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ABSTRACT

The MD transform that underlies the MD and SHA families iterates

a compression function h to get a hash function H. The question we

ask is, what property X of h guarantees collision resistance (CR) of

H? The classical answer is that X itself be CR. We show that weaker

conditions X, in particular forms of what we call constrained-CR,

suffice. This reduces demands on compression functions, to the

benefit of security, and also, forensically, explains why collision-

finding attacks on compression functions have not, historically,

lead to immediate breaks of the corresponding hash functions. We

obtain our results via a definitional framework called RS security,

and a parameterized treatment of MD, that also serve to unify prior

work and variants of the transform.

1 INTRODUCTION

The so-calledMD transform [15, 24] iterates a compression function

h to get a hash function H. The question we ask is, what property X

of h guarantees collision resistance (CR) of H? The classical answer

is that X itself be CR [15, 24]. We show that weaker conditions X,

in particular forms of what we call constrained-CR, suffice.

The benefit is that if we ask less of compression functions (as we

can now do), they are less likely to disappoint. Put another way, our

result lowers the bar for the compression function designer, and

raises it for the compression function attacker. It also explains an

historical cryptanalytic phenomenon, namely that collision-finding

attacks on compression functions [16, 30] have not immediately led

to breaks of the corresponding hash functions. (Our explanation

is that the attacks on the compression functions did not break

constrained collision resistance.) In this (second) light, our work

formalizes existing cryptanalytic intuition.

We obtain our results via a broader treatment that also serves

to unify prior work and different variants of the transform, and to

formalize folklore. It involves (1) a definitional framework called

RS security that allows us to formulate both classical and new
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security goals in a unified way, and (2) a modular treatment of MD

that parameterizes it via a splitting function and a compression

function.

The MD transform was used in the MD series of hash functions

(MD4 [27] and MD5 [26]) and now underlies the most widely used

hash functions in practice, namely the SHA series (SHA-1, SHA-256,

SHA-512) [25]. An improved understanding of its security, as we

provide, is thus of both historical and current interest.

MD framework. We formulate MD in a general, parameterized

way, as a transform taking (1) a compression function h : {0, 1}k ×

({0, 1}µ × {0, 1}σ ) → {0, 1}σ , (2) a splitting function Split : D →

({0, 1}µ )∗ and (3) a set S ⊆ {0, 1}σ of starting points (also called

initial vectors) to return a hash function H = MD[h, Split, S] : D

→ {0, 1}σ . The compression function takes a key k and an input

x = (m, c) consisting of a message blockm and chaining variable

c , and returns output c ′ = hk ((m, c)). The domain D is intended

to be large, usually the set of all strings of length up to some big

maximum length. The key (k, s) for H consists of a random key k

for h and a random starting point s from S. The splitting function

breaks the input M to H(k,s) into a sequence m = m[1] . . .m[n]

of µ-bit blocks. To compute H(k,s)(M), set c[1] ← s, iterate the

compression function via

For i = 1, . . . ,n do c[i + 1] ← hk ((m[i], c[i])),

and return c[n + 1] as the value of H(k,s)(M).

Characterizing CR preservation.We start by revisiting the clas-

sical question of showing that H is CR assuming h is CR (X=CR).

Several works have noted that suffix-freeness of Split is sufficient

for this purpose [1, 5, 17, 18]. (Some of these attribute the result

to [15, 24], but neither paper appears to actually contain such a

claim.) For completeness, we give, in our setting, a formal claim

(suffix-freeness of Split plus CR of h implies CR of H, Theorem 5.3)

together with the (easy) proof. We then complement this with a

novel result: we show that the sufficient condition of suffix-freeness

on Split is also necessary. We do this by showing that given any

Split that is not suffix-free, we can construct a compression func-

tion h and set S such that (1) h is CR but (2) H = MD[h, Split, S] is

not CR. This fully characterizes MD for the (classical) case where

the assumption X made on h is CR.

Unifying variants. Papers, textbooks and standards present vari-

ants of the MD transform that differ in details. We can capture

them as special cases, corresponding to different choices of split-

ting function Split and set S of starting points. Together with our

above-mentioned characterization, this unifies prior work.

