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Abstract

In this paper we present a new method for integration of sensor-based multi-frequency bands of
EEG and MEG datasets into a voxel-based structural-temporal MRI analysis by utilizing the
general Joint ESTimation using Entropy Regularization (JESTER) framework. This allows the
enhancement of the spatial-temporal localization of brain function and the ability to relate it to
morphological features and structural connectivity. This method has broad implications for both
basic neuroscience research and clinical neuroscience focused on identifying disease-relevant
biomarkers by enhancing the spatial-temporal resolution of the estimates derived from current
neuroimaging modalities thereby providing a better picture of the normal human brain in basic
neuroimaging experiments and variations associated with disease states.
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1 Introduction

Three cutting-edge technologies have emerged as the primary non-invasive functional
neuroimaging modalities for studying the human brain: functional magnetic resonance
imaging (FMRI), electroencephalography (EEG), and magnetoen-cephalography (MEG)
(Churchland & Sejnowski, 1988). Each of these provides unique information but at different
spatial and temporal scales and thus have their own strengths and weaknesses. The measured
signal changes in FMRI are related to changes in blood oxygenation (Buxton & Frank,
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1997) and are thus only indirectly related to neural activity and occur on a very slow time
scale (* 1s). EEG and MEG, on the other hand, capture the direct effects of neural activity
with exquisite temporal resolution (% 1ms), but with very poor spatial resolution and can
only measure activity in the cortex because electrical/magnetic fields decay rapidly with
distance, whereas MRI can detect activity throughout the entire brain with excellent spatial
resolution (~ 1.mm).

The ability to leverage the strengths of these different acquisition modalities by combining
their analysis into a single framework would thus have the potential to produce estimates of
structure-function relationships in the brain with greater spatial-temporal resolution than any
of these methods taken individually. This potential advantage of multimodal integration of
EEG, MEG and neuro-MRI signals is well recognized and has been actively pursued in the
last two decades using a range of analysis approaches ranging from simultaneous EEG/MRI
acquisition to reconstruction algorithms that model the neuronal generators of EEG/MEG
potentials based on FMRI activations obtained under the same task parameters (Sommer et
al., 2003; Singh et al., 2002; Vanni et al., 2004). However, current approaches typically rely
on a set of restrictive assumptions and combined with numerous conceptual and
methodological challenges, the ability to fully combine modalities for the purpose of non-
invasive study of human brain structure-function relationships remains an elusive capability.

This problem of combining multiple imaging modalities is ubiquitous across a wide range of
scientific fields. In fact, it is an important problem in neuroimaging with MRI (neuro-MRI)
where the three primary methods - high spatial resolution anatomical data (HRA), diffusion
tensor imaging (DTI), and functional MRI, (either resting state, rsFMRI, or task-based),
provide multivariate information on, respectively, brain morphology, neural connectivity, and
brain activity at different spatial and temporal resolutions. To address this problem, we have
recently developed a theoretical and computational framework for Joint ESTimation using
Entropy Regularization (JESTER) (Galinsky & Frank, 2017b) of the structural and
functional parameters provided by these modalities, using each to constrain the others and
thus significantly improving the veracity of the estimation procedure. The approach employs
probabilistic framework to generate both intra- and inter- modality coupling in a consistent
manner expressed through the entropy spectrum pathways (ESP) (Frank & Galinsky, 2014).
The JESTER method integrates three approaches that we developed for separately analyzing
each modality: 1) Spherical wave decomposition (SWD) (Galinsky & Frank, 2014) for
shape analysis and segmentation of HRA data; 2) Geometrical optics guided by entropy
spectrum pathways (GO-ESP) (Frank & Galinsky, 2014; Galinsky & Frank, 2015) for
simultaneous estimation of local diffusion and global tractography from DTI data; 3)
Entropy field decomposition (EFD) (Frank & Galinsky, 2016a, b) for characterization and
estimation of space-time brain activation patterns from resting-state FMRI data (rsFMRI);
in conjunction with a new non-linear registration method (SYM-REG) (Galinsky & Frank,
2017b, a) capable of robustly and efficiently combining multi-modal and multi-subject data.

From a pure terminology perspective, in this paper the EFD will refer to a procedure for
extraction of a sequence of spatio-temporal patterns (activation modes) from single modality
space-time volume. And an extension of EFD procedure that employs a combination of
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multiple MRI modalities (with the help of SWD and GO-ESP) for each spatial location will
be referred to as the JESTER method.

