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Anomalous Decay of 
Nanomechanical Modes Going 
Through Nonlinear Resonance
O. Shoshani1, S. W. Shaw2 & M. I. Dykman   3

Because of the small size of nanomechanical systems, their vibrations become nonlinear already for 
small amplitudes. Many nontrivial aspects of the vibration dynamics arise from the coexistence of 
several nonlinearly coupled modes. We show that such coupling can lead to anomalous decay of the 
modes where they go through nonlinear resonance, so that their amplitude-dependent frequencies 
become commensurate. We demonstrate the possibility of a strongly nonmonotonic dependence of 
the decay rate on the amplitude if one of the modes serves as a thermal reservoir for another mode. 
Where the decay of both modes is slow compared to the rate of resonant energy exchange, the decay 
is accompanied by amplitude oscillations. Depending on the initial conditions, with increasing time it 
can display an extremely sharp or a comparatively smooth crossover between different regimes. The 
results provide insight into recent experimental results by several groups and suggest new ways of 
characterizing and controlling nanomechanical systems.

The nonlinear resonance occurs where two vibrational frequencies in the system are commensurate, i.e., their 
ratio is a rational number. The resonance effects are most pronounced where both the numerator and the denom-
inator of the corresponding fraction are comparatively small integers, for example, where one of the frequencies 
is twice or three times the other. The study of nonlinear resonance has a long history in quantum and classical 
mechanics. It goes back at least to Laplace and Poincare on the classical side and to the Fermi resonance on the 
quantum side1,2. The resonance has been observed in a broad range of systems, from celestial bodies to ecolog-
ical systems to molecules3–6. Recently, nonlinear resonance has attracted particular interest in the context of 
nano- and micro-mechanical vibrational systems7–15 and microwave cavities used in quantum information16,17. 
These mesoscopic systems provide unprecedented access to studying, using, and controlling this complicated 
phenomenon.

In conservative classical systems, nonlinear resonance leads to energy oscillations between the resonating 
modes. This is reminiscent of the energy oscillations between two coupled harmonic oscillators with close fre-
quencies. However, the actual picture in nonlinear resonance is more complicated, extending to dynamical chaos. 
On the quantum side, nonlinear resonance is in some sense simpler in the absence of dissipation, as its primary 
signature is the familiar level repulsion.

The quantum situation changes if the resonating modes are dissipative. If the modes have very different decay 
rates, one of them can serve as a thermal reservoir for another, cf.18. This effect has been used to drive a slowly 
decaying microwave cavity mode to a coherent quantum state16; it extends to driven modes19, and such extension 
has attracted much attention in cavity optomechanics20.

An important advantageous feature of mesoscopic oscillators is the possibility to tune them in and out of non-
linear resonance. This can be done by directly controlling their frequencies7 or dynamically, using the dependence 
of the frequency on the vibration amplitude. Here, by driving a mode, one brings its overtone into resonance 
with an overtone of another mode, which is then also excited. The ensuing backaction significantly changes the 
dynamics of the driven mode and, in particular, its decay after the driving is switched off. Such decay is a major 
means of studying mesoscopic vibrational systems21.

In this paper we develop a theory of the decay of classical vibrational modes brought into nonlinear resonance. 
We reveal the rich and unusual pattern of the decay. In particular, if the decay rates of the involved modes are sig-
nificantly different, the fast decaying mode can be an efficient thermal reservoir for a slowly decaying mode where 
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the modes resonate. Since the mode frequencies depend on their amplitudes, the resonance is transient. This 
leads to a characteristic peak in the instantaneous decay rate of the slowly decaying mode as a function of time. 
The effect can be thought of as a transient classical analog of the well-known in quantum physics Purcell effect22.

The resonant dynamics is very different if the decay rates of both modes are smaller than their nonlinear res-
onant coupling in the appropriate units. In this case decay is accompanied by comparatively fast energy exchange 
between the modes that leads to oscillations of the vibration amplitudes. Because the strength of the nonlinear 
mode coupling strongly depends on the amplitudes, the oscillations are qualitatively different from those in linear 
resonance. We develop a general framework for analyzing the decay in this situation. It reveals the qualitative 
features of the decay, including sharp or smooth crossovers between different regimes with varying time. It also 
allows one to establish the range of parameters and the initial conditions where different types of behavior occur. 
The approach relies on the existence of a broad parameter range where, as we show, nonlinear dynamics in the 
absence of decay is much simpler than that in the general Poincare picture of nonlinear resonance in conservative 
systems1,23.

Results
A minimalistic model.  To be specific, we will consider the modes with the frequency ratio close to 3:1, 
as sketched in Fig. 1. For symmetry reasons, the coupling between such modes in nano- and micromechanical 
systems is often stronger than the coupling between the modes close to 2:1 resonance. The interesting recent 
work14,15, which has been done in parallel with the present paper, reports the observations of 3:1 resonance and 
the rich dynamics that come with it.

