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We present a quantitative statistical analysis of pairwise crossings for all
fibers obtained from whole brain tractography that confirms with high
confidence that the brain grid theory (Wedeen et al., 2012a) is not sup-
ported by the evidence. The overall fiber tracts structure appears to be
more consistent with small angle treelike branching of tracts rather than
with near-orthogonal gridlike crossing of fiber sheets. The analysis uses
our new method for high-resolution whole brain tractography that is ca-
pable of resolving fibers crossing of less than 10 degrees and correctly
following a continuous angular distribution of fibers even when the in-
dividual fiber directions are not resolved. This analysis also allows us
to demonstrate that the whole brain fiber pathway system is very well
approximated by a lamellar vector field, providing a concise and quanti-
tative mathematical characterization of the structural connectivity of the
human brain.

1 Introduction

Advances in modern digital imaging methods are revolutionizing a wide
range of scientific disciplines. One of these truly revolutionary approaches
that has become ubiquitous in basic neuroscience research and has the po-
tential to have significant impact on a wide range of clinical applications is
the noninvasive reconstruction of neural tissue fiber pathways from volu-
metric diffusion tensor magnetic resonance imaging (DTI) data. The basic
DTI procedure is to collect multiple image volumes (a Cartesian sampling
of image space), each with a different combination of the magnitude and
direction of the diffusion sensitivity. The standard procedure for analyzing
these data is to reconstruct the local (i.e., voxel) diffusion profile from this
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sampling of diffusion sensitivity, or q, space, then estimate global measures
of connectivity (tracts) by constructing relationships between the diffusion
profiles in each voxel in the Cartesian image space, typically by generat-
ing streamlines through the angular maxima of the voxel-derived diffusion
profiles, or probability density functions (PDFs).

Wedeen et al. (2012a) used a variant of the DTI protocol, diffusion spec-
trum imaging (DSI), to develop a theory that white matter fibers form a
regular grid by crossing almost orthogonally and uniformly in the entire
brain. The DSI protocol performs a Cartesian sampling of q-space, then
estimates the average diffusion propagator locally (in each voxel), and fi-
nally extracts the orientation distribution function (ODF), the radial average
PDF (Tuch et al., 2002), again in each voxel. This locally estimated ODF is
used to guide the global fiber tractography (Conturo et al., 1999; Basser,
Pajevic, Pierpaoli, Duda, & Aldroubi, 2000; Mori & van Zijl, 2002; Jbabdi
& Johansen-Berg, 2011), which implicitly assumes that all the information
about the crossing of fibers can be extracted from this local ODF. A signif-
icant and overly simplistic assumption that is made is that an ODF with
a single lobe describes a unidirectional set of fibers, whereas an ODF with
multiple lobes possessing relatively similar amplitudes is assumed to rep-
resent multiple fiber orientations.

The grid theory was criticized by Catani, Bodi, and Dell’Acqua (2012)
who used whole brain streamline tractography based on a different local
diffusion profile estimation technique, the spherical deconvolution (SD),
which has been demonstrated to consistently resolve fiber crossings above
at least 45 degrees (Tournier, Calamante, & Connelly, 2007). Their results
show the distribution of the angles of fiber crossing in a sample of 10 healthy
human brains and demonstrate the high probability of nonorthogonal fiber
crossings in the human brain, with nonorthogonal crossings at least as likely
(and probably more likely) as orthogonal crossings, which were shown to
account for less than 12% of the total crossings in the human white matter.
Their conclusion is that the grid pattern Wedeen observed is most likely
an artifact attributable to the limitations of the DSI approach, which has
low angular resolution and thus preferentially detects orthogonal cross-
ings since streamlines through nonorthogonal fibers stop in the deep white
matter. This is probably due to a limitation of the majority of deterministic
tracking approaches that not only prohibit sharp fiber turns but typically
impose explicit or implicit stopping criteria to avoid tracking through low
anisotropy regions. The result is that the appearance of the vast majority of
fiber crossing appears to be orthogonal.

In the response to Catani’s criticism, Wedeen et al. (2012b) claim that
their DSI acquisition has higher spatial or diffusion resolution (or both) and
therefore is able to detect many areas where the fiber tracts exhibit very
sharp changes of direction. Hence, the current MRI tractography that relies
on orientation continuity (i.e., requires path curvature of 1 rad/voxel or
lesss) (Wedeen et al., 2008) is the culprit of those artifactual trajectories,
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as it is unable to continue paths through those areas and instead shows
terminations of corticospinal paths where they should be turning sharply.
Moreover, it is claimed that the Cartesian q-space sampling used in their
implementation of DSI presents a lower risk of bias and is thus a more
conservative choice of methods when microstructure is uncertain (Wedeen
et al., 2012b). More recently, in a sequence of workshop presentations (Tax
et al., 2013, 2014, 2015, Tax, Haije et al., 2016), several quantitative tech-
niques were attempted to evaluate the existence of sheet structure, but no
convincing arguments were provided.

