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Abstract—As members of an increasingly aging society,
one of our major priorities is to develop tools to detect the
earliest stage of age-related disorders such as Alzheimer’s
Disease (AD). The goal of this paper is to evaluate the pos-
sibility of using unobtrusively collected activity-aware smart
home behavior data to detect the multimodal symptoms
that are often found to be impaired in AD. After gathering
longitudinal smart home data for 29 older adults over an
average duration of >2 years, we automatically labeled the
data with corresponding activity classes and extracted time-
series statistics containing 10 behavioral features. Mobility,
cognition and mood were evaluated every six months. Using
these data, we created regression models to predict symptoms
as measured by the tests and a feature selection analysis
was performed. Classification models were built to detect
reliable absolute changes in the scores predicting symptoms
and SmoteBOOST and wRACOG algorithms were used to
overcome class imbalance where needed. Results show that
all mobility, cognition, and depression symptoms can be
predicted from activity-aware smart home data. Similarly,
this data can be effectively used to predict reliable changes
in mobility and memory skills. Results also suggest that not
all behavioral features contribute equally to the prediction
of every symptom. Future work therefore can improve model
sensitivity by including additional longitudinal data and
by further improving strategies to extract relevant features
and address class imbalance. The results presented herein
contribute towards the development of an early change
detection system based on smart home technology.

Index Terms—Activity Recognition, Alzheimer’s Disease,
Automatic Assessment, Behavior, Multimodal Symptoms,
Older Adults, Smart Homes.

I. INTRODUCTION

NCREASING life expectancy in developed countries
has resulted in a growing number of cases of people
affected by age-related neurodegenerative diseases, such
as Alzheimer’s Disease (AD). An estimate of 115.4 mil-
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lion people will suffer from AD in 2050 [1], which can
result in devastating consequences in terms of health-
care costs and quality of life of patients and caregivers.
While there is no known cure [2], treatments to delay
and reduce cognitive and behavioral symptoms of AD
do exist and are demonstrated to be more effective the
sooner they are applied [3]. Therefore, as a matter of
general interest, the search for methods of early detection
is currently a high priority issue. Such methods could
lead to earlier detection and therefore more effective
intervention. The resulting benefits include an increase
in the independence of the patients, an improvement
in quality of life for them and their caregivers and a
reduction in health-care costs.

Although AD’s clinical hallmark is episodic mem-
ory impairment [4], it manifests symptoms in multiple
domains, including mood, behavior, and cognition [5].
These symptoms and the associated pathology are usu-
ally measured by means of self- and informant- report
questionnaires, clinical assessments conducted by health
care professionals and medical examinations that may
involve brain imaging. Often evaluations are initiated
after symptoms have been prominent for some time,
resulting in a delayed diagnosis [6]. Given that AD
pathology in the brain accumulates slowly over time, a
key for the treatments to be effective is early detection of
the disease and implementation of available treatments.

Smart homes are an emerging technological solution,
based on the use of embedded sensors to enhance
homes’ intelligence, enabling the unobtrusive monitor-
ing of resident’s behavior [7]. Real-life data can be
gathered non-stop in a completely naturalistic way, of-
fering a complete and ecologically valid view of older
adults” behavior and allowing the detection of changes
that might indicate the onset of a disorder. If smart
home-based behavior shifts were mapped to AD, many
disadvantages of the usual assessment methods could
be overcome: detection could be made without the need
for older adults to travel to a health center to receive
expensive and invasive diagnostic testing. In contrast,
smart home monitoring may detect cognitive changes as
they occur, resulting in less expensive and more timely
diagnosis.

In order to map detected behavior shifts to AD symp-
toms, machine learning-based models can be used. Ma-
chine learning is a subdiscipline of artificial intelligence
(AI) aimed at building algorithms that are able to learn
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TABLE I: Overview of related work categorized in terms of the measured behavioral features, the employed
assessment tests, preprocessing and analysis techniques, and the observed results (C = Cognition, Mob = Mobility,

M = Mood, n = sample size).

Ref. Behavior Tests Preprocessing and Analysis Main results
Dta“lladl ADL, sleep, mobility, | C: RBANS; -AR + daily behavior stats C: r=0.72, %72
eta. outings Mob: TUG -Machine-learnin Mob: r=0.45, %76
(n=18) & 8
H MCI Doubled coefficient of variation in the
etaayles Amount of activity, C: CDR. MMSE -Wavelet analysis median walking speed (p<0.03) and in-
(n—f4) walking speed ’ ! -Mixed-model ANOVA creased variability in the amount of activity
- (p<0.008)
Gtalelambos Time out, activity | C: MMSE, SFHS-12; | Motion and out of home Correlation between the scores and activity
fn:aS.) level M: GDS density maps level/outings (Qualitative)
Petersen . . . . . . . Correlated time spent out of home and
et al. \T\izrlllfin ot;t,eegl-home E/I %]}Dle,ical activit Esgétel mixed-effects regression cognitive (p<0.001), physical (p<0.001) and
(n=85) & 5P Ty y emotional state (p<0.001).
. Time out, n°of phone . .
Austin calls, computer use, ) Longitudinal linear-mixed Correlated loneliness and both time out
et al. . M: loneliness . of home (p<0.01) and computer sessions
walking speed, effects regression model + CV
(n=16) mobility (p<0.05)
. - C: RBANS, PRMQ, -AR + daily behavior stats +
Atlberldl AID&/ISieePt’i’anblhty’ Digit Cancel; RCI + positive/negative change | ¢ . pociiec i aoio
< —2ag- & Ot' a’ TOUufIne, Mob: Arm Curl, TUG;| -Machine-learning + ce Results ectio
(n=29) | outings M: GDS SMOTEBoost + wRACOG

and/or adapt their structure based on a set of observed
data (i.e., example data or past experience) [8], [9].
This technique offers an approach for the analysis of
high-dimensional and multimodal biomedical data. A
wide variety of methods exist within this area, including
both regression (e.g. Support Vector Regression, Linear
Regression or k Nearest Neighbors) and classification
methods (e.g., Support Vector Machines, AdaBoost, Mul-
tilayer Perceptron or Random Forest). Whereas regres-
sion models predict continuous variables (e.g., a score
for a standardized assessment test), classification models
determine symbolic class labels for the data (e.g., affected
vs. non-affected by a disease). For a detailed explanation
of specific machine learning algorithms, we refer the
reader to the literature [10], [11].

