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Abstract—As members of an increasingly aging society,
one of our major priorities is to develop tools to detect the
earliest stage of age-related disorders such as Alzheimer’s
Disease (AD). The goal of this paper is to evaluate the pos-
sibility of using unobtrusively collected activity-aware smart
home behavior data to detect the multimodal symptoms
that are often found to be impaired in AD. After gathering
longitudinal smart home data for 29 older adults over an
average duration of >2 years, we automatically labeled the
data with corresponding activity classes and extracted time-
series statistics containing 10 behavioral features. Mobility,
cognition and mood were evaluated every six months. Using
these data, we created regression models to predict symptoms
as measured by the tests and a feature selection analysis
was performed. Classification models were built to detect
reliable absolute changes in the scores predicting symptoms
and SmoteBOOST and wRACOG algorithms were used to
overcome class imbalance where needed. Results show that
all mobility, cognition, and depression symptoms can be
predicted from activity-aware smart home data. Similarly,
this data can be effectively used to predict reliable changes
in mobility and memory skills. Results also suggest that not
all behavioral features contribute equally to the prediction
of every symptom. Future work therefore can improve model
sensitivity by including additional longitudinal data and
by further improving strategies to extract relevant features
and address class imbalance. The results presented herein
contribute towards the development of an early change
detection system based on smart home technology.

Index Terms—Activity Recognition, Alzheimer’s Disease,
Automatic Assessment, Behavior, Multimodal Symptoms,
Older Adults, Smart Homes.

I. INTRODUCTION

INCREASING life expectancy in developed countries
has resulted in a growing number of cases of people

affected by age-related neurodegenerative diseases, such
as Alzheimer’s Disease (AD). An estimate of 115.4 mil-

A. Alberdi, A. Aztiria and M. Barrenechea are with the Electronics
and Computing Department, Goiru Kalea, 2, Arrasate, 20500, Spain

E-mail: aalberdiar,aaztiria,mbarrenetxea@mondragon.edu
A. Weakley and M. Schmitter-Edgecombe are with Department of

Psychology, Washington State University, Pullman, Washington, 99164,
USA.
E-mail: alymae,schmitter-e@wsu.edu

D. J. Cook is with School of Electrical Engineering and Computer
Science, Washington State University, Pullman, Washington, 99164,
USA
E-mail: djcook@wsu.edu
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lion people will suffer from AD in 2050 [1], which can
result in devastating consequences in terms of health-
care costs and quality of life of patients and caregivers.
While there is no known cure [2], treatments to delay
and reduce cognitive and behavioral symptoms of AD
do exist and are demonstrated to be more effective the
sooner they are applied [3]. Therefore, as a matter of
general interest, the search for methods of early detection
is currently a high priority issue. Such methods could
lead to earlier detection and therefore more effective
intervention. The resulting benefits include an increase
in the independence of the patients, an improvement
in quality of life for them and their caregivers and a
reduction in health-care costs.

Although AD’s clinical hallmark is episodic mem-
ory impairment [4], it manifests symptoms in multiple
domains, including mood, behavior, and cognition [5].
These symptoms and the associated pathology are usu-
ally measured by means of self- and informant- report
questionnaires, clinical assessments conducted by health
care professionals and medical examinations that may
involve brain imaging. Often evaluations are initiated
after symptoms have been prominent for some time,
resulting in a delayed diagnosis [6]. Given that AD
pathology in the brain accumulates slowly over time, a
key for the treatments to be effective is early detection of
the disease and implementation of available treatments.

Smart homes are an emerging technological solution,
based on the use of embedded sensors to enhance
homes’ intelligence, enabling the unobtrusive monitor-
ing of resident’s behavior [7]. Real-life data can be
gathered non-stop in a completely naturalistic way, of-
fering a complete and ecologically valid view of older
adults’ behavior and allowing the detection of changes
that might indicate the onset of a disorder. If smart
home-based behavior shifts were mapped to AD, many
disadvantages of the usual assessment methods could
be overcome: detection could be made without the need
for older adults to travel to a health center to receive
expensive and invasive diagnostic testing. In contrast,
smart home monitoring may detect cognitive changes as
they occur, resulting in less expensive and more timely
diagnosis.