In this letter, we present a quantitative statistical analysis of pairwise
crossings for all fibers obtained from whole brain tractography that confirms
with high confidence that the brain grid theory is not supported by the
evidence. The analysis uses our new method for high-resolution whole
brain tractography that is capable of resolving fibers crossing of less than
10 degrees. This analysis also allows us to demonstrate that the whole
brain fiber pathway system is well approximated by a lamellar vector field,
providing a concise and quantitative mathematical characterization of the
structural connectivity of the human brain.

2 Method

In an attempt to resolve the brain grid theory controversy, we conducted a
high- resolution tractography study using our recently developed (Frank &
Galinsky, 2014; Galinsky & Frank, 2015) geometrical optics-guided entropy
spectrum pathways (GO-ESP) fiber tracking method (the details of our
tracking approach can be found in (Galinsky & Frank, 2015). The GO-ESP
method performs a simultaneous estimation of the local diffusion profile
and the global structure of the fiber pathways by the use of prior information
on local coupling within a fully Bayesian probabilistic framework. Thus, in
a formal probabilistic sense, it is the most conservative approach to the
inverse problem of determining fiber pathways from diffusion-weighted
MRI signals. Moreover, because the GO-ESP tracking approach is based on
geometrical optics, it does not introduce limits on paths curvature, and in
certain circumstances should theoretically be able to detect nearly complete
path reversals (approximately 180 degrees), in a manner similar to those
found in optical reflection. Hence it is able to detect and proceed though
the sharp turns reported by Wedeen et al. (2012b). More important, the
GO-ESP approach does not rely on the locally inferred ODF and does not
make any assumptions about the number of crossing fibers present in each
voxel. Instead, we assume a continuous distribution of fiber directions and
derive an equation to update the fiber orientation at each tracking step in
a globally consistent way. Hence, we trace both fiber position r and fiber
orientation k simultaneously by solving two equations of Hamilton-Jacobi
type at each step (Galinsky & Frank, 2015),
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dr

dt
=

∂H

∂k
≡ ψ(r, k),

dk

dt
= −

∂H

∂r
≡ ξ(r, k), (2.1)

where H is the Hamiltonian that can be expressed through equilibrium
and transitional probabilities using the entropy spectrum pathways pro-
cedure (Frank & Galinsky, 2014). The traditional fiber tracking approach
defines tracts by integration of position–only function ψ, which assigns the
tangential direction of tracts to each location r. For our geometrical optics
GO-ESP approach, the integration takes into account both the orientation
and multiple scales, through the dependence of ψ on directional angle k/|k|
and magnitude |k|. (The details about functions ψ and ξ can be found in
Galinsky & Frank, 2015.)

For whole brain tractography, we used one of the publicly accessible
diffusion imaging data sets (MGH 1010) available from the Human Con-
nectome Project (Van Essen et al., 2012; Sotiropoulos et al., 2013), as well as
several diffusion imaging data sets collected locally.

The HCP MGH 1010 data set was collected on the customized Siemens
3T Connectom scanner, a modified 3T Skyra system (MAGNETOM Skyra
Siemens Healthcare), housed at the MGH/HST Athinoula A. Martinos Cen-
ter for Biomedical Imaging (see Setsompop et al., 2013, for details of the
scanner design and implementation). A 64-channel, tight-fitting brain ar-
ray coil (Keil et al., 2013) was used for data acquisition. The data set contains
96 slices of 140 × 140 matrix (1.5 mm linear voxel size) at four levels of dif-
fusion sensitizations (b-values b = 1k, 3k, 5k, and 10k s/mm2) distributed
over 552 total q-vectors.

The local data were collected by the UCSD Center for Functional MRI
(CFMRI) using the 3T GE Discovery MR750 whole body system. The
anatomical T1 volumes have 168 × 256 × 256 voxel size with 1.2 × 0.9375 ×
0.9375 mm3 resolution. A multiband DTI EPI acquisition (Setsompop et al.,
2011) using three simultaneous slice excitations was used to acquire data
with three diffusion sensitizations (at b-values: b = 1000/2000/3000 s/mm2)
for 30, 45, and 65 different diffusion gradients (respectively) uniformly
distributed over a unit sphere. Several baseline (b = 0) images were also
recorded. The data were reconstructed offline using the CFMRI’s multi-
band reconstruction routines. The DWI data sets have 100 × 100 × 72 voxel
size with 2 × 2 × 2 mm3 resolution.