It is important to emphasize that the JESTER framework is very general, may be used with
data of different structure and extent, including scalar, vector, tensorial or time-series multi-
dimensional data, and is not specific to MRI. In this paper we expanded its capabilities by
incorporating both EEG and MEG with the three MRI modalities to enhance the spatial-
temporal localization of brain function and relate it to morphological features and structural
connectivity. This enhanced version of JESTER to incorporate cortical electrophysiological
measurements is called CORT-JESTER.

In order to be able to include EEG/MEG datasets into our joint estimation scheme we first
need to develop an approximation for the volumetric distribution of electrostatic potential
inside the MRI domain. In a most general form this approximation can be derived using
Maxwell equations in a medium. Nevertheless, this is inherently ill-posed inverse problem
that requires regularization and available multi-modal MRI volumes can be used as
constraints to restrict a space of available solutions.

Brain electromagnetic activity can be described using Gauss’s and Ampere’s laws from

macroscopic Maxwell equations

V-D=p,

oD
V><H_J+W,

where D(¢, x) is the displacement field and H(¢, x) is the magnetizing field. The source terms
in these equations include a density of free charges p(x) and a free current density J(x). We
will assume linear electrostatic and magnetostatic properties of the brain tissues, i.e. use the
relations D, = €E,, H,, = 1/uB,, where E(¢, x) is the electric field, B(z x) is the magnetic
field, and e and u are the permittivity and permeability coefficients, that may depend on the
frequency w.

Alternatively, both of these equations can be expressed in the form of a single charge
continuity equation:

dp _
E+V-J—O

Using electrostatic potential ¢ (E = —V¢) and Ohm’s law J = X - E, the charge continuity
equation can be rewritten as
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%(V-8V¢)+V«Z-V¢=O, (1)

where Z = {27} is a local tissue conductivity tensor. Taking the temporal Fourier transform
(i.e. replacing o/t — —lw, B=-1 ), this can be written in tensor form as

(X~ 1wed) 00,6, = [l0(9,)57 - (0,T)] 9,9, ()

where a summation is assumed over repeated indices.

Rearranging the above expression to separate the isotropic and homogeneous terms gives

Lp,=Rp, 3
written in terms of the operators

.

L=
i
5_ otlwe ij _ ijy _ i sl ]
R_i2 o) 1(1)(6[.2)5 (0iz 0 06 )Bi 6].,
[ XON

where o is an isotropic local conductivity ¢ = TrY,/3 = Zf/ 3. Terms in square brackets show

that the parts of é¢w can be interpreted in terms of different tissue characteristics and may
be important for understanding the origin of sources of the electro-/magnetostatic signal
detected by the EEG/MEG sensors. The first term (w(&'é)(&,‘gbw)) corresponds to areas with
sudden change in permittivity, e.g. the white-gray matter interface. The second term ((dZ%)
(é’j¢w)) corresponds to regions where the conductivity gradient is the strongest, i.e. the gray
matter/CSF boundary. Finally, the last term (2Yd;dig,, — 0d'd;g,,) includes areas with the
strongest conductivity anisotropies, e.g. input from major white matter tracts.

2.2 Inverse Solution

For this paper it is assumed that we have the three standard neuro-MRI acquisitions (HRA,
DTI, rsFMRI). The data from these modalities can be used to constrain the values of ¥ and
e. The DTI data allows the construction of estimates of the conductivity tensor anisotropy,
whereas HRA and rsFMRI data is useful for tissue segmentation and assignment of mean
values for permittivity and conductivity (see table 1).

An approximate solution for the potential ¢ across an entire MRI brain volume can be
constructed iteratively as
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where single iteration forward solution can be found either by using the Green function G(x,
x’) = 1/(4mx — x’|) or by applying a Fourier-space pseudospectral approach (Gottlieb &
Orszag, 1977).

We should emphasize that the use of a pseudospectral approach provides a number of
important advantages over finite/boundary element (FEM/BEM) approaches most
commonly performed for electrostatic modeling of brain activity (Gramfort et al., 2010;
Kybic et al., 2005; von Ellenrieder et al., 2009; Gutierrez & Nehorai, 2008; Schimpf et al.,
2002; Ermer et al., 2001; Mosher et al., 1999). The pseudospectral formulation does not use
surface meshes and as a consequence, does not require limiting the location of sources by a
single surface (or small number of surfaces) with fixed number of surface pinned static
dipole sources. This is also true for target locations, as typically FEM/BEM approaches
obtain the solution only at a small number of fixed position sensors. The pseudospectral
approach is able to find a time dependent spatial distribution of electrostatic potential at
every space-time location of multidimensional volume as a superposition of source inputs
from every voxel of the same volume. The forward solution for the electrostatic potential ¢
can be constructed through a direct summation, i.e. using static Green function and
restricting the number of sources/targets by a selected set of mesh locations, thus obtaining
something equivalent to a FEM/BEM solver. Alternatively, it can be obtained as a sum of
inputs from all spatial and temporal Fourier modes using frequency/wave number domain
for description of both a Green function and volume distribution of sources, resulting in
pseudo-spectral formulation (where the use of fast Fourier transform permits effective
numerical implementation). This approach includes the distribution of both electrostatic and
geometric properties of the media (conductivity, permittivity, anisotropy, inhomogeneity) at
every location throughout the volume (that is guided by MRI acquisition and analysis),
therefore, it models wave-like signal propagation inside the volume and should be able to
describe and uncover significantly more complex dynamical behavior of the sources of the
electrostatic activity recorded at the sensor locations. To illustrate this and show some
examples of this complex activity we included in Figures 1 and 2 hyperlinks to videos of the
space-time variations resulted from some rsFMRI modes used as space-time sources.

An array of EEG sensors at locations x™, p=1..Ncan be used to constrain the solution and

find coefficients a g by minimizing the deviation functional
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n=1

% et o

with an additional requirement that an approximation error ®  is bounded by a chosen

accuracy e

=] <oz} o

where Q)g) is a potential at frequency w detected by the sensor n. The iterations will be
stopped if the convergence cannot be achieved (i.e. %XO > gg(AK - 1)). As an initial
approximation ¢g)) any appropriate fit to Eqn 6 can be used that satisfies o ai¢§?) =0,e.g.a

linear function of coordinates ¢§?) = Bx; +y with coefficients B; determined from the least

square fit Eqn 6.

This approach for finding an inverse solution can be applied to an array of MEG sensors
without any modifications except a difference in a form of the deviation functional, where

. . (K . . .
instead of an electrostatic potential ¢i} ) at sensor location x(™_ either magnetic flux or the

projection of its gradient should be substituted for either magnetometers or gradiometers
respectively (both quantities can be derived from free vacuum form of Maxwell equations).

2.3 Wave Activation Modes

The potential (Z g() Eqn 5 is the central quantity that will be used to derive various measures.

It can be calculated over arbitrary frequency ranges w = wj ... @, and thus it is possible to
calculate it over the standard alpha, beta, and delta bands (or any parts or combinations of
them) typically identified in EEG. These potentials can then be converted to the time domain
;Z(t, x) and used for EFD analysis (Frank & Galinsky, 2016a, b) generating time-space brain
activation modes ranked by the power. Alternatively, the estimated potentials ;Z(t, X) can be
used in joint estimation scheme presented in Galinsky & Frank (2017a) as an additional

modality Qg. in the intermodality coupling matrix @ j; resulting in cortically

electrophysiologically enhanced version of JESTER (or CORT-JESTER) that can provide
significant time resolution improvement over low frequency FMRI data.

The details of the mathematical formulation of EEG/MEG specific coupling matrix Qg. as

well as a short summary of JESTER are included in the Appendix.

2.4 Computational Implementation

The multi-sensor EEG and multi-modal MRI data were used for coupling by generation of
frequency dependent inverse Green function for every voxel inside the high resolution MRI
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domain using multiple layer classification of head tissues (GM, WM, CSF, scalp and skull,
see table 1) with the spherical wave decomposition (SWD) (Galinsky & Frank, 2014) based
segmentation of the HRA T1 volumes.

The processing of both resting state and task-based EEG datasets HRA, DTI, and rsFMRI
datasets involves the following steps:

1. Segmentation of anatomical datasets using the SWD including skull stripping
and gray/white matter extraction;

2. Registration of DTI and rsFMRI datasets with the HRA dataset and extraction of
functionally active modes (regions) of the brain;

3. Generation of anisotropy conductivity tissue maps from DTI data;

4. Generation of inhomogeneous permittivity tissue maps (that is effectively
restricting possible source areas for the EEG activity) using a combination of
rsFMRI activation modes and HRA/DTTI gray matter, including anisotropy
estimation;

5. Generation of a frequency dependent inverse Green function for each EEG
recorded frequency and solving for ¢ g{) (Eqn 5) that includes MRI based
regularization constraints;

6. Generation of FMRI-like volumes of signal time courses in each voxel for

various EEG bands (including a low frequency FMRI-like range, as well as the
standard alpha, beta and delta bands);

7. Extraction of space-time modes from FMRI-like EEG volumes using the
JESTER procedure.

3 Results and Discussion

3.1 Data

Several independent sources of MRI, EEG and MEG datasets were used for testing and
validation of the CORT-JESTER algorithms. The variety of selected datasets allows to target
different aspects of algorithm performance. This may include assessment of mode
repeatability and both intra and inter subject similarity for different subjects, sessions and
stimuli, assessment of importance and effects of different modalities in simultaneous EEG/
rsFMRI acquisitions, comparison of modes between EEG and MEG, etc. Some of these
datasets are publicly accessible and available from the open source Human Connectome
Project (Van Essen et al., 2013, 2012; Sotiropoulos et al., 2013), and include the HRA T1
volumes, the DTI volumes, as well as resting state and task based FMRI and MEG
acquisitions (CONNECTOME-D). The HCP datasets were collected on the customized
Siemens 3T Connectom scanner, which is a modified 3T Skyra system (MAGNETOM
Skyra Siemens Healthcare), housed at the MGH/HST Athinoula A. Martinos Center for
Biomedical Imaging (see Setsompop et al. (2013) for details of the scanner design and
implementation). A 64-channel, tight-fitting brain array coil (Keil et al., 2013) was used for
data acquisition. The dataset contains 96 slices of 140x140 matrix (1.5 mm linear voxel size)
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at four levels of diffusion sensitizations (b-values b=1k, 3k, 5k and 10k s/mmz) distributed
over 552 total g-vectors. HCP MEG data acquisition was performed on a whole head
MAGNES 3600 (4D Neuroimaging, San Diego, CA) system housed in a magnetically
shielded room, located at the Saint Louis University (SLU) medical campus. The sampling
rate was selected to be as high as possible (2034.51 Hz) while collecting all channels (248
magnetometer channels together with 23 reference channels). Bandwidth was set (at DC,
400Hz) to capture physiological signals

Several HRA, DTT and rsFMRI datasets were collected locally at the UCSD Center for
Functional MRI (CFMRI). The CFMRI data were acquired with a 3T GE Discovery MR750
whole body system (CFMRI-D). The anatomical T1 volumes have 168x256x256 voxel size
with 1.2x0.9375x0.9375mm? resolution. A multiband DTI EPI acquisition (Setsompop et
al., 2011) developed at the CFMRI employed three simultaneous slice excitations to acquire
data with three diffusion sensitizations (at b-values b=1000/2000/3000 s/mm?) for 30, 45
and 65 different diffusion gradients (respectively) uniformly distributed over a unit sphere.
Several baseline (b=0) images were also recorded. The data were reconstructed offline using
the CFMRI’s multiband reconstruction routines. The DWI datasets have 100x100X72 matrix
size with 2x2x2mm?3 resolution. Whole brain BOLD resting-state data were acquired over
thirty axial slices using an echo planar imaging (EPI) sequence (flip angle = 70°, slice
thickness=4mm, slice gap=1mm, FOV=24cm, TE= 30 ms, TR = 1.8 s, matrix size =
64x64x30). Further details are available in Wong et al. (2013). All data were pre-processed
using the standard pre-processing analysis pathway at the CFMRI (as described in Wong et
al. (2013)). Nuisance terms were removed from the resting-state BOLD time series through
multiple linear regression. These nuisance regressors included: i) linear and quadratic trends,
ii) six motion parameters estimated during image co-registration and their first derivatives,
iii) RETROICOR (2nd order Fourier series) (Glover et al., 2000) and RVHRCOR (Chang &
Glover, 2009) physiological noise terms calculated from the cardiac and respiratory signals,
and iv) the mean BOLD signals calculated from white matter and CSF regions and their first
respective derivatives, where these regions were defined using partial volume thresholds of
0.99 for each tissue type and morphological erosion of two voxels in each direction to
minimize partial voluming with gray matter.

For EEG and same subject MRI CORT-JESTER testing and validation several datasets from
two unrelated studies were used.

The first study concentrated on detection of effects of medication on the resting state EEG
and FMRI. All the datasets for this study were collected at the Laureate Institute for Brain
Research (Zotev et al., 2016) and include simultaneously acquired EEG and rsFMRI
recordings at 4ms for 500s as well as HRA T1 volumes (LIBR-D). Additionally, these
simultaneous EEG and rsFMRI acquisitions for each subject were repeated tree times. The
clinical results for this study will be reported elsewhere. In this paper we used these
simultaneous and repeated EEG and rsFMRI acquisitions to study repeatability of the
CORT-JESTER approach.

The second set of multimodal (EEG and MRI) datasets was acquired by the Javitt Group in
Nathan Kline Institute for Psychiatric Research (Javitt, 2009; Javitt & Sweet, 2015). The
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data includes task and resting state EEG and FMRI recordings at 2ms for about 30min total
and HRA T1 volumes (NKIPR-D). The task based EEG and FMRI datasets contain several
acquisitions of response for similar stimuli that can be used for test-retest purposes. Again
the clinical results for this study will be reported elsewhere.

3.2 FMRI Modes as EEG Sources

Functional modes (Frank & Galinsky, 2016b) estimated from rsFMRI (CFMRI-D) with
JESTER (Galinsky & Frank, 2017b) show the brain’s functional organization and functional
connectivity through a number of consistent networks at different stages of consciousness
and thus represent specific patterns of synchronous activity. This synchronism can be
assumed to be related to different space-time sources of electrophysiological activity.
Therefore, we can use those modes to find what low frequency response they will generate at
EEG/MEG sensor positions. Several examples of generated space-time distributions of the
electric fields at the skull and at the cortex are shown in Figure 1 and Figure 2 with
embedded and hyperlinked videos of the space-time variations.

3.3 MEG Data

MEQG datasets (CONNECTOME-D) with relatively large number of sensors comparing to
EEG (248 magnetometer and 23 reference channels vs 32 or 64 head sensors and 1
reference) allow to obtain detailed space-time wave activity modes. Several examples of
these modes are shown in Figure 3. The high resolution anatomical and diffusion weighted
datasets were used for tissue classification and assignment of electro/magneto-static
properties for each voxel. Selected at random activation modes include bilateral anterior
insula, which is among the most common activation patterns in rsFMRI as well as the area
that is most commonly dysfunctional in psychiatric disorders (Goodkind et al., 2015), right
caudate, and medial frontal gyrus.

No rsFMRI data was used for the CONNECTOME-D analysis. Generally speaking, the
combination of rsFMRI spatial activation modes and and HRA/DTI gray matter estimations
is used only for setting the volumetric inhomogeneous distribution of permittivity. That is,
rsFMRI modes can only constrain source regions indirectly by their influence in shaping the
volumetric permittivity distribution. The additional information that rsFMRI provides is
expected to result in a relatively small (may be even marginal) overall improvement, due to
low resolution. Nevertheless, even without the use of rsFMRI modes, the MEG activation
patterns in Figure 3 still shows patterns which are among the most common activation
patterns observed by rsFMRI.

3.4 EEG Data

The first set of EEG data (LIBR-D) was recorded with relatively sparse spatial array of
sensors (32 head sensors plus 1 reference) with temporal resolution of 4ms. The data
acquisition was completed during a rest state without task based stimuli simultaneously with
acquisition of functional MRI volumes. For each subject three recording sessions were
conducted. The CORT-JESTER procedure was used to generate a new volume for each EEG
set with the same spatial and temporal resolution as the FMRI dataset (2mm X 2mm X 2mm
x 2s and 80 X 95 x 75 voxels with 237 time points). Each volume was then used in EFD
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procedure to generate activation modes in the same way it is done for FMRI volumes. Figure
4 shows two randomly selected modes for two subjects for all three sessions. Both subjects
and modes show very good mode similarity between sessions and at the same time some
noticeable subject differences. To quantitatively evaluate mode repeatability we used the
intraclass correlation coefficient (Sokal & Rohlf, 1995) (ICC) calculated as a ratio of
variance across mode groups to the total variance. For two mode groups shown in Figure 4
the ICC is equal to 0.9985. For several other mode groups (not shown) ICC values from 0.9
to 0.99 and higher were obtained.

The LIBR-D set includes simultaneously acquired EEG and FMRI volumes (both task based
and resting state) and potentially allows to conduct a study of correspondence between EEG
and FMRI. This is clearly a very important question and a number of studies have appeared
recently that focus on simultaneous acquisition techniques and provide attempts to confirm
(or rebuff) the existence of correlations between EEG and FMRI data at different frequency
bands or under different acquisition conditions (Meyer, van Oort, & Barth, 2013; Musso et
al., 2010; Fellner et al., 2016; Meyer, Janssen, et al., 2013; Chang et al., 2013; Mantini et al.,
2007). While we agree that the question of FMRI-EEG concordance is important, the
complexity of the subject, and proving or disproving existence of the EEG-rsFMRI
concordance, is clearly beyond the scope of our paper. We would like to emphasize that the
main purpose of our paper is to devise a method for use of complementary features from
EEG and FMRI modalities (Allen et al., 2018), e.g. difference in temporal and spatial
resolution, to enhance estimation of brain activation modes.

Figure 5 shows several EEG functional modes generated for alpha band using higher spatial
resolution (the same resolution as in HRA acquisition, ImmX1mmx Imm and 161x191x151
voxels with 237 time points)

The second set of EEG data (NKIPR-D) was recorded with higher number of sensors (64
head sensors plus 1 reference) and with higher temporal resolution as well (2ms). The data
acquisition included both resting state and stimuli for various tasks. Figure 6 shows several
EEG functional modes generated for alpha band task stimuli (the spatial resolution from
HRA volume is ImmXImmx1mm and 192x256%256 voxels and the number of time points
is 123). The modes show very good similarity between similar stimuli in each subject.

4 Conclusions

We presented an extension of the theory for the joint estimation of the structural-functional
brain modes, that have been initially applied to the three primary neuro-MRI modalities -
high resolution anatomical (HRA) data, diffusion tensor imaging (DTI) data, and resting
state functional MRI (rsFMRI) data, to include high temporal resolution EEG and EEG
modalities.

Joint estimation refers to estimation of activation modes that includes (as a first step) the
EEG time course reconstruction at each voxel location using EM parameters estimated from
the various modalities of MRI, followed by the multimodal activation mode estimation that
includes a combination of both MRI and EEG/MEG modalities.
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We applied the method to multi-modal MRI/EEG/MEG resting and task—based dataset
showing good repeatability and similarity between subjects, with the intraclass correlation
coefficient ranging from 0.9 to higher than 0.99. This method may potentially have broad
implications for both basic neuroscience and clinical studies by enhancing the spatial-
temporal resolution of the estimates derived from current neuroimaging modalities thereby
providing a better picture of the normal human brain in basic neuroimaging experiments and

variations associated with disease states.
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Appendix A: EFD summary

The information Hamiltonian H(d, s) can be written (Enf3lin et al., 2009) as

H(d,s)=Hy— j's + %STD_IS +H(d,s) (8)

where H is essentially a normalizing constant that can be ignored, D is an information
propagator, jis an information source, and 7 means the complex conjugate transpose. H;is
an interaction term (EnBlin et al., 2009)

o0
! ()
H[= Z m»/‘...»/'[\S:l“.Snsl...snclsl...Lisn (9)

n=1

where /\(Y")_”g terms describe the interaction strength.
1 “n
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When the source term j, the linear information propagator D, and the nonlinear interaction

terms A(Y”)“_Y are all known or at least some more or less accurate approximations can be
1 n

used for their description, the IFT approach provides an effective, powerful, and
mathematically elegant way to find an unknown signal s either by using the classical
solution at the minimum of Hamiltonian (6H/8s = 0) or with the help of summation methods
(e.g. with the help of Feynman diagrams (Feynman, 1949; EnBlin et al., 2009)).

But there is a whole class of problems where those terms are unknown and too complex for
deriving effective and accurate approximations. In this case the ESP method (Frank &
Galinsky, 2014), based on the principal of maximum entropy (Jaynes, 1957a, b), provides a
general and effective way to introduce powerful prior information using coupling between
different spatio-temporal points that is available from the data itself. This is accomplished by
constructing a so called coupling matrix that characterizes the relation between locations 7
and j in the data

Q;;= eV (10)

Here the y;;are Lagrange multipliers that describe the relations and depend on some
function of the space-time locations 7and j. The eigenvalues A4 and eigenvectors ¢(k) of the
coupling matrix Q

20,40 =4 an
J

then formally define the transition probability from location j to location 7 of the &’ th mode
(or path as it is often called in the random walk theory) as

(k)
9,

Pij = T 12)
J

For each transition matrix Eqn 12 there is a unique stationary distribution associated with
each mode &:

WO =[] a3)

that satisfies
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k k
,Ltg ) = E /,t§ )pz]l (14)

where 11, associated with the largest eigenvalue A, corresponds to the maximum entropy
stationary distribution (Burda et al., 2009).

The EFD approach (Frank & Galinsky, 2016a, b) adds those coupling matrix priors into the
information Hamiltonian Eqn 8 by expanding the signal s into a Fourier expansion using
{¢(k)} as the basis functions

K
= Y lad® +ajpl ] as)
k

In this ESP basis the information Hamiltonian Eqn 8 can be written as

K

0 K
i 1 N
H(d,a) = — jia; + akAak Z - ; kZA ek G o (16)
- 1 n
where matrix A is the diagonal matrix Diag{ Ay, ..., Ag}, composed of the eigenvalues of

the coupling matrix, and ji is the amplitude of kth mode in the expansion of the source j

Je= / j¢®ds  (17)

and the new interaction terms A™ are

~ (k)
AW _/ f A S "ds,ds, (18)

For the nonlinear interaction terms Ag")ms the EFD method again takes coupling into
1 °n

account through factorization of A®™ in powers of the coupling matrix
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where ™ < 1/ max ( jZ//Ik), which results in

n

AW = Z 114 f (H ¢kr) ds  (20)
= r=1

m—l

Thus the EFD approach provides a very simple expression for the classical solution for the
amplitudes a

A L $ixeD 21
e =1k Zlm;kz tek -k, Yy Y 2D
n= 1 n

through the eigenvalues and eigenvectors of coupling matrix (that may also include some
noise corrections (Frank & Galinsky, 2016a, b)).

Appendix B: Coupling for different modalities

For the HRA dataset we define a simple intensity weighted nearest neighbors coupling
matrix as

7 d?d? nearest neighbors

QH:@ l‘]:

i (22)
0 not connected

For DWI data, the GO-ESP procedure uses the spin density function G(r, R) expressed with
the help of the spherical wave decomposition as

G(r,R) = 4;;2 2 lYl (R)g,,(r.R), (23)

I=0m= —

g R) = / W(r,@)jgRY]""(@dq. (24)

and generate the symmetrized scale dependent coupling matrix Qi[; as
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00() = Q%6) = 2 1G (. (r; = 1 )O) + G o= 1O (29)

where £ represents the dimensionless ratio of scales of dynamic displacement R to the spatial
(voxel) scales r, j{gR) is the spherical Bessel function of order /and

Y?"(&) = Y?"(Qq) = Y;”(Hq, ¢,) is the spherical harmonic with 6, and ¢, being the polar and

azimuthal angles of the vector ¢, and similarly for the vector R, and WAr, q) is the DW1
signal (see Galinsky & Frank (2015) for more details).

For rsFMRI the EFD procedure employs the frequency w dependent spatial coupling matrix

ij(w) as

Of () = Rd] (wp)d’ (@),  (26)

0 () = T (D @p)d (@) + § P wpal (@p).  27)

here aF (w) is the temporal Fourier mode of the rsEMRI data ¢ with the frequency w,
; p q y

z/)E])(wO) is the eigenvector of QF (wy) that corresponds to the largest eigenvalue, and ®, jican

include some function of the pair correlations taken to the nth power, for example a simple
mean of the pair correlations, that is equivalent to a product of signal means (d") for a
periodic signal

T

1 _ p3F3F
R;;= T/Cij(t)dt =Td;d; (28)
0

or a maximum correlation of mean subtracted signal

SF 3F
R..= maxT I Cl](t)_le d] | (29)

u 0<r<

where Cj() is the pair correlation

FOE / df (t—vdf(@)de  (30)
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The EFD procedure can then be extended to incorporate information from all of the

modalities simultaneously by incorporating these single modality coupling matrices QZ QZ

and Qg. in Eqn 31 to generate the intermodality coupling matrix @ ;.

Appendix C: JESTER summary

Assuming that we have m = 1, ..., Mdifferent modalities d™ with the coupling matrices
Q™ that all correspond to the same unknown signal s, than we can construct an
intermodality coupling matrix as the product of these coupling matrices for the individual
modalities expressed in the ESP basis and registered to a common reference frame, which
we denote '™): That is, the joint coupling matrix is @™ = IT,,, ™. More specifically, the
joint coupling matrix @ ;;between any two space-time locations (4, j) can be written in the

general (equivalent) form as

M
~(m)
n@;= Y Ao @

m=1

where the exponents S™ can either be some constants or functions of data collected for
different modalities

ﬂgﬁ)Eﬂ(Wl)(di,dj), d.E{d( d; 7 (32)

i i

~(m) ~(m) . . . .
d; " and Qij represent, respectively, the data and the coupling matrix of the modality

dataset m represented in the ESP basis and evaluated at locations r;and r;0f a common
reference domain R:

ggm) = 4m (l//(m)(r,-)), éf;n) _ Q(m) (l//(m)(r,-),ll/(m)(rj)) 33)

where ™ : R — X denotes a diffeomorphic mapping of m-th modality from the reference
domain R to an acquisition space X.

EEG/MEG addition to JESTER employs the frequency w dependent spatial coupling matrix
Qf}(w), that is similar to rsFMRI, as

0%y = Al @pdE@y).  (34)
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here df(a)) is the temporal Fourier mode of the EEG/MEG data df with the frequency w,

551)@0) is the eigenvector of QF(ay) that corresponds to the largest eigenvalue, and ®. jjcan

include some function of the pair correlations taken to the nth power, for example a simple

mean of the pair correlations, that is equivalent to a product of signal means (df) for a

periodic signal

T
1 —_ -
R =7 / C;(ndr = Tdfdf (36)
0

or a maximum correlation of mean subtracted signal

_ _ pESE
Ry=  max | Cyn~Tdid; | 37)

where Cj() is the pair correlations

Cijn = / a1 —vdi(@de  (38)

Appendix: Video links for figure 1

. Top—Left: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-1-2-b.mp4

. Top—Right: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-1-3-b.mp4

. Bottom—Left: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-2-3-b.mp4
. Bottom—Right: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-3-4-b.mp4

Appendix: Video links for figure 2

. Top-Left: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-1-2-i.mp4
. Top—Right: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-1-3-i.mp4
. Bottom-Left: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-2-3-i.mp4

. Bottom—Right: http://abeta.ucsd.edu/Videos.git/fmri2eeg/eeg-3-4-i.mp4
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Figure 1.
Several time shots of skull electric field distributions produced by different FMRI functional

modes estimated using JESTER.
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Figure 2.
Several time shots of brain electric field distributions produced by the same FMRI functional

modes as in Figure 1 estimated using JESTER.
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Figure 3.
Demonstration of activation modes created from MEG data using JESTER and constrained

by high resolution anatomical MRI data. Activated regions are (left) bilateral anterior insula,
which is among the most common activation patterns in rsFMRI, (middle) right caudate, and

(right) medial frontal gyrus.
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Figure 4.
EEG functional modes detected from volumes generated by CORT-JESTER. The modes

display excellent repeatability between sessions, with the intraclass correlation coefficient
(Sokal & Rohlf, 1995) (ICC) equals to 0.9985, but at the same time provide noticeable
subject differences. The modes were generated with the same spatio-temporal resolution as
was used for FMRI acquisition (2mm X 2mm X 2mm X 2s and 80 X 95 x 75 voxels with 237

time points).
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Mode 11

Mode 13

Figure 5.
Resting state EEG functional modes generated for alpha band using HRA spatial resolution

(ImmX1mmx1mm and 161x191x151 voxels).
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Figure 6.
Task based EEG functional modes generated by CORT-JESTER for two subjects using alpha

EEG band. The first three columns show three spatial projections, the fourth column shows a
temporal course (using seconds for the duration units and arbitrary normalization for the
amplitude). The modes show very good similarity between similar stimuli in each subject.
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Gabriel dispersion relationships (Gabriel et al., 1996b, a). The tissue permittivities are shown normalized by

the permittivity of vacuum &y = 8.854187817x10712 F/m.

Tissue Source Permittivity Conductivity (S/m)
Grey Matter Grey Matter 4.07E+7 2.75E-2
‘White Matter White Matter 2.76E+7 2.77E-2
Cerebrospinal Fluid ~ Cerebrospinal Fluid ~ 1.09E+2 2.00E+0
Skull Cancellous Bone Cancellous 1.00E+7 7.56E-2
Skull Cortical Bone Cortical 5.52E+4 2.00E-2
Skin Skin (Dry) 1.14E+3 2.00E-4
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