2017 IEEE International Conference on Cluster Computing

A Scalable Network-Based Performance Analysis
Tool for MPI on Large-Scale HPC Systems*

Hari Subramoni, Xiaoyi Lu, and Dhabaleswar K. Panda

Department of Computer Science and Engineering,
The Ohio State University
{subramon, luxi, panda}@cse.ohio-state.edu

Abstract—Studying the interaction among applications, MPI
runtimes, and the fabric they run on is critical to understanding
application performance. There exists no high-performance and
scalable tool that enables understanding this interplay on modern
multi-petaflop systems. Designing such a tool is non-trivial and
involves multiple components including 1) data profiling/collec-
tion from network/MPI library, 2) storing and, 3) rendering
the data. Furthermore, achieving this with minimal overhead
and scalability is a challenging task. We take up this challenge
and propose a high-performance and scalable network-based
performance analysis tool for MPI libraries operating on modern
networks like InfiniBand and Omni-Path. Our designs facilitate
caching and pre-rendering, allowing a cluster with 6,541 nodes,
764 switches and, 16,893 network links renders in just 30 seconds
— a 44X speed up over non-prerendered solutions. The proposed
lock-free and optimized memory-backed storage design enables
the tool to handle over a quarter million inserts into the database
every 45 seconds (data from 27,504 switch ports and 104,656 MPI
processes). The tool has been successfully deployed and validated
on HPC systems at OSC and on Comet at SDSC.

1. INTRODUCTION

Currently, administrators of HPC systems and developers
of HPC applications/middleware rely on a plethora of tools to
aid them in this interplay. There exists a variety of MPI level
profiling tools (TAU [1], HPCToolkit [2], Intel VTune [3],
IPM [4], mpiP [5]) that give insights into the MPI commu-
nication behavior of applications. However, they are unable
to profile what happens in the communication fabric. On the
other hand, several network level profiling and analysis tools
exist that allow system administrators to analyze and inspect
the network fabric (Nagios [6], Ganglia [7], Mellanox Fabric
IT [8], BoxFish [9], Lightweight Distributed Metric Service
(LDMS) [10]). However, they are unable to relate network
activity to their triggering events in the MPI library. Thus,
a fundamental gap exists in the current class of monitoring
tools making the correlation of MPI events to network activity
cumbersome at best.

The MPI forum [11] has been actively working on bridging
this gap with the MPL_T [12] interface. The MPI_T interface
allows tools to interact with the MPI library through control
and performance variables. Researchers have already begun
to take advantage of this interface to provide optimization
and tuning hints to the users [13]. However, these tools
have no knowledge about the underlying network fabrics and
thus suffer from the same drawbacks as other existing MPI

*This research is supported in part by National Science Foundation grants
CCF #1565414, CNS #1513120, ACI #1450440, and ACI #1664137.

2168-9253/17 $31.00 © 2017 IEEE
DOI 10.1109/CLUSTER.2017.78

354

tools. Recently, by designing InfiniBand Network Analysis
and Monitoring with MPI (IN AM?) [14, 15], we have made
attempts to bridge this gap by developing a tool that is capable
of allowing users to correlate MPI events and network activity.
While ITNAM? is able to visualize and profile clusters of
smaller sizes, several challenges must be addressed to enable
scaling it to larger supercomputing systems. Further, N AM?
is not capable of monitoring and visualizing intra-node and
GPU-based communications.

A. Motivation and Contributions

As described in Section I, there is a clear need and un-
fortunate lack of a high-performance and scalable tool that
is capable of correlating the MPI and network behavior for
existing/emerging large HPC systems. Such a tool must: 1)
be portable, easy to use/understand, 2) have high-performance
and scalable visualization and storage techniques and, 3) be
applicable to the different communication fabrics and high-
performance MPI libraries that are likely to be used on
existing/emerging large HPC systems.