The spherical multishell encoding is different from the DSI Cartesian q-
space sampling of Wedeen et al. (2012a), but with 552 q-vectors, it provides
better angular (diffusion) resolution than DSI sampling with 515 q-vectors
distributed inside the sphere of radius 5. Both acquisition schemes have a
comparable number of diffusion sampling directions, but in our acquisi-
tion, the diffusion sensitization weighted distribution of q-vector directions
(i.e., the distribution with a different number of points more or less uni-
formly distributed at each diffusion sensitization level) is optimized to pro-
vide a more accurate sampling of the angular diffusion variations than an
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equidistant Cartesian grid. Indeed, the DSI Cartesian q-space sampling has
roughly a similar number of points at the highest sensitization levels (256
for multishell versus 258 for DSI) providing 0.0487 steradian resolution
(versus 0.0491 sr for multishell), but at the lowest sensitizations, multishell
sampling with 64 points still has reasonably accurate 0.196 sr resolution,
whereas the DSI sampling falls to 2.09 sr resolution, which is only able to
resolve directions that are fairly close to orthogonal. A simple estimate for
mean angular resolution of DSI sampling with 515 grid points distributed
inside the sphere of radius 5 is

��DSI =
1

5 − 1

5
∫

1

(

5

r

)3 4π

515
dr = 0.366 sr, (2.2)

whereas for 64, 64, 128, and 256 points multishell aquisition, it is

��MS =
4π

4

(

1

64
+

1

64
+

1

128
+

1

256

)

= 0.135 sr � 0.5��DSI, (2.3)

that is, more than twice as better.
It is important to point out at this juncture that a key result of our anal-

ysis leading to the GO-ESP method (Galinsky & Frank, 2015) is that the
generally accepted view that the diffusion PDF is the fundamental quan-
tity in diffusion MRI methods is predicated on the assumption that voxel
diffusion profiles are independent. Although there are currently methods
that introduce bridging for the local and global scales, (i.e. through spa-
tially regularized ODF reconstruction; Goh, Lenglet, Thompson, & Vidal,
2009; Reisert et al., 2011), or by augmenting streamline tractography with
some pseudo-global-looking schemes (Kreher et al., 2008; Fillard, Poupon,
& Mangin, 2009; Reisert, Kiselev, Dihtal, Kellner, & Novikov, 2014; Christi-
aens et al., 2015), the majority of these methods perform diffusion estimation
and tractography independently. The fact that voxel diffusion profiles mea-
sured in diffusion-weighted images of continuous underlying white matter
structures are clearly not independent leads to the logically inconsistent
procedures whereby local diffusion is estimated based on this assumption
of independence, whereas tractography is constructed based on the im-
plicit assumption of dependence. Our probabilistic approach incorporates
additional prior information about nearest-neighbor coupling, and in this
case, the result is that the fundamental quantity is not the PDF but the
transition probability for information flow between different voxels. Con-
sequently, methods that hold to the view that the PDF is the fundamental
quantity are thus limited not by the acquisition, but by the problem formu-
lation used in the analysis. Conversely, the GO-ESP method is capable of
resolving a huge number of fiber crossings at very small angular difference
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from multishell diffusion acquisitions now easily attainable on state-of-the-
art scanners (Galinsky & Frank, 2015).

We emphasize that the use of the term fiber is a primary source of con-
fusion in DTI. Current MRI technology is not able to resolve individual
fibers and samples them only statistically. Typical neural fibers can differ in
diameter by nearly 100-fold (approximately 0.1–10 μm); hence, one would
need between 105 and 109 total fibers to fill the cross-sectional area of a
single voxel. Computationally, it is not possible to trace that many fibers.
However, GO-ESP fiber tractography allows us to statistically represent the
overall fiber distribution using unbiased sampling. To provide this unbi-
ased sampling, GO-ESP generates the starting fiber positions r0 using the
equilibrium probability and the starting fiber orientations k0 using the tran-
sition probability, and then produces an ensemble of fibers by integrating
equation 2.1 with those initial conditions.

For each individual fiber traversing through any given voxel, an average
fiber direction is estimated. Then the whole ensemble of fibers is used
to calculate a total number of fibers and a mean direction of all fibers in
every voxel. To construct a pairwise fiber crossing angle distribution in
every voxel, we divide the range of all possible angles (from 0◦ to � = 90◦)
into n bins and count the number of crossings Nθ

i
falling in each bin i.

