.81 0.24 87.92∗ 0.84∗ 0.11
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scores, both compared to the baseline and compared to previous as-

sessment points, have shown to be predictable from smart home data.

Unexpectedly, we also noticed a high predictability of F4 IADL-C

subscore, which is related to social skills of older adults, from in-home

data. Even if social skills of the elderly might be something that can be

much better appreciated when they are outside, where they relate to

other people and they carry-out social activities, we have demonstrated

that there are some in-home characteristics that might also help in

predicting these abilities. The combination of in-home mobility and

outing patterns have shown to be related to social skills, as well as

cooking and eating habits. This is indeed logical, as the more an elder is

leaving his/her home, the more social life they are likely engaging in.

This agrees with previous work [17] which has also reported an asso-

ciation between increased time spent out of home and better social

health (in terms of decreased loneliness and better mood). Not only

that, but sensors might also be detecting more variability in eating

patterns of the elderly who have the best social skills because they

might be going out for meals more frequently. This could also explain

the correlation found between the overnight patterns and social skills,

as going out more and having a less routine life might increase the

variability in their nighttime behavior. A LOSOCV has shown results of

similar magnitudes as the 10-fold CV, suggesting the possibility of

creating inter-individual models based on this approach.

For the functional health improvement and decline detection, re-

sults have been more moderate. This is understandable, as this problem

has an added difficulty for two reasons. On one hand, we were con-

sidering that a change in IADL-C scores occurred at every assessment

point compared the previous one, even if this change was not really

significant or it was simply inestimable. On the other hand, we were

aiming at distinguishing positive and negative changes in IADL-C scores

when the time-series statistics that we are extracting from our beha-

vioral data might not necessarily reflect positive or negative change in

behavior. Even so, we were able to demonstrate that positive and ne-

gative changes in social skills are predictable using smart home data.

Finally, we observe that the use of specific algorithms for imbalanced

datasets can significantly help in gaining sensitivity for the reliable change

events’ detection. In this paper, as in most research focusing on detection

of health issues, we face a class imbalance problem. A reliable change in

functional health is a rare event, but is likely the event of interest for most

applications. Ideally, we would like to have an algorithm with a high

sensitivity and high precision or low number of false alarms, but we

usually have to seek a trade-off between these parameters. We believe that

the algorithms that have been built using SMOTE-based oversampled da-

tasets have shown interesting results in this sense, being more useful than

one-class classification algorithms. Reliable changes in total score and F1

and F3 subscores from baseline can be detected with a sensitivity of up to

75% and overall accuracies of 60%, which is not bad for early models and

encourages us to keep working further in feature selection and in sensi-

tivity boosting. Significance tests have confirmed that smart home data

can be used to predict all five IADL-C scores.

In terms of classification algorithms, linear SVM has shown the least

interesting results. In most of the cases, models created using this al-

gorithm are highly biased towards the majority class, showing a null

sensitivity for reliable change detection and not demonstrating any

statistical significance using smart home data against the use of random

data. At the other end is the kNN algorithm, which has pleasantly

surprised us in almost all established problems, finding in many cases

the best results and the biggest amount of significant improvements

compared to random classifiers. It is certainly an algorithm to consider

for future research in problems with similar characteristics.

The work being presented herein is aligned with the current emer-

ging paradigm of the Internet of Things (IoT), which aims at building up

a globally interconnected continuum of a variety of objects in the

physical environment [25,26]. IoT has become one of the research

priorities in multiple disciplines, including healthcare. The main goal of

IoT-enabled healthcare is to design and develop ubiquitous Information

and Communication-based solutions for delivering high-quality patient-

centered health services. This way, it is intended to propose econom-

ically viable alternatives to the traditional healthcare systems in order

to mitigate the consequences of the continued aging of the population

[27]. Our approach contributes towards this goal by offering an in-

expensive ubiquitous monitoring system for the detection of functional-

health decline. Taking into account that most people who are part of the

largest collective in the developed countries suffer from functional

health decline at some point, this work is of great interest for a huge

number of potential end-users.

Besides, the system being proposed in this work could be extensible

to a wide variety of applications with a little adaptation work, thus

expanding its field of use and the list of benefited users. For instance,

such an ubiquitous monitoring of people’s behavior could be used as a

follow-up of a therapy or rehabilitation program in the overall popu-

lation, improving its efficiency and success, as it could also be used as

an overall health monitor. In addition, Emergency Medical Services

(EMS) could be improved by automatically detecting in-home emer-

gencies [28]. Moreover, persuasive prompts could be given to the in-

habitants based on their behavior in order to guide cognitively impaired

people through daily activities [11] or to enhance their emotional [29]

and overall wellbeing. Finally, smart hospital services [30,31] could be

deployed by offering a more personalized in-home hospitalization.

Nonetheless, there are still some issues that should be addressed in

order to implement such a system in real-life. These include lifelogging

issues [32], the high volume of generated data or security and privacy

issues [33].

5. Conclusions

This work has demonstrated the possibility of detecting functional

health decline in older adults from unobtrusively collected in-home

behavioral data. We believe that the results shown herein are im-

portant, as they suggest the possibility of implementing an IoT-enabled

system that can benefit our increasingly older society. The models

shown in this paper are early models, which were mainly aimed at

demonstrating the feasibility of such a system and providing insight

into the behavioral features that might be used for this purpose, more

than to create very accurate and likely overfitted models. The results

shown in this paper must be completed and improved with more data

and algorithmic solutions that might better adapt to the imbalanced

detection problems posed herein before their implementation in real-

world settings. Therefore, future work will focus on improving the

sensitivity of the models without increasing the false alarm rate, by

performing a more in-depth feature selection analysis, as well as de-

signing more suitable algorithms for imbalanced datasets and verifying

the results in a scaled longitudinal dataset.
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