To elaborate, a basic version of MD, from Merkle [23], MOV [22]

and KL [20], corresponds to the splitting function that pads the



messageM to a multiple of the block length µ and appends a block

encoding the length of M . Stinson’s [31] version corresponds to

the last block encoding the amount of padding rather than the

message length. Damgård’s version [15] starts each block of the

padded message with a 1 bit except the first, which it starts with

a 0 bit, and also appends a block encoding the amount of padding.

The SHA functions [25] use yet another variant where the (padded)

message may spill into the last block so that the latter does not

encode just the message length (cf. Fig. 3). In papers and textbooks

the starting point s is usually 0σ [15, 20, 22, 23, 31], but, in the

SHA series, s differs across hash functions. (For example, for SHA-

256 it is the first 32 bits of the square roots of each of the first 8

primes.) All these MD variants can be captured in our framework

as making particular choices of suffix-free splitting functions Split

and (singleton) spaces S.

CR is not necessary. We would like to show CR of H = MD[h,

Split, S] under an assumption X on the compression function h that

is weaker than CR. We first ask, is this even possible? Or, is CR of

h necessary for CR of H? We show in Section 6 that CR of h is not

necessary. Given a suffix-free Split, we build a compression function

h and set S such that (1) h is not CR, yet (2)H = MD[h, Split, S] is CR.

This opens the door to proving CR of H under relaxed assumptions

on h.

RS security. But what would these assumptions be? Towards find-

ing and formulating them, we step back to give a framework to

define security goals for h. Security is parameterized by a relation

R and a set S. The game gives the adversaryAa random key k for h

and a random point s in S. It returns an object denoted out, and wins

if R, given k, s, out, returns true. Its RS-advantage is the probability

that it wins. Classical X=CR is captured by viewing out as a pair

of strings that R checks are a collision under hk , with s not being

involved, formally S = {ε}. A form of pre-image resistance that we

will use is captured by having R check that out gives a pre-image of

s ∈ S = {0, 1}σ under hk . We can also capture constrained forms

of collision resistance (ccr), so called because extra requirements

are made on the collision, thereby constraining it. In particular, we

define RccrS security. Here winning requires that out contains, not

only a collision (m1, c1), (m2, c2) for hk , but also, for both j = 1, 2,

if c j , s, a further pre-image of it under hk . Providing the auxiliary

information in addition to a collision makes the adversary’s job

harder, so X=RccrS security is a weaker assumption on h than CR.

We can define other relaxations of CR as well.

CR from CCR. Theorem 6.4 relaxes the CR assumption, made on

the compression function h in Theorem 5.3, to RccrS security. That

is, we show that if Split is suffix free and h is RccrS secure, then hash

function H = MD[h, Split, S] is CR secure. The first consequence of

this is that the bar is lowered for the compression function designer

(their design only needs to provide RccrS security, which is easier

than providing CR) and raised for the cryptanalyst (their attack

needs to violate RccrS security, which is harder than violating CR).

We now discuss another consequence, namely to (possibly) better

understand some cryptanalytic history.

Already in 1996, Dobbertin had found collisions for the com-

pression function md5 of MD5 [16]. This did not, however, yield

collisions on MD5 itself. This, to us, was an indication that MD

was łbetter than advertised:” it was (possibly) able to promote a

non-CR compression function to a CR hash function. Our work is

an attempt to capture this intuition formally. Now, it is true that

in this particular case the hope was not realized, meaning MD5

failed to be CR, as shown by direct attack [33, 34]. What that tells

us is that the compression function md5 is even weaker than we

thought: not only is it not CR, it is not even RccrS. In fact, starting

from known MD5 collisions, our reduction will construct collisions,

and accompanying auxiliary information, to violate RccrS security

of md5. The story repeats with SHA-1, where collisions found for

the compression function sha-1 [30] did not immediately yield col-

lisions for SHA-1, but the latter have now been found [29]. Again,

it means sha-1 is not even RccrS. This, in our view, improves our

understanding of compression function security.

Speeding up MD. Suppose the messageM = 