
A Scalable Network-Based Performance Analysis

Tool for MPI on Large-Scale HPC Systems*

Hari Subramoni, Xiaoyi Lu, and Dhabaleswar K. Panda

Department of Computer Science and Engineering,

The Ohio State University

{subramon, luxi, panda}@cse.ohio-state.edu

Abstract—Studying the interaction among applications, MPI
runtimes, and the fabric they run on is critical to understanding
application performance. There exists no high-performance and
scalable tool that enables understanding this interplay on modern
multi-petaflop systems. Designing such a tool is non-trivial and
involves multiple components including 1) data profiling/collec-
tion from network/MPI library, 2) storing and, 3) rendering
the data. Furthermore, achieving this with minimal overhead
and scalability is a challenging task. We take up this challenge
and propose a high-performance and scalable network-based
performance analysis tool for MPI libraries operating on modern
networks like InfiniBand and Omni-Path. Our designs facilitate
caching and pre-rendering, allowing a cluster with 6,541 nodes,
764 switches and, 16,893 network links renders in just 30 seconds
— a 44X speed up over non-prerendered solutions. The proposed
lock-free and optimized memory-backed storage design enables
the tool to handle over a quarter million inserts into the database
every 45 seconds (data from 27,504 switch ports and 104,656 MPI
processes). The tool has been successfully deployed and validated
on HPC systems at OSC and on Comet at SDSC.

I. INTRODUCTION

Currently, administrators of HPC systems and developers

of HPC applications/middleware rely on a plethora of tools to

aid them in this interplay. There exists a variety of MPI level

profiling tools (TAU [1], HPCToolkit [2], Intel VTune [3],

IPM [4], mpiP [5]) that give insights into the MPI commu-

nication behavior of applications. However, they are unable

to profile what happens in the communication fabric. On the

other hand, several network level profiling and analysis tools

exist that allow system administrators to analyze and inspect

the network fabric (Nagios [6], Ganglia [7], Mellanox Fabric

IT [8], BoxFish [9], Lightweight Distributed Metric Service

(LDMS) [10]). However, they are unable to relate network

activity to their triggering events in the MPI library. Thus,

a fundamental gap exists in the current class of monitoring

tools making the correlation of MPI events to network activity

cumbersome at best.

The MPI forum [11] has been actively working on bridging

this gap with the MPI T [12] interface. The MPI T interface

allows tools to interact with the MPI library through control

and performance variables. Researchers have already begun

to take advantage of this interface to provide optimization

and tuning hints to the users [13]. However, these tools

have no knowledge about the underlying network fabrics and

thus suffer from the same drawbacks as other existing MPI

*This research is supported in part by National Science Foundation grants
CCF #1565414, CNS #1513120, ACI #1450440, and ACI #1664137.

tools. Recently, by designing InfiniBand Network Analysis

and Monitoring with MPI (INAM
2) [14, 15], we have made

attempts to bridge this gap by developing a tool that is capable

of allowing users to correlate MPI events and network activity.

While INAM
2 is able to visualize and profile clusters of

smaller sizes, several challenges must be addressed to enable

scaling it to larger supercomputing systems. Further, INAM
2

is not capable of monitoring and visualizing intra-node and

GPU-based communications.

A. Motivation and Contributions

As described in Section I, there is a clear need and un-

fortunate lack of a high-performance and scalable tool that

is capable of correlating the MPI and network behavior for

existing/emerging large HPC systems. Such a tool must: 1)

be portable, easy to use/understand, 2) have high-performance

and scalable visualization and storage techniques and, 3) be

applicable to the different communication fabrics and high-

performance MPI libraries that are likely to be used on

existing/emerging large HPC systems.