This paper addresses the above broad challenge through
the design of a high-performance and scalable network-based
performance analysis tool for MPI that is capable of effectively
visualizing and profiling networks of large scale supercom-
puting systems on top of OSU INAM [14, 15]. It explores
intelligent designs that move the cost of rendering large
networks out of the critical path and presents high performance
designs and optimizations for database access that increase
the data storage performance many fold. Novel abstraction
interfaces are also proposed that enhances the applicability
of the tool to multiple high-performance networks as well as
MPI libraries. The major contributions of this paper are:

o Analyze and profile intra-node and GPU-based commu-
nication activities with many metrics at user specified
granularity

Design caching/pre-rendering based techniques signifi-
cantly enhance network rendering performance

Propose, design and develop lock-free designs and op-
timized memory-backed storage to enhance data storage
performance

Propose modular designs to generalize data gathering
across multiple communication fabrics (PCle, InfiniBand
and Omni-Path)

Enable fine-grained introspection of particular regions of
application through “Points-of-Interest” feature

@) CO‘ pute
1(!) I
& SOCIety

e Create a simple load generator to stress the various
components of the tool — the data collection daemon,
the database and the UI

Note that many features and capabilities described here are
already present in OSU INAM available for free download
at [14]. At the time of submission, over 600 downloads of
OSU INAM has taken place from the project site. While we
chose MVAPICH2 for implementing our designs, any MPI
runtime can be enhanced to perform similar data collection
and transmission.

II. CHALLENGES AND PROPOSED DESIGN

Any tool that aims to visualize and profile large scale HPC
systems must address some fundamental challenges — 1) it
must be portable, easy to use / understand, 2) have high-
performance and scalable rendering and storage techniques
and 3) be applicable to the different intra-node and inter-node
fabrics and high-performance MPI libraries that are likely to
be used on large HPC systems. This section highlights the
designs proposed to address these challenges.

Figure 1 depicts the overall architecture of the proposed
design. It consists of two major design components: 1) De-
signing High-Performance and Scalable Data Storage and
Visualization Techniques for Large Scale HPC Clusters and
2) Design of Portable and High-Performance Data Collection
Substrate. Component #1 has two sub-components — A) En-
hancing Data Storage Performance through Lock-Free Designs
and Scalable Schema and B) Optimizing Network Rendering
through Caching/Pre-rendering based Designs. Component #2,
on the other hand, has three sub-components — A) Designing
MPI Library Agnostic Plugin, B) Design of Network and MPI
Load Generator and, C) Designing a Generalized Network Ab-
straction Interface for Multiple Communication Fabrics. The
dotted lines between the different sub-components indicate that
the entities are logically distinct and can be run on the same
or on different physical hosts.

Optimized Network Rendering Optimized and Enhanced Data Storage

Fabric
Data

File
|

|
|
|
)
|
) Cache
|
I
|
|
I
I

|
|
I
I
|
|
I
I
.
|
| v _Data C ion Daemon
|y MPI
””””””””””””” ! 3 | || patab Network Database Thrm
| i_ﬂl Thread ;—*—;
f 1
MPI Library #1 £ ! i %1 Network .
3 | |8 [[MPIData Data i
.; [T 3:‘ ‘ el zsin C] Thread
g ! 2 Thread ‘ Thread
1
MPI Library #2 E. ! =2 }
> ! i i ‘ Fabric Abstraction Interface ‘
E L | S——
S I Load ¥ 1
o ! i
s | 1
MPI Library #N | ! 1 1 1
I
! fini | ‘ ‘ PCle ‘ ‘Omni-Path ‘ < [IGEHEHHES
| Networks

. 1. Overall framework of proposed design
We redemgn the database scheme so that the information is

stored in a single text field instead of as separate entries. This
eliminates the multiplicative effect during insertions thereby

355

significantly improving the insertion performance. Figure 2
depicts the optimizations made to database schema in this
regard. We also optimize MySQL performance and explored
memory backed storage techniques to significantly enhance
the performance of database operations.