Then we introduce a pairwise fiber crossing angle distribution density by
normalizing it as

f (θ ) =
nNθ

Nc�
, (2.4)

where Nc is a total number of crossings. This normalization ensures that

�
∫

0

f (θ )dθ = 1. (2.5)

To illustrate the utility of this pairwise angle distribution, we first pro-
vide several simple examples showing how the density may look for simple
geometric systems such as grid-like crossing of avenues and streets of Man-
hattan or curved streets of Victorian London.

Assuming that there is a family of N f parallel fibers going through a

single voxel gives us Nc = N f (N f − 1)/2 total crossings, all located at 0

degrees bin such that f (0) = n/�, as shown in Figure 1A.
For two crossing families of parallel fibers (no necessarily orthogonal)

with the same number of fibers N f in each family, it will give N f (N f − 1)

counts at 0 degrees bin and N2
f counts at the crossing angle θc bin (i.e., with

f (0) ≈ f (θc) ≈ 0.5n/�), as shown in Figure 1B.
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Figure 1: Several examples of idealized fiber distribution inside a voxel and an
expected pairwise crossing fiber distribution density, including a single family
of parallel fibers (A), two families of crossing parallel fibers (B), two families of
crossing diverging fibers (C), and a random fiber distribution (D).

If both families of fibers are not strictly parallel but either diverging or
converging (or just have some angular spread δθ ), their crossings will no
longer be confined to two bins but instead will be spread out across the num-
ber of bins located in stripes with about δθ half-width adjacent to 0 degrees
and θc bins. The crossing angle distribution density will roughly satisfy

∫ δθ

0

f (θ )dθ ≈
∫ θ

c
+δθ

θ
c
−δθ

f (θ )dθ ≈ 0.5,

as shown in Figure 1C.
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And finally, if there is no directional distinction between families of fibers
or if some fiber directions are produced due to noise, then the number of
crossings in each bin will follow the binomial distribution

P(Nθ ; Nc, p) =
Nc!

Nθ !(Nc − Nθ )!
pN

θ (1 − p)(N
c
−N

θ
), (2.6)

where p = 1/n, giving

μ f = 1/�, σ f =
√

(n − 1)/Nc/� (2.7)

for the mean μ f and the standard deviation σ f of the crossing angle distri-

bution density f (θ ).
It is no surprise that the standard deviation σ f is decreasing with the in-

crease of number of crossings Nc as 1/
√

Nc, as this is simply the restatement
of the fact from elementary statistics that an error decreases as a square root
of a number of trials. But this obvious fact allows us to show in the next
section that the data with high statistical evidence prove that “the thesis
that brain pathways adhere to a simple geometric system best accounts for
the available evidence—not like London, but Manhattan” (Wedeen et al.,
2012b) is is not supported in any way by the evidence provided by the data.

The main claim of Wedeen et al. (2012a) is that the white matter has
a gridlike organization formed by crossing of quasi-orthogonal sheets of
fibers. Though the crossing angles are not necessarily 90 degrees, they are
nevertheless assumed to show some distinction between directions, which
would translate into a pairwise crossing angle distribution containing peaks
at both small and large angles. Our results do not find any quantitative
statistical evidence that this is the case.

3 Results

3.1 Pairwise Crossing Fiber Angle Distributions. To obtain the statis-
tically relevant results, we generated up to 5 million seeds sampled from
the unbiased equilibrium probability distribution generated by the ESP
approach (Frank & Galinsky, 2014; Galinsky & Frank, 2015). Selecting ap-
proximately 2.5 million tracts of 60 mm length or longer and binning angles
of all pairwise crossings of fibers in each voxel in the 0 to 90 degree range
with 0.35 degree bin size produced the whole brain distribution shown
as a stair-step graph in Figure 2A. The distribution includes more than
320,000 voxels where crossing of at least two fibers has been detected, with
1,722,128,284,856 fiber crossings total. It shows a relatively flat spread of
crossing angles from rather low angles of about 10 degrees to the orthog-
onal crossing at 90 degrees. The number of crossings in the range from
80 degrees to 90 degrees corresponds to about 12% of all crossings, hence
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Figure 2: Pairwise crossing fiber angle distributions for the whole human brain.
(A) Stair-step plot of distribution for 1,722,128,284,856 fiber crossings of MGH
1010 subject from the Human Connectome Project. The plot was obtained by
selecting 2,494,224 fibers with 60 mm or more total length from the total of
5 million seed points and binning all pairwise angles θ from 321,631 voxels
with two or more fibers in 256 bins of 0.35 degrees angular size. A fraction of
fibers collected in each bin is shown on the ordinate axis. (B) Angle distribution
rescaled by cos θ , which takes into account the difference in solid angle measures
of each bin. Pairwise fiber angle distributions of six different subjects (C–H)
scanned on different hardware (GE or Siemens) and processed with different
parameters (including removing the restriction on fiber length, and changing
the threshold to select different ranges of deep white matter) all show similar
and repeatable whole brain pairwise crossing distributions.
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shows the same trend as the significantly coarser results presented in the
comment by Catani et al. (2012). The error bars in the stair-step graph of
Figure 2A are not shown, as the total number of fiber crossings used for the
binning of the whole brain pairwise angle distribution (about 1.7 trillion)
provides an upper estimate for the error in the extremely low range of 10−6.

If a random distribution of crossing angles in the azimuthal plane is
assumed, then the difference in solid angle measure of bin sizes should be
taken into account and used to scale the distribution with the cosine of the
crossing angle θ . This distribution is shown in Figure 2B and provides the
most likely angle for crossing fibers at only around 18 degrees.

Whole brain pairwise crossing fiber distributions for several additional
subjects are shown in Figures 2C to 2H. These distributions were ob-
tained using half a million seed points and varying parameters of GO-
ESP tracking but keeping both initial seeding and all the tracking points
in the deep white matter and the major tracts. It is believed that the
deep white matter tracts is the primary focus of the Wedeen’s paper,
and it is at the crossings of the major white matter tracts where the so-
called grid appears predominantly. For all six additional subjects in Fig-
ures 2C to 2H no large angle crossing peak was found, and all whole
brain pairwise crossing distributions show a similar and rather repeatable
form.

Several individual pairwise crossing angle distributions in selected vox-
els are shown in Figure 3. These distributions include a statistically evident
single fiber, two crossing fibers, and multiple crossing fiber cases. All of
these distributions use from about 8000 to 15,000 fibers to generate cross-
ing angle distribution. The 104 count of voxel fibers is of course nowhere
close to about 109 count of physical fibers, but nevertheless is high enough
to provide sufficiently accurate and statistically significant results sampled
from unbiased distribution with density represented by the equilibrium
probability (Frank & Galinsky, 2014; Galinsky & Frank, 2015). These dis-
tributions also provide rather detailed information on the accuracy and
resolution of our approach. For example, the single fiber distribution (see
Figure 3A) shows an angular spread of only several degrees in a set of
fibers bundled together. The two fibers crossing distribution (see Figure
3B) shows that our approach is capable of resolving fibers that cross with
only around an 8 degree angle. Overall, the multitude of different cross-
ing angle distributions can be spotted in different locations; examples of
different crossings with about 20 degree, 45 degree and 90 degree angles
are shown in Figures 3C, 3D, and 3E. Distributions with crossing of at least
three sets of fibers are shown in Figures 3F and 3G, with evident peaks
at both 45, and 80 degree angles. Even more complex distributions with
multiple fibers are shown in the last two panels of Figure 3, where the
last, Figure 3I again confirms that even for multiple fibers, our method
is capable of finding fibers crossing with angles as small as only about
8 degrees.
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Figure 3: Pairwise crossing fiber angle distributions in several individual voxels
showing examples of a single fiber (A), approximate 10, 20, 45, and 90 degrees
crossing of two fibers (B, C, D, and E), and crossing of multiple fibers (F, G, H,
and I).

3.2 Statistical Validation of Crossing Resolution. We emphasize that
our claim of 8 degree resolution is very sound statistically. For example, with
N f ∼ 104 fibers in Figure 3B, Nc = N f (N f − 1)/2 and about ∼ 5 · 107 total

fiber crossings were used to generate the histogram. The 0.015 difference
between the peak that represents the first family of fibers and the minimum
that separates it from the second peak roughly corresponds to 600σ (σ is
∼ 2.4 · 10−5 from 2.7). Even several peaks in the 50 degree to 70 degree range
of Figure 3I (with as small as 0.001 height of the smallest peak) correspond
to a range from 50σ to 150σ . While a more accurate significance estimate
could be easily constructed from P-value bounds based on tail estimates for
the binomial distribution itself, the normal approximation-based estimates
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used here are more than sufficient to demonstrate the significance of the
results.

The cumulative conditional probability of the hypothesis that the noise
is responsible for formation of a peak Nθ

1
relatively to a valley Nθ

2
can be

expressed as (Arratia and Gordon, 1989)

Pv =
N

c
∑

N=N
θ
1

P(N; N
c
,p)

P(N
θ
2
; N

c
,p)

�
1

1 − r1

√

√

√

√

Nθ
2
(Nc − Nθ

2
)

Nθ
1
(Nc − Nθ

1
)
e−N

c
(H

1
−H

2
), (3.1)

where

H(Nc, Nθ , p) =
1

Nc

[

Nθ log
Nθ

pNc

+ (Nc − Nθ ) log
Nc − Nθ

Nc(1 − p)

]

, (3.2)

r1 =
p(Nc − Nθ

1
)

(1 − p)Nθ
1

, H1 ≡ H(Nc, Nθ
1
, p), H2 ≡ H(Nc, Nθ

2
, p).

(3.3)

For the peak parameters of Figures 3B and 3I this expression results in
extremely low P-values, as H1 − H2 ∼ 0.01 and hence exp (−0.01Nc) dom-
inates, giving the values that are slightly larger than erfc(600) for panel B
or erfc(50) for panel I, but nevertheless well below the values considered
reasonable by all current standards for successful statistical trials. This is
clearly sufficient for validation of approximately 8 degrees as the resolution
of our approach.

3.3 Crossing Examples with Locations and Directional Maps. Figure 4
shows 3D views of a subset of randomly selected fibers for voxels from
panels B, C, D, and F of Figure 3. Low-resolution and high-resolution videos
can be accessed through the online supplement links.

Locations of the voxels on two-dimensional slices of the MGH 1010 T1
volume are shown in Figure 5. The parula-colored overlay shows the map
of fiber counts in every voxel of the slice. It can be clearly seen that the
fibers used for our analysis are located in the areas of deep white matter
and major tracts, hence directly correspond to the area that is the primary
focus of Wedeen et al. (2012a).

The directional information for several selected slices is shown in
Figure 6. The figure includes panels A, C, and E with two-dimensional
slices of MGH 1010 T1 volume overlaid by an RGB map of the major eigen-
vector of the transition probabilities (Galinsky & Frank, 2015) calculated
from volumetric diffusion data and used as priors in seeding of the tracts.
The second set of panels, B, D, and F, looks only slightly different visually,
but it is based on a conceptually different analysis. RGB directional maps
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Figure 4: Examples of fiber crossing complexity shown for several individual
voxels with pairwise crossing fiber angle distributions in Figure 3. Panels A, B,
C, and D correspond to panels B, C, D, and F, respectively, showing a subset of
201, 268, 487, and 157 randomly selected fibers (out of 10,291, 10,478, 14,317, and
10,133 total fibers used in Figure 3). Low-resolution, high-resolution videos can
be accessed through video links presented in the online supplement available
at http://www.mitpressjournals.org./doi/suppl/10.1162/NECO_a_00896.

are produced from an ensemble of curved line tracts obtained by our GO-
ESP approach and postprocessed to generate the mean fiber directions for
each voxel using the procedure described in section 2.

Panels A, B, C, and D of Figure 6 also include the location of the same
four voxels marked by labels in Figure 5. Even the voxels that seem to be
located deep inside the areas of predominantly single color, that is, with
the same major directions of transitional probabilities or the same averaged
direction of all fibers (i.e., voxels labeled as A and C), correspond to rather
complicated crossing structures, as can be seen from 3D views and videos
of Figure 4.
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Figure 5: Locations of the voxels shown in A, B, C, and D of Figure 4 and in
B, C, D, and F panels of Figure 3. The parula-colored overlay shows the map
of fiber counts across the slices. It can be clearly seen that the fibers used for
our analysis are located in the areas of deep white matter and major tracts, the
primary focus of Wedeen et al. (2012a).

Another set of individual pairwise crossing angle distributions from
a contiguous block of 3 × 3 voxels is shown in Figure 7. The set clearly
indicates continuity of the distribution across voxel boundaries with small
consistent changes from voxel to voxel. An abundance of various angles
of crossing fibers from � 20 to 90 degrees is also evident in each of these
adjacent voxels.

The position of this block of 3 × 3 voxels is shown in panel A of Figure 8.
For comparison, panel B shows (by label E) the location of a relatively neigh-
boring voxel where the only histogram has been spotted (see Figure 3E)
that resembles the crossing sheet structure expected to be common in the
deep white matter and major tracts area according to the claims by Wedeen
et al. (2012a).

Several more examples of fiber tracts crossing in different areas of
different subjects are shown in Figure 11 in the appendix, again with
low-resolution and high-resolution videos accessible through the online
supplemental links. The overall fiber tracts structure seems to be more
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Figure 6: Locations of the voxels shown in A, B, C, and D of Figures 4 and
5 and panels in B, C, D, and F of Figure 3. The RGB-colored overlays show
the directional information for the transition probabilities (Galinsky & Frank,
2015) used in seeding (panels A, C, and E) and for the mean fiber directions
obtained by our analysis as a result of processing an ensemble of tracts in ev-
ery voxel (panels B, D, and F). All four voxels marked by labels inside the
panels show rather complicated crossing structures, even those located deep
in areas of predominantly common colors–that is, with the same major direc-
tions of transitional probabilities or mean fiber directions (i.e., voxels labeled as
A and C).

consistent with small angle treelike branching of tracts rather than with
near-orthogonal gridlike crossing of fiber sheets. Treelike branching struc-
tures are well known in neuronal growth, and their existence has been
posited on a range of evolutionary factors (Mitchison, 1991; Laughlin &
Sejnowski, 2003; Sugimura, Shimono, Uemura, & Mochizuki, 2007; Wen,
Stepanyants, Elston, Grosberg, & Chklovskii, 2009; Jan & Jan, 2010; Gib-
son & Ma, 2011). Our finding of this structure on the macro (brain) scale,
while remarkable, is thus perhaps not surprising in light of this similarity
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Figure 7: Pairwise crossing fiber angle distributions in a 3 × 3 block of adjacent
voxels showing the continuity of distributions across voxel boundaries. The
fraction of fiber crossings in the voxel is shown on the ordinate axis.

to the microscale (neuronal) geometry, as well as the proliferation of such
structures in complex biological systems (Ochoa-Espinosa & Affolter, 2012).

3.4 The Lamellar Structure of Fiber Pathways. The capabilities of
our GO-ESP method for constructing accurate quantitative measures of
complex fiber distributions, as demonstrated above, provide a unique
opportunity to investigate the possibility of a quantitative measure of
the geometrical structure of brain fibers. One such measure became ap-
parent in our recent investigations and is shown in Figure 9, where we
have plotted fiber pathways colored by the direction of the local vortic-
ity ω = ∇ × v ≡ rot(v). For the v field, we use ψ(r, k) (see equation 2.1;
Galinsky & Frank, 2015, for details) with k fixed for a given family of fibers
at location r. It is well known from vector calculus that the extreme case
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Figure 8: T1 images with the RGB-colored directional information for the mean
fiber direction used to show the position of 3 × 3 block of voxels from Figure 7
(small rectangle X in panel A) and the location of relatively neighboring voxel
where the only histogram was identified (see Figure 3E) that resembles the
crossing sheet structure expected to be common in the deep white matter and
major tracts area according to the claims by Wedeen et al. (2012a) (label E in
panel B).

of a vector field orthogonal to its own vorticity (i.e., when v · ∇ × v = 0)
is called a lamellar vector field. The opposite extreme case of vorticity
parallel to the field, (i.e., when v × ∇ × v = 0) is known as a helical vec-
tor field. Since no experimentally measured fiber vorticity fields would be
expected to satisfy either of these cases identically, it nevertheless makes
sense to consider approximate lamellar and helical conditions. In Figure 9A
only those parts of fibers in color that satisfy the approximately lamel-

lar condition |v · ω|/|v||ω| <
√

2/2. The approximately helical condition

|v · ω|/|v||ω| ≥
√

2/2 is used for coloring in Figure 9B. The same coloring is
used for several cuts through the brain with horizontal, coronal, and sagit-
tal planes in Figure 10. Comparing Figure 9A with Figure 9B (and Figure
10A with Figure 10B), it is strikingly obvious that the brain fiber pathways,
although neither strictly lamellar nor strictly helical, show very significant
prevalence of lamellarity over helicity. An important mathematical property
of the lamellar field is the existence of Monge decomposition of vector field
v = λ∇μ, such that there exists a set of equipotential surfaces μ = const or-
thogonal to vector field lines (fiber tracts) everywhere (Lamb, 1932; Serrin,
1959). This propensity for lamellarity in human brain fiber pathways is an
interesting fact that clearly warrants a more in-depth investigation. How-
ever, the strong prevalence for global lamellarity in the brain fiber pathways
demonstrated in this letter at least suggests a plausible quantitative connec-
tion between structure and evolution that is consistent with the ubiquity of
lamellar structures in biological systems (Fernández-Morán, 1959; Weiner,
Addadi, & Wagner, 2000).
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Figure 9: Lamellar (A) and helical (B) parts of the brain fiber pathways colored
with the unit vector of the local vorticity ω/|ω| (C).

4 Discussion and Conclusion

The identification of sheet structures in the brain from DTI data re-
quires two quantitative steps. The first is the ability to accurately estimate
intravoxel fiber distributions from DTI data. The second is the develop-
ment of a quantitative characterization of sheet structures. However, the
ability to perform the second step is predicated on being able to perform
the first. Without an accurate estimation of the intravoxel fiber distribution,
any statements about sheet structure, however they are formulated, will be
relatively meaningless.

This major limitation of current DTI analysis methods motivated our
development of the GO-ESP method used in this letter, which has been
demonstrated to overcome many of these limitations and provides a robust
method for the accurate (to within image resolution) estimation of the local
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Figure 10: Lamellar (A) and helical (B) parts of the brain fiber pathways colored
with the unit vector of the local vorticity ω/|ω| and shown using horizontal (1),
coronal (2), and sagittal (3) cuts of the brain.

diffusion profile (Galinsky & Frank, 2015). This is the first novel aspect of
the our study. In addition, we have developed a robust statistical assess-
ment of the existence of sheet structures based on intravoxel pairwise fiber
crossing distributions. The original conclusions of Wedeen et al. (2012a)
were based a nonquantitative visual assessment of intervoxel fiber relation-
ships. In a recent series of abstracts, Tax and colleagues entered this debate
by aiming to more quantitatively describe sheet structures from inter-
voxel structure using well-known differential geometric methods (Tax et al.,
2013, 2014, 2015, Tax, Haije, 2016; Tax Westin, et al., 2016). Unfortunately,
their approach is incapacitated by their reliance on standard DTI analysis
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methods, which are incapable of accurately discerning intravoxel distribu-
tions, thus requiring, for example, the invocation of artificial methods to
account for the missing peaks in their characterization of the local diffusion
by a fiber orientation distribution function (fODF) (Tax, Westin, et al., 2016).

On the contrary, our approach is more in the spirit of the fiber angle
distributions of Catani et al. (2012), with the significant improvements that
we employ a method that can robustly estimate intravoxel fiber orienta-
tion probabilities (Galinsky & Frank, 2015), from which we then construct
quantitative statistical assessments of the relationship of intravoxel fiber
distributions to sheet structures. These assessments are not based on any
assumption of orthogonality (see Figure 1C) but rather on the statistical
distributions expected from sheet structures. Within the spatial resolution
limits, our assumption of noncurved fibers within a single voxel implicit in
our formulation of the intravoxel sheet distributions is sufficiently accurate,
and there is no need to invoke any differential geometric machinery that
might be required for considering intervoxel fiber architectures. In addition,
we have demonstrated that there is, in fact, a concise global (i.e., intervoxel)
mathematical characterization of the brain fiber architecture as a lamellar
vector field.

The general conclusion of our study is that our results provide no quanti-
tative statistical evidence for the model of brain fiber architecture as crossing
sheets of fibers postulated by Wedeen et al. (2012a) locally, in many of the
individual voxels, and globally, statistically averaging all crossings of fibers
in the whole brain. Nevertheless, the question of whether there is a quanti-
tative measure of the geometrical structure of brain fibers is very important
for understanding the development and function of the human brain. Our
findings provide interesting insight into a possible approach to the devel-
opment of such a quantitative measure by showing significant prevalence
of lamellarity over helicity across the whole ensemble of brain fibers.

It is useful here to summarize our approach and the major results of this
study. We analyzed whole brain tractography results for several subjects
and introduced a pairwise fiber crossing angle distribution with small an-
gular bin (as small as only 0.35 degrees). Using a large number of tracks
allowed us to draw statistically significant conclusions from those distri-
butions even on the scale of a single voxel. We showed that our method
is capable of capturing with high statistical certainty crossing of bundles
or sheets or planes at angles below 10 degrees. We showed that crossing
of two bundles or sheets of divergent fibers would be expected to produce
two peaks in the distribution. Similarly, for fibers confined to three cross-
ing planes in 3D volume, the expectation would be to find either three
or two clearly defined peaks. However, our results demonstrate a much
wider range of possible crossing configurations, from just a single diver-
gent bundle of fibers to crossing of fibers coming from more than three
clearly defined directions (i.e., crossing of more than three planes in a sin-
gle voxel) and thus suggest a much more complex overall picture of the
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Figure 11: Examples of crossing fibers. Video clips for high definition are in the
online supplement.

brain fiber architecture. A significant finding of our study is that there does
indeed appear to be evidence for an underlying structure of the brain fibers:
they form a lamellar vector field. This property is much more complex than
the simple crossing of three curved coordinate planes (either orthogonal
or not) Wedeen et al. (2012a, 2012b) claimed. And yet it is expressible in a
concise and unambiguous mathematical form and is numerically demon-
strable on real data, as we have done by showing the significant prevalence
of lamellarity over helicity.

Appendix: Fiber Crossing Examples

More examples of fiber crossings from different subjects are provided in Fig-
ure 11. Low-resolution and high-resolution videos can be accessed through
the online supplement.
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