We describe the modes by the Duffing model, that is conventionally used in nanomechanics24–26, comple-
mented by the term that accounts for the resonant nonlinear mode coupling. The Hamiltonian of the system reads
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Here, qn and pn are the coordinate and momentum of mode n (n = 1, 2), ω1,2 and γ1,2 are the mode eigenfrequen-
cies and the Duffing nonlinearity parameters, and γres is the mode coupling parameter. The model (1) captures the 
essential features of the resonant behavior.

Nonlinear resonance in nanomechanics is most easily observed where the mode nonlinearity is weak in the 
sense that the quartic in qn terms in H are small compared to the quadratic terms. Therefore 3:1 resonance hap-
pens for 3ω1 close to ω2, so that the frequency difference δω12 = 3ω1 − ω2 is small, 

δω ω| |12 1,2. Then the modes 
can be tuned into exact resonance by varying their vibration amplitudes A1,2 and using that the effective vibration 
frequency of an nth mode is ω ω γ ω≈ + A3 /8n n n n n

eff 2 27. Typically, in the experiment it is the low-frequency mode 
that is directly excited and tuned into the nonlinear resonance, cf.7,8,14,15.

For small 12δω| |, the amplitude range of interest is where the amplitude-dependent frequency change is small 
compared to ω1,2. This significantly simplifies the analysis, as one can use the rotating wave approximation (RWA) 
and change from the rapidly oscillating coordinates and momenta of the modes to new scaled coordinates and 
momenta, q Q P p Q P( cos sin ), ( sin cos )n n n n n n n n n n n n

1/2 1/2ω φ φ ω φ φ= + = − −−  with φ1 = ω1t and φ2 = 3ω1t. 
Functions Qn, Pn remain almost constant over time 1/ω1,1/ω2. The equations of motion for Qn, Pn are
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Whereas the terms with HRWA in Eq. (2) come directly from the Hamiltonian (1), the terms 1,2∝Γ  have been added 
to account for mode decay. They come from the linear friction forces − Γ q2 n n experienced by nanomechanical 

Figure 1.  Schematic of 3:1 resonance. Left panel: three excitations (quanta) of mode 1 with frequency ω1 can 
resonantly scatter into an excitation (quantum) of mode 2 with frequency ω2 ≈ 3ω1, and vice versa, an excitation 
of mode 2 can resonantly scatter into three excitations of mode 1; γres is the parameter of the resonant mode 
coupling. Right panel: a sketch of the first and third flexural modes in a stretched nanowire; these modes are 
close to 3:1 resonance.
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modes. With δω12 = 3ω1 − ω2, the Hamiltonian HRWA does not contain terms quadratic in Q1, P1. The nonlinear 
terms disregarded in (3) either renormalize the parameters or lead to corrections that do not change the dynamics 
qualitatively. Here we aim at revealing most interesting characteristic features of this resonant dynamics.

Resonant transient nonlinear friction.  Along with the linear friction force, nanomechanical modes often 
experience nonlinear friction, where the friction coefficient depends on the mode amplitude28–34. The micro-
scopic mechanisms considered so far predict that the friction coefficient either monotonically increases18,35,36, or 
decreases33,37, with the increasing mode amplitude. In contrast, resonant mode coupling can lead to an anoma-
lously strong nonlinear friction and nonmonotonic amplitude dependence of the friction coefficient.

In systems of coupled nano- and micro-mechanical modes, the higher-frequency modes often decay faster 
than the lower-frequency ones8,10,38,39. In the case of nonlinear resonance, if the higher-frequency mode 2 decays 
much faster than mode 1, Γ2  Γ1, mode 2 can serve as a thermal reservoir for mode 1. This reservoir is special, as 
it has a finite bandwidth ∼Γ2. Therefore it is most efficient only when the amplitude-dependent frequency detun-
ing ω ω−3 1

eff
2
eff  is within this bandwidth. In addition, the coupling to the reservoir is nonlinear in the mode-1 

coordinate, which also makes the decay rate of this mode amplitude-dependent.
Other conditions needed for mode 2 to serve as a thermal reservoir for mode 1 and the derivation of the equa-

tion of motion for mode 1 are given in Methods. It is convenient to write this equation for a dimensionless com-
plex amplitude of mode 1 𝒜  γ ω= Γ − − ΦQ iP i(3 /8 ) ( ) exp[ ]1 1
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2 1ζ γ γ= Γ Γ  is the dimensionless characteristic of the strength of the resonant coupling; ζ and the 
ratio δω12/Γ2 fully determine the decay of the mode amplitude ∝ | |A1  in dimensionless time Γ1t.

It is seen from Eq. (4) that the backaction from the fast-decaying mode 2 leads to a nonexponential decay of 
the amplitude A1. The coupling induced decay rate can be understood in terms of the standard Fermi golden 
rule40. It is quadratic in the coupling parameter γres and is proportional to the “density of states” 

ω ωΓ Γ + −/[ ( 3 ) ]2 2
2

2 1
eff 2  of the effective reservoir provided by mode 2 at triple the frequency of mode 1, 

1
eff

1 2
2ω ω= + Γ | |A .

Equation (4) gives in the explicit form the instantaneous decay rate d dt( / ) ln | |A  as function of the mode-1 
amplitude. It is illustrated in Fig. 2. The rate displays a resonant peak for 3ω1eff = ω2, in agreement with the Fermi 
golden rule. The height of the peak increases with the increasing coupling strength ζ and with the increasing fre-
quency detuning δω| |12 . Interestingly, the rate becomes amplitude-independent not only for small amplitudes, 
where it approaches the linear-decay value Γ1, but also for A  δω| | | | Γ/2

12 2, where it becomes (1 /9)1 ζ≈Γ + . 
The unusual quasi-linear large- 2| |A  behavior is a consequence of the strong increase of the mode coupling with 
the increasing vibration amplitude. It is clear from (4) and also seen from Fig. 2 that a peak of the decay rate as 
function of amplitude corresponds to a kink on the time dependence of the amplitude, where the decay rate 
quickly changes between its values for large and small amplitudes.

Nonlinear resonance for weak dissipation.  The nontrivial aspects of the dynamics of resonating modes 
also come forth in the opposite limit, in which the mode relaxation rates are small compared to the rate of the 

Figure 2.  Resonant peak of the instantaneous decay rate. Left panel: The dependence of the normalized 
effective instantaneous decay rate Ad dt( / ) lnad 1

1Γ = −Γ | |−  on the scaled vibration amplitude A| | of mode 1 in 
the adiabatic regime of fast decaying mode 2. Right panel: The amplitude of mode 1 in scaled time Γ1t; the 
horizontal dotted lines indicate the amplitude where the resonance occurs for the respective parameter values, 
ω ω=3 1

eff
2 (the black and blue dotted lines overlap). Solid lines are from numerical solution of Eqs (2), and 

dashed lines are the adiabatic approximation (4). Black, red, and blue curves in both panels (curves 1, 2, and 3) 
refer to ζ = 4, δω12/Γ2 = −1.5; ζ = 2, δω12/Γ2 = −2; and ζ = 2, δω12/Γ2 = −1.5, respectively; Γ2/Γ1 = 50. The 
oscillations at large | |2A  in the left panel are the effect of the initial conditions where the modes approach the 
adiabatic regime.
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inter-mode energy exchange at resonance. In nano-mechanical systems, all these rates are typically much smaller 
than the vibration frequencies ω1,2. One can then think of the evolution as decay of the vibration amplitudes, 
accompanied by their oscillations that result from the intermode energy exchange41.

The mode dynamics in the absence of decay is interesting on its own and needs to be understood first. The 
conservative system is characterized by two conserved quantities. The first is the effective energy in the rotating 
frame and is given by function HRWA (3). The second is an analog of the Manley-Rowe invariant in nonlinear 
optics42 and has the form = + +M I Q P2

2
2
2 for the considered 3:1 resonance, where I Q P A( )/3 /31

2
1
2

1 1
2ω= + ≡  

is the scaled squared amplitude of mode 1. The dynamics is conveniently described by two canonically conjugate 
variables I and φ, where Q iP Q iP3arg( ) arg( )1 1 2 2φ = − − −  is the mode phase difference. In dimensionless 
time τ γ ω= t3 /4res 1

2 the Hamiltonian equations for these variables read
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Here δ ω δω γ μ γ γΩ = =4 /3 , 9 /212 1
2

12 res 1 1 res, and /182 2 resμ γ γ=  are the dimensionles parameters that determine 
the dynamics; for brevity, we have set γres > 0.

The effective Hamiltonian ∝h HRWA is singular for →I M and →I 0, i.e., in the range where the amplitude 
of one of the modes goes to zero. This feature is generic for nonlinear resonance in weakly nonlinear oscillators. 
It leads to the unusual behavior discussed below.

The dynamics (5) can be mapped onto motion of a particle in a potential well and are described by Jacobi 
elliptic functions; see Supplemental Material (SM). The qualitative insight into the dynamics comes from the 
phase portraits shown in Fig. 3(a)–(c). They refer to the case where the Duffing nonlinearity of mode 2 can be 
disregarded, μ2 = 0 (a nonzero μ2 does not change the qualitative picture, see SM). The exact nonlinear resonance 
3 1

eff
2
effω ω=  then occurs for I12 1δ μΩ = − . Therefore we concentrate on the case 01 12μ δΩ <  where the modes 

can be tuned in resonance by increasing the amplitude of mode 1.
Shown in Fig. 3 are the lines of constant h, which are, essentially, parametric plots of the trajectories I(τ), φ(τ). 

The closed loops correspond to oscillations of I, φ about the stationary states where h(I, τ) is maximal or minimal. 
From Eq. (5), the typical dimensional frequency of these oscillations is /res 1

2γ ω∼ . In contrast, on the open trajec-
tories φ π(mod2 ) runs from −π to π. These trajectories correspond to accumulation of phase φ in time, which is 
also accompanied by oscillations of the mode amplitudes. We note that, in the absence of resonant mode cou-
pling, the phase trajectories are just straight horizontal lines, as in this case the amplitudes of the modes are con-
stant on times small compared to the decay time.

The closed trajectories circling around different extrema of h are separated from each other and from the open 
trajectories by separatrices. A peculiar feature of the system is that, in contrast to the “conventional” picture of a 
phase plane1, there are two types of separatrices (Methods). Of particular importance are the separatrices shown 
by red lines in Fig. 3(a) and (b), which go to/from the saddle point of h(I, φ) (SM). This point is a stationary state, 

φ∂ = ∂ =τ τI 0. However, rather than circling it, the nearby trajectories approach and then move away, except for 
the separatrices.

It is important to note the change of the phase portrait from panel (a) to (c) in Fig. 3. With the increasing ratio 
δ| Ω | M/12 , the saddle point and the extremum of h (at φ = 0 for μ1 > 0) move closer to each other. Ultimately they 
merge (the saddle-node bifurcation1) and disappear. As the extremum disappears, the trajectories that circled it 
transform into open trajectories.

In the presence of decay, h and M are no longer conserved. However, they vary in time slowly compared to the 
oscillation period. One can therefore think of the dynamics as described by Eq. (5) with slowly evolving h and M. 
From Eq. (2), time evolution of the Manley-Rowe parameter ω ω= +M A A/31 1

2
2 2

2 is described by the equation

〈 〉 = − Γ + Γ − Γ 〈 〉M M I2 2( ) , (6)2 2 1

Figure 3.  Phase trajectories of the resonating modes in the absence of decay. Motion along the trajectories (thin 
black lines) corresponds to oscillations in time of the scaled squared amplitudes I and M − I of modes 1 and 2, 
respectively, and of the mode phase difference φ. The pattern is periodic in φ with period 2π. The values of the 
Hamiltonian h, Eq. (5), are color-coded, h is constant on a trajectory. The scaled parameters of the Duffing 
nonlinearity are μ1 = 1, μ2 = 0, the scaled frequency detuning in (a)–(c) is δΩ = − . − . −M/ 0 5, 0 9, 212 . The red 
lines show the separatrices that go into/out of the saddle point. The red crosses in (a) and (b) mark the extrema 
of h at φ = 0. The pattern of the trajectories is the same for , ,12 12 1 1δ δ μ μ φ φ πΩ → − Ω → − → + .
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where the angular brackets denote time averaging over the period of motion with given h and M. A similar equa-
tion can be written for 〈h〉 (Methods).

From Eq. (6) and the condition M I 0− ≥ , M monotonically decreases in time. Physically, this is a conse-
quence of the decrease of the energy of the coupled modes. As M decreases, the ratio M/12δ| Ω |  increases. 
Therefore Fig. 3(a) to (c) can be thought of as the snapshots of the phase portrait at successive times (disregarding 
the nonqualitative modification of the phase portrait due to the decay). They refer to the most interesting case 
where, initially, δ| Ω | M/12  is small and the system has two well separated centers and a saddle point [Fig. 3(a)]; 
with increasing time, one of the centers and the saddle point move closer to each other [Fig. 3(b)]; still later, these 
points merge and disappear [Fig. 3(c)].

From the above arguments, the time evolution of the squared vibration amplitude A I1
2 ∝  can follow qualita-

tively distinct routes depending on the initial conditions. Samples of this evolution are shown in Fig. 4 for two 
extreme cases, where the initial values of the mode amplitudes and phases are close to different extrema of h, i.e., 
to different centers in Fig. 3 (see SM for an intermediate case). In the presence of dissipation, the closed orbits in 
Fig. 3 become spirals. As the system moves along a spiral trajectory, I(τ) oscillates, whereas 〈I(τ)〉 slowly decays. 
This behavior is common to the initial portion of the traces in Fig. 4(a),(b).

The functions I(τ) become qualitatively different as the increasing M/12δ| Ω |  approaches the value where one 
of the extrema of h disappears (in the considered case, that at φ = 0 in Fig. 3). Here, the orbit that initially circu-
lated about this extremum dramatically changes, see Fig. 4(a). The value of I sharply drops. We find that, after the 
transient, the system evolves along an open orbit in Fig. 3, that is slightly modified by the dissipation and has a 
comparatively small I/M. The scaled squared amplitude I oscillates and 〈I〉 decays, but with a different decrement 
than above the bifurcation point. In contrast, the orbit that started near the other extremum of h (at φ = π), keeps 
oscillating, with 〈I〉 decaying smoothly, although the decay is nonexponential, except for small I, see Fig. 4(b).

The sharp change of I is a consequence of the change of the topology of the phase portrait. It occurs near res-
onance where 3 1

eff
2
effω ω=  and is not related to the ratio of the mode decay rates (SM). Naturally, it is not 

described by the method of averaging43 (we remind that the averaging here is done in the rotating frame). As seen 
from Fig. 4(c), the drop of the squared amplitude of mode 1 can be accompanied by the increase of the squared 
amplitude A M I( )2

2
2

1ω= −−  of mode 2 (Methods).
The nontrivial time evolution of the amplitude of the low-frequency mode in 3:1 resonance was carefully stud-

ied in the experiments14,15, and through simulations14. It was discovered that the mode decay is accompanied by 
amplitude oscillations. However, their employed methods did not allow revealing the sharp drop of I(τ) between 
different regimes of decaying oscillations and the mechanism of this effect, as well as the qualitative difference of 
the behavior of I(t) depending on the initial conditions.

Discussion
The results of this paper show the rich dynamics of micro- and nanomechanical systems in which vibrational 
modes experience nonlinear resonance. The features of the dynamics come from the separation of the time scales 
of the fast vibrations and the comparatively slow evolution of their amplitudes and phases, which are themselves 
controlled by the interplay of the modes’ nonlinearity, decay, and the nonlinear resonant coupling. These features 
make the dynamics different from the conventional dynamics of nonlinear resonance and the already complicated 
dynamics of individual nonlinear modes in the absence of resonance.

Unexpected behavior can be seen by following the mode decay in time, which is a basic tool in the studies of 
micro- and nano-mechanical systems. Our specific results refer to the decay of the modes that are close to 3:1 
resonance, but the revealed behavior is common for internal resonance of weakly damped modes (Methods).

Because of the nonlinear resonance, the decay of vibrational modes becomes strongly non-exponential, with 
a decay rate that depends on the vibration amplitude, sometimes in a non-monotonic manner. This is a conse-
quence of the amplitude dependencies of the coupling strength and the mode frequencies, which lead to tuning 
the modes into and out of resonance as their amplitudes vary. The effect is described explicitly in an important 
case where the high-frequency mode decays much faster than the low-frequency one. Here, the high-frequency 

Figure 4.  Time evolution of the amplitudes of the modes for small decay rates. The scaled squared amplitudes 
I A /31 1

2ω=  [panels (a) and (b)] and M I A2 2
2ω− =  [panel (c)] of modes 1 and 2, respectively, are shown as 

functions of the scaled time t3 /4res 1
2τ γ ω= . The main figures are on the logarithmic scale, the red lines show the 

exponential decay of I and M − I in the small-amplitude limit. The insets show the time evolution on the linear 
scale. The parameters are δ μΩ = − =5, 112 1 , and M(0) = 10, which corresponds to the parameter values in 
Fig. 3(a). The initial values of the phase φ(0) = 0 in panels (a) and (c), φ(0) = π in panel (b), and I(0) = 8 
correspond to the trajectories that start near the centers at φ = 0 and φ = π in Fig. 3(a). The decay rates are 
ω γΓ = . Γ Γ =4 /3 0 02, / 51

2
1 res 2 1 .
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mode serves as a thermal reservoir for the low-frequency mode. The results can be understood in terms of an 
effective transient Purcell effect, or an anomalous nonlinear friction, with a pronounced peak in the dependence 
of the friction coefficient on the mode amplitude.

A very unusual behavior occurs if the decay rates of the modes are small compared to the appropriately scaled 
nonlinear coupling. Here, the decay of the vibration amplitude is accompanied by oscillations with a frequency 
determined by the nonlinear coupling. This frequency is much smaller than the mode frequencies ω1,2, but can 
be much higher than the decay rate. Depending on the initial conditions, the oscillations can be qualitatively 
different. They may smoothly decay along with the mean value of the amplitude. However, unexpectedly, the 
amplitude can also experience a steep crossover between regimes in which both the magnitude of the oscillations 
and the mean value of the amplitude are significantly different. Such a jump is a consequence of the change of the 
topology of the phase portrait in the absence of decay, which is generic for resonating nanomechanical modes.

The features of the nonlinear resonance found in this paper, including the transient Purcell effect and the 
sharp switching between different regimes of decay, provide insight into existing experimental observations in 
nano- and micro-mechanical systems and suggest new experiments. The results also suggest new ways of extract-
ing the parameters of the systems and of controlling transient processes in nanomechanics.

Methods
The calculations in the paper are done for the Duffing nonlinearity parameter γ1 > 0. In this case the modes are 
tuned in resonance with increasing amplitude A1 for δω12 < 0. A generalization to γ δω< >0, 01 12  is 
straightforward.

Resonant nonlinear friction.  For Γ2  Γ1, mode 2 follows mode 1 adiabatically. In the adiabatic approxi-
mation, one solves the equation of motion for mode 2 by introducing its complex scaled amplitude 
B = − − ΦQ iP i t( ) exp[ 3 ( )]2 2  and disregarding in Eq. (2) dB/dt compared to Γ2B. This results in a linear alge-
braic equation for B. Its solution gives Eq. (4). Such analysis disregards the frequency shift of mode 2 due to its 
Duffing nonlinearity, which is justified for large Γ2. This explains why Eq. (4) contains ω2 rather than ω2

eff . 
Equation (4) applies if  

.
| | Γ | | 2 . This imposes a constraint on the strength of the resonant mode coupling for 

which the adiabatic approximation holds, / /12
2

2
2

2 1ζ δω Γ Γ Γ .
The nonexponential decay described by Eq. (4) can be explcitily illustrated for comparatively small amplitudes 

or strong detuning δω| |12 , where in (4) 1
effω  can be replaced with ω1. Then for the scaled squared vibration ampli-

tude Aζ δω= + Γ | |e t t( ) [ /(1 ( / ) )] ( )12 2
2 1/2 2 one obtains

e t e t e t( ) (0) exp( 2 ){1 (0)[1 exp( 4 )]}1
2

1
1/2= − Γ + − − Γ −

The decay of e(t) is faster than exponential, and becomes exponential only for large time, where e(t)  1. We note 
the difference of the functional form of e(t) from the decay for nonresonant nonlinear friction18,24.

Along with dissipation, the backaction from the mode coupling leads to a change of the effective vibration 
frequency, ω ω ω→ + Δ1

eff
1
eff

1, which in turn leads to a change of the phase of 𝒜. From Eq. (4), 
ω ζ δωΔ = − Γ | | + | | + Γ .−iIm{[1 (3 / )] }1 1

4 2
12 2

1A A  The shift Δω1 is a nonlinear counterpart of frequency 
anti-crossing for strong damping Γ2. It is a strongly nonlinear function of the vibration amplitude, which changes 
sign for 3 1

eff
2ω ω= . The latter may lead to a kink on the dependence of the overall mode-1 frequency ω ω+ Δ1

eff
1 

on the scaled amplitude | |A .
A resonant peak of the decay rate as function of the mode amplitude emerges also for 2:1 resonance. If ω2 is 

close to 2ω1, the dynamics of resonantly coupled modes in the rotating frame are described by Eqs (2) and (3) 
with the coupling term resγ∝  in HRWA replaced with β ω − +Q iP Q iP( /2 )Re [( ) ( )]res 1 1 1

2
2 2 . For Γ2  Γ1 the resonant 

nonlinear friction is described by equation

 
. ζ

ω ω
= − Γ









+
| |

+ − Γ









′

i
1

1 (2 )/1
res

2

1
eff

2 2

with ζ β γ′ = 4 /3res res
2

1. As seen from this equation, the decay for 2:1 resonance is similar to that for 3:1 resonance. 
We note, however, that in this case the decay rate approaches its linear value at both small and large amplitudes.

The decay-free dynamics.  The conservative dynamics of the coupled modes in the RWA differs from the 
conventional picture of nonlinear resonance in the action-angle variables23. In Eq. (5), the effective “action” vari-
able I is limited, ≤ ≤I M0 . For →I M  the dynamics becomes singular, φ|∂ | → ∞τ . The points 
( n I M(2 1) /2,φ π= + → ) separate regions where φ∂τ  has opposite signs, and the nearby trajectories move in 
opposite directions along the φ-axis. In particular, they can spin around different centers, as in Fig. 3. There is no 
slowing down near these points. On a trajectory that at τ = 0 goes through a point I M/2 , (1 )I0 0φ π ε ε= − = −φ  
with small ε| |φ  and εI, we have φ τ ε τ ε ε≈ −φ φ

− Mtan ( ) /(2 )I
1 1/2  for τ ε M/I

1/2 . The time ε M/I
1/2  is the typical 

dimensionless time to go over the phase interval π for small M − I.
In the presence of weak dissipation, the effective Hamiltonian h is no longer conserved and ultimately decays 

to zero, along with the Manley-Rowe invariant M. From Eq. (2), for μ2 = 0 the period-averaged rate at which h 
changes is
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h I I M
M I

2 1
2 ( )

cos
(7)

1

3/2

1/2




φ φ〈 〉 = − Γ +
−

(note that the derivatives here and in Eq. (6) are taken with respect to dimensional time t). Equations (6) and (7) 
apply for h sufficiently far from from its saddle-point value, so that the period of motion with constant h and M is 
small compared to the reciprocal decay rates Γ−

1,2
1. In contrast to the Manley-Rowe invariant M, the evolution of h 

may be nonmonotonic.
The anomalous behavior of the squared amplitude of mode 2, ω= −−A M I( )2

2
2

1 , in the presence of dissipa-
tion shown in Fig. 4(c), can be understood from Eq. (6). If Γ2  Γ1 and 〈I〉 varies on a time scale longer than 1/Γ2, 
as in the initial section of Fig. 4(a), the quasistationary solution of Eq. (6) is − 〈 〉 ≈ − Γ〈 〉 + 〈 〉 ΓM I I I(2 )/21 2. 
Therefore 〈 〉A2

2  remains small and weakly varies before the drop of I. The drop of I is associated with a fast switch-
ing between different quasiperiodic orbits. Therefore M − I can increase where I drops. Physically, this increase 
corresponds to a resonant energy transfer from mode 1 to mode 2. This process is not described by the averaging 
method and by the quasistationary solution, there is no time scale separation between oscillations with given h 
and the decay.
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SUPPLEMENTAL MATERIAL:
Anomalous Decay of Nanomechanical Modes Going Through

Nonlinear Resonance
O. Shoshani, S. W. Shaw, and M. I. Dykman

The effective Hamiltonian in the absence of dissipation. Fig. 1 shows the effective Hamiltonian of the resonating
nonlinearly coupled modes h(I,φ) as function of the scaled squared amplitude of mode 1, I = ω1A21/3, and the
phase difference between the modes φ . The Hamiltonian is given by Eq. (5) of the main text, which we reproduce
here for completeness,

h(I,φ) =IδΩ12+
1
2

µ1I2+
1
2

µ2(M− I)2+ I3/2(M− I)1/2 cosφ (1)

It is clear from Eq. (1) that the internal nonlinearity of mode 2, which is characterized by the parameter µ2 can be
incorporated into the analysis by renormalizing

µ1 → µ1+ µ2, δΩ12 → δΩ12−µ2M, h→ h+
1
2

µ2M2 (2)

Equation (2) shows that much of the qualitative features of the dynamics can be captured by setting µ2 = 0, as it is
done in the main text and in the analysis below.
For the chosen signs of the parameters in Fig. 1, δΩ12 < 0 and µ1 > 0, function h(I,φ) has a minimum for

φ(mod2π) = π and a maximum for φ(mod2π) = 0. Also clearly seen is a saddle point hS for φS(mod2π) = 0 and
(I/M)S ≈ 0.18: the curvature at the saddle point is positive along the I-axis and negative along the φ -axis.

Figure 1. The scaled Hamiltonian h(I,φ)/M2 of the coupled modes in the absence of decay. The scaling
factorM is related to the mode amplitudes A1,2 as M = ω2A22+ I, with I = ω1A21/3. The plot refers to the
following parameter values in Eq. (1): δΩ12/M = −0.7,µ1 = 1,µ2 = 0.

The trajectories in Fig. 3 of the main text are the cross-sections of the surface h(I,φ) by the planes h = const.
Figure 1 shows that the cross-sections with the values of h near the minimum of h(I,φ) are closed contours (the
closed loops in the blue area in Fig. 3 of the main text). A cross-section for the saddle-point value of the Hamiltonian
h = hS gives a closed loop around the maximum and also an open contour where φ varies across the whole range
of periodicity (−π,π), cf. the red trajectory in Figs. 3(a),(b) of the main text. The cross-section for the values
of h between hS and the maximum of h(I,φ) represent closed contours centered around the maximum, and open
contours, as seen in Fig. 3 of the main text.



Figure 2. Change of the topology of the phase portrait with the varying Manley-Rowe parameter. The
functions R1±(I/M), Eq. (3), are shown by dark blue lines (the signs “+” and “-” refer to the solid and dashed line,
respectively). The straight lines with negative slope give R2(I/M) for µ1 = 1. The parameter δΩ12/M from top to
bottom is −2,−0.9,−0.25,1 (the green, red, light green, and black lines, respectively). The straight brown line
with positive slope gives R2 for µ1 = −1 and δΩ12/M = −0.25. The intersections of the straight lines with the
solid and dashed blue lines give the values of I/M at the stationary states for φ = 0 and φ = π , respectively. The
number of intersections, and thus the topology of the phase portrait, change with varying δΩ12/M

The change of the topology of the phase portrait due to decay. An important insight into the dynamics in
the presence of decay comes from Fig. 2, which complements the previous analysis. This figur allows findin
the location of the stationary states of the Hamiltonian dynamics ∂Ih = ∂φh = 0 and following their evolution in
time due to decay. Such evolution includes the coalescence of the saddle point and an extremum of h(I,φ) (the
saddle-node bifurcation), which leads to the dramatic change of the mode amplitudes discussed in the main text.
From Eq. (1), the stationary states (the extrema and the saddle point) of h(I,φ) are located at φ(mod2π) = 0

and φ(mod2π) = π . Their positions along the I-axis are given by equation ∂Ih= 0 evaluated for φ = 0 and φ = π .
This equation can be conveniently written as R1±(I/M) = R2(I/M), where

R1±(x) = ±
(3−4x)

√
x

2
√
1− x

, R2(x) = −
δΩ12
M

−µ1x (3)

Functions R1±(I/M),R2(I/M) are shown in Fig. 2. Function R1± has no parameters. In contrast, the slope
of R2(I/M) depends on µ1, whereas R2(0) is given by −δΩ12/M. It is seen from the figur that the number of
intersections of R1± and R2, i.e., the number of the stationary states of the Hamiltonian system, sensitively depends
on δΩ12/M and µ1. The system has three stationary states for not too large |δΩ12|/M, but as this parameter
increases beyond a critical value (which depends on µ1), there remains only one stationary state. The critical
value of |δΩ12|/M determines the point where the corresponding extremum of h(I,φ) merges with the saddle and
disappears. Respectively, the topology of the phase portrait of the Hamiltonian system described by Eq. (1) changes
from that in Figs. 3(a) and (b) of the main text to that in Fig. 3(c).
As explained in the main text, the change of the number of the stationary states at the saddle-node bifurcation

can lead to a dramatic change of the time dependence of the scaled vibration amplitude I. The fact that, due
to decay, the Manley-Rowe invariant M monotonically decreases shows that the ratio |δΩ12|/M monotonically
increases due to decay. This corresponds to moving the straight lines in Fig. 2 up (for δΩ12 < 0) or down (for
δΩ12 > 0). Therefore decay invariably leads to the saddle-node bifurcation. This shows that the sharp drop of the
scaled amplitude of mode 1 I is a generic effect, provided the system is initially close to the center that disappears
at the bifurcation.
In Fig. 3(a) and (b) we show the time evolution of the scaled squared amplitudes of modes 1 and 2, I andM− I,

for the same parameter values as in Fig. 4 of the main text, but for the initial point close to the separatrix. The
behavior of I and M− I in this case is similar to that in Fig. 4 (a) and (c) of the main text, respectively, except that
the jump in I that occurs near the saddle-node bifurcation is less pronounced. For the initial phase value φ(0) = π/2
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Figure 3. Time evolution of the amplitudes of the modes for small decay rates. The scaled squared
amplitudes I = ω1A21/3 [panels (a) and (c)] and M− I = ω2A22 [panel (b)] of modes 1 and 2, respectively, are
shown as functions of the scaled time τ = 3γrest/4ω21 . The main figure are on the logarithmic scale, the red lines
show the exponential decay of I and M− I in the small-amplitude limit. The insets show the time evolution on the
linear scale. The parameters are δΩ12 = −5,µ1 = 1, and M(0) = 10, which corresponds to the parameter values
in Fig. 3(a) of the main text. The initial values of the phase are φ(0) = π/4 in panels (a) and (b), and φ(0) = 0 in
panel (c); I(0) = 8. The value φ(0) = π/4 corresponds to a trajectory that starts near the separatrix in Fig. 3(a) of
the main text. The decay rates are 4ω21Γ1/3γres = 0.02,Γ2/Γ1 = 5 in panels (a) and (b); in panel (c)
4ω21Γ1/3γres = 0.05 and Γ2/Γ1 = 1.

the behavior becomes similar to that in panel (b) of Fig. 4 of the main text. Figure 3(c) shows that the jump persists
if we choose the decay rates to be equal.

Mapping the decay-free dynamics on that of a particle in a potential well.
Time evolution of the scaled squared amplitude I of mode 1 in the absence of decay can be mapped onto the
evolution of the coordinate of a particle with a unit mass, which oscillates in a potential well. These oscillations
are described by equation

d2I
dτ2

= −
∂Ueff

∂ I
, Ueff(I) = −

1
2
I3(M− I)+

1
2

[

h−δΩ12I−
1
2

µ1I2−
1
2

µ2(M− I)2
]2

, (4)

where h is the value of the Hamiltonian (1). Equation (4) is derived from Eq. (1) and the Hamiltonian equations of
motion for I and φ , Eq. (5) of the main text.
The potentialUeff is a quartic polynomial in I. It can have one well or two wells separated by a local maximum.

The centers and the saddle point on the phase portraits in Fig. 3 of the main text correspond to ∂Ueff/∂ I = 0;
note, however, that these points on the phase portrait have different values of h, whereas Ueff(I) depends on h as a
parameter. It is important that the oscillations of I(τ) in the potentialUeff(I) occur with zero effective total energy,
1
2(dI/dτ)2+Ueff(I) = 0, as again can be seen from Eq. (5) of the main text. Therefore Eq. (4) can be reduced to
equation

dI
dτ

= ±[−2Ueff(I)]1/2. (5)

The sign ± reflect the change of the sign of dI/dτ at the turning points.
An immediate consequence of Eqs. (4) and (5) is that the time evolution of the scaled squared amplitude I(τ)

is described by Jacobi elliptic functions1. This shows, in particular, that in the case of a double-well potential
the frequencies of vibrations in the both wells are equal. One of these vibrations corresponds to motion along a
trajectory that circles around a center in Fig. 3(a) and (b) of the main text, whereas the other corresponds to motion
along an open trajectory beneath the separatrix loop; both trajectories have the same value of h. The explicit
expressions for I(τ) simplify the calculation of its the period-averaged value away from the separatrix.

3/4



References
1. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathe-
matical Table (Dover Publications, Inc., 1972).

4/4


	References
	shosh_nonlin_res17.pdf
	Anomalous Decay of Nanomechanical Modes Going Through Nonlinear Resonance

	Results

	A minimalistic model. 
	Resonant transient nonlinear friction. 
	Nonlinear resonance for weak dissipation. 

	Discussion

	Methods

	Resonant nonlinear friction. 
	The decay-free dynamics. 

	Acknowledgements

	Figure 1 Schematic of 3:1 resonance.
	Figure 2 Resonant peak of the instantaneous decay rate.
	﻿Figure 3 Phase trajectories of the resonating modes in the absence of decay.
	﻿Figure 4 Time evolution of the amplitudes of the modes for small decay rates.