Old Schema New Schema
process_comm_main process_comm_grid process_comm_main
id id id
guid lidint(16) guid
host_name bytes_sent host_name
process_rank process_rank
lid lid
jobid jobid
cpu_id cpu_id
added_on added_on

>{ grid_str

Fig. 2. Optimizations to database schema

We utilize PhantomJS [16], a headless browser that can
be run on the server side, to pre-render the network when
the web server is launched for the first time. The result is
stored in a “cache file” that can be directly rendered on the
client-side browser. Although PhantomJS execution adds to
the web application deployment time, it removes the overhead
of stabilization from the critical path thereby significantly
improving the user experience. To avoid showing a stale view
due to the changes in the network topology or individual
elements, the pre-rendered view is updated in the background
each time the fabric is scanned. Figure 3 shows the depiction of
the full network views of Stampede @ TACC, Comet@SDSC,
Gordon@SDSC and various HPC systems at the Ohio Super-
computing Center (OSC) by the proposed tool. Note that the
number of nodes and links in parenthesis represents the actual
number of nodes that were active when the results were taken
and can thus vary slightly from the advertised numbers on the
websites of these systems.

A high-performance and portable data collection substrate
is required for any tool that targets large scale HPC clusters
which can use multiple MPI libraries as well as different intra-
/inter-node communication fabrics. We envision that the plugin
will query the MPI library for the list of supported MPI_T
PVARS to determine if an MPI library is which it already
knows the mapping. Another alternative is for the system
administrator to define a configuration file that provides the
mapping of PVARSs for libraries that the plugin currently does
not support. We design a network and MPI load generator
module that allows users of their tool to stress test and evaluate
it in a contained, single node environment. The module feeds
data about the MPI processes, fabric (topology and counters) to
the data collection daemon so that it can visualize the network
with simulated performance counter packets for all switch
ports. A group of general abstractions and interfaces is pro-
posed to express the common properties of different networks.
Network-specific data collection functions are implemented
under the general interface. The collected data include static
properties of nodes and links (GUID, type, bandwidth, etc.), as

(a) Stampede@TACC — Clustered (6,541 nodes, 764
switches, 16,893 network links)

(b) Comet@SDSC — Clustered (1,879 nodes, 212

switches, 4,377 network links)

(c) Gordon@SDSC — Fully expanded (1,081 nodes, 64
switches, 1,657 network links)

(d) OSC Clusters — Fully expanded (1,400 nodes, 184
switches, 3,027 network links)

Fig. 3. Full network view of various supercomputing systems as depicted by proposed tool

well as dynamic runtime indices of each port (transmit/receive
counter, error counter, etc.), fabric connectivity information
and information about routes between different hosts.

III. DISCUSSION ON FEATURES AND ITS IMPACT

We highlight how the new features introduced in Section II
enables understanding the interaction between the application
and the communication fabric in this section. These features
are not available in 7N AM? [15]. Note that the performance
and scalability improvements gained as a result of design
introduced in this paper makes all existing features of OSU
INAM applicable to large scale HPC systems (a full list of
features can be found at [14]).

A. Addressing Security and Trustworthiness in the Webserver

On typical HPC systems, a regular user is only allowed to
access his/her own job. However, the HPC center staff need
to have elevated privileges to access information pertaining
to all users as well as low-level details of the network. We
propose to incorporate such “user-based filtering” capabilities
in the Java web server. The web server will use the accounting
facilities in state-of-the-art job schedulers like SLURM [17]

356

to distinguish between different users and present each user
with an appropriate view of jobs/system.
B. Analyzing and Understanding Intra-Node Communication
The advent of multi-/many-core processes has led to very
complex intra-node topologies with varying communication
costs. Understanding the communication happening inside a
node can help application developers immensely. For instance,
the capability to monitor and visualize intra-node communica-
tion enables understanding the communication pattern of pro-
cesses and allows application developers to place frequently
communicating processes on the same socket / NUMA node
using the process to core binding features that most modern
MPI libraries provide.
C. Analyzing and Understanding GPU-Based Communication
The emergence of accelerators such as NVIDIA Graph-
ics Processing Units (GPUs) is changing the landscape of
supercomputing systems. GPUs, being PCI Express (PCle)
devices, have their own memory space and require data to be
transferred to their memory through specific mechanisms prior
computation. There are multiple communication paths (up to
11 [18]) available with these accelerator based architectures

(host-to-host, host-to-device, host-to-remote-device etc). This
variety, in possible communication paths, makes the jobs of
identifying and analyzing these challenging for normal users.
However, with the proposed new features, users can easily
visualize and identify which are the more frequently used
communication paths. This, combined with the fact that the
tool can correlate and overlay MPI level information on top
of low level information makes this unique in its capability.