In order to map detected behavior shifts to AD symp-
toms, machine learning-based models can be used. Ma-
chine learning is a subdiscipline of artificial intelligence
(AI) aimed at building algorithms that are able to learn
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TABLE I: Overview of related work categorized in terms of the measured behavioral features, the employed
assessment tests, preprocessing and analysis techniques, and the observed results (C = Cognition, Mob = Mobility,
M = Mood, n = sample size).

Ref. Behavior Tests Preprocessing and Analysis Main results
Dawadi
et al.
(n=18)

ADL, sleep, mobility,
outings

C: RBANS;
Mob: TUG

-AR + daily behavior stats
-Machine-learning

C: r=0.72, %72
Mob: r=0.45, %76

Hayes
et al.
(n=14)

Amount of activity,
walking speed

C: CDR, MMSE
-Wavelet analysis
-Mixed-model ANOVA

MCI Doubled coefficient of variation in the
median walking speed (p<0.03) and in-
creased variability in the amount of activity
(p<0.008)

Galambos
et al.
(n=5)

Time out, activity
level

C: MMSE, SFHS-12;
M: GDS

Motion and out of home
density maps

Correlation between the scores and activity
level/outings (Qualitative)

Petersen
et al.
(n=85)

Time out, in-home
walking speed

C: CDR;
M, Physical activity

Tobit mixed-effects regression
model

Correlated time spent out of home and
cognitive (p<0.001), physical (p<0.001) and
emotional state (p<0.001).

Austin
et al.
(n=16)

Time out, n◦of phone
calls, computer use,
walking speed,
mobility

M: loneliness
Longitudinal linear-mixed
effects regression model + CV

Correlated loneliness and both time out
of home (p<0.01) and computer sessions
(p<0.05)

Alberdi
et al.
(n=29)

ADL, sleep, mobility,
global routine,
outings

C: RBANS, PRMQ,
Digit Cancel;
Mob: Arm Curl, TUG;
M: GDS

-AR + daily behavior stats +
RCI + positive/negative change
-Machine-learning +
SMOTEBoost + wRACOG

See Results in Section III

and/or adapt their structure based on a set of observed
data (i.e., example data or past experience) [8], [9].
This technique offers an approach for the analysis of
high-dimensional and multimodal biomedical data. A
wide variety of methods exist within this area, including
both regression (e.g. Support Vector Regression, Linear
Regression or k Nearest Neighbors) and classification
methods (e.g., Support Vector Machines, AdaBoost, Mul-
tilayer Perceptron or Random Forest). Whereas regres-
sion models predict continuous variables (e.g., a score
for a standardized assessment test), classification models
determine symbolic class labels for the data (e.g., affected
vs. non-affected by a disease). For a detailed explanation
of specific machine learning algorithms, we refer the
reader to the literature [10], [11].

Our goal in this paper is to assess the possibility of
detecting changes in psychological, cognitive and behav-
ioral symptoms of AD by making use of unobtrusively
collected smart home behavior data and machine learn-
ing techniques. The affirmation of this hypothesis would
result in development and implementation of an early
detection system for disorders that provoke behavioral
changes, such as AD. Such a system could alert patients
and relatives of likely changes, making it possible to take
timely action.

Previous research has demonstrated that the combi-
nation of machine learning techniques and longitudinal
monitoring of smart home-based behavioral data can
be useful not only to assess older adults’ health states
but also to detect onset and monitor progression of
some age-related diseases and disorders. Dawadi et al.
found that the overall cognitive and mobility states
of older adults could be predicted from unobtrusively
collected in-home behavior data [12]. For that purpose,
they introduced an algorithm called Clinical Assessment
using Activity Behavior (CAAB) and tested its validity

for global cognition (measured by the Repeatable Battery
for the Assessment of Neuropsychological Status, or
RBANS) and mobility (measured by the Timed Up and
Go, or TUG) using time series-based descriptive statistics
of daily activities. Hayes et al. [13] found Mild Cognitive
Impairment (MCI), as measured by the Clinical Demen-
tia Rating (CDR) and Mini-Mental State Examination
(MMSE) tests, to be correlated with in-home walking
parameters and mobility measures. MCI implies cogni-
tive decline in one or more domains of cognition (e.g.,
memory, language, executive function) that is greater
than what could be attributed to normal aging, but does
not meet the threshold for a diagnosis of a dementia
disorder like AD [14].