Our goal in this paper is to assess the possibility of
detecting changes in psychological, cognitive and behav-
ioral symptoms of AD by making use of unobtrusively
collected smart home behavior data and machine learn-
ing techniques. The affirmation of this hypothesis would
result in development and implementation of an early
detection system for disorders that provoke behavioral
changes, such as AD. Such a system could alert patients
and relatives of likely changes, making it possible to take
timely action.

Previous research has demonstrated that the combi-
nation of machine learning techniques and longitudinal
monitoring of smart home-based behavioral data can
be useful not only to assess older adults’ health states
but also to detect onset and monitor progression of
some age-related diseases and disorders. Dawadi et al.
found that the overall cognitive and mobility states
of older adults could be predicted from unobtrusively
collected in-home behavior data [12]. For that purpose,
they introduced an algorithm called Clinical Assessment
using Activity Behavior (CAAB) and tested its validity

for global cognition (measured by the Repeatable Battery
for the Assessment of Neuropsychological Status, or
RBANS) and mobility (measured by the Timed Up and
Go, or TUG) using time series-based descriptive statistics
of daily activities. Hayes et al. [13] found Mild Cognitive
Impairment (MCI), as measured by the Clinical Demen-
tia Rating (CDR) and Mini-Mental State Examination
(MMSE) tests, to be correlated with in-home walking
parameters and mobility measures. MCI implies cogni-
tive decline in one or more domains of cognition (e.g.,
memory, language, executive function) that is greater
than what could be attributed to normal aging, but does
not meet the threshold for a diagnosis of a dementia
disorder like AD [14].

In related work, Galambos et al. [15] discovered as-
sociations between overall in-home activity and outing
patterns with both dementia and depression, which is
also known to be a common AD symptom. The Geriatric
Depression Scale (GDS), as well as the MMSE and Short
Form Health Survey-12 scales were used to determine
subjects’ state. Petersen et al. [16] also found emotional
states, specifically mood and loneliness, to be correlated
to outing patterns, whereas they also verified the possi-
bility of predicting other overall health predictors such
as physical activity from these data. Austin et al. also
predicted the loneliness of older adults by analyzing
behavioral data [17]. A comparative summary of the
sample sizes, techniques used, symptoms predicted, and
observed results are given in Table 1.

Nonetheless, there’s still much work to do towards the
development of models to reliably detect AD symptoms
from unobtrusively collected in-home behavioral data.
The predictability of the wide range of multi-modal
symptoms of AD is yet to be analyzed, as well as the
contribution of many behavioral traits to these models.
Moreover, the possibility of detecting a Reliable Change
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Fig. 1: Overview of the research methods.

[18] in AD multimodal symptoms from smart home
data is yet to be researched. In addition, solutions have
not been heavily explored to handle imbalanced class
distributions (i.e.,, a much larger number of negative
cases than positive cases) that are common in such
environments. Furthermore, there are few studies where
quantitative detection results have been given.

This paper aims at filling this research gap. Previous
work has demonstrated the validity of daily behavioral
statistics for the prediction of cognitive and mobility
skills of older adults [12]. Building on this foundation,
we will introduce new behavioral features and will an-
alyze their validity for the detection of reliable changes
in multi-modal AD symptoms.

The main contributions of this work can be summa-
rized as follows. We analyze the predictability of several
multi-domain symptoms often found to be impaired in
AD, we analyze the contribution of behavioral features
to the prediction of these health assessment scores, and
we introduce and assess new smart home-based behav-
ior features to quantify global daily routine. In addition,
we offer an approach to detect a reliable change in
health assessment scores based on unobtrusively col-
lected behavioral data and to address the accompanying
imbalanced class distribution problem.

II. METHODS

A. Data collection

First, we unobtrusively collected in-home behavioral
data for older adults living in smart homes in two
senior-living communities and we gathered correspond-
ing biannual neuropsychological assessment data. This
data was collected by the Center for Studies in Adaptive
Systems (CASAS) and the Neuropsychology and Aging

Laboratory at Washington State University (WA, USA).
Review and approval by the Washington State Univer-
sity Institutional Review Board was obtained for the
study. Part of this data (n=18 older adults) was analyzed
in previous work [19]. For this work, a larger sample is
available thanks to a longer monitoring time and to the
inclusion of more subjects in the study.

The current study focuses on cognition, mobility, and
mood (depression) scores (see Table III), which were col-
lected as part of the biannual assessment and have been
found to be affected by AD [5]. Cognitive abilities of the
older adults were measured by means of the Repeatable
Battery for the Assessment of Neuropsychological Status
(RBANS) [20], the Prospective and Retrospective Mem-
ory Questionnaire (PRMQ) [21] and a Digit Cancellation
test, while mobility was assessed by Timed Up and Go
(TUG) [22] and Arm Curl [23] tests. Whereas the RBANS
is a brief, individually administered battery to measure
cognitive decline or improvement across several do-
mains (Immediate Memory, Visuospatial, Language, At-
tention and Delayed Memory), PRMQ is a 16-item self-
report measure of prospective and retrospective memory
slips in daily life. The Digit Cancellation test is a user-
friendly assessment of various aspects of prefrontal cor-
tex functioning (namely, information processing speed,
the ability to focus attention and executive functioning)
[24]. TUG and Arm Curl are physical tests to measure
patients’ risk for falling and upper body strength, re-
spectively. The Geriatric Depression Scale - Short Form
(GDS-15) [25] was used to assess the depression level of
the participants. The 15-item GDS is the reduced version
of the original 30-item GDS scale, which is a screening
measure used to detect clinical levels of depression in
older adults. A score of 10 or greater is suggestive of
clinical depression.

The smart home sensor data used for this study was
collected from 2011 through 2016, a period in which
the data were collected continuously for durations rang-
ing from <1 month to 60 months (M=19.95 months,
SD=17.98 months) depending on the residence. Health
assessment data was also collected for 29 of the older
adults who were living independently in the smart
homes. Participants were classified as either cognitively
healthy, at risk for cognitive difficulties or experiencing
cognitive difficulties. See Table II for group demographic
information. Participants in the cognitive risk group had
lowered performance on one or more cognitive tests
(relative to an estimate of premorbid abilities), but did
not meet criteria for MCI or dementia. One participant
in the cognitive difficulties group was diagnosed with
a brain tumor with marked reductions in cognition
following diagnosis. The remaining participants in the
cognitive difficulties group met criteria for mild cog-
nitive impairment (MCI) as outlined by the National
Institute on Aging-Alzheimer’s Association workgroup
[26].
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TABLE 1II: Participants’ characteristics (m=male, 2011-06-18 13:23:16.33 WorkArea WorkArea M005 ON Work
f=female. Age and Education are specified by mean 2011-06-18 13:23:18.04 WorkArea WorkArea MOO5 OFF Relax
(range)) 2011-06-18 13:23:18.58 WorkArea WorkArea M005 ON Relax
g . 2011-06-18 13:23:24.95 WorkArea WorkArea MOO5 OFF Relax
Cognitive status Healthy At risk Difficulties 2011-06-18 13:23:31.53 K%tchen K%tchen MAOO6 ON Cook
- — — — 2011-06-18 13:23:34.53 Kitchen Kitchen MAOO6 OFF Cook
Group Size N=13 N=10 N=6 2011-06-18 13:23:35.46 Kitchen Kitchen MAOO6 ON Cook
Age 82.85 (73-92) | 86.20 (73-97) | 84.50 (82-90) T o e o0
Ed 0 T758 (16-20) T7.50 (12_20) T7.67 (16-20) 2011-06-18 13:23:37.72 Kitchen Kitchen MA00O6 OFF Cook
= uga on s T e e T e 2011-06-18 13:23:55.33 Kitchen Kitchen MA006 ON Cook
ender m=%r= m=51= m=.1= 2011-06-18 13:23:56.45 Kitchen Kitchen MA0O6 OFF Cook

TABLE III: Modality, test-retest reliability, and standard
deviations of the scores used in the study.

Domain Score Tscore | SDscore | Ref.
.- Arm Curl 0.96 4.98 [27]
Mobility TUG 096 | 318 T 26]
Digit Cancellation 0.85 37.20 [28]
RBANS:
+total 0.84 15.58
+attention 0.16 19.00
+delayed memory 0.77 13.29 [29]
+immediate memory 0.75 16.58
Cognition / +visuospatial 0.76 15.31
Memory +language 0.33 15.31
PRMQ:
+total 0.89 9.15
+prospective memory | 0.85 491 [30]
+retrospective memory | 0.89 498
Mood GDS 0.68 2.20 [31]

B. Preprocessing

1) Day-level behavior feature extraction: Smart homes
were set up to collect all sensor events that took place
in each residence during the study period. Each data
stream entry described a single sensor event in terms
of the event’s timestamp, ID of the sensor detecting the
event, and type of event (activation/deactivation).

Note that, a raw-sensor data entry by itself is meaning-
less: the same sensor event can occur when performing
different activities and multiple occurrences of a specific
activity may yield different event sequences. Therefore,
in order to interpret the event data, it was first necessary
to assign an activity label to each sensor entry, taking
into account the context in which the sensor event
occurred. For that purpose, the AR Activity Recognition
algorithm [32] was used. This algorithm maps each of
the sensor events to a value from a predefined set of
activity labels in real-time, by applying an adaptive-
length sliding window to the raw sensor data stream.
The predefined set of activities include both ambulatory
activities (such as mobility inside the home) and specific
activities of daily living (ADLs), which were encoded by
numbers from 1 to 12 (i.e., Sleep=1, Cook=2, Relax=3,
..., Other=12). This approach not only takes into account
recent sensor events but also contextual information such
as the activity label that was assigned to the previous
time window. The reliability of this algorithm has been
demonstrated in previous work, where accuracy greater
than 98% was achieved on 30 testbed smart homes using
three-fold cross validation [32]. Figure 2 shows an extract
of an AR activity labeled sensor data stream.

Once activity-level information was available, we com-
puted 17 daily behavior features for each subject, ex-

2011-06-18 13:24:03.53 Kitchen Kitchen MAO0O6 ON Cook
2011-06-18 13:24:05.26 Kitchen Kitchen MAO0O6 OFF Cook
2011-06-18 13:24:11.08 WorkArea WorkArea MOO5 ON Eat
2011-06-18 13:24:18.59 WorkArea WorkArea MOOS5 OFF Eat

2011-07-28 08:40:39.41 Bedroom Bedroom MAOO7 ON Sleep
2011-07-28 08:40:41.82 Bedroom Bedroom MAOO7 OFF Sleep

2011-07-29 12:22:06.83 WorkArea WorkArea M0OO5 ON Work
2011-07-29 12:22:08.69 WorkArea WorkArea M00O5 OFF Work

Fig. 2: Extract of an AR activity-labeled sensor event data
stream.

TABLE IV: Day-level activity features included in the
study.

Type Day-level features

Time spent per day in cooking, eating,
relaxing, and performing personal hygiene
and nighttime toileting activities as well
as time out of the home.

Duration of specific
activities (6 features)

Sleep-related

(2 features) Daily sleep duration and frequency.

Total number of activated sensors
and total distance covered walking
inside the home per day.

Mobility-related
(2 features)

Complexity of the daily routine, number
of total and of non-repeated activities
performed per day, maximum and
minimum inactivity times, day length
and similarity with the previous day.

Routine-related
(7 features)

plaining their daily sleep and mobility patterns, time
spent in several specific ADLs (e.g., cook, eat) and
overall characteristics of their routines. A detailed list
of the computed features can be seen in Table IV.

The daily distance that the subjects traveled inside
their homes was estimated by computing the distance
between areas of the home covered by each passive
infrared (PIR) motion sensor as determined from based
on the floor plan and sensor layout (see example in
Figure 3). Three of the apartments lacked specific in-
formation about the positioning of the sensors within
the houses. In those cases, it was first necessary to
estimate the positions of the sensors, which was done by
considering these apartments to be of a similar shape to
the rest and checking the activation order of the sensors
in the raw sensor data files. Once all sensor positioning
information was available, we computed the daily sum
of the Euclidean distances between the consecutively-
activated motion sensors in order to estimate the total
walking distance traveled by the inhabitants. Note that
this approach only provides an approximation of the real
covered distance, as it does not consider the existence of
walls or other obstacles between the sensors that must
be avoided or navigated.
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Fig. 3: Floor plan and sensor layout of one of the smart
home sites.

To compute daily-routine features, we first extracted
the daily activity sequence from the AR-labeled sensor
data stream. Shannon entropy was used to measure the
complexity of the daily routine. To compute this entropy
value, we estimated the daily probability distribution
(histogram) of the activity sequence (P) and then applied
the entropy formula shown in Equation 1,

12
CompleXityroutine = Z Pactivity - logZPactivity @

activity=1

where Ppiviry was the probability of a certain activity
to occur for a given day based on the actual day’s
histogram.

The same encoded activity sequence was used to
compare the daily routines of consecutive days. For this
purpose, we used an implementation of the “gestalt
pattern matching” algorithm [33]. This SequenceMatcher
function, available in Python, expresses the similarity
of any two sequences as a value between 0 and 1. We
use this function to determine the degree of similarity
between consecutive days. Finally, we checked the times-
tamps of the daily activity events and computed the day-
length as the time elapsed between the first and the last
detected activity of the day. The remaining features in
Table IV are self-explanatory.

2) Between-assessments behavior statistics’ computation:
The previous step yielded a set of daily activity features
for each subject. We then applied the CAAB algorithm,
which was introduced earlier [19], using RStudio for R
to the daily activity data in order to extract behavior
statistics for each between-assessment period.

In summary, the CAAB algorithm was used to apply
the following processing steps to the daily behavior
data: 1) Take each subject’s between-assessment daily
behavior data (which was 6 months in length as as-
sessments were performed twice a year), 2) Apply a
log transform and a Gaussian detrending to each time-
series (behavioral variable), 3) Compute five summariz-
ing time-series statistics (variance, skewness, kurtosis,
autocorrelation, and change) for each behavioral feature

in this period using a sliding window of length 7 days,
and 4) Compute the 6-month average of each time-
series statistic and use the set of averages for the final
predictions.

The resulting preprocessed dataset for further analysis
was a collection of 85 (5 time-series statistics of 17 be-
havioral features) biannual summary behavior statistics
for each of 29 older adults who were living alone in their
sensorized apartments for a period of 24.0 + 13.68(SD)
months.

3) Health assessment scores: Our goal is to create pre-
diction models that map smart home-based behavior
features to health assessment values that might capture
AD symptoms. In this study, our target variables are
the Arm Curl and TUG mobility test scores, cognition
assessment based on Digit-Cancellation test, RBANS and
PRMQ scores and subscores, as well as depression symp-
toms represented as GDS test-scores. All these values
were collected from the participants at the end of each
corresponding 6-month period.

Self-reported scores are usually strongly subject de-
pendent. In addition, two people might achieve different
results in the same test even if they have similar skills,
due to their intrinsic characteristics. As a measure to
avoid this inter-subject variability in the scores, we used
a standardization method based on the Reliable Change
Index (RCI) [18] computation. RCI compares assessment
scores for each participant at one time point to previous
scores for the participant to determine whether the par-
ticipant has undergone a significant change in his/her
performance. Detecting a significant change implies that
the subject’s scores have changed sufficiently (exceeding
a specified threshold) so that the change is unlikely
to be due to measurement unreliability (i.e., due to
repeat testing or practice effects). We looked for two
types of reliable absolute changes: the first one com-
pares each assessment value to the participant’s baseline
values (RClpse1ine), Whereas the second one compares
each assessment point to the same participant’s previous
assessment point (RCl.onsecutive)-

In order to calculate the RCIs for the scores used
herein, we gathered test-retest reliability (rscore) and stan-
dard deviation (SDgqre) values that the tests have shown
in their development cohorts and/or in previous work,
as shown in Table III. Therefore, the RClIs for each subject
were computed as:

_ Score; — Scorepuseline

RC], (1) = 2
basellne( ) \/m ( )

. Score; — Score;_
RCIconsecutive(l) = l =1 3)

V2SEm

where SEm or Standard Error of Measurement repre-
sents the expected variation of the observed test scores
due to measurement error and is computed as SEm =
SDscorer/1 — Tscore , Tscore 1S the test-retest reliability mea-
suring the consistency of the test scores over time, Score;
is the test score at assessment point i, Scorep,seline is the
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test score at the first/baseline assessment and Score;_q
is the test score at the previous assessment point.

Some of the assessment scores result in very few
positive instances (data instances where a reliable change
was observed), resulting in highly imbalanced class data.
For the following analyses, we removed from the study
those tests which were extremely imbalanced (<5% of
positive instances). We distinguished the remaining tests
as imbalanced (5%-30% of positive instances) and bal-
anced data (30%-50% of positive instances).

Additionally, we also considered the possibility of
detecting improvement and decline in test scores among
consecutive assessment points as a method to reduce
inter-subject variability. Comparing an individual’s score
to his/her own previous one allows us to standardize the
results, since it is a way to evaluate the improvement
or decline of each individual’s skills in the time period
under analysis, regardless of the absolute values of the
scores. In this case, the difference between each con-
secutive assessment point was computed for each self-
reported test score of each subject. Every data instance
with an improvement in the scores (=>0) was considered
as a positive point whereas a decline in the performance
of the skill being evaluated by tests (<0) was labeled as
a negative point.

C. Cognition and mobility change prediction

The preprocessed dataset was analyzed using Weka
[34], a free machine learning software written in Java.
First, we performed a correlation analysis between the
mobility, cognition, and mood assessment scores and
the smart home behavior data. For this purpose, we
used four different regression models using all behav-
ior features computed in the previous step for each
one of the scores. The four models we evaluated were
Support Vector Regression (SVr) with a linear kernel,
Linear Regression (LinearR), SVr with a Radial Basis
Function (RBF) kernel and k nearest neighbors (kNN)
algorithms. We compared the correlation coefficients (r)
and Mean Absolute Errors (MAE) of the models using
10-fold cross validation (CV) approach. Corresponding
pairwise random algorithms were built and evaluated in
our dataset following the same process. These random
algorithms provided a basis of comparison to ensure
that performance results are not due to chance. The
random algorithms were built using a uniformly dis-
tributed random data-matrix of the same size as the
real behavioral data while respecting each variable’s data
range as in the original dataset. A corrected paired t-test
was used to detect a significant improvement of smart
home-based algorithms in comparison to the random
data algorithms. Adjusted p-values (*p<0.01, **p<0.001)
were used to avoid Type 1 error when checking for
significance.

In order to analyze the types of behavior features that
are most correlated with each one of the tests, we built
activity-specific models for the main test scores with a

TABLE V: Task-specific grouping of daily features.

Group Day-level features

Complexity of the daily routine, number of
total activities and number of non-repeated
activities performed per day, maximum and
minimum inactivity times, day length and
similarity with the previous day

Daily-routine

The total number of activated sensors and

Mobility the total distance covered walking inside
the apartment per day
Outings Time spent per day in being out of home
Mobility & outings | Mobility + Outings
Sleep The daily sleep duration and frequency

Time spent per day in nighttime toileting

Overnight toileting activities

Overnight patterns | Sleep + Overnight toileting

Cook & eat

Time spent per day in cooking and eating

linear SVr and evaluated the models using 10-fold cross
validation. The behavior features that were included in
each one of the models are shown in Table V. Again,
we searched for statistically significant improvement
in comparison to pairwise random algorithms using a
corrected paired t-test and adjusted p-values (*p<0.01,
**p<0.001).

Regarding RCI detection, we used different ap-
proaches for the imbalanced and balanced datasets. First,
balanced datasets containing all behavioral features were
reduced by means of a Principal Component Analysis
(PCA). PCA is a popular statistical technique based on
the projection of the data to a lower-dimensional sub-
space, useful for finding patterns in high-dimensional
datasets [35]. Principal Components that explained 95%
of the variability in the behavior data were kept to create
the reduced datasets. The SVM, AdaBoost, Multilayer
Perceptron (MLP) and Random Forest (RF) algorithms
were trained and validated using ten-fold cross valida-
tion. Evaluation metrics include area under the ROC
curve (ROCg,), area under the Precision-Recall curve
(PRCayc), Fscore, and sensitivity. The combination of
these metrics offers an excellent overview of both the
models’ overall performance and the capability to detect
the event of interest (the reliable change event), and are
especially suitable when the data distribution is skewed.
A corrected paired t-test was used to detect a signifi-
cant improvement of smart home-based algorithms in
comparison to the pairwise random data algorithms, and
an adjusted p-value (*p<0.0125) was employed to avoid
Type 1 error.

For the imbalanced datasets, a different approach was
required. Common machine-learning algorithms tend to
create models that are biased towards the majority class
when being applied to imbalanced datasets, resulting
in high accuracies but very low sensitivity. In most
of the health-related machine learning applications, the
events in which we are more interested are the rare
events or the minority class, highlighting the need to use
alternative methods to improve the detection of these
minority events. Two algorithmic approaches are tested
in the current work to overcome this issue. The first
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one, SMOTEBoost [36], is a method combining boosting
techniques with SMOTE [37] oversampling techniques.
Whereas boosting aims at creating a “strong” classifier
using a set of “weak” classifiers, SMOTE is a tech-
nique that oversample the minority class by creating
synthetic data instances and thus reducing class imbal-
ance. SMOTEBoost combines these processes iteratively
in order to improve the sensitivity of the models without
affecting the overall accuracy.

The second approach, the wrapper-based Rapidly
Converging Gibbs sampler (WRACOG) [38], is a
minority-class oversampling algorithm based on Gibbs
sampling. Unlike SmoteBOOST and most of the
minority-class oversampling techniques, wRACOG takes
into account the underlying probability distribution of
the minority class and the interdependencies of the
data attributes when synthetically generating rare-event
samples. This results in a better representation of the
minority class. Moreover, wWRACOG learns the models
iteratively, selecting from the Markov chain generated
by the Gibbs sampler the samples that have the highest
probability of being misclassified by a learning model
(wrapper) at each step, often leading to better clas-
sification rates. wRACOG stops iterating when there
is no further improvement with respect to a chosen
performance metric.

First, we built prediction models for imbalanced
datasets using SMOTEBoost and kNN with k=5 as the
“weak” classifier which we validated using 3-fold cross
validation. Pairwise random algorithms were also built
using the previously-mentioned random data and were
validated for prediction of our data following the same
3-fold CV process. Again, we computed ROCyye, PRCyyc,
Fscore and sensitivity of the models. McNemar’s test
was applied to check whether a significant improvement
(for an adjusted p-value (*p<0.005)) was observed using
smart home-based prediction of reliable change in the
scores in comparison to random data algorithms.

Next, we built the prediction models for the same
imbalanced datasets following the second approach, i.e.,
using the wRACOG algorithm. For this purpose, it was
first necessary to discover the interdependencies of the
data attributes. In order to reduce the dimensionality of
the data and to make it easier to map the interdepen-
dencies between the attributes, we used the PCA-based
reduced datasets explaining the 95% of the data variance.
Moreover, wRACOG assumes that the data attribute
values are categorical, so we first discretized all of the
principal components (PCs) into five uniform bins. We
then constructed the Bayesian tree of dependencies fol-
lowing the Chow-Liu algorithm in Weka. The Chow-Liu
algorithm [39] aims at constructing a maximal weighted
spanning tree in a graph, allowing each attribute to have
exactly one parent on which its value depends. Thus,
the interdependencies between the PCs were discovered.
Figure 4 shows the Chow-Liu interdependency tree for
the PCA-reduced and discretized baseline dataset.

A kNN algorithm was used as the wrapper classifier

N

Fig. 4: Chow-Liu tree for the PCA-reduced dataset.

and two different stopping criteria for the iterative pro-
cess were tested: 1) First, as in many applications where
the detection of the reliable change might be critical, we
searched for the maximum sensitivity of the models. 2)
Second, for cases where the overall prediction ability
of the models might be more interesting, we used the
maximized ROC;,. metric as the stopping criteria for
the algorithm. A 5-fold CV was performed for validation
purposes and ROC;yue, PRCyye, Fscore, and sensitivity
of the models were evaluated. As in previous cases, in
order to check for statistically significant smart home-
based prediction of reliable change in the scores, we com-
pared model outputs to those of their pairwise random
algorithms by means of a McNemar’s test. An adjusted
p-value (*p<0.005) was used to avoid family-wise (Type
1) error rate. The PCA-reduced random dataset was
discretized following the same process as the actual
smart home dataset.

Finally, for the detection of a person’s improve-
ment/decline from smart home data, we used the PCA-
based reduced dataset as in the previous case. The SVM,
AdaBoost and RF algorithms were trained and validated
following a 10-fold CV approach to discriminate the
positive class (a score improvement)) from the negative
class (a score decline). ROC,y, PRCyy, and Fscore were
computed for each one of the algorithms and compared
to the values of their pairwise-random algorithms. As
the detection of a decline in self-reported skill perfor-
mance might be more important than the detection of
an improvement, we also computed the sensitivity of
the algorithms towards these negative events. All sta-
tistical significances were checked for adjusted p-values
(*p<0.01, *p<0.001). Figure 1 provides an overview of
the research methods.

III. RESULTS

A. Absolute test scores” prediction

Figure 5 shows the results of predicting the absolute
test scores using all smart home behavioral features
with regression learners. For mobility tests, whereas Arm
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Curl had low correlation with behavioral data, TUG
demonstrated a moderate to strong correlation. For the
cognition overall scores and subscores, the measures
showed mostly moderate correlations with behavioral
data. Exceptions included the visuospatial and immedi-
ate memory subscores of the RBANS test and the digit
cancellation test scores, which were found to correlate
weakly. In fact, the digit cancellation test didn’t show
any statistically significant improvement compared to
random models, whose MAE is also the highest. Finally,
depression showed a weak correlation with the global
set of smart home behavioral data.

Regressions based on specific activities, which can be
seen in Figure 6, showed some interesting results. The
Arm Curl mobility test showed weak but statistically
significant correlations with outings, and cooking and
eating features. In contrast, the TUG test showed signifi-
cant moderate correlations with daily routines, overnight
toileting and the combination of overnight toileting and
sleep, as well as a significant weak correlation with
cooking and eating features.

Regarding the self-report questionnaire, the global
PRMQ score was moderately associated with daily
routine and with the overnight patterns, as well as
weakly correlated with sleep and overnight toileting.
RBANS was moderately correlated with overnight pat-
terns, whereas it was also showing weak yet statistically
significant correlations with mobility, daily routine, and
overnight toileting behaviors. Digit Cancellation process-
ing speed was found to be moderately correlated with
sleep and overnight patterns, and weakly yet signifi-
cantly correlated with overnight toileting features.

Finally, for the geriatric depression assessment, we did
not find any significant correlations but we perceived
a significant reduction of the MAE of the models for
mobility alone as well as for the mobility, outings, and
sleep feature sets.

The overview of the trends shows that sleep and
overnight behavior patterns, together with daily routine
features presented in this paper, are the behavioral fea-
tures that contribute the most to the prediction of the
several health assessments.

B. RCI detection

The detection of reliable change on attention and
language skills were excluded from our objectives due to
the uncertainty that their low test-retest reliability would
introduce in the results obtained for these labels. Global
PRMQ and subscores, consecutive global RBANS scores,
RBANS subscores related to immediate memory, Digit
cancellation, and the GDS test score were excluded from
the RCI detection analyses as they were capturing less
than 5% of the reliable change instances. Among the
remaining labels, only the reliable change in Arm Curl
scores from baseline had enough positive instances to
be considered a balanced dataset. The remaining scores
(RBANS, RBANS delayed memory, RBANS visuospatial
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Fig. 5: Regression results for the absolute test scores
using all behavioral features based on 10-fold CV
(statistically significant improvement for r (adjusted
*p<0.01,**p<0.001) and for MAE (+p<0.01, ++p<0.001)
in comparison to the corresponding pairwise random
algorithm)). Bars represent r and lines represent MAE.
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Fig. 6: Regression results for the absolute test scores
by behavior feature type based on 10-fold CV
(statistically significant improvement for r (adjusted
*p<0.01,**p<0.001) and for MAE (+p<0.01) in compari-
son to the corresponding pairwise random algorithm)).
Bars represent r and lines represent MAE.

and TUG change from baseline, and RBANS delayed
memory, RBANS visuospatial and TUG change between
consecutive assessments) were considered imbalanced
and were processed as such.

Table VI shows the results for Arm Curl reliable
change detection from baseline using 37 PCs explain-
ing the 95% variability of the data. All four classifiers
demonstrated a statistically significant improvement in
terms of Area under the PR curve, Fscore and sensitivity
for the adjusted p-value, whereas area under the ROC
curve showed reasonable results surpassing the 0.6 bar-
rier.

Table VII summarizes the results for the prediction
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TABLE VI: Reliable change detection of Arm Curl scores
from baseline (*: statistically significant improvement
(adjusted p<0.0125) in comparison to the corresponding
pairwise random algorithm). All algorithms can build
statistically significant prediction models, but the RF al-
gorithm beats the rest in terms of Fscore and Sensitivity,
with similar PRCgy.

ROC,yc | PRCyyc Fscore Sens.

RF 0.58 0.73* 0.77* 0.92*
SVM 0.59 0.69* 0.77* 0.89*
AdaBoost 0.64 0.76* 0.76* 0.84*
MLP 0.58 0.75% 0.69* 0.71*

TABLE VII: Reliable change detection of the imbal-
anced scores using SMOTEBoost (*: statistically signif-
icant improvement (adjusted p<0.005) in comparison
to the corresponding pairwise random algorithm). Only
TUG onsecutive Shows predictability.

ROCyuc | PRCyuc [ Fscore | Sens.
RBANSbaseline:

+total 0.52 0.05 0.00 0.00
+delayedmemory 0.69 0.18 0.31 0.50
+visuospatial 0.45 0.09 0.08 0.08
TUGpgseline 0.48 0.17 0.06 0.11
ArmCurlcopsecutive 0.40 0.18 0.13 0.12

RBANsmnsecutive:
+delayedmemory 0.40 0.03 0.00 0.00
+visuospatial 0.68 0.20 0.35 0.50
TUG onsecutive 0.56* 0.22* 0.15* 0.50*

models for the imbalanced datasets that are sampled
based on the SMOTEBoost algorithm. McNemar’s tests
for an adjusted p-value of 0.005 found significant im-
provement of the smart home-based prediction com-
pared to random classifiers for the reliable change de-
tection between consecutive assessments of TUG-based
mobility. However, and even having used a method to
overcome class-imbalance, models still remain biased
and lacking in sensitivity.

Table VIII shows the results of the RCI detection
models based on the wWRACOG algorithms for the imbal-
anced datasets, using the sensitivity maximization as the
criteria for the algorithm to stop. Compared to previous
SMOTEBoost based algorithms, the sensitivity of the
models is highly improved, which might be very in-
teresting for some applications. However, some models’
ROC,,,c values lie below 0.5 and their PRC,,,. is also low,
which might again be an indicator of a biased model. In
this case, the bias is towards the minority class. McNe-
mar’s tests for an adjusted p-value of 0.005 only found
enough statistical significance to accept predictability of
delayed memory skills between consecutive assessment
points.

Table IX shows the results of the RCI detection models
based on the wRACOG algorithms for the imbalanced
datasets, using the ROC,;,c metric as the stopping criteria
for the iterative algorithm. The sensitivity of the models
using this second approach is, overall, higher than the
SMOTEBoost-based models and lower than the models
presented in Table VIIL Interestingly, in some cases the

TABLE VIII: Reliable change detection of the imbalanced
scores using wRACOG and sensitivity maximization as
stopping criteria for the algorithm (*: statistically sig-
nificant improvement (adjusted p<0.005) in compari-
son to the corresponding pairwise random algorithm).
Only RBANSpuserine — delayedmemory subscores show
predictability.

ROCuuc | PRCyyc | Fscore | Sens.
RBAN Spaseline

+total 0.72 0.07 0.09 1.00
+delayedmemory 0.63 0.10 0.13 0.60
+visuospatial 0.72 0.20 0.21 1.00
TUGpgseline 0.52 0.21 0.32 0.84
ArmCurlopsecutive 0.54 0.22 0.40 0.83

RBANS consecutive
+delayedmemory 0.69* 0.06* 0.11* 0.80%
+visuospatial 0.52 0.09 0.17 1.00
TUG onsecutive 0.48 0.18 0.35 0.96

TABLE IX: Reliable change detection of the imbalanced
scores using wRACOG and ROC,,, maximization as
stopping criteria for the algorithm (*: statistically sig-
nificant improvement (adjusted p<0.005) in comparison
to the corresponding pairwise random algorithm). Only
ArmCutloopsecytive Shows predictability.

ROCuuc | PRCyuuc [ Fscore | Sens.
RBAN Spaseline

+total 0.77 0.07 0.17 1.00
+delayedmemory 0.66 0.10 0.19 1.00
+visuospatial 0.64 0.14 0.20 0.23
TU Gpgseline 0.51 0.17 0.39 0.60
ArmCurl copsecutive 0.62* 0.22* 0.49* 0.63*

RBANS cousecutive
+delayedmemory 0.67 0.03 0.08 1.00
+visuospatial 0.53 0.09 0.19 0.80
TUG onsecutive 0.59 0.18 0.29 0.48

areas under the ROC and PR curves, as well as the
Fscores, are greater than the ones obtained with the
previous approaches. This suggests a better suitability
of the wRACOG based models maximizing ROCyy, for
some of the RCI detection problems. After controlling
for the p-value to reduce the family-type error rate,
only the model for the detection of reliable changes on
consecutive Arm Curl mobility scores was showing a
statistically significant prediction ability.

C. Detection of improvement/decline in cognition & mobility
skills

Table X shows the results of detecting mobility
and cognition score improvement/decline. After adjust-
ing the p-value for a reduced family-wise error rate
(*p<0.01,**p<0.001), only the detection of improvement
and decline in mobility as measured by the Arm Curl test
seemed to be possible. A significant improvement both
in ROCyyc and PRCyyc values was detected using RF and
AdaBoost classifiers in comparison to their pairwise ran-
dom data classifiers, as well as a significant improvement
in Fscore and sensitivity of the RF-based model.

2168-2194 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2798062, IEEE Journal of

Biomedical and Health Informatics

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. X, NO. X, X X 10

TABLE X: Positive and negative fluctuation detection between consecutive assessment points (statistically significant
improvement (adjusted *p<0.01,**p<0.001) in comparison to the corresponding pairwise random algorithm). Only
predictions of fluctuations in Arm Curl scores based on RF and AdaBoost algorithms show statistically significant

predictability.
RF SVM AdaBoost

ROCuuc | PRCyuuc [ Fscore | Sens. ROCuuc | PRCauc [ Fscore | Sens. | ROCauc | PRCauc | Fscore | Sens.

Mobility
Arm Curl 0.65%* 0.54** 0.33* 0.28* 0.60 0.38 0.38 0.34 0.59** 0.47** 0.36 0.36
TUG 0.41 0.49 0.38 0.39 0.46 0.45 0.45 0.48 0.45 0.49 0.46 0.50

Cognition
PRMQ 0.54 0.47 0.29 0.25 0.56 0.38 0.39 0.35 0.51 0.45 0.41 0.43
Prospective Memory 0.58 0.44 0.26 0.21 0.50 0.31 0.19 0.16 0.58 0.42 0.35 0.37
Retrospective Memory 0.55 0.44 0.22 0.18 0.60 0.40 0.41 0.35 0.55 0.44 0.22 0.18
RBANS 0.38 0.46 0.31 0.29 0.39 0.44 0.21 0.19 0.36 0.42 0.32 0.35
Attention 0.54 0.55 0.39 0.35 0.56 0.49 0.44 0.39 0.53 0.56 0.44 0.46
Delayed Memory 0.58 0.53 0.34 0.27 0.48 0.40 0.18 0.15 0.55 0.48 0.35 0.35
Immediate Memory 0.50 0.51 0.37 0.34 0.43 0.42 0.20 0.18 0.51 0.48 0.38 0.45
Language 0.48 0.50 0.32 0.30 0.47 0.44 0.26 0.23 0.51 0.49 0.31 0.33
Visuospatial 0.48 0.51 0.32 0.30 0.57 0.52 0.43 0.39 0.43 0.48 0.35 0.36
Digit Cancel - Speed 0.44 0.45 0.28 0.25 0.51 0.43 0.36 0.32 0.43 0.43 0.32 0.34

IV. DI1SCUSSION

The problem addressed in this work is not an easy
task to solve. Our goal was to predict the multi-modal
symptoms commonly seen in AD from unobtrusively-
collected behavior data in smart homes with older adults
residents. Despite the complexity of the task, our results
show that measures of cognition, mobility, and depres-
sion are predictable using activity-labeled smart home
data.

A regression analysis of the smart home-based behav-
ior data with all the tests under analysis has shown sev-
eral moderate yet significant correlations. As expected,
behavior data were the most correlated to mobility as-
sessment scores, followed by cognitive skills, whereas
the most difficult task seems to be mood prediction.
Nonetheless, almost all models, with the exception of
cognition level prediction based on Digit Cancellation
scores, showed a significant improvement compared to
models based on random data.

The feature selection analysis has brought to light such
valuable information as the predictability of mobility
scores from outing patterns, daily routine, and patterns
of cooking and eating. In the specific case of TUG
scores, there was a significant correlation with global
overnight activities including bed-to-toilet transitions.
This finding suggests that individuals who take longer
to complete the TUG (indicative of slowed movement)
tend to be more active at night. This is supported by
the AD literature that finds both impaired mobility and
sleep disturbances to be related to dementia [40], [41]. In
[12], TUG showed significant correlations with mobility,
outings, sleep and ADL (cook, eat, relax and personal
hygiene activities) features.

While we did not observe statistically significant pre-
dictability based on outings, mobility and sleep after ad-
justing the p-value for reduced family-wise error rate, we
did based on global daily routine patterns, which were
not analyzed previously, and for cooking and eating ac-
tivities, which likely reflect part of the ADLs of the previ-

ous work. Cognition was mainly correlated to sleep and
overnight patterns, but also to daily routine, mobility,
and outings. These results also agree with previous work
[12], where correlations between total RBANS scores and
smart home activity data were analyzed and statistical
significance for sleep, mobility, outings, and ADLs was
found. Also in agreement with these results, sleep and
sleep-related disturbances have been found to be related
to cognitive impairment in other research [42], [43], as
well as time spent out of home to cognitive state as
measured by the Clinical Dementia Rating (CDR) scale
[16].

Finally, yet lacking statistical significance for the cor-
relation scores, depression assessed with the GDS scale
was found to be predictable based on mobility, outings,
and sleep features. This agrees with previous work [15]
where correlation of GDS scores with overall in-home
mobility and outing patterns was discovered. Trends
showing that sleep and overnight behavior as well as
daily routine features contribute most to the prediction
of several health assessments are also consistent with
behavior literature [42]-[45]. Thus, our results validate
those reported in the literature, in addition to analyze in
greater detail each aspect of mobility and cognition skills
thanks to the use of more tests and their subscores. Part
of the data used for these correlation analyses overlaps
with the data used previously (n=18) [12], so similar
conclusions would be expected. Nonetheless, we have
reaffirmed and given more strength to most of those
conclusions by including data collected over a longer
period and from more subjects (i.e., using a bigger
sample size), as well as discovering new correlations
with daily routine patterns. In fact, the novel overall
daily-routine features presented in this paper showed
predictability both for mobility and cognition skills of
the elderly.

Regarding reliable change detection, we see that
activity-labeled smart home data can actually be used
to build quite accurate models when a complete and
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balanced dataset is available. This is the case for the
Arm Curl test change from baseline, which has been
seen to be predictable in a quite accurate manner and
with a high sensitivity. We verified in all four models
built for this reliable change prediction that the use
of smart home activity data significantly contributes to
the detection of such events. Unfortunately, a balanced
dataset was not available for all cases. Despite that
problem, by applying the SMOTEBoost technique to
overcome class imbalance, we were able to demonstrate
that consecutive reliable change on mobility measured
by TUG test is predictable using smart home activity
labeled data. A McNemar’s test with an adjusted p-
value has supported this hypothesis, yet we are aware
that the model lacks sensitivity to be considered a final
model. The use of the wRACOG algorithm has resulted
in some models with better prediction characteristics:
improved sensitivity and ROCyye, PRCgsye and Fscores
were found in some cases. Changes in consecutive Arm
Curl and delayed memory scores also showed enough
statistical significance compared to random classifiers in
a McNemar’s test to be considered reliably predictable
from smart home data.

Now that we know that behavioral data can be used
to at least automatically assess changes in mobility and
memory skills, we can keep collecting more longitudinal
data to create better models in the future. This might also
result in the discovery of other significant associations.
Note that these results were also achieved by using
all the behavioral features, whereas a feature-selection
process can also help in improving them. Furthermore,
we used a kNN algorithm as the wrapper model for the
WRACOG approach, but other algorithms can also be
considered and might improve the results. Maximization
of PRCyycs of Fscores could also be tested as stopping
criteria for the iterative process, possibly leading to
different conclusions.

Analysis of the ability to detect changes in cognitive
and mobility skills has demonstrated the possibility of
predicting a decline or an improvement in a person’s
mobility as measured by the Arm Curl test. This not only
confirms the results of the previous RCI analysis, where
we saw that reliable changes in the Arm Curl tests were
detectable by smart home activity-labeled data but also
adds value to the results suggesting that the direction of
the change is also predictable. Literature also supports
the idea of the relationship between Arm Curl test scores
and ADLs [23]. This finding may prove useful not only
to monitor the progress of a disorder like dementia but
also to closely examine individuals who are undergoing
rehabilitation.

None of the other tests showed enough evidence of
predictability after adjusting the significance level. There
are several contributing factors to the difficulty of this
task. On one hand, in this case, we were considering
all fluctuations as labels (either positive or negative)
without considering their magnitude or without tak-
ing into account their reliability (i.e., not only reliable

changes were considered but all changes). This might
have included “noise” in the dataset by considering
changes that might have appeared due to reasons other
than an actual change in the skills (such as low reliability
on tests), making the classification task more difficult.
On the other hand, the time-series statistics that we
were extracting from the smart home behavior data do
not necessarily reflect a positive or negative change in
behavior, but an absolute change.

V. CONCLUSION

In summary, this work has demonstrated the possibil-
ity of predicting mobility, cognitive, and mood-related
symptoms from unobtrusively collected in-home behav-
ior data. We believe that the results shown herein are
of high relevance, as they suggest the possibility of
implementing a system that could bring huge benefits to
our aging society. The models shown in this paper are
early models aimed at demonstrating the feasibility of
such a system and providing insight into the behavioral
features that might be used for this purpose.

Completion and improvement of the results shown in
this paper must be done by collecting more data and by
applying algorithmic solutions that might better adapt to
the imbalanced detection problems posed herein before
their implementation in real-world settings. Collecting
more data will also be useful to have a complete dataset
with confirmed cases of transition from healthy state
to cognitively impaired, which is necessary to build
accurate prediction models. Thus, future work will focus
on continued collection of data for further analysis, de-
signing and testing more suitable algorithms for imbal-
anced datasets, and performing a more in-depth feature
selection analysis in order to improve the sensitivity of
the models shown herein, without the overall accuracy
of the models being affected.
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