IV. EXPERIMENTAL RESULTS

The load time of the user interface and the database
performance heavily dependent on the characteristics of the
underlying hardware and software. As different supercomput-
ing systems use different generations of hardware/software
(like CPUs, SSDs, HDDs, versions OS etc.) with varying
performance characteristics, it will be unfair to compare the
results obtained on one system with those obtained on another.
Thus, in the interest of achieving a fair comparison, all
experiments were run on the hardware platform described in
Section IV-A. The proposed network and MPI load generator
is used to simulate the load that four different HPC systems
can potentially put on the proposed tool. Note that the tool
has been deployed on the HPC systems at OSC and Comet
at SDSC. It has also been verified that the results seen on
the actual systems are in line with the performance observed
locally using the load generator.

A. Experimental Setup

Each node in our 184 experimental cluster is equipped with
Intel Westmere series of processors using Xeon dual socket,
quad-core processors operating at 2.67 GHz with 12 GB RAM,
MT26428 QDR ConnectX-2 HCAs (32 Gbps data rate) with
PCI-Ex Gen2 interfaces. The operating system used is Red
Hat Enterprise Linux Server release 6.7 (Santiago), with ker-
nel version 2.6.32-431.el6 and Mellanox OFED version 2.2-
1.0.1. We used MySQL v5.1.73 and MemSQL v5.0.3 for the
evaluations. The version of PhantomJS used was 2.0.0. Table I
highlights the salient points of the different HPC systems used
as testbeds for evaluation. As mentioned above, we used a
single node on this cluster to simulate the MPI and network
load generated when the HPC systems described in Table I
are “fully-loaded”.

TABLE I
DETAILS OF VARIOUS HPC SYSTEMS

Cluster Number | Number of | Number | Number Network

of Nodes Switches of Ports | of Links Topology

Gordon 1,081 64 2,304 1,657 3D Torus

OSC 1,400 184 5,628 3,027 Composite Fat-Tree

Comet 1,879 212 7,636 4,377 Hybrid Fat-Tree
Stampede 6,541 764 27,504 16,893 Partial Fat-Tree

Table II indicates the number of records of each type and
the frequency of insertion of the records for different HPC
systems. Three different types of records are inserted — a)
performance counters obtained from port counters on the
switch (Port Counters), b) process specific information being
sent by each MPI process (MPI Process Info) and, c) process
specific communication grid information being sent by each
MPI process (MPI Comm Grid Info). Note that the number of

357

“Port Counters” records inserted is a function of the number of
switch ports on the system while the number of “MPI Process
Info” and “MPI Comm Grid Info” records are a function of
the number of processes (which can loosely be linked to the
number of cores assuming no over subscription) on the system.

TABLE I
NUMBER OF RECORDS INSERTED OF DIFFERENT CATEGORIES FOR
VARIOUS HPC SYSTEMS RUNNING AT FULL LOAD

HPC Number of Records Inserted
/ Frequency of Insertion (seconds)
Cluster Port Counters [MPI Process Info [MPI Comm Grid Info
Gordon 4,608 / 30 17,296 / 30 17,296 / 30
0SC 11,256 / 30 22,400 / 30 22,400 / 30
Comet 15,272 / 30 30,064 / 30 30,064 / 30
Stampede 55,008 / 30 104,656 / 45 104,656 / 45

B. Impact of Profiling on Applications Kernels

Figure 4 compares the performance of the version of the
MPI runtime with support for MPI level data collection with
one which does not have the support. As we can see, at the
application level, there is little to no impact on the performance
due to the addition of the data collection and reporting. These
are encouraging trends which positively advocate the use of
such tools for end applications on modern HPC systems.

80
70 -
60 -
50
40
30
20
10

0

W Default | |

Execution Time (Seconds)

CG

FT
Benchmark
Performance of class D NAS parallel benchmarks at 512 processes

MG

Fig. 4.