In related work, Galambos et al. [15] discovered as-
sociations between overall in-home activity and outing
patterns with both dementia and depression, which is
also known to be a common AD symptom. The Geriatric
Depression Scale (GDS), as well as the MMSE and Short
Form Health Survey-12 scales were used to determine
subjects’ state. Petersen et al. [16] also found emotional
states, specifically mood and loneliness, to be correlated
to outing patterns, whereas they also verified the possi-
bility of predicting other overall health predictors such
as physical activity from these data. Austin et al. also
predicted the loneliness of older adults by analyzing
behavioral data [17]. A comparative summary of the
sample sizes, techniques used, symptoms predicted, and
observed results are given in Table I.

Nonetheless, there’s still much work to do towards the
development of models to reliably detect AD symptoms
from unobtrusively collected in-home behavioral data.
The predictability of the wide range of multi-modal
symptoms of AD is yet to be analyzed, as well as the
contribution of many behavioral traits to these models.
Moreover, the possibility of detecting a Reliable Change
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test score at the first/baseline assessment and Scorei−1

is the test score at the previous assessment point.
Some of the assessment scores result in very few

positive instances (data instances where a reliable change
was observed), resulting in highly imbalanced class data.
For the following analyses, we removed from the study
those tests which were extremely imbalanced (<5% of
positive instances). We distinguished the remaining tests
as imbalanced (5%-30% of positive instances) and bal-
anced data (30%-50% of positive instances).

Additionally, we also considered the possibility of
detecting improvement and decline in test scores among
consecutive assessment points as a method to reduce
inter-subject variability. Comparing an individual’s score
to his/her own previous one allows us to standardize the
results, since it is a way to evaluate the improvement
or decline of each individual’s skills in the time period
under analysis, regardless of the absolute values of the
scores. In this case, the difference between each con-
secutive assessment point was computed for each self-
reported test score of each subject. Every data instance
with an improvement in the scores (>0) was considered
as a positive point whereas a decline in the performance
of the skill being evaluated by tests (<0) was labeled as
a negative point.

C. Cognition and mobility change prediction

The preprocessed dataset was analyzed using Weka
[34], a free machine learning software written in Java.
First, we performed a correlation analysis between the
mobility, cognition, and mood assessment scores and
the smart home behavior data. For this purpose, we
used four different regression models using all behav-
ior features computed in the previous step for each
one of the scores. The four models we evaluated were
Support Vector Regression (SVr) with a linear kernel,
Linear Regression (LinearR), SVr with a Radial Basis
Function (RBF) kernel and k nearest neighbors (kNN)
algorithms. We compared the correlation coefficients (r)
and Mean Absolute Errors (MAE) of the models using
10-fold cross validation (CV) approach. Corresponding
pairwise random algorithms were built and evaluated in
our dataset following the same process. These random
algorithms provided a basis of comparison to ensure
that performance results are not due to chance. The
random algorithms were built using a uniformly dis-
tributed random data-matrix of the same size as the
real behavioral data while respecting each variable’s data
range as in the original dataset. A corrected paired t-test
was used to detect a significant improvement of smart
home-based algorithms in comparison to the random
data algorithms. Adjusted p-values (*p<0.01, **p<0.001)
were used to avoid Type 1 error when checking for
significance.

In order to analyze the types of behavior features that
are most correlated with each one of the tests, we built
activity-specific models for the main test scores with a

TABLE V: Task-specific grouping of daily features.

Group Day-level features

Daily-routine

Complexity of the daily routine, number of
total activities and number of non-repeated
activities performed per day, maximum and
minimum inactivity times, day length and
similarity with the previous day

Mobility
The total number of activated sensors and
the total distance covered walking inside
the apartment per day

Outings Time spent per day in being out of home
Mobility & outings Mobility + Outings

Sleep The daily sleep duration and frequency

Overnight toileting
Time spent per day in nighttime toileting
activities

Overnight patterns Sleep + Overnight toileting
Cook & eat Time spent per day in cooking and eating

linear SVr and evaluated the models using 10-fold cross
validation. The behavior features that were included in
each one of the models are shown in Table V. Again,
we searched for statistically significant improvement
in comparison to pairwise random algorithms using a
corrected paired t-test and adjusted p-values (*p<0.01,
**p<0.001).

