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ABSTRACT

This work presents a conceptual model of collective
decision-making processes in engineering systems design to un-
derstand the tradeoffs, risks, and dynamics between autonomous
but interacting design actors. The proposed approach com-
bines value-driven design, game theory, and simulation exper-
imentation to study how technical and social factors of a de-
sign decision-making process facilitate or inhibit collective ac-
tion. The collective systems design model considers two levels of
decision-making: 1) lower-level design value exploration; and
2) upper-level design strategy selection. At the first level, the ac-
tors concurrently explore two strategy-specific value spaces with
coupled design decision variables. Each collective decision is
mapped to an individual scalar measure of preference (design
value) that each actor seeks to maximize. At the second level,
each of the actor’s design values from the two lower-level design
exploration tasks is assigned to one diagonal entry of a normal-
form game, with off-diagonal elements calculated in function of
the “sucker’s” and “temptation-to-defect” payoffs in a classi-
cal strategy game scenario. The model helps generate synthetic
design problems with specific strategy dynamics between au-
tonomous actors. Results from a preliminary multi-agent simula-
tion study assess the validity of proposed design spaces and gen-
erate hypotheses for subsequent studies using human subjects.
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1 INTRODUCTION

Design of engineering systems increasingly considers fed-
erated or decentralized architectures embodied in the artifact
(e.g. grid energy storage or spacecraft constellations), the design
team (e.g. joint projects across agencies), or supporting systems
such as manufacturing (e.g. the Boeing 787). Distributed features
on any of these dimensions offer a potential to improve perfor-
mance but also diverge from a centralized engineering decision-
making process [|1]. Design literature emphasizes methods build-
ing on utility theory to aggregate preferences and decision theory
to reach optimal outcomes [2}3]. However, single- and multi-
objective optimization methods alone do not reflect the local ob-
jectives, partial information, and decentralized control present
in federated systems. In contrast, adjacent fields such as soft-
ware, artificial intelligence, and robotics recognize issues of de-
centralization, producing a rich literature in multi-agent systems
focused on operational decision-making and control [4].

Collective systems design—hereinafter referred to as
CoDe—advances integrative theory that considers both the tech-
nical factors of a design problem and social interactions among
entities undertaking the design activity [J5]. Practical approaches
to CoDe emphasize participation, mediation, and negotiation
leveraging computer-based models [6H8]. Rather than pre-
scribing design solutions, this paper takes a more theoretically-
grounded approach by modeling the design process to explain
outcomes based on underlying strategy dynamics defined using
concepts from game theory. Improved understanding of the rela-
tionship between the fundamental problem structure and natural
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outcomes will help create better mechanisms and incentives to
guide multi-actor design problems.

Game theory logically extends decision theory to multi-actor
cases and has been explored in past design literature over sev-
eral decades (e.g. see discussion in [9]] and application cases
in [10,[11]). Typically, a design alternative represents a game-
theoretic strategy and corresponding Nash equilibria represent
stable decision sets for non-cooperative games (which need not
be optimal in terms of Pareto efficiency) [[12]. This framing be-
comes somewhat problematic in practice because strategy anal-
ysis often takes place at a higher level of abstraction than most
design decisions, necessitating a differentiation between strategy
and technical design decisions [[13]]. Prior work frames design
as a bi-level problem and studies scenarios with strategy dynam-
ics of a Stag Hunt game where two Nash equilibria force design
actors to balance preference for risk and reward [ 13]]. Other strat-
egy game scenarios remain generally unexplored.

The objectives of this paper are to 1) formulate a conceptual
modeling framework for CoDe and 2) generate design decision-
making problems with specified strategy dynamics. Outcomes
from this paper will be used as synthetic design problems in fu-
ture behavioral experiments. The proposed framework builds
on the bi-level model in [13]] to define two design phases: 1)
design space exploration; and 2) strategy selection. First, ac-
tors explore strategy-specific design spaces to identify (indi-
vidual) value-maximizing design alternatives. Second, actors
choose among designs presented as pure strategy payoffs in a
normal-form game characterized as one of four strategy dynami-
cal domains (i.e. cooperation, coexistence, bistability, and defec-
tion) based on the “sucker’s” and “temptation-to-defect” mixed-
strategy payoffs [14]. Operated in reverse, fixing the “sucker’s”
and “temptation-to-defect” parameters allows generation of de-
sign problems with specified strategy dynamics.