This paper addresses the above broad challenge through

the design of a high-performance and scalable network-based

performance analysis tool for MPI that is capable of effectively

visualizing and profiling networks of large scale supercom-

puting systems on top of OSU INAM [14, 15]. It explores

intelligent designs that move the cost of rendering large

networks out of the critical path and presents high performance

designs and optimizations for database access that increase

the data storage performance many fold. Novel abstraction

interfaces are also proposed that enhances the applicability

of the tool to multiple high-performance networks as well as

MPI libraries. The major contributions of this paper are:

• Analyze and profile intra-node and GPU-based commu-

nication activities with many metrics at user specified

granularity

• Design caching/pre-rendering based techniques signifi-

cantly enhance network rendering performance

• Propose, design and develop lock-free designs and op-

timized memory-backed storage to enhance data storage

performance

• Propose modular designs to generalize data gathering

across multiple communication fabrics (PCIe, InfiniBand

and Omni-Path)

• Enable fine-grained introspection of particular regions of

application through “Points-of-Interest” feature

2017 IEEE International Conference on Cluster Computing

2168-9253/17 $31.00 © 2017 IEEE

DOI 10.1109/CLUSTER.2017.78

354

• Create a simple load generator to stress the various

components of the tool — the data collection daemon,

the database and the UI

Note that many features and capabilities described here are

already present in OSU INAM available for free download

at [14]. At the time of submission, over 600 downloads of

OSU INAM has taken place from the project site. While we

chose MVAPICH2 for implementing our designs, any MPI

runtime can be enhanced to perform similar data collection

and transmission.

II. CHALLENGES AND PROPOSED DESIGN

Any tool that aims to visualize and profile large scale HPC

systems must address some fundamental challenges — 1) it

must be portable, easy to use / understand, 2) have high-

performance and scalable rendering and storage techniques

and 3) be applicable to the different intra-node and inter-node

fabrics and high-performance MPI libraries that are likely to

be used on large HPC systems. This section highlights the

designs proposed to address these challenges.

Figure 1 depicts the overall architecture of the proposed

design. It consists of two major design components: 1) De-

signing High-Performance and Scalable Data Storage and

Visualization Techniques for Large Scale HPC Clusters and

2) Design of Portable and High-Performance Data Collection

Substrate. Component #1 has two sub-components — A) En-

hancing Data Storage Performance through Lock-Free Designs

and Scalable Schema and B) Optimizing Network Rendering

through Caching/Pre-rendering based Designs. Component #2,

on the other hand, has three sub-components — A) Designing

MPI Library Agnostic Plugin, B) Design of Network and MPI

Load Generator and, C) Designing a Generalized Network Ab-

straction Interface for Multiple Communication Fabrics. The

dotted lines between the different sub-components indicate that

the entities are logically distinct and can be run on the same

or on different physical hosts.

Fig. 1. Overall framework of proposed design
We redesign the database scheme so that the information is

stored in a single text field instead of as separate entries. This

eliminates the multiplicative effect during insertions thereby

significantly improving the insertion performance. Figure 2

depicts the optimizations made to database schema in this

regard. We also optimize MySQL performance and explored

memory backed storage techniques to significantly enhance

the performance of database operations.

process_comm_main

id int(11) A N P

guid bigint(64) +/- N

host_name char(64) N

process_rank int(16) N

lid int(16) D

jobid int(16) D

cpu_id int(16) D

added_on timestamp N D

process_comm_grid

id int (11) N

lid int(16) N

bytes_sent
bigint(64)

+/- N

Old Schema

process_comm_main

id int(11) A N P

guid bigint(64) +/- N

host_name char(64) N

process_rank int(16) N

lid int(16) D

jobid int(16) D

cpu_id int(16) D

added_on timestamp N D

grid_str text N

New Schema

Fig. 2. Optimizations to database schema

We utilize PhantomJS [16], a headless browser that can

be run on the server side, to pre-render the network when

the web server is launched for the first time. The result is

stored in a “cache file” that can be directly rendered on the

client-side browser. Although PhantomJS execution adds to

the web application deployment time, it removes the overhead

of stabilization from the critical path thereby significantly

improving the user experience. To avoid showing a stale view

due to the changes in the network topology or individual

elements, the pre-rendered view is updated in the background

each time the fabric is scanned. Figure 3 shows the depiction of

the full network views of Stampede@TACC, Comet@SDSC,

Gordon@SDSC and various HPC systems at the Ohio Super-

computing Center (OSC) by the proposed tool. Note that the

number of nodes and links in parenthesis represents the actual

number of nodes that were active when the results were taken

and can thus vary slightly from the advertised numbers on the

websites of these systems.

A high-performance and portable data collection substrate

is required for any tool that targets large scale HPC clusters

which can use multiple MPI libraries as well as different intra-

/inter-node communication fabrics. We envision that the plugin

will query the MPI library for the list of supported MPI T

PVARS to determine if an MPI library is which it already

knows the mapping. Another alternative is for the system

administrator to define a configuration file that provides the

mapping of PVARs for libraries that the plugin currently does

not support. We design a network and MPI load generator

module that allows users of their tool to stress test and evaluate

it in a contained, single node environment. The module feeds

data about the MPI processes, fabric (topology and counters) to

the data collection daemon so that it can visualize the network

with simulated performance counter packets for all switch

ports. A group of general abstractions and interfaces is pro-

posed to express the common properties of different networks.

Network-specific data collection functions are implemented

under the general interface. The collected data include static

properties of nodes and links (GUID, type, bandwidth, etc.), as

355

(a) Stampede@TACC — Clustered (6,541 nodes, 764
switches, 16,893 network links)

(b) Comet@SDSC — Clustered (1,879 nodes, 212
switches, 4,377 network links)

(c) Gordon@SDSC — Fully expanded (1,081 nodes, 64
switches, 1,657 network links)

(d) OSC Clusters — Fully expanded (1,400 nodes, 184
switches, 3,027 network links)

Fig. 3. Full network view of various supercomputing systems as depicted by proposed tool

well as dynamic runtime indices of each port (transmit/receive

counter, error counter, etc.), fabric connectivity information

and information about routes between different hosts.

III. DISCUSSION ON FEATURES AND ITS IMPACT

We highlight how the new features introduced in Section II

enables understanding the interaction between the application

and the communication fabric in this section. These features

are not available in INAM
2 [15]. Note that the performance

and scalability improvements gained as a result of design

introduced in this paper makes all existing features of OSU

INAM applicable to large scale HPC systems (a full list of

features can be found at [14]).

A. Addressing Security and Trustworthiness in the Webserver

On typical HPC systems, a regular user is only allowed to

access his/her own job. However, the HPC center staff need

to have elevated privileges to access information pertaining

to all users as well as low-level details of the network. We

propose to incorporate such “user-based filtering” capabilities

in the Java web server. The web server will use the accounting

facilities in state-of-the-art job schedulers like SLURM [17]

to distinguish between different users and present each user

with an appropriate view of jobs/system.

B. Analyzing and Understanding Intra-Node Communication

The advent of multi-/many-core processes has led to very

complex intra-node topologies with varying communication

costs. Understanding the communication happening inside a

node can help application developers immensely. For instance,

the capability to monitor and visualize intra-node communica-

tion enables understanding the communication pattern of pro-

cesses and allows application developers to place frequently

communicating processes on the same socket / NUMA node

using the process to core binding features that most modern

MPI libraries provide.

C. Analyzing and Understanding GPU-Based Communication

The emergence of accelerators such as NVIDIA Graph-

ics Processing Units (GPUs) is changing the landscape of

supercomputing systems. GPUs, being PCI Express (PCIe)

devices, have their own memory space and require data to be

transferred to their memory through specific mechanisms prior

computation. There are multiple communication paths (up to

11 [18]) available with these accelerator based architectures

356

(host-to-host, host-to-device, host-to-remote-device etc). This

variety, in possible communication paths, makes the jobs of

identifying and analyzing these challenging for normal users.

However, with the proposed new features, users can easily

visualize and identify which are the more frequently used

communication paths. This, combined with the fact that the

tool can correlate and overlay MPI level information on top

of low level information makes this unique in its capability.

IV. EXPERIMENTAL RESULTS

The load time of the user interface and the database

performance heavily dependent on the characteristics of the

underlying hardware and software. As different supercomput-

ing systems use different generations of hardware/software

(like CPUs, SSDs, HDDs, versions OS etc.) with varying

performance characteristics, it will be unfair to compare the

results obtained on one system with those obtained on another.

Thus, in the interest of achieving a fair comparison, all

experiments were run on the hardware platform described in

Section IV-A. The proposed network and MPI load generator

is used to simulate the load that four different HPC systems

can potentially put on the proposed tool. Note that the tool

has been deployed on the HPC systems at OSC and Comet

at SDSC. It has also been verified that the results seen on

the actual systems are in line with the performance observed

locally using the load generator.

A. Experimental Setup

Each node in our 184 experimental cluster is equipped with

Intel Westmere series of processors using Xeon dual socket,

quad-core processors operating at 2.67 GHz with 12 GB RAM,

MT26428 QDR ConnectX-2 HCAs (32 Gbps data rate) with

PCI-Ex Gen2 interfaces. The operating system used is Red

Hat Enterprise Linux Server release 6.7 (Santiago), with ker-

nel version 2.6.32-431.el6 and Mellanox OFED version 2.2-

1.0.1. We used MySQL v5.1.73 and MemSQL v5.0.3 for the

evaluations. The version of PhantomJS used was 2.0.0. Table I

highlights the salient points of the different HPC systems used

as testbeds for evaluation. As mentioned above, we used a

single node on this cluster to simulate the MPI and network

load generated when the HPC systems described in Table I

are “fully-loaded”.

TABLE I
DETAILS OF VARIOUS HPC SYSTEMS

Cluster Number Number of Number Number Network
of Nodes Switches of Ports of Links Topology

Gordon 1,081 64 2,304 1,657 3D Torus

OSC 1,400 184 5,628 3,027 Composite Fat-Tree

Comet 1,879 212 7,636 4,377 Hybrid Fat-Tree

Stampede 6,541 764 27,504 16,893 Partial Fat-Tree

Table II indicates the number of records of each type and

the frequency of insertion of the records for different HPC

systems. Three different types of records are inserted — a)

performance counters obtained from port counters on the

switch (Port Counters), b) process specific information being

sent by each MPI process (MPI Process Info) and, c) process

specific communication grid information being sent by each

MPI process (MPI Comm Grid Info). Note that the number of

“Port Counters” records inserted is a function of the number of

switch ports on the system while the number of “MPI Process

Info” and “MPI Comm Grid Info” records are a function of

the number of processes (which can loosely be linked to the

number of cores assuming no over subscription) on the system.

TABLE II
NUMBER OF RECORDS INSERTED OF DIFFERENT CATEGORIES FOR

VARIOUS HPC SYSTEMS RUNNING AT FULL LOAD

HPC Number of Records Inserted
/ Frequency of Insertion (seconds)

Cluster Port Counters MPI Process Info MPI Comm Grid Info

Gordon 4,608 / 30 17,296 / 30 17,296 / 30

OSC 11,256 / 30 22,400 / 30 22,400 / 30

Comet 15,272 / 30 30,064 / 30 30,064 / 30

Stampede 55,008 / 30 104,656 / 45 104,656 / 45

B. Impact of Profiling on Applications Kernels

Figure 4 compares the performance of the version of the

MPI runtime with support for MPI level data collection with

one which does not have the support. As we can see, at the

application level, there is little to no impact on the performance

due to the addition of the data collection and reporting. These

are encouraging trends which positively advocate the use of

such tools for end applications on modern HPC systems.

 0

 10

 20

 30

 40

 50

 60

 70

 80

CG EP FT IS MG

E
xe

cu
tio

n
T

im
e

(S
ec

on
ds

)

Benchmark

Default
Proposed

Fig. 4. Performance of class D NAS parallel benchmarks at 512 processes

V. CONCLUSION AND FUTURE WORK

The design of a high-performance and scalable network-

based performance analysis tool for MPI built on top of

OSU INAM that is able to visualize and profile networks

of large scale supercomputing systems with high-performance

and scalability was presented in this paper. The proposed

designs enabled the ability to monitor and visualize intra-node,

inter-node and GPU-based MPI communication for multiple

communication fabrics with fine granularity on large HPC

clusters for multiple MPI libraries. The proposed caching/pre-

rendering based designs were able to deliver a speedup of 44X

over the over non pre-rendered / caching enabled solution in

depicting a cluster with 6,541 nodes, 764 switches and, 16,893

network links. The lock-free and optimized memory-backed

storage design allowed OSU INAM to to handle the data

generated by a) querying 27,504 switch ports at a frequency

of once every 30 seconds and b) 104,656 MPI processes at a

frequency of once every 45 seconds — over quarter million

inserts into the database every 45 seconds. The tool has been

deployed successfully on HPC systems at OSC and on Comet

at SDSC.

357

REFERENCES

[1] A. D. Malony and S. Shende, “Performance Technology

for Complex Parallel and Distributed Systems,” in Proc.

DAPSYS 2000, G. Kotsis and P. Kacsuk (Eds), 2000, pp.

37–46.

[2] HPCToolkit, http://hpctoolkit.org/.

[3] Intel Corporation, “Intel VTune Amplifier,” https://

software.intel.com/en-us/intel-vtune-amplifier-xe.

[4] “Integrated Performance Monitoring (IPM),” http://ipm-

hpc.sourceforge.net/.

[5] “mpiP: Lightweight, Scalable MPI Profiling,” http://

www.llnl.gov/CASC/mpip/.

[6] “Nagios,” http://www.nagios.org/.

[7] “Ganglia Cluster Management System,” http://ganglia.

sourceforge.net/.

[8] Mellanox Integrated Switch Management Solution,

http://www.mellanox.com/page/ib fabricit efm

management.

[9] Lawrence Livermore National Laboratory, “PAVE:

Performance Analysis and Visualization at Exas-

cale,” https://computation.llnl.gov/project/performance-

analysis-through-visualization/software.php.

[10] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos,

J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon,

J. Ogden, M. Rajan, M. Showerman, J. Stevenson,

N. Taerat, and T. Tucker, “The Lightweight Distributed

Metric Service: A Scalable Infrastructure for Continuous

Monitoring of Large Scale Computing Systems and

Applications,” ser. SC ’14. Piscataway, NJ, USA:

IEEE Press, 2014, pp. 154–165. [Online]. Available:

http://dx.doi.org/10.1109/SC.2014.18

[11] MPI Working Group, “Message Passing Interface Fo-

rum,” http://www.mpi-forum.org/.

[12] Martin Schulz, “MPIT: A New Inter-

face for Performance Tools in MPI 3,”

http://cscads.rice.edu/workshops/

summer-2010/slides/performance-tools/

2010-08-cscads-mpit.pdf.

[13] E. Gallardo, J. Vienne, L. Fialho, P. Teller and J. Browne,

“MPI Advisor: A Minimal Overhead MPI Performance

Tuning Tool,” in EuroMPI 2015, 2015.

[14] OSU InfiniBand Network Analysis and Monitoring Tool,

http://mvapich.cse.ohio-state.edu/tools/osu-inam/.

[15] H. Subramoni, A. M. Augustine, M. Arnold, J. Perkins,

X. Lu, K. Hamidouche, and D. K. Panda, “INAM2̂:

InfiniBand Network Analysis and Monitoring with MPI,”

2016.

[16] Ariya Hidayat, “PhantomJS,” 2010. [Online]. Available:

http://phantomjs.org/

[17] Simple Linux Utility for Resource Management

(SLURM), http://www.llnl.gov/linux/slurm/.

[18] S. Potluri, D. Bureddy, K. Hamidouche, A. Venkatesh,

K. Kandalla, H. Subramoni, and D. K. D. Panda,

“MVAPICH-PRISM: A Proxy-based Communication

Framework Using InfiniBand and SCIF for Intel

MIC Clusters,” ser. SC ’13. New York, NY, USA:

ACM, 2013, pp. 54:1–54:11. [Online]. Available:

http://doi.acm.org/10.1145/2503210.2503288

358