Regarding RCI detection, we used different ap-
proaches for the imbalanced and balanced datasets. First,
balanced datasets containing all behavioral features were
reduced by means of a Principal Component Analysis
(PCA). PCA is a popular statistical technique based on
the projection of the data to a lower-dimensional sub-
space, useful for finding patterns in high-dimensional
datasets [35]. Principal Components that explained 95%
of the variability in the behavior data were kept to create
the reduced datasets. The SVM, AdaBoost, Multilayer
Perceptron (MLP) and Random Forest (RF) algorithms
were trained and validated using ten-fold cross valida-
tion. Evaluation metrics include area under the ROC
curve (ROCauc), area under the Precision-Recall curve
(PRCauc), Fscore, and sensitivity. The combination of
these metrics offers an excellent overview of both the
models’ overall performance and the capability to detect
the event of interest (the reliable change event), and are
especially suitable when the data distribution is skewed.
A corrected paired t-test was used to detect a signifi-
cant improvement of smart home-based algorithms in
comparison to the pairwise random data algorithms, and
an adjusted p-value (*p<0.0125) was employed to avoid
Type 1 error.

For the imbalanced datasets, a different approach was
required. Common machine-learning algorithms tend to
create models that are biased towards the majority class
when being applied to imbalanced datasets, resulting
in high accuracies but very low sensitivity. In most
of the health-related machine learning applications, the
events in which we are more interested are the rare
events or the minority class, highlighting the need to use
alternative methods to improve the detection of these
minority events. Two algorithmic approaches are tested
in the current work to overcome this issue. The first
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TABLE VI: Reliable change detection of Arm Curl scores
from baseline (*: statistically significant improvement
(adjusted p<0.0125) in comparison to the corresponding
pairwise random algorithm). All algorithms can build
statistically significant prediction models, but the RF al-
gorithm beats the rest in terms of Fscore and Sensitivity,
with similar PRCauc.

ROCauc PRCauc Fscore Sens.
RF 0.58 0.73* 0.77* 0.92*

SVM 0.59 0.69* 0.77* 0.89*
AdaBoost 0.64 0.76* 0.76* 0.84*

MLP 0.58 0.75* 0.69* 0.71*

TABLE VII: Reliable change detection of the imbal-
anced scores using SMOTEBoost (*: statistically signif-
icant improvement (adjusted p<0.005) in comparison
to the corresponding pairwise random algorithm). Only
TUGconsecutive shows predictability.

ROCauc PRCauc Fscore Sens.
RBANSbaseline:

+total 0.52 0.05 0.00 0.00
+delayedmemory 0.69 0.18 0.31 0.50

+visuospatial 0.45 0.09 0.08 0.08
TUGbaseline 0.48 0.17 0.06 0.11

ArmCurlconsecutive 0.40 0.18 0.13 0.12
RBANSconsecutive:

+delayedmemory 0.40 0.03 0.00 0.00
+visuospatial 0.68 0.20 0.35 0.50
TUGconsecutive 0.56* 0.22* 0.15* 0.50*

models for the imbalanced datasets that are sampled
based on the SMOTEBoost algorithm. McNemar’s tests
for an adjusted p-value of 0.005 found significant im-
provement of the smart home-based prediction com-
pared to random classifiers for the reliable change de-
tection between consecutive assessments of TUG-based
mobility. However, and even having used a method to
overcome class-imbalance, models still remain biased
and lacking in sensitivity.

Table VIII shows the results of the RCI detection
models based on the wRACOG algorithms for the imbal-
anced datasets, using the sensitivity maximization as the
criteria for the algorithm to stop. Compared to previous
SMOTEBoost based algorithms, the sensitivity of the
models is highly improved, which might be very in-
teresting for some applications. However, some models’
ROCauc values lie below 0.5 and their PRCauc is also low,
which might again be an indicator of a biased model. In
this case, the bias is towards the minority class. McNe-
mar’s tests for an adjusted p-value of 0.005 only found
enough statistical significance to accept predictability of
delayed memory skills between consecutive assessment
points.

