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A primary goal of many neuroimaging studies that use magnetic reso-
nance imaging (MRI) is to deduce the structure-function relationships
in the human brain using data from the three major neuro-MRI modali-
ties: high-resolution anatomical, diffusion tensor imaging, and functional
MRI. To date, the general procedure for analyzing these data is to combine
the results derived independently from each of these modalities.

In this article, we develop a new theoretical and computational ap-
proach for combining these different MRI modalities into a powerful
and versatile framework that combines our recently developed methods
for morphological shape analysis and segmentation, simultaneous local
diffusion estimation and global tractography, and nonlinear and non-
gaussian spatial-temporal activation pattern classification and ranking, as
well as our fast and accurate approach for nonlinear registration between
modalities. This joint analysis method is capable of extracting new levels
of information that is not achievable from any of those single modalities
alone. A theoretical probabilistic framework based on a reformulation of
prior information and available interdependencies between modalities
through a joint coupling matrix and an efficient computational imple-
mentation allows construction of quantitative functional, structural, and
effective brain connectivity modes and parcellation.

This new method provides an overall increase of resolution, accuracy,
level of detail, and information content and has the potential to be in-
strumental in the clinical adaptation of neuro-MRI modalities, which,
when jointly analyzed, provide a more comprehensive view of a sub-
ject’s structure-function relations, while the current standard, wherein
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single-modality methods are analyzed separately, leaves a critical gap in
an integrated view of a subject’s neuorphysiological state. As one exam-
ple of this increased sensitivity, we demonstrate that the jointly estimated
structural and functional dependencies of mode power follow the same
power law decay with the same exponent.

1 Introduction

One of the great scientific questions that modern imaging systems are in-
creasingly capable of addressing is the structure-function relationships in
the human brain. Magnetic resonance imaging MRI, in particular, provides
a unique methodology for noninvasively acquiring high-spatial-resolution
anatomical data (HRA) that are capable of characterizing morphological
variations in exquisite detail, diffusion tensor imaging (DTI) that enables
the construction of neural pathways, and functional MRI (FMRI), and, in
particular, resting-state functional MRI (rsFMRI), which can detect spatial-
temporal changes in brain activity.

The general idea behind characterizing structure-function relationships
is to relate quantitative measures of structural features of a system with the
spatiotemporal patterns of parameters changes. For example, in neuroimag-
ing using MRI (neuro-MRI), the goal is to characterize the relationship of
brain morphology, neural pathways, and brain activity by combining mor-
phological information from HRA data, structural connectivity from DTI
data, and functional connectivity from rsFMRI.

The most common approach to the analysis of neuro-MRI data is to es-
timate morphology, connectivity, and spatiotemporal variations separately
first, then combine them to characterize system “modes.” This is, for the
most part, simply a practical matter: different methods are used for each
analysis and so are applied separately. For example, in studies of structure-
function relationships in the human brain. Deco et al. (Deco, Jirsa, McIntosh,
Sporns, & Kotter, 2009; Deco, Jirsa, & McIntosh, 2011; Deco et al., 2014) use
an empirical structural connectivity (SC) matrix derived from diffusion
spectrum imaging (DSI, an extension of DTI; Wedeen et al., 2005) and trac-
tography (Hagmann et al., 2008) and an empirical functional connectivity
(FC) matrix based on Honey, Kotter, Breakspear, and Sporns (2007) and
Honey et al. (2009). Honey et al. (2009) construct FC maps based on Pearson
correlation between BOLD time series (a correlation analysis.) The correla-
tion analysis is also used in Dosenbach et al. (2007). Cammoun et al. (2012)
use a similar analysis with DSI at multiple scales, and Zalesky, Fornito, Coc-
chi, Gollo, and Breakspear (2014) use a time-resolved analysis with simple
correlation analysis with sliding windows.

However, the great potential of these methods is compromised because of
three significant limitations in current state-of-the-art analysis approaches.
First, they are, for the most part, not quantitative and, as a consequence,
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often are not sufficiently accurate: (1) quantitation of morphology from
HRA is typically limited to surfaces and is highly error prone; (2) exist-
ing DTI analysis methods are incapable of accurately characterizing voxels
containing multiple fibers, leading to highly inaccurate estimation of both
local anisotropy and global tractography; and (3) resting-state rsFMRI anal-
ysis methods are essentially ad hoc and have no well-characterized defi-
nition of a “brain mode,” much less a computational approach amenable
to the ranking of modes and the assessment of error estimates. Second,
the data from each method are analyzed independent of one another,
ignoring the inherent constraints that couple anatomy, connectivity, and
function. Third, these methods (DTI and FMRI in particular) are poorly
posed inverse problems with a wide range of possible “solutions” to any
single estimate, some of which are nonphysical. Current analysis meth-
ods rarely incorporate constraints that require solutions to be physically
realizable.

In this article, we address all three of these deficiencies by developing a
general theoretical and computational framework for the analysis of neuro-
MRI data based on the reformulation of the problem in terms of our recently
developed entropy field decomposition (EFD) method (Frank & Galinsky,
2016b), which combines information field theory (IFT) (Ensslin, Frommert,
& Kitaura, 2009), with prior information encoded on spatial-temporal pat-
terns using our recently introduced method of entropy spectrum pathways
(ESP) (Frank & Galinsky, 2014). The EFD method is a probabilistic ap-
proach that provides a general framework for the integration of HRA, DTI,
and FMRI analysis, including results provided by numerical simulations
(Baxter & Frank, 2013; Balls & Frank, 2009) to constrain results to those that
are physically realistic. We will employ our recently developed methods for
each of the three modalities: (1) the spherical wave decomposition (SWD)
method for shape analysis and segmentation (Galinsky & Frank, 2014);
(2) the geometrical optics-based ESP method for simultaneous estimation
of local diffusion and global tractography (GO-ESP) (Galinsky & Frank,
2015); and (3) the characterization and estimation of space-time rsFMRI
brain activation patterns using EFD (Frank & Galinsky, 2016b). The spa-
tial collocation of all of these different modalities is provided by using a
novel nonlinear registration method based on a general symplectomorphic
formulation that constructs flexible grid mapping between modalities regu-
larized by ESP coupling (SYMREG-ESP) (Galinsky & Frank, 2016b). We then
demonstrate how these three analysis methods can be fused together and
be mutually informative within the overarching theory of EFD, allowing us
to construct more quantitative estimates of brain structural and functional
modes.

With the constantly increasing quality of data from neuroimaging meth-
ods using MRI (neuro-MRI), such as high-resolution anatomical imaging
(HRA), diffusion tensor imaging (DTI), and resting-state functional MRI
(rsEMRI), there is a significant and growing interest in the development
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of frameworks that can perform multimodal data fusion and analysis of
these different modalities. Several recently developed methods are based on
some modification or ad hoc augmentation of an independent component
analysis (ICA) approach (Bell & Sejnowski, 1995; Hyvarinen & Oja, 2000),
including Groves, Beckmann, Smith, and Woolrich (2011), Douaud et al.
(2014) and Mueller et al. (2013), or the joint/parallel ICA approaches (see
the review by Calhoun, Liu, & Adali, 2009). However the performance and
applicability of ICA even for a single modality (rsFMRI) analysis is predi-
cated on a number of assumptions, such as sparsity and independence, that
are questionable and have been debated (Daubechies et al., 2009; Calhoun
et al., 2013). More practically, and important, it has been shown that the
ICA approach can fail in the simplest of idealized simulations (Calhoun
et al., 2013; Frank & Galinsky, 2016b). This motivated our development of
the EFD approach, which was demonstrably more accurate than ICA in its
application to rsFMRI data (Frank & Galinsky, 2016b).

In our original work (Frank & Galinsky, 2016b) we emphasized that the
EFD formulation was very general, being based on a Bayesian formulation
of field theory that facilitated the incorporation of whatever prior informa-
tion might be available for the problem at hand. The novel feature of the
EFD approach is its use of the ESP method to derive the optimal (in the
maximum entropy sense) parameter configurations when the space-time
coupling structure of the data is used as that prior information. For mul-
timodality data, the EFD method can be generalized by incorporating the
coupling structures not only within the data but between modalities. Here
we demonstrate this capability using the three major neuro-MRI modalities:
HRA, DTI, and rsFMRI. Our results demonstrate an increased resolution
and specificity of both structural and functional networks in the brain. This
analysis allows us to uncover a scale-free organization of brain structural
and functional networks that follow virtually identical power laws.

2 Theory

The EFD method developed for detection and analyses of nonlinear and
nongaussian modes and patterns present in heterogeneous data sets is well
suited to the problem of multimodal connectivity estimation. The corner-
stone of EFD estimation procedure is the construction of local connectivity
(including spatial connectivity, temporal connectivity, or both) present in
the analyzed data set. The extension of the EFD approach to the joint pro-
cessing of multimodal data sets requires a reformulation that combines and
fuses these local connectivity patterns into a common coupling matrix. The
quantitative EFD procedure can then be applied to this joint intermodality
coupling matrix, thus allowing the detection and ranking of the connectiv-
ity present in those individual data sets, particularly emphasizing data sets
with significant intermodal similarities.
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2.1 Overview of EFD. The main purpose of data analysis in general is
to estimate unknown quantities s from the data d using available priors I.
The data d may include complex spatiotemporal dependencies; for exam-
ple, it may be a single value (intensity) recorded for every spatial location
(HRA image), a multiple-value vector or tensor field data (DTI image), or
a time sequence of values (FMRI image). Hence, any single point in 4 is a
spatiotemporal point, that is, a location in space-time. From Bayes’ theorem
the posteriori distribution for any of the unknowns can be expressed as

Joint probability Likelihood  Prior

,s|D (d|s, ) p(s|l)
p(d,s p(|s, I) p(s
d, )= = , 2.1
PO D= bl 212
Posterior E‘,‘vidence

p(dlI):/ds pd,s|I). (2.1b)

The IFT (Ensslin et al., 2009) uses the formalism of field theory and expresses
the terms in equation 2.1a using an information Hamiltonian H(d, s) as

Hd,s)=—InpW,sl|l), Hamiltonian (2.2a)

pd|) = / dsetl@9) = 7(d), Partition function (2.2b)

so that the posterior distribution, equation 2.1a, becomes

e—H(d,s)

z@) -

p(sld, I) = (2.3a)

The EFD approach introduces a so-called coupling matrix that character-
izes the relation between locations i and j in the data Q, i = exp{—y;;}. The
coupling matrix is used to incorporate data dependencies present in the
information Hamiltonian H(d, s) in a convenient and concise form appro-
priate for the analysis of nonlinear and nongaussian signals. The details
of the mathematical formulation of EFD that uses these expressions are
summarized in appendix A.

2.2 The Coupling Matrix for Multiple Modalities. Constructing either
linear or nonlinear solutions for the unknown signal s requires an explicit
generation of either the coupling matrix Q itself or the coupling coefficients
y. Using single-modality data sets as a source of coupling allows the gener-
ation of powerful and effective single-modality data analysis approaches;
the coupling matrix obtained from the diffusion-weighted imaging data
produced an accurate and effective way for simultaneous estimation of
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local diffusion and global tractography with the geometrical optics—based
GO-ESP method. Similarly, the coupling matrix based on the correlation
properties of time series from rsFMRI data sets resulted in accurate and
effective characterization and estimation of space-time rsFMRI brain acti-
vation patterns.

However, the generality of the EFD formalism provides a natural mecha-
nism for even more complex and comprehensive analysis by incorporating
data from different modalities into the coupling matrix. Assuming that in-
stead of a single data set d we now have m =1, ..., M different modalities
d™ with the coupling matrices Q™ that all correspond to the same un-
known signal s, we can then construct an intermodality coupling matrix as
the product of these coupling matrices for the individual modalities regis-
tered to a common reference frarge, which we denote Q™. That is, the joint
coupling matrix is @™ = [],, Q. More specifically, the joint coupling
matrix Q; j between any two space-time locations (i, j) can be written in the
general (equivalent) form as

M
InQ, = > ﬂi(;”) In ij“, (2.4)

m=1

where the exponents ™ can be either some constants or functions of data
collected for different modalities

BV =B (d,dy,  d=1dV,. . dM), (2.5)

"™ and éf;.") represent, respectively, the data and the coupling matrix of the
modality data set m represented in the ESP basis and evaluated at locations
r;and r; of a common reference domain R,

dm =™ (p ), QP =Q" (¥ ey ap).  @6)

where ™ : R — X denotes a diffeomorphic mapping of mth modality
from the reference domain R to an acquisition space X.

This construction of the intermodality coupling involves several simple
assumptions. Two neighboring voxels i and j are considered to be highly
coupled if (1) their structural image intensities are similar, (2) their diffusion-
weighted spin density functions (equation 8 in Galinsky & Frank, 2015)
point to each other, and (3) their resting-state FMRI signals are maximally
correlated across all frequencies. The mathematical details that incorporate
and formalize these assumptions into coupling matrix expressions are given
in appendix B.
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2.3 The Structural, Functional, and Effective Connectivity Eigen-
modes. The intermodality coupling matrix Q;; facilitates the development
of a unified description of brain connectivity that includes both the struc-
tural dependencies (derived from long-range DWI connectivity and HRA
morphology) and the functional correlations (based on activation modes
buried within the functional MRI data).

One particularly informative way in which the intermodality coupling
matrix Q;; can be used is to generate the effective streamlines that char-
acterize both structural and functional dependencies present in the data
by combining the correlation function for the functional signal with the
structural information from the spin density function, expressing the joint
functional-structural dependencies through effective transition probabili-
ties (see equation A.5). This is the same procedure that was used to generate
fiber tracts from DTI data in the original GO-ESP method and subsequently
used to perform functional tractography using the EFD method, and now
extended and generalized to a multimodal coupling matrix. The result-
ing streamlining therefore represent high-probability pathways in the joint
structural-functional space.

AsetL={I"},n=1,...,N of effective multimodality streamlines can
be used to generate a new coupling matrix that includes connections be-
tween distant voxels. Assuming that each streamline /™ is a vector such
that

1 1 voxel i belongs to the streamline ™ 27)
" 710 voxelidoesnot belong to the streamline /™ - '
Then we can define the eigenmode coupling matrix:
N
Q=) 1™T1"™ —N1. (2.8)

n=1

Finding the eigenvalues and eigenvectors of the Q° matrix gives us ranked
connectivity eigenmodes.

3 Implementation

The multimodal joint estimation scheme described is very general. Here,
we present one particular application of the method: a typical single-subject
neuro-MRI study with HRA, DWI, and rsFMRI data sets acquired. We em-
phasize that this is but one specific instantiation of the method, as additional
modalities can be easily added into the processing. All elements of the
processing were coded in standard C/C++ and parallelized using POSIX
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Structural Eigenmodes Functional Eigenmodes

Figure 1: A working demonstration example of joint estimation work flow
showing extraction of a single structural eigenmode and a single functional
eigenmode using HRA, DWI, and FMRI HCP data sets.

threads. An illustrative work flow scheme is shown in Figure 1 and can be
described as follows:

The processing work flow starts with HRA data set. First, it extracts
the brain, doing skull stripping, and then generates the SWD for the
brain volume to be used in volume segmentation and registration
later.

For the DWI data set the GO-ESP procedure, which generates a new
data volume of the equilibrium probabilities (EP) data, is used.

For the rsFMRI data set, the EFD procedure is used to generate a new
data volume of the mean field data (i.e., a volume that contains aver-
ages of all activations), removing both temporal and spatial outliers.
The DWI equilibrium probabilities and the rsFMRI mean field vol-
umes are then registered with the HRA brain volume using the sym-
plectomorphic registration SYMREG-ESP, providing forward and
inverse maps.

The symplectomorphic maps, together with the HRA SWD vol-
ume, are then included in GO-ESP global tractography to generate
high-resolution, very-high-density fiber tracts with the possibility of
more than twofold improvement of the DWI spatial resolution and
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potentially resolving crossing fibers at below 10° angular resolution
reported in Galinsky and Frank (2016a).

e The high-resolution, very-high-density fiber tracts distribution is
used to generate ESP long-range structural connectivity eigenmodes.

e The symplectomorphic maps, together with the HRA SWD volume
and the long-range structural connectivity eigenmodes, are used
in rsFMRI EFD processing, providing greater improvement in re-
solved details of rsFMRI activation modes than is possible with-
out the information provided by the other modalities by generating
high-resolution effective connectivity eigenmodes. A fusion of struc-
tural and functional coupling provides an important advantage of
those high-resolution effective connectivity eigenmodes over single-
modality FMRI activation modes. The effective eigenmodes include
both WM and GM regions in a way consistent with both structural
and functional dependencies.

Additional modalities can easily be incorporated into this work flow.

4 Results

4.1 Data. To test our approach, we used one of the publicly accessible
data sets available from the open source Human Connectome Project (Van
Essen etal., 2012, 2013; Sotiropoulos et al., 2013), as well as several diffusion
imaging data sets collected locally at the UCSD Center for Functional MRI
(CFMRI).

The HCP data set was collected on the customized Siemens 3T Connec-
tom scanner, a modified 3T Skyra system (MAGNETOM Skyra Siemens
Healthcare), housed at the MGH/HST Athinoula A. Martinos Center for
Biomedical Imaging (see Setsompop et al., 2013, for details of the scanner de-
sign and implementation). A 64-channel, tight-fitting brain array coil (Keil
et al., 2013) was used for data acquisition. The data set contains 96 slices
of 140 x 140 matrix (1.5 mm linear voxel size) at four levels of diffusion
sensitizations (b-values b = 1000, 3000, 5000, and 10,000 s/mm?) distributed
over 552 total g-vectors.

The CFMRI data were acquired with a 3T GE Discovery MR750 whole
body system. The anatomical T1 volumes have 168 x 256 x 256 voxel size
with 1.2 x 0.9375 x 0.9375 mm? resolution.

A multiband DTI EPI acquisition (Setsompop et al., 2011) developed at
the CFMRI employed three simultaneous slice excitations to acquire data
with three diffusion sensitizations (at b-values b = 1000/2000/3000 s/ mm?)
for 30, 45, and 65 different diffusion gradients (respectively) uniformly dis-
tributed over a unit sphere. Several baseline (b = 0) images were also
recorded. The data were reconstructed offline using the CFMRI's multi-
band reconstruction routines. The DWI data sets have 100 x 100 x 72
matrix size with 2 x 2 x 2 mm? resolution. Whole brain BOLD resting-state
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data were acquired over 30 axial slices using an echo planar imaging (EPI)
sequence (flip angle = 70°, slice thickness = 4 mm, slice gap = 1 mm, FOV =
24 cm, TE = 30 ms, TR = 1.8 s, matrix size = 64 x 64 x 30). (Further details
are available in Wong, Olafsson, Tal, & Liu, 2013.) All data were prepro-
cessed using the standard preprocessing analysis pathway at the CFMRI
(as described in Wong et al., 2013). Nuisance terms were removed from the
resting-state BOLD time series through multiple linear regression. These
nuisance regressors included: (1) linear and quadratic trends, (2) six motion
parameters estimated during image coregistration and their first deriva-
tives, (3) RETROICOR (second-order Fourier series) (Glover, Li, & Ress,
2000) and RVHRCOR (Chang & Glover, 2009) physiological noise terms
calculated from the cardiac and respiratory signals, and (4) the mean BOLD
signals calculated from white matter and CSF regions and their first respec-
tive derivatives, where these regions were defined using partial volume
thresholds of 0.99 for each tissue type and morphological erosion of two
voxels in each direction to minimize partial voluming with gray matter.

4.2 Joint DWI and HRA Tractography. The data for every subject with
T1 HRA, DWI and rsFMRI data sets were analyzed twice, first using inde-
pendent processing of each modality and then the joint modality approach
developed in this article. The addition of HRA coupling into the diffusion
estimation and tractography process not only provides a significant boost to
the overall level of detail that can be captured but, more important, shows
features that are not apparent when the modalities are analyzed indepen-
dently. Figure 2 shows details of the equilibrium probability map obtained
from a single-modality DWI data set using several different views in panel
a and compares them with the same views of the map produced from the
joint HRA 4+ DWI coupling matrix in panel b. The jointly estimated maps
clearly show improvements in image quality: the twofold increase in linear
image resolution provides more small-scale detail and greater noise sup-
pression. The localization of white matter fiber bundles is clearly enhanced
significantly in the jointly estimated maps.

These joint estimation improvements can also be seen in tractography
results, shown in Figure 3. The unified DWI-HRA estimation procedure is
again able to detect additional details in overall fiber tract distribution com-
pared to the DWI procedure performed independently, as well as providing
increased resolution of the tracts.

This improvement is even more pronounced if one constructs a vol-
ume generated from the tract counts in every voxel produced by GO-ESP
whole brain tractography (shown in Figure 4). Both the HCP and CFMRI
sets of tracts were produced using 5 million seeds. The joint DWI + HRA
processing clearly provides significantly enhanced level of details, allow-
ing reconstruction of subtle white and gray matter high-resolution spatial
variations, while at the same time significantly increasing the directional
information available from diffusion data.
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Figure 2: Comparison of equilibrium probability maps obtained from a single-
modality DWI data set (a) with equilibrium probability maps extracted using
a coupling matrix based on both DWI and HRA data sets (b). A significant
enhancement of white matter localization, as well as significant overall image
quality improvement due to a signal-to-noise ratio increase can clearly be seen
in all four panels. (¢, d) Close-up panels of the lower left quadrant of the axial
images in panels a and b make the enhancements even more obvious.

4.3 Joint Structural, Functional, and Effective Eigenmodes. Using
joint connectivity matrices allows us to generate eigenmodes that can be
instrumental in finding and understanding the most important structural
and functional dependency patterns present in the underlying data and can
help to uncover and quantitatively characterize an effective information ex-
change that happens on different scales of the brain and modulates overall
brain performance.
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Figure 3: Comparison of a set of tracs produced by GO-ESP tractography from
a single-modality DWI data set (a) with an equivalent set of tracts obtained
when coupling matrix was defined using both DWI and HRA data sets (b).
(¢, d) Close-ups for the tract count volumes generated using 5 million total
seeds to run GO-ESP tractography, then counting tracts in every voxel and
thresholding at 2000 tracts (i.e., zeroing all voxels with fewer than 2000 tracts).
The color encoding uses the mean direction of tracs in every voxel. The unified
DWI-HRA approach clearly shows additional spatial and angular details, as
well as new tracs that were absent in DWI-only GO-ESP tractography.

Figure 5 shows several structural connectivity eigenmodes that were pro-
duced by running DWI + HRA GO-ESP tractography and using streamlines
to generate the eigenmode (or streamline) coupling matrix that includes
connections between distant voxels (see equation 2.8). Because the stream-
line coupling matrix contains the number of connections between every
pair of voxels located both inside the white or gray matter of the brain and
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DWI DWI+HRA

CFMRI

HCP

Figure 4: Shapes of tract counts in every voxel generated by a whole brain
GO-ESP tractography using only DWI data sets (a, c¢) and both DWI and HRA
data sets (b, d). CFMRI data acquired a 3T GE Signa scanner with diffusion data
of matrix size (x,v,z) = (100, 100, 72) and isotropic resolution of 8 mm? and
T1-weighted anatomical images with matrix size (x, y, z) = (168, 256, 256) and
resolution of 1.2 x 0.9375 x 0.9375 mm? were used in panels a and b. HCP data
sets acquired on a Siemens 3T system (the special connectome scanner at MGH)
with diffusion data matrix of size (x,y, z) = (140, 140, 96) and isotropic spatial
resolution of 3.375 mm? and T1-weighted anatomical images with matrix size
(x,y,z) = (176, 256, 176) and 1 mm? isotropic resolution were used in panels ¢
and d. The volumes were generated from tractography generated from 5 million
seeds, then counting tracs in every voxel and thresholding at 1000 tracs (i.e.,
zeroing all voxels with fewer than 1000 tracs). The mean direction of tracts
in every voxel is used for coloring. Panels b and d clearly show a significant
increase in the level of details, allowing resolution of structure and connectivity
of white matter bundles not attainable in diffusion data sets alone.

on the cortical surface, it provides volumetric probability weighted connec-
tivity that is significantly more informative than binary on-off connectivity
typically generated for cortical regions. Furthermore, because the seeding
for GO-ESP tractography uses equilibrium and transitional probabilities to
sample spatial and angular distributions of tracs, it ensures consistency with



1454 V. Galinsky and L. Frank

Figure5: Several structural eigenmodes of DWI-HRA connectivity matrix. Each
eigenmode outlines interconnected region where a random walker will spend
most of the time (property quantitatively described by shown equilibrium prob-
ability map). Those modes are only loosely connected with other regions; that
is, each eigenmode defines a different connectivity pattern ranked accordingly
to mode power (shown in Figure 7).

both the diffusion and anatomical data volumes that were acquired. The
eigenmodes of the streamline coupling matrix can be viewed as intercon-
nected regions of a brain that are only loosely connected with other regions.
The structure of these eigenmodes includes multiple modality constraints
and, hence, can provide a more comprehensive description and ranking of
the connectivity patterns reflecting the input from multiple modalities.

Selected functional nonlinear EFD eigenmodes obtained using FMRI +
HRA connectivity matrix are shown in Figure 6b. Those modes are simi-
lar to EFD modes generated solely from rsFMRI data shown in Figure 6a
and reported in Frank and Galinsky (2016b) but have more details and
show better overall spatial resolution due to the addition of high-resolution
anatomical details in FMRI EFD coupling.
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Figure 6: Several nonlinear EFD eigenmodes obtained using (a) a single-
modality rsFMRI data set, (b) a joint rsFMRI-HRA connectivity matrix, and
(c¢) both functional (rsFMRI) and structural (DWI + HRA) connectivity
matrices—effective connectivity eigenmodes. Both the original rsFMRI EFD
modes in panel a and the rsFMRI-HRA EFD modes in panel b clearly show
the BOLD activation patterns with improved localization of modes in the areas
of gray matter and refined details appearing in panel b. (c) The effective con-
nectivity eigenmodes show the additional connectivity through white matter
tracs.

Combining the DWI, FMRI, and HRA data sets through the joint cou-
pling matrix, equation 2.4, produces effective connectivity eigenmodes (see
Figure 6c¢ that spread through the entire brain volume, covering both gray
and white matter areas, hence complementing cortical activation regions
available from FMRI with white matter structural pathways available from
diffusion data.

We emphasize that in contrast to functional modes estimated from single-
modality rsFMRI processing where the signal reflects BOLD activity hap-
pening mostly in the gray matter regions, the effective connectivity modes
generated by multiple modalities incorporate not only gray matter regions
but may also include white matter. This does not mean that our joint modal-
ity processing detects BOLD activity in the white matter. The extension of
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Figure 7: Log-log plot of power in structural (red solid line) and functional
(green dash-dot line) modes as a function of mode number. The thin blue dashed
line shows n~1> dependence. Both functional and structural spectra show the
same scale: free power law behavior, with faster decay of functional modes for
mode numbers above 100 due to loss of resolution.

the modes into the WM is a manifestation of the fact that both functional
and structural connectivity are related to a common origin—the brain neu-
ral structure—and often functional and structural dependencies may be
deduced (although with limited degree of accuracy and reliability) one
from the other (Skudlarski et al., 2008; Honey et al., 2009).

The common underlying nature of both structural and functional modes
can be clearly seen when plotting mode power (or eigenvalue) as a func-
tion of mode number, as shown in Figure 7. The plot shown includes 200
structural eigenmodes and 180 functional EFD modes obtained from DWI
+ HRA and FMRI + HRA coupling matrices. Both structural and functional
dependencies show power law decay with the same exponent that is close
to —1.2. This type of power law dependence can typically be associated
with a manifestation of scale—free organization of brain networks (Beggs &
Timme, 2012).
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Figure 8: Whole brain volumetric parcellation of the CFMRI HRA + DWI +
FMRI data sets produced by effective connectivity eigenmodes that were gener-
ated using joint functional (rsFMRI) and structural (DWI + HRA) connectivity
matrix. (a—c) Parcellation using 20 of the first most significant modes. (d—f) par-
cellation using 80 of the most significant modes. (g—i) Parcellation applied using
160 modes. The shapes shown in all panels are obtained by counting the number
of streamlines in each voxel after performing whole brain tractography with 5
million total seeds and using different thresholds for the number of streamlines
from 100 in panels a, d, and g, to 1000 in panels b, e, and h, to 1500 in panels c,
f, and i. Panels ¢, f, and i contain volume cut to show the internal structure of
the modes.

The effective connectivity eigenmodes provide a simple and efficient way
to construct a whole brain volumetric parcellation by assigning each voxel
to a mode that has the largest contribution to this voxel. Two parcellation
examples are shown in Figures 8 and 9. Figure 8 uses for analysis locally
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Figure 9: Whole brain volumetric parcellation of the HCP HRA + DWI + FMRI
data sets produced by effective connectivity eigenmodes that were generated us-
ing joint functional (rsFMRI) and structural (DWI 4+ HRA) connectivity matrix.
(a—c) Parcellation using 20 of the first most significant modes. (d—f) Parcellation
using 80 of the most significant modes. (g—i) Parcellation applied using 160
modes. The shapes shown in all panels are obtained by counting the number
of streamlines in each voxel after performing whole brain tractography with 5
million total seeds and using different thresholds for the number of effective
connectivity mode streamlines from 100 in panels a, d, and g, to 1000 in panels
¢, f, and i, to 1800 in panels b, e, and h. Panels ¢, f, and i contain volume cut to
show the internal structure of the modes.

(UCSD CFEMRI) acquired data sets, and Figure 9 is based on the publicly
available HCP data volumes. Both figures were produced by generating
high-resolution volumes (with the same resolutions as the correspondent
HRA volumes: 168 x 256 x 256 for Figure 8 and 176 x 256 x 176 for Figure 9)
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that contain in each voxel the number of streamlines going through this
voxel. The high-resolution volumes were used to extract the shapes shown
in figures using different thresholds. The parcellation is constructed from
the high-resolution effective connectivity eigenmodes.

5 Conclusion

In this article we presented a new theory for the joint estimation of the
structural-functional brain modes that we have applied to the three pri-
mary neuro-MRI modalities: high-resolution anatomical (HRA) data, diffu-
sion tensor imaging (DTI) data, and resting-state functional MRI (rsFMRI)
data. The approach is rooted in our previous theoretical formulations of the
SWD, GO-ESP, and EFD methods, which use our general theory of entropy
spectrum pathways (ESP) (Frank & Galinsky, 2014), whose central concept
is that relationships between local and global aspects of a lattice (e.g., a 3D
image or a 4D time-dependent image) are characterized by the relationship,
or coupling, between local elements (i.e., voxels). The SWD is a straight-
forward characterization of the intensity variations in HRA image volume
in terms of a spherical wave decomposition (Galinsky & Frank, 2014). The
GO-ESP technique uses the SWD to characterize the diffusion signal in
each voxel from DWI acquisitions wherein a region of g-space is sampled
(Galinsky & Frank, 2015). These local (i.e., voxel) diffusion profiles are then
used to construct couple matrices that, through ESP theory, provide optimal
spatial pathways that can be used to drive the geometric optics—based trac-
tography. In the EFD method for FMRI, spatial-temporal coupling matrices
from the 4D data are used to generate optimal space-time paths from which
brain networks are constructed (Frank & Galinsky, 2016a). In this article, we
have developed a general theory of structural-functional brain modes that
integrates these methods through a generalization of the coupling structure
of the data to incorporate the different modalities and then modifying the
individual algorithms to incorporate the coupling between modalities.

Our computational implementation demonstrates a significant improve-
ment of mode reconstruction accuracy and new levels of detail. The fiber
pathway reconstruction of joint modality processing offers a more than
twofold improvement of the DWI spatial resolution and the ability to re-
solve crossing fibers at or below 10° angular resolution (Galinsky & Frank,
2016a). The resting-state brain network modes, eigenmodes, and tractog-
raphy generated provide more than four times the improvement in spatial
resolution. Moreover, this joint estimation procedure allowed us to demon-
strate the novel finding of a scale-free organization of brain structural and
functional networks that follow virtually identical power laws. Further ex-
ploration of this finding may help to uncover important structure-function
relations in human brain development.

In addition to providing an overall increase in resolution, accuracy, level
of detail, and information content that can provide valuable insight into
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structure-function relations of interest in basic neuroimaging studies, this
method also holds the potential to enhance the clinical utility of these indi-
vidual neuro-MRI methods. The current procedure of analyzing these data
separately poses a significant challenge for practicing clinicians faced with
the task of visually integrating the information from these complex image
acquisitions. This new method provides a robust and accurate method for
integrating these data to provide a more accurate assessment of brain struc-
ture and function that is nonetheless amenable to clear visualization and
statistical assessment via nonlinear registration critical to the development
of viable clinical protocols.

Appendix A: EFD Summary

The information Hamiltonian H (d, s) can be written (Ensslin et al., 2009) as
O
H@d,s)=H,—j s+§s D 's+H;(d,s), (A.1)

where H, is essentially a normalizing constant that can be ignored, D is
an information propagator, j is an information source, and  means the
complex conjugate transpose. H, is an interaction term (Ensslin et al., 2009)

=1
=Y b [ [ A ss s, s, (12

n=1

where A;?»)us" terms describe the interaction strength.

When the source term j, the linear information propagator D, and the
nonlinear interaction terms A é?) s are allknown, or at least some more or less
accurate approximations can be used for their description, the IFT approach
provides an effective, powerful, and mathematically elegant way to find an
unknown signal s either by using the classical solution at the minimum of
Hamiltonian (§H/8s = 0) or with the help of summation methods (e.g., with
the help of Feynman diagrams; Feynman, 1949; Ensslin et al., 2009).

But there is a whole class of problems where those terms are unknown
and too complex for deriving effective and accurate approximations. In
this case, the ESP method (Frank & Galinsky, 2014), based on the principle
of maximum entropy (Jaynes, 1957a, 1957b), provides a general and effec-
tive way to introduce powerful prior information using coupling between
different spatiotemporal points that is available from the data itself. This is
accomplished by constructing a so-called coupling matrix that characterizes
the relation between locations i and j in the data

Qi = e Vi, (A3)
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Here, the y;; are Lagrange multipliers that describe the relations and depend
on some function of the space-time locations i and j. The eigenvalues A,
and eigenvectors ¢® of the coupling matrix Q,

2 Qi) = ng”. (A4)
j

then formally define the transition probability from location j to location i
of the kth mode (or path, as it is often called in the random walk theory) as

P = Qji p¥
ijk — T )"
k ¢]

(A5)

For each transition matrix, equation A.5, there is a unique stationary distri-
bution associated with each mode k,

2
u® = [¢<k>] 7 (A.6)
that satisfies

(k) Z ’u(k) pz]k (A7)

where n, associated with the largest eigenvalue A, corresponds to the
maximum entropy stationary distribution (Burda, Duda, Luck, & Waclaw,
2009).

The EFD approach (Frank & Galinsky, 2016a) adds those coupling matrix
priors into the information Hamiltonian, equation A.1, by expanding the
signal s into a Fourier expansion using {¢*'} as the basis functions:

K
= [ao® +ajel @] (A8)
k

In this ESP basis, the information Hamiltonian, equation A.1, can be
written as

1. 0o 1 K K .
H(d, &) = —jla, + E“}(A”k +> o} ; ; A(n) G, (A9)

n=1 1
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where matrix A is the diagonal matrix Diag{},, ..., Ax}, composed of the
eigenvalues of the coupling matrix, and j is the amplitude of the kth mode
in the expansion of the source j,

o = /j¢(k)ds, (A.10)
and the new interaction terms A™ are
AL = / h / AL 1) Edsy - ds,. (A11)

For the nonlinear interaction terms AS(T)b the EFD method again takes

coupling into account through factorization of A™ in powers of the cou-
pling matrix

A a™
meo=—=>"TI%m (A12)

where o™ < 1/ max ( Ji/*), which results in

B a(n) n 1 n n
Ag:}k =— — I1 b / (]_[ ¢k,-> ds. (A.13)
r=1

p=1 k,, m=1

Thus, the EFD approach provides a very simple expression for the clas-
sical solution for the amplitudes a,,

n!
n=1

0 K K
) 1 ~ (41
Agg= o= = > D At gy | (A.14)
k k

1

through the eigenvalues and eigenvectors of coupling matrix (which may
also include some noise corrections; Frank & Galinsky, 2016a, 2016b).

Appendix B: Coupling Matrices

For the HRA data set we define a simple intensity-weighted nearest-
neighbors coupling matrix as

dHdll nearest neighbors
T (B.1)
0 not connected
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For DWI data, the GO-ESP procedure uses the spin density function
G(r, R) expressed with the help of the spherical wave decomposition as

o) 1
Gr.R)y=4r Y Y i"Y"(R)g,, (r.R), (B.2)
1=0 m=-1
g R)= / W(r, 9)j,qR)Y]"™ (g)dq. (B.3)

and generate the symmetrized scale-dependent coupling matrix Ql’? as

HOBYHGES % (G (r =) +G (1, = r2e) | B

where ¢ represents the dimensionless ratio of scales of dynamic displace-
ment R to the spatial (voxel) scales r; j;(qR) is the spherical Bessel function
of order l and Y} (§) = Y]" (R P = Y (0, ;) is the spherical harmonic, with
6, and ¢, being the polar and azimuthal angles of the vector g, and similarly
for the vector R; and W (r, q) is the DW1 signal (see Galinsky & Frank, 2015,
for more details).

For rsFMRI the EFD procedure employs the frequency « dependent
spatial coupling matrix ij (w) as

Q@) =Rijdf (wy)d} (), (B.5)

Q@) =R}y (67 @p)d] @)+ ¢ @)l @))). (B-6)

Here, df (w) is the temporal Fourier mode of the rsFMRI data df with the
frequency , ¢ (w,) is the eigenvector of QF (w,) that corresponds to the
largest eigenvalue, and R;; can include some function of the pair correla-
tions taken to the nth power, for example, a simple mean of the pair corre-
lations, that is equivalent to a product of signal means (d") for a periodic
signal,

17 F IF
Ri; = T/o C;j(Hdt = Td; d}, (B.7)

or a maximum correlation of mean subtracted signal,

R;; = max
0<t<T

’ C,(t) — Tdfd} |, (B.8)

where C;;(t) is the pair correlations,
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Cij(t) = /df(t — r)d?(r)dt. (B.9)

The EFD procedure can then be extended to incorporate information from
all of the modalities simultaneously by incorporating these single-modality
coupling matrices Qjf, Q}, and Q}; in equation 2.4 to generate the inter-
modality coupling matrix Q;;.

To investigate long-range structural, functional, and effective connection
patterns that span both gray and white matter regions, we generate the
connectivity matrix using structural, functional, and effective streamlines
produced by GO-ESP tractography. For structural tractography, we employ
the nearest-neighbor connectivity matrix generated from DWI and HRA
data sets and follow the same formalism as was used for single-modality
DWI tractography.

For functional tractography, the same notion of entropy change was used
as in Galinsky and Frank (2015),

S;=-— Z u® Z PijeIn i (B.10)
k i

assuming that both equilibrium p and transitional probabilities p;; were
obtained from the functional nearest-neighbor coupling matrix QiFj (@) us-
ing equations A.7 and A.6. This global entropy field was obtained under
the Markovian assumption in the limit of long pathway lengths (or large
times) (Shannon, 1948; McMillan, 1953) and describes the global flow of
information. The same formalism of linearizing of the Fokker-Planck equa-
tion with a potential in the form of the global entropy, equation B.10, and
finding the characteristics solution using the Hamiltonian set of equations
as was used in Galinsky and Frank (2015) for DWI tractography produces
GO-ESP functional tracking. The streamline angular distribution is shaped
in this case by the correlation function of the functional signal.
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