Section [2| describes the model-based approach to CoDe re-
search in more detail. Section [3] analyzes the results from a
preliminary multi-agent simulation study of the proposed exper-
iment. Section 4] provides a general discussion on the outcomes
from the simulation study and the implications of the proposed
approach in CoDe research. Finally, Section [5] provides some
concluding remarks and opportunities for future research on col-
lective decision-making processes.

2 COLLECTIVE SYSTEMS DESIGN MODEL

This section introduces and implements a model of CoDe as
a generic design activity depicting individual and collective de-
cisions in an engineering systems design process. The approach
combines concepts from value-driven design [2}/15/16] and game
theory to study how technical and social factors of engineering
systems design facilitate or inhibit collective action. The objec-
tive of the model is to represent the tradeoffs, risks, and dynamics

between interacting design actors at different levels of collective
effort; it does not attempt to prescribe “best” or “optimal” so-
lutions to multi-actor design problems. Specifically, this model
generates synthetic design problems with specified strategy dy-
namics between autonomous actors.

The following sections introduce the CoDe model as a bi-
level decision-making problem with lower-level technical design
decisions and upper-level strategy tradeoffs. Parameterized value
functions for the two levels of design formulate synthetic design
problems conforming to desired canonical two-strategy games.

2.1 Model Overview

The CoDe model is based on a bi-level decision-making
problem with two interrelated phases: 1) design space explo-
ration, and 2) strategy selection. Consider vector s = [s1,...,8y]
whose elements specify the strategy decision for each of the
n > 2 actors from the symmetric strategy space S x --- x S = 8",
The first part of the model illustrates lower-level technical design
processes within the context of all actors under the same design
strategy, i.e. diagonal strategy vector § = S1,85€S. A design
vector d = [dy,...,d,] specifies design decisions for each of n
actors from the design space d = d; X - -- X d,, under §. A multi-
actor design value function V*(d) = [V/(d), ..., V, (d)] maps the
design d to a scalar measure of preference for each actor i, who
then searches for value-maximizing designs d? € {d’} under each
§ € S" in Eqn. (T),

dfe{arg max Vl-s_(dl-,di)}. ()

died;, 5€5"

Each element of d_; represents the design decision made by ev-
ery other actor j € {1,...,n}\ {i}.

While framed simply, interactive effects and conflicting lo-
cal objectives contribute challenges to finding joint design deci-
sions. More generally, Eqn. only describes a locally optimal
design decision for actor i given d_; under diagonal strategy vec-
tor §, but not under s # § € 5". Any deviation from § results
in an upper-level decision-making process in which autonomous
actors face different organizational and strategy tradeoffs. Us-
ing the multi-actor design value function V*(d) constrained to
strategy-specific designs d° = [d},...,d}] found in Eqn. (I), ac-
tors search for the payoff-maximizing strategy in Eqn. (2):

i = argmax V(7 ), @
S

Si

Forn =2 actors and S = {R, B}, strategies Red and Blue, the re-
sulting upper-level problem can be formulated as a normal-form
game shown in Table[I] Generally, actors iterate through and be-
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TABLE 1. DESIGN STRATEGY GAME FOR n = 2 PLAYERS

Player 2
Red (R) Blue (B)
Red () | V0 4) i (dF.df)
Player 1 V2 (43%,dTY) Vs (dF,dP)
Blue (B) | ! Gty Vi (d7,df)
Va (dF,dT) Vs (d,dB)

tween both the design space exploration problem, Eqn. (I, and
the strategy selection problem, Eqn. (2)), in a time-constrained
fashion. The next sections expand on the implementation of each
part of the CoDe model for n = 2 actors and S = {R, 5}.

2.2 Design Model Implementation

This design model implementation generates synthetic de-
sign problems with two autonomous actors, i and j, within a
strategy scenario § = (s;,s;) |s; = s; = S € {R,B}. Each design
space has a finite number of design variables d; € {0,1,...,K}
yielding |d;| = K + 1 design alternatives for each actor i. Func-
tion V¥(d) € V*(d) is given by:

Vi) = v (F(d) 0

where f*(d) = (ff,f]) is the strategy-specific technical design
value function and v; is a value-sharing mechanism through
which actor i’s expected reward is computed. The inclusion of
function v; in Eqn. (3) attempts to further explore how a value
sharing policy in lower-level design decision-making processes
impacts actors’ behavior in upper-level strategy tradeoffs.

Design Value Function. The discrete value function in
Eqn. @) generates synthetic strategy-specific technical design
value spaces for each symmetric actor i:

K Bl(di—d}+(dj—ap)’]

f(d) = f(di,dj) = A @
+ Z Z euve d —u) (djfv) ]

u=0v=0 \%

with parameters o/, § > 0, random sample &,, ~ U (0, 1), function
|...]v to map to a discrete value scale V = {0, 35, 10, ..., 100}, and
unique global maximum located at d* = (d,*,d;} Equation
uses components from the first of two test optimization functions

presented in [[17]. The resulting technical value space, as ob-

served by actor i, is expressed as a matrix Ff ; ©d— V mapping
the collective design space to the value scale. For a two-actor
task, the value spaces are presented in a square grid where each
cell shows value f*(d;,d ;) mapped to a perceptually uniform dis-
crete color scheme (monotonically increasing lightness), Fig. [T}
An iterative sampling method generates the technical value
spaces f°(d) = f*(di,d;) = (f/,f}) to satisfy four constraints:

di* #dj*, (5)

dyym = arg <d,-,d-né?fﬁz-:d-f (di,d)), ©)
P (diym) = fiyms (N
f(d)+£7(d) <2 fym ¥ d # digp,- ®)

Equation (5)) ensures the unique global maximum is not located
on the plane of symmetry between the two actors, enforcing
a tradeoff between individual and collective objectives. Equa-
tion (6) identifies a unique symmetric design decision maximiz-
ing individual value as the goal of a collective design. Equa-
tion (7) requires the corresponding value for the symmetric col-
lective design to be a specified value ffym Finally, Eqn. (8) re-
quires the symmetric goal d,, = (d7, dj) to have larger value
sum than alternatives.

In the CoDe model, design actors explore the technical value
spaces associated with each strategy in S = {R, B} and select de-
sign decisions d™ = <dl72,d}2> and d® = (dP ,ij ) within a speci-
fied time period 7. Technical value spaces generated for particu-
lar tasks consider K = 6 such that |d;| =7 and |d| = 49. The value
space corresponding to R in Fi g [TJuses parameters o = 1.00 and
B =0.75 with =75 and =55 (not shown).

sym sym

Reward Mechanism Functions. A reward mechanism
influences the effective value of each alternative during design
space exploration. A general value-sharing mechanism, v;, en-
courages actors to select collectively efficient outcomes by shar-
ing (1 —r)-100% of each other’s value with one another:

vi(f@) =r-fi+(L=r)-fj,  050<r<1.00 (9

Different values of r in Eqn. (9) are expected to have consider-
able impact on actors’ behavior in upper-level strategy decisions.
For instance, when r = 1, the value obtained by actor i is the same
as obtained directly from the design exploration task, i.e. ff ; un-
der these circumstances, agreeing on a collective design dsym an
be challenging if there are other local value-maximizing designs
elsewhere in the design space. On the other end, setting » = 0.5
provides each actor with the arithmetic mean of individual val-
ues. Since the actors are exposed to the same value conditions,
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FIGURE 1. EXAMPLE VALUE SPACE FfY WITH SYMMETRIC
VALUE-MAXIMIZING DESIGN d%, = (dF,d™) = (1, 1).

sym T \Y 0 %

this condition makes upper-level design strategy tradeoffs sym-
metric and more static.

2.3 Strategy Model Implementation

The strategy model implementation generates the design
strategy tradeoffs between the two previously-explored design
spaces to which the actors are exposed. At this level, designs
are treated as strategies in a normal-form game with incomplete
information. If actors agree on a § = (s;,5;)[si =5, =S €
{R,B}, payoff value vector V* = (V;*,V?}) is equal to one of
the previously-evaluated value functions, V™ = (V;*,VR) and

VE = (VF,VF). Otherwise, the elements of V* are computed via
Eqn. to ensure specified strategy dynamics,

V7, ifs;i=s5; € {R,B}
Vi=qS VR+(1-S8)-VE, ifsi=RAs;=B . (10)

T~ViR—‘r(1—T)~V~B, ifSiZB/\Sj:R

1

The values from Eqn. (T0) are constrained to be between 0 and
100. The S and T parameters are the “sucker’s” and “temptation-
to-defect” payoffs corresponding to the payoff values obtained
by the two players, one that cooperates (chooses design strategy
R) while the other defects (1), respectively, in the classical Pris-
oner’s Dilemma game [14]]. Conceptually, S motivates decisions
based on fear while T motivates decisions based on greed. Spe-
cific to this work, S and T are the off-diagonal normal-form pay-
offs in which agreeing on R results in a payoff of 1 and agreeing
on B results in a payoff of 0 as in Table[2]

Deadlock* | Compromise*
0 ade
1
Harmony
9%}
ey Peace
19
2 Concord
S0
rf/)
E Coord.
S Stag Hunt Prisoner’s Dilemma
1%}
. NSNNNNNNN
—1 7 surance 1 Cooperation
I Coexistence
"1 Bistability
E=Y Defection
T
0 1 2

Temptation-to-defect, T

* The payoff structure is usually presented in reverse order in the literature.

FIGURE 2. STRATEGY DYNAMICAL DOMAINS AND ASSOCI-
ATED CLASSICAL GAMES ON THE SUCKER’S/TEMPTATION-
TO-DEFECT (S-T) PLANE

The S-T plane can be divided in four strategy dynamical
domains: cooperation, coexistence, bistability, and defection.
Each domain encloses several classes of games, as illustrated in
Fig.2][14]. Previous works have focused in the region defined by
—1<S<1land0< T <2 which contains the Harmony/Concord,
Chicken (a.k.a. Snowdrift), Stag Hunt, and Prisoner’s Dilemma
scenarios [18,[19]. Each of these games presents a different and
unique strategy dynamic: one Pareto efficient Nash equilibrium
(Harmony/Concord), one non-Pareto efficient Nash equilibrium
(Prisoner’s Dilemma), two Nash equilibria under matching strat-
egy decisions (Stag Hunt), and two Nash equilibria under oppo-
site strategy decisions (Chicken).

While S and T provide some control over strategy dynamics,
the resulting game depends in part on outcomes from lower-level
design decisions. Logically stated, Eqn. (TT) must hold for the
resulting payoffs to be comparable to a classical game.

(VR >VEAVR>VE) e (VE>VRAVE > VR an

Selecting designs dg,,,, for both the Red and Blue scenarios is
sufficient to enforce Eqn. (TT)) and enable classification in Fig. 2}
Otherwise, the resulting game may not be symmetric or may
present reversed payoff values, especially if the values of S and

T fall in the coexistence or the bistability domains.
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TABLE 2. NORMALIZED COOPERATION/DEFECTION GAME
TO CHARACTERIZE STRATEGY DYNAMICS [14], s € {R,B }2

Player 2
Cooperate (R) Defect (BB)
Vi=1 Vi=S§
Cooperate (R)
Vi=1 Vi=T
Player 1
Vi=T Vi=0
Defect (B)
Vi=S§ Vi=0

2.4 Limitations of the Model

The proposed CoDe model aimed to generate design
decision-making problems with specified strategy dynamics car-
ries several limitations which must be discussed. First, it treats
design as a bi-level decision-making problem, with lower-level
design processes represented as discipline-independent value
space exploration tasks and upper-level tradeoffs synthesized
from an abstract game-theoretical representation of coopera-
tive and defective strategies. This distinction complicates de-
sign actors from sequentially or simultaneously finding value-
maximizing designs and strategies as a more general design prob-
lem. However, differentiating design and strategy decisions helps
to separate two timescales of decision activity: design decisions
happen in a comparatively shorter timescale while strategy deci-
sions happen on a longer timescale with greater restrictions on
information sharing. Furthermore, addition of strategy control
parameters (S and 7)) help to model desired strategy dynamics
between design actors.

Second, design and strategy spaces selected in the model im-
plementation are relatively small and characterized by abstract
test functions for two actors. While not entirely representative of
real-world design problems, the low-dimensional spaces help to
contribute some cognitive difficulty without overwhelming de-
sign actors. Limiting cognitive difficulty is particularly impor-
tant in abstract design problems which do not provide context
amenable to existing knowledge and for research questions fo-
cusing on strategy dynamics.

Finally, the proposed implementation to generate the value
spaces enforces symmetry between actors. The collective value-
maximizing designs will always appear on the plane of symme-
try, greatly simplifying the design exploration task for cognizant
design actors. While most real-world design problems are not
symmetric, symmetry in this design space provides a measure of
control to minimize differences between actors. This limitation
can be mitigated in software implementations by re-ordering the
design variables to avoid the immediate appearance of symmetry.

ﬁ)esign Exploration Task \
e
Value Space, t=0 Designer 2
m)esigner i \
Generate
Random d;

Update Visible
Value Space

Wait At; Assess Observe
t=t+Af Value Space Frequency of d;

Y

True @

Update Update
\ Decision, d; Choice Model //

FIGURE 3. ACTIVITY DIAGRAM FOR DESIGN MODEL

3 SIMULATION STUDY

This section describes a preliminary analysis of the CoDe
model described in Section [2] using multi-agent simulation and
game theory. This study draws inspiration from previous works
that have employed computational agents to assist CoDe research
[21423]]. The next sections describe the elements of the simula-
tion model and results from the study.

3.1 Simulation of the Design Model

The lower-level design value exploration tasks using the
model implementation in Section are studied using multi-
agent simulation (Fig. [3). The design value space is initialized
and designer agents 1 and 2 start to explore the design space at
d = (d,,d,). From this point forward, agent i’s performs a set of
actions every As; interval of time while ¢ < 7 as follows:

1. Update Visible Value Space. After cell d = (d;,d;) is se-
lected, the entries f7 (di,d;) and f}(d;,d;) are revealed to
agents i and j, respectively. The technical value space visi-

ble to agent i is F}; = [/} (di,d;)] o> Where

75 _ { S, if d = (d;,d,) has been observed (12)

0, otherwise.
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2. Assess Value Space. Designer i observes Ff ; and estimates
the hidden values to the left and right of d. If only d is
visible, agent i assumes f;(d;+1,d;) = f°(d;—1,d;) =
fi(di,dj) ¥ (di+1),(d; — 1) € d;. Otherwise, the algorithm
uses spline extrapolation to estimate ff_ € [0,100] along row
d;. The f¥ estimates are temporarily replaced in F‘f_j

3. Observe Frequency of d;. Via the visible value space, De-
signer i observes j’s frequency of decisions d; as vector p;.

4. Update Choice Model. Agent i’s representative utility from
making g € {0,...,K} his next d; is modeled as:

i (1) = [Useq (0F5)] = (0F5)77 . (3)

where the product p ijj is a vector of the anticipated con-
tribution by agent i from agreeing with j on (d; < ¢,d;).
The parameter 7/ (7 —1) penalizes each element of p;F};
(via Hadamard exponentiation, o) increasing the relative dif-

ferences between Uy, (t,F‘f-_j estimates as time advances.

It also attempts to mimic the effects of time constraints on
collective action, and it is based on empirical assumptions
inspired by previous psychology research on the cognitive
mechanics of collective decision-making processes, specif-
ically, reported evidence of the positive effect of time pres-
sure on cooperation [24,|25]]. Finally, the choice probability
mass function for choosing d; = g is computed as

o u; (I’F§i>
pi = [Pr(di < q|t,F};)] = ——— (14)

5. Update Decision. The next value of d; is selected by using
inverse transform sampling on the cumulative distribution
function obtained from p;.

Table [3] shows sequential example of how the multi-agent
simulation performs the design value exploration task using con-
stant A7y = At; = 1 and 7 = 100. The initial d = (d;,d>) = (0,5)
appears attractive for Designer 1 and unfavorable for Designer 2.
As reflected by the number of visible cells at each d;, Designer 1
remains more attracted to d; € {0, 1} by # = 22 while Designer 2
is more attracted to da € {2,4}. By the end of the task, Designer
2 focuses on dr = 2, leading Designer 1 to select d; = 2, and
converging to d = dy,.

Table []b shows results of a batch multi-agent simulation
execution with 10,000 seeds to explore design value spaces for
the Red and Blue scenarios. In both cases, d = dss_ym was the
most frequent outcome, 27.46% for the Red design and 20.04%
for the Blue design. In addition, Table E}c shows the distribution

of f*(d) = (f,f}). Consistent with the distribution of design

decisions, the most frequent value outcome from the Red and

Blue scenarios are f5, =75 and fX, = 55, respectively.

3.2 Strategy Analysis

This section analyzes the implementation of the upper-level
design strategy selection problem described in Section [2.3] us-
ing the results obtained from the multi-agent simulation in Sec-
tion Equation (10) computes the design strategy game in
Tabl from the obtained values <ViR,VjR> and (ViB,VjB ). This
section explores the Harmony/Concord and Prisoner’s Dilemma
strategy games respectively from the cooperation and defec-
tion dynamical domains defined by S € {—1/2,1/2} and T €
{1/2,3/2} in Fig. P2}

Nash equilibria (N.E.) represent rational outcomes from
the design strategy selection phase. Table [5] shows the distri-
bution of single N.E. payoffs for both strategy game scenar-
ios and the count of total resulting games with one or mul-
tiple N.E. for every possible Harmony/Concord or Prisoner’s
Dilemma game (i.e. |d|> = 2,401) using reward mechanisms with
r € {1,0.75,0.5}, computed using the Nashpy Python package.

4 DISCUSSION
4.1 Insights from the Simulation Study

Results from the simulation study expose some of the chal-
lenges regarding the topology and exploration of generated value
spaces. First, as the difference in values between the symmetric
goal at dj_ym and the global maximum at d; grows, so do the
range of obtained values f*(d) = (f7,f}). A value-maximizing
agent will be attracted to visible global maximizers d*, but some
of these maxima are undesirable for other agents. For instance,
the global maximum d* = (6,0) in design value space B yields
/¥ =100 to agent i and fj‘ =0 for agent j. This outcome can only
be collectively efficient if a reward mechanism is used, otherwise
the agents will disagree on d* due to extreme value asymmetry.
In design value space R, the global maximum d* = (5,3) yields
f# =100 to agent i and fj_ =40 for agent j. In this case, however,
the agents converge more frequently to decisions in close prox-
imity to d*, in particular d* = (6,3), at which agent i obtains
f{ =85and j gets ] =45, respectively, a difference of —15 and
+5 with respect to one agent reaching the global maximizer.

In the game-theoretical analysis, a higher r results in a more
scattered distribution of N.E. away from the diagonal payoffs
Vi= V]‘?. When r > 0.5, most of the resulting games are asym-
metric with N.E. located on the off-diagonal of the design strat-
egy game in Table([I] In the Harmony/Concord scenario, the most
common N.E. payoff is V' =V} =75 = ngm, whose frequency
remains the same for different values of r and it is also a Pareto
efficient solution. On the other hand, for the Prisoner’s Dilemma
games, the most frequent N.E. payoff goes from V;' = V; ~ 40

Copyright (© 2018 by ASME



TABLE 3. SIMULATED VALUE SPACE EXPLORATION

FOR STRATEGY B WITH CONSTANT Ar =1 AND 7 = 100,

CONVERGING TO d?,

sym

AT t = 86.

Designer 1, Fﬁ

TABLE 4. RESULTS FROM A MULTI-AGENT SIMULATION BATCH
EXECUTION OF THE DESIGN MODEL USING 10,000 DIFFERENT
SEEDS FOR TWO DESIGNS, R AND B

‘ Designer 2, F?

ﬁl

o

4 5 6 0 1
L L

1
L 2 ; 0 1 23 476

6 d O 6
5] 1 = s
; B =095 Ly
t=0 | 31 =
[ b =5 L] 2
1 B _ 5 F1
0] 2 E

Red: d%, =1, f%, =175 Blue: d5,, =2, /5, =55

. 6 100
=
g 5 80
<
@ 4 60
El 3
S ) 40
bi
2 1 20
5
& 0 0
<

0.30

6 6
) 5] 0.25
= 4 41 0.20
| d;
S| 73 3 0.15
)
& 27 21 0.10
=
g 11
= 0.05
= 01
= T . 0.00
] 01 2 3 4 5 6 5 6
d;
[y 100 1 1Te 1()()--. 0.30
o 0.25
o O | -
I i 0.20
[ 'S '3
< |
z 7 501 ::9' i L 50 . .‘ 0.15
G e 0@ oo
] e oo
8 (X 3 . 005
= L4 ° ° Y
g (}'SEEESEESNENRSESN_— (] (SuN_—————————— N EY
f-; 0 25 50 75 100 0 25 50 75 100
'S S

for r =1.00 to Vi =V} ~ 30 for 0.50 < r < 1.00. While in
the Harmony/Concord scenario the highest single N.E. payoff at
which both players can agree is Vs7y3m, the Prisoner’s Dilemma de-
sign tradeoff yields single N.E. rewards of up to V;' = V7 = 100.
However, these outcomes are not reached by the artificial agents
described in Fig. 3] and the possibility of reaching them disap-
pears for lower values r. In general, a reward mechanism with
r = 0.50 eliminates any chances of having improved collective
outcomes under the strategy dynamics considered.

These observations generate new research questions to be

addressed in future experimentation with human subjects. Par-
ticularly, 1) what characteristics of the design value spaces affect
outcomes of multi-agent design exploration tasks, 2) how do col-
lective reward mechanisms affect design actors’ exploration of
the value space, 3) are actors that agree on fairer decisions in the
exploration tasks more likely to cooperate in a design game under
specific strategy dynamics, 4) how do collective reward mecha-
nisms in the design process affect collective effort in strategy
selection, and 5) under which conditions can actors reach payoff
values that surpass results obtained by artificial design agents?
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TABLE 5. PAYOFF VALUES (V/,V?) AT SINGLE NASH EQUILIBRIA (N.E.) FOR s;,s; € {R,3} UNDER TWO DIFFERENT STRATEGY

i*"j

GAME SCENARIOS, HARMONY/CONCORD AND PRISONER’S DILEMMA

HARMONY/CONCORD: S =T =1/2
r=1.00 r=0.75 r=0.50

y 100 77 T = J 025 100 025 100 0.25
4 = C
= 754 FH CH- = 0.20 75 1 \‘l_ T 0.20 75 1 0.20
&l C H__
E X o s T s
= V; solR | it JT‘ ‘ 0.15 | Vj 50 ‘:‘ i 015 | V; 50 0.15
= B =TT R 0.10 e 0.10 . 0.10
= 25 1 25 A [ I 25 A
5 EFH 9= FE 0.05 a_ﬁ 0.05 r{{ 0.05
2 pahpll
5 0 ; ; ; + 1000 0 ; ; 0.00 0+ : ; : = LL0.00
g 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
= Vi 4 Vi
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4.2 Limitations of the Study

The simulation study is a first step to explore and study the
usefulness and extensiveness of the proposed CoDe model and
is subject to several limitations which must be acknowledged.
First, the designer behavior algorithm is unidirectional, iterating
through one technical design decision space at a time. The algo-
rithm does not iterate between the different value spaces or be-
tween lower-level technical and upper-level design strategy deci-
sions. This limitation makes it difficult for agents to make collec-
tive design and strategy decisions that result in maximum payoff
values.

Second, the algorithm is a simplified model of decision-
making. It assumes limited knowledge of the design domain and
does not allow communication between players beyond visibil-

ity of cells in the value space. It accounts for utility-maximizing
decision-making agents with representative utility expressed in
terms of the frequency of both agents’ decisions. Nevertheless,
as the algorithm relies on stochastic behavior to model variability
in design decisions, the utility model is subject to bias towards in-
dividual value-maximizing rewards rather than symmetric goals.
A more realistic decision-algorithm may take into account inter-
active effects between agents, for example by including reward
mechanisms to the simulation, building on existing theory of it-
erative negotiation [26,27]].

Finally, the game-theoretical analysis of the design tradeoff
model only focuses on two particular strategy game scenarios
to highlight divergent outcomes under fixed decision algorithms.
These scenarios were selected from a broader investigation of
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the strategy dynamical domains in Fig.[2] This work is limited to
assess design strategy tradeoffs with only one N.E., characteristic
of games in cooperation and defection domains. Games resulting
from the coexistence and bistability scenarios are mostly bipolar
(two pure N.E.), and each strategy must be analyzed in terms of
payoff and risk dominance [/13}28]], which is out of the scope for
this work. Future analyses will work to consider a broader range
of mechanisms and strategy dynamics to gain more insights on
the challenges of collective systems design.

4.3 Implications for Collective Systems Design

This work provides insights on how the structure of a multi-
actor design problem can evoke different strategy dynamics be-
tween independent decision-makers. The value spaces are not
inherently fixed and can be shaped to align actors with de-
sirable outcomes. For instance, the constraint assumptions in
Eqn. @) to ) can be modified to make the global maxima co-
incide with the symmetric goals or assign a higher value to the
latter to make it more explicit. Also, improved mechanisms and
incentives may overcome misaligned objectives between actors.
Future work seeks to further classify multi-actor design prob-
lems into a set of prototypical designs recognizing the inherent
dynamics among actors. This work will contribute to design of
complex systems by identifying and avoiding poorly-structured
design problems.

5 CONCLUSIONS AND FUTURE WORK

This work contributes to literature in engineering systems
design by proposing a model-based approach to study design de-
cisions and strategic behavior among independent actors. The
proposed CoDe framework builds upon a multi-actor value
model and game theory to explore the dynamics of collective
design in a bi-level decision-making process. Specifically, the
CoDe activity differentiates between two phases: exploration of
discipline-independent design value spaces and strategy trade-
offs. The first phase addresses how technical aspects of a design
problem (e.g. size, coupling between decisions) influence col-
lective action. The second phase frames the decision-making
process at the organizational level as a two-strategy normal-
form game with tradeoffs synthesized from an abstract game-
theoretical representation of cooperative and defective strategies.
This approach helps generate synthetic design problems with
specified strategy dynamics that can be used in future experi-
mentation with cognizant design actors.

Future work will conduct a human designer experiment
based on the CoDe model to assess the technical and social fac-
tors impacting actual collective decision-making processes in en-
gineering systems design subject to biases, heuristics, and satis-
ficing behaviors. The longer-term goal of this research is to help
understand what design problem structures are suitable for col-

lective efforts and how to effectively organize actors to handle
distributed and federated design. Going in this direction, this
research aims to impact the way large engineering projects are
viewed to consider multiple collective perspectives and the po-
tential role of coordination mechanisms to achieve desired be-
havior.
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