Table IX shows the results of the RCI detection models
based on the wRACOG algorithms for the imbalanced
datasets, using the ROCauc metric as the stopping criteria
for the iterative algorithm. The sensitivity of the models
using this second approach is, overall, higher than the
SMOTEBoost-based models and lower than the models
presented in Table VIII. Interestingly, in some cases the

TABLE VIII: Reliable change detection of the imbalanced
scores using wRACOG and sensitivity maximization as
stopping criteria for the algorithm (*: statistically sig-
nificant improvement (adjusted p<0.005) in compari-
son to the corresponding pairwise random algorithm).
Only RBANSbaseline − delayedmemory subscores show
predictability.

ROCauc PRCauc Fscore Sens.
RBANSbaseline

+total 0.72 0.07 0.09 1.00
+delayedmemory 0.63 0.10 0.13 0.60

+visuospatial 0.72 0.20 0.21 1.00
TUGbaseline 0.52 0.21 0.32 0.84

ArmCurlconsecutive 0.54 0.22 0.40 0.83
RBANSconsecutive

+delayedmemory 0.69* 0.06* 0.11* 0.80*
+visuospatial 0.52 0.09 0.17 1.00
TUGconsecutive 0.48 0.18 0.35 0.96

TABLE IX: Reliable change detection of the imbalanced
scores using wRACOG and ROCauc maximization as
stopping criteria for the algorithm (*: statistically sig-
nificant improvement (adjusted p<0.005) in comparison
to the corresponding pairwise random algorithm). Only
ArmCurlconsecutive shows predictability.

ROCauc PRCauc Fscore Sens.
RBANSbaseline

+total 0.77 0.07 0.17 1.00
+delayedmemory 0.66 0.10 0.19 1.00

+visuospatial 0.64 0.14 0.20 0.23
TUGbaseline 0.51 0.17 0.39 0.60

ArmCurlconsecutive 0.62* 0.22* 0.49* 0.63*
RBANSconsecutive

+delayedmemory 0.67 0.03 0.08 1.00
+visuospatial 0.53 0.09 0.19 0.80
TUGconsecutive 0.59 0.18 0.29 0.48

areas under the ROC and PR curves, as well as the
Fscores, are greater than the ones obtained with the
previous approaches. This suggests a better suitability
of the wRACOG based models maximizing ROCauc for
some of the RCI detection problems. After controlling
for the p-value to reduce the family-type error rate,
only the model for the detection of reliable changes on
consecutive Arm Curl mobility scores was showing a
statistically significant prediction ability.

C. Detection of improvement/decline in cognition & mobility
skills

Table X shows the results of detecting mobility
and cognition score improvement/decline. After adjust-
ing the p-value for a reduced family-wise error rate
(*p<0.01,**p<0.001), only the detection of improvement
and decline in mobility as measured by the Arm Curl test
seemed to be possible. A significant improvement both
in ROCauc and PRCauc values was detected using RF and
AdaBoost classifiers in comparison to their pairwise ran-
dom data classifiers, as well as a significant improvement
in Fscore and sensitivity of the RF-based model.
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TABLE X: Positive and negative fluctuation detection between consecutive assessment points (statistically significant
improvement (adjusted *p<0.01,**p<0.001) in comparison to the corresponding pairwise random algorithm). Only
predictions of fluctuations in Arm Curl scores based on RF and AdaBoost algorithms show statistically significant
predictability.

RF SVM AdaBoost
ROCauc PRCauc Fscore Sens. ROCauc PRCauc Fscore Sens. ROCauc PRCauc Fscore Sens.