V. CONCLUSION AND FUTURE WORK

The design of a high-performance and scalable network-
based performance analysis tool for MPI built on top of
OSU INAM that is able to visualize and profile networks
of large scale supercomputing systems with high-performance
and scalability was presented in this paper. The proposed
designs enabled the ability to monitor and visualize intra-node,
inter-node and GPU-based MPI communication for multiple
communication fabrics with fine granularity on large HPC
clusters for multiple MPI libraries. The proposed caching/pre-
rendering based designs were able to deliver a speedup of 44X
over the over non pre-rendered / caching enabled solution in
depicting a cluster with 6,541 nodes, 764 switches and, 16,893
network links. The lock-free and optimized memory-backed
storage design allowed OSU INAM to to handle the data
generated by a) querying 27,504 switch ports at a frequency
of once every 30 seconds and b) 104,656 MPI processes at a
frequency of once every 45 seconds — over quarter million
inserts into the database every 45 seconds. The tool has been
deployed successfully on HPC systems at OSC and on Comet
at SDSC.

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]

(9]

[13]

[14]

[15]

REFERENCES

A. D. Malony and S. Shende, “Performance Technology
for Complex Parallel and Distributed Systems,” in Proc.
DAPSYS 2000, G. Kotsis and P. Kacsuk (Eds), 2000, pp.
37-46.

HPCToolkit, http://hpctoolkit.org/.

Intel Corporation, “Intel VTune Amplifier,” https://
software.intel.com/en-us/intel-vtune-amplifier-xe.
“Integrated Performance Monitoring (IPM),” http://ipm-
hpc.sourceforge.net/.

“mpiP: Lightweight, Scalable MPI Profiling,” http://
www.lInl.gov/CASC/mpip/.

“Nagios,” http://www.nagios.org/.

“Ganglia Cluster Management System,” http://ganglia.
sourceforge.net/.

Mellanox Integrated Switch Management Solution,
http://www.mellanox.com/page/ib_fabricit_efm_
management.

Lawrence Livermore National Laboratory, “PAVE:
Performance Analysis and Visualization at Exas-
cale,” https://computation.llnl.gov/project/performance-
analysis-through-visualization/software.php.

A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos,
J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon,
J. Ogden, M. Rajan, M. Showerman, J. Stevenson,
N. Taerat, and T. Tucker, “The Lightweight Distributed
Metric Service: A Scalable Infrastructure for Continuous
Monitoring of Large Scale Computing Systems and
Applications,” ser. SC ’14. Piscataway, NJ, USA:
IEEE Press, 2014, pp. 154-165. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.18

MPI Working Group, “Message Passing Interface Fo-
rum,” http://www.mpi-forum.org/.

Martin Schulz, “MPIT: A New Inter-
face for Performance Tools in MPI 3
http://cscads.rice.edu/workshops/
summer—-2010/slides/performance-tools/
2010-08-cscads—mpit.pdf.

E. Gallardo, J. Vienne, L. Fialho, P. Teller and J. Browne,
“MPI Advisor: A Minimal Overhead MPI Performance
Tuning Tool,” in EuroMPI 2015, 2015.

OSU InfiniBand Network Analysis and Monitoring Tool,
http://mvapich.cse.ohio-state.edu/tools/osu-inam/.

H. Subramoni, A. M. Augustine, M. Arnold, J. Perkins,
X. Lu, K. Hamidouche, and D. K. Panda, “INAM2:
InfiniBand Network Analysis and Monitoring with MPL”
2016.

Ariya Hidayat, “Phantom]JS,” 2010. [Online]. Available:
http://phantomjs.org/

Simple Linux Utility for Resource Management
(SLURM), http://www.lInl.gov/linux/slurm/.

S. Potluri, D. Bureddy, K. Hamidouche, A. Venkatesh,
K. Kandalla, H. Subramoni, and D. K. D. Panda,
“MVAPICH-PRISM: A Proxy-based Communication
Framework Using InfiniBand and SCIF for Intel

358

MIC Clusters,” ser. SC *13. New York, NY, USA:

ACM, 2013, pp. 54:1-54:11. [Online].
http://doi.acm.org/10.1145/2503210.2503288

Available:

