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1. Introduction

The precision determination of the strong coupling constant o, (M2) [1], of the parton distribution
functions [2], and of the heavy quark masses m. and m; [3] from the world deep inelastic data
requires both the knowledge of the NNLO massless and massive QCD corrections to the parton
densities. Theses quantities are fundamental parameters of the Standard Model or serve as an
important input for other measurements at hadron colliders to determine further fundamental pa-
rameters, like those of the top-quark [4] and the Higgs sectors [5]. These are important places at
present to find deviations from the Standard Model and therefore need the most precise possible
description.

During the last years, essential progress has been made in calculating the massive 3-loop
corrections to the deep-inelastic structure functions [6-21]. Different computational methods have
been worked out in Refs. [22-24]. Progress has also been made in the 2-mass case, where several
OME:s have been calculated, cf. [25-28]. For a recent summary on this see Ref. [29].

All but one of the massive operator matrix elements (OMESs) have been calculated. In this note
we describe recent developments of the project concerning the calculation of the OME Agg), as well
as some technical details of the calculation, the present results, and challenges for its completion.

The paper is organized as follows. In Section 2 we describe the method of arbitrarily large
moments and calculation techniques for first order factorizing differential and difference equations.
The contributions to A(Q3g) that have been obtained already by using these methods are described in
Section 3. There we also give an outline on the methods to be used to calculate the remaining terms,
which are related to new functions, the iterative non—iterative integrals [30]. Section 4 contains the

conclusions.

2. The method of arbitrarily large moments and calculation techniques for first
order factorizing equations

In the calculation of the massive OMEs, we reduce the Feynman diagrams to master integrals us-
ing integration by parts (IBP) relations [31]. Depending on their complexity, different calculation
methods exist to compute these integrals. The simplest integrals can be expressed in terms of (gen-
eralized) hypergeometric functions [32]. In more general cases, one seeks Mellin-Barnes represen-
tations [33] and uses the residue theorem to obtain convergent infinite sum representations. Such
sums are also obtained in the case of the representation through hypergeometric functions after ex-
panding in the dimensional parameter €. In Mellin N space, also sum representations are obtained.
For finite integrals, one may also use the method of hyperlogarithms [23, 34-36]. Having full
control on the IBP reduction, one may map divergent integrals into convergent ones [37]. Another
powerful tool consists in the method of differential equations, cf. Refs. [38] and [24]. In the present
case, they can be obtained from the IBP relations by differentiating w.r.t. the resummation parame-
ter x for the operator insertions, cf. [14]. Inserting the formal power series in x into the differential
equations, one obtains recurrence relations, which, as well as the summation problems mentioned
before, can be solved by difference field and ring methods [39-47] using the algorithms imple-
mented in the packages Sigma [48,49], EvaluateMultiSums and SumProduction [50].
In various places the package HarmonicSums [51-55] is used to operate on special functions of
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different kinds emerging throughout the calculation. In some cases we also use multi-integration
according to the Almkvist-Zeilberger theorem [56] as an integration method. This method is imple-
mented in the package MultiIntegrate [51]. All these methods have been described in detail
in Ref. [24]. In all cases where difference equations factorize at first order, Sigma will find the
solution in Mellin N space. The transition to x-space is possible applying algorithms implemented
in the package HarmonicSums.

As itis well known, massive single-scale problems starting at 3-loop order are partly related to
master integrals for which the corresponding difference and differential equations do not factorize
in first order, [30]. Yet cases in which this applies to the master integrals, but not to their sum pro-
jected on some color-{ factors, i.e. terms which can be distinguished by the corresponding product
of Casimir operators and potential (multiple) zeta values [57], may be dealt with. Considering
fixed moments N, cf. also [7], the results are given by rational numbers and multiple zeta values
only [57]. The appearance of new higher functions like iterated non—iterative integrals manifests
only in the corresponding rational sequences but not in new special numbers. These sequences
can now be analyzed and the difference equations which describe them can be determined [58, 59]
provided enough Mellin moments can be calculated. This is possible using the algorithm [60], im-
plemented in the package SolveCoupledSystem, that can compute arbitrarily large moments.
The corresponding difference equations can now be analyzed by the package Sigma, which will

determine all its 1st order factors, and in the present case, a remainder term not factorizing in first
3)

0g 1 Section 3.

order. We will illustrate this in the case of the unrenormalized OME fi

3. The contributions to Ag; through first order factorizing equations

In the following we calculate 3-loop contributions to the massive OME A(Ql) in the single heavy

quark mass case. The 1358 Feynman diagrams are generated using QGRAF [61] and are brought
into a form in which the operator insertions [7] are resummed into a propagator, cf. [14], using
a formal resummation parameter x. The color algebra is performed using Color [62]. We use
Reduze2 [63]' to map the problem to 340 master integrals. 224 master integrals were calcu-
lated using the methods described in [24]. We derive differential equations for all master integrals,
which are turned into associated difference equations by the formal power series in x [66]. For
these difference equations we use now the technique described in Ref. [24] and calculate the mas-
ter integrals for fixed moments N, which are inserted into the expression of the unrenormalized
OME, see Eq. (4.37) of Ref. [7]. Iteratively, we calculate higher and higher moments. For the com-
plete expression we have calculated 2000 moments and for the contribution with the color factor
O(TﬁCA7 r), 8000 moments. The method of guessing [58,59] can now be used to find a difference
equation for the different terms according to their contribution in the Laurent series in € and their
color and {-value factors.

We first have considered the O(1/¢€) term and extracted the 3-loop anomalous dimension

2
Ytgg)

Sigma [48,49] EvaluatMultiSum and SumProduction [50] and by simplifying the corre-

(N) in Ref. [67] solving the difference equations obtained by guessing using the packages

IThe package uses the codes GiNaC [64] and Fermat [65].
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sponding expressions using the package HarmonicSums [51-55]. This is the first independent
recalculation of this anomalous dimension since it was first computed in [68].

We turn now to the O(&°) terms. In the case of the O(T?Ca r) contributions, the method of
guessing has led to difference equations in all cases. The 2000 moments for the remaining color and
zeta values were not enough, however, to determine difference equations for the pure color factors
and those « (3, except for the N terms, for which the number of moments had been sufficient
and which also had been calculated before in Ref. [8]. Analyzing the terms with pure color factors
and those o< (3 for the contributions O(TI?CAF) using Sigma, it turned out that the corresponding
difference equations do not factorize in first order completely. Already here we speak of difference
equations of order o = 45 and degree d ~ 1500. They could be reduced to low order non-factorizing
difference equations. The reason for this is that, as we know through other analyses, elliptic parts
are contained in these cases and one expects iterative non-iterative integral solutions here, cf. [30].

For quite a series of color and {-factors, namely all but 10, the constant part of the unrenor-

malized OME A(Q), a(Q3) (N), could be calculated using the above methods. It is given by

3
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Here we used the shorthand notation
2
(0) N +N+2
N) = 3.2
Sz denote the nested harmonic sums [69]
N : k
sign(b
Spa = Spa(N) = (gk;))sa(k), So=1, b,a; € Z\{0}, (3.3)
k=1
the constant B4 is
2 13 (1
B4 = —4C21n2(2) + §In4(2) - 7C4 + 16Ll4 (2) s (34)

and P, denote polynomials in N (which have be computed explicitly), and the functions 7;(N) have
still to be calculated. Using the methods of Ref. [24], we have calculated a lot more Feynman
diagrams for the color factors contributing to A(QSg), which could not yet been gotten using the

method of arbitrarily large moments, so that 1122 of 1358 diagrams have been calculated by now.

4. Conclusions

Advanced methods in calculating Feynman and master integrals for massive 3-loop OMEs allowed
us already to compute a significant part of the contributions to a(Q352 analytically. Our toolbox
employs various methods [24], and relies in particular on very efficient solvers based on differ-
ence field and ring theory [39-47]. These algorithms have been implemented in the packages
Sigma [48,49], EvaluateMultiSums and SumProduction [50]. A very efficient treatment
of special functions has been possible using the package HarmonicSums [51-55]. The method
of arbitrarily large moments [60] could now be used to calculate the 3-loop anomalous dimension
yg? (N) automatically from first principles even in the more involved massive environment [67].
The same method allowed to calculate the contributions to the O(&”) term a(QiZ for 18 out of 28 of

the color-{ terms in analytic form.
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Including the use of other methods described in [24], 1122 of 1358 Feynman diagrams con-

(3)

tributing to A, at O(£°) have been calculated. The remaining terms contain iterative non-iterative

integrals over also elliptic letters and are currently being computed.
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