Mobility
Arm Curl 0.65** 0.54** 0.33* 0.28* 0.60 0.38 0.38 0.34 0.59** 0.47** 0.36 0.36
TUG 0.41 0.49 0.38 0.39 0.46 0.45 0.45 0.48 0.45 0.49 0.46 0.50

Cognition
PRMQ 0.54 0.47 0.29 0.25 0.56 0.38 0.39 0.35 0.51 0.45 0.41 0.43
Prospective Memory 0.58 0.44 0.26 0.21 0.50 0.31 0.19 0.16 0.58 0.42 0.35 0.37
Retrospective Memory 0.55 0.44 0.22 0.18 0.60 0.40 0.41 0.35 0.55 0.44 0.22 0.18
RBANS 0.38 0.46 0.31 0.29 0.39 0.44 0.21 0.19 0.36 0.42 0.32 0.35
Attention 0.54 0.55 0.39 0.35 0.56 0.49 0.44 0.39 0.53 0.56 0.44 0.46
Delayed Memory 0.58 0.53 0.34 0.27 0.48 0.40 0.18 0.15 0.55 0.48 0.35 0.35
Immediate Memory 0.50 0.51 0.37 0.34 0.43 0.42 0.20 0.18 0.51 0.48 0.38 0.45
Language 0.48 0.50 0.32 0.30 0.47 0.44 0.26 0.23 0.51 0.49 0.31 0.33
Visuospatial 0.48 0.51 0.32 0.30 0.57 0.52 0.43 0.39 0.43 0.48 0.35 0.36
Digit Cancel - Speed 0.44 0.45 0.28 0.25 0.51 0.43 0.36 0.32 0.43 0.43 0.32 0.34

IV. DISCUSSION

The problem addressed in this work is not an easy
task to solve. Our goal was to predict the multi-modal
symptoms commonly seen in AD from unobtrusively-
collected behavior data in smart homes with older adults
residents. Despite the complexity of the task, our results
show that measures of cognition, mobility, and depres-
sion are predictable using activity-labeled smart home
data.

A regression analysis of the smart home-based behav-
ior data with all the tests under analysis has shown sev-
eral moderate yet significant correlations. As expected,
behavior data were the most correlated to mobility as-
sessment scores, followed by cognitive skills, whereas
the most difficult task seems to be mood prediction.
Nonetheless, almost all models, with the exception of
cognition level prediction based on Digit Cancellation
scores, showed a significant improvement compared to
models based on random data.

The feature selection analysis has brought to light such
valuable information as the predictability of mobility
scores from outing patterns, daily routine, and patterns
of cooking and eating. In the specific case of TUG
scores, there was a significant correlation with global
overnight activities including bed-to-toilet transitions.
This finding suggests that individuals who take longer
to complete the TUG (indicative of slowed movement)
tend to be more active at night. This is supported by
the AD literature that finds both impaired mobility and
sleep disturbances to be related to dementia [40], [41]. In
[12], TUG showed significant correlations with mobility,
outings, sleep and ADL (cook, eat, relax and personal
hygiene activities) features.

While we did not observe statistically significant pre-
dictability based on outings, mobility and sleep after ad-
justing the p-value for reduced family-wise error rate, we
did based on global daily routine patterns, which were
not analyzed previously, and for cooking and eating ac-
tivities, which likely reflect part of the ADLs of the previ-

ous work. Cognition was mainly correlated to sleep and
overnight patterns, but also to daily routine, mobility,
and outings. These results also agree with previous work
[12], where correlations between total RBANS scores and
smart home activity data were analyzed and statistical
significance for sleep, mobility, outings, and ADLs was
found. Also in agreement with these results, sleep and
sleep-related disturbances have been found to be related
to cognitive impairment in other research [42], [43], as
well as time spent out of home to cognitive state as
measured by the Clinical Dementia Rating (CDR) scale
[16].

Finally, yet lacking statistical significance for the cor-
relation scores, depression assessed with the GDS scale
was found to be predictable based on mobility, outings,
and sleep features. This agrees with previous work [15]
where correlation of GDS scores with overall in-home
mobility and outing patterns was discovered. Trends
showing that sleep and overnight behavior as well as
daily routine features contribute most to the prediction
of several health assessments are also consistent with
behavior literature [42]–[45]. Thus, our results validate
those reported in the literature, in addition to analyze in
greater detail each aspect of mobility and cognition skills
thanks to the use of more tests and their subscores. Part
of the data used for these correlation analyses overlaps
with the data used previously (n=18) [12], so similar
conclusions would be expected. Nonetheless, we have
reaffirmed and given more strength to most of those
conclusions by including data collected over a longer
period and from more subjects (i.e., using a bigger
sample size), as well as discovering new correlations
with daily routine patterns. In fact, the novel overall
daily-routine features presented in this paper showed
predictability both for mobility and cognition skills of
the elderly.

Regarding reliable change detection, we see that
activity-labeled smart home data can actually be used
to build quite accurate models when a complete and
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balanced dataset is available. This is the case for the
Arm Curl test change from baseline, which has been
seen to be predictable in a quite accurate manner and
with a high sensitivity. We verified in all four models
built for this reliable change prediction that the use
of smart home activity data significantly contributes to
the detection of such events. Unfortunately, a balanced
dataset was not available for all cases. Despite that
problem, by applying the SMOTEBoost technique to
overcome class imbalance, we were able to demonstrate
that consecutive reliable change on mobility measured
by TUG test is predictable using smart home activity
labeled data. A McNemar’s test with an adjusted p-
value has supported this hypothesis, yet we are aware
that the model lacks sensitivity to be considered a final
model. The use of the wRACOG algorithm has resulted
in some models with better prediction characteristics:
improved sensitivity and ROCauc, PRCauc and Fscores
were found in some cases. Changes in consecutive Arm
Curl and delayed memory scores also showed enough
statistical significance compared to random classifiers in
a McNemar’s test to be considered reliably predictable
from smart home data.

Now that we know that behavioral data can be used
to at least automatically assess changes in mobility and
memory skills, we can keep collecting more longitudinal
data to create better models in the future. This might also
result in the discovery of other significant associations.
Note that these results were also achieved by using
all the behavioral features, whereas a feature-selection
process can also help in improving them. Furthermore,
we used a kNN algorithm as the wrapper model for the
wRACOG approach, but other algorithms can also be
considered and might improve the results. Maximization
of PRCaucs of Fscores could also be tested as stopping
criteria for the iterative process, possibly leading to
different conclusions.

Analysis of the ability to detect changes in cognitive
and mobility skills has demonstrated the possibility of
predicting a decline or an improvement in a person’s
mobility as measured by the Arm Curl test. This not only
confirms the results of the previous RCI analysis, where
we saw that reliable changes in the Arm Curl tests were
detectable by smart home activity-labeled data but also
adds value to the results suggesting that the direction of
the change is also predictable. Literature also supports
the idea of the relationship between Arm Curl test scores
and ADLs [23]. This finding may prove useful not only
to monitor the progress of a disorder like dementia but
also to closely examine individuals who are undergoing
rehabilitation.

None of the other tests showed enough evidence of
predictability after adjusting the significance level. There
are several contributing factors to the difficulty of this
task. On one hand, in this case, we were considering
all fluctuations as labels (either positive or negative)
without considering their magnitude or without tak-
ing into account their reliability (i.e., not only reliable

changes were considered but all changes). This might
have included “noise” in the dataset by considering
changes that might have appeared due to reasons other
than an actual change in the skills (such as low reliability
on tests), making the classification task more difficult.
On the other hand, the time-series statistics that we
were extracting from the smart home behavior data do
not necessarily reflect a positive or negative change in
behavior, but an absolute change.

V. CONCLUSION

In summary, this work has demonstrated the possibil-
ity of predicting mobility, cognitive, and mood-related
symptoms from unobtrusively collected in-home behav-
ior data. We believe that the results shown herein are
of high relevance, as they suggest the possibility of
implementing a system that could bring huge benefits to
our aging society. The models shown in this paper are
early models aimed at demonstrating the feasibility of
such a system and providing insight into the behavioral
features that might be used for this purpose.

Completion and improvement of the results shown in
this paper must be done by collecting more data and by
applying algorithmic solutions that might better adapt to
the imbalanced detection problems posed herein before
their implementation in real-world settings. Collecting
more data will also be useful to have a complete dataset
with confirmed cases of transition from healthy state
to cognitively impaired, which is necessary to build
accurate prediction models. Thus, future work will focus
on continued collection of data for further analysis, de-
signing and testing more suitable algorithms for imbal-
anced datasets, and performing a more in-depth feature
selection analysis in order to improve the sensitivity of
the models shown herein, without the overall accuracy
of the models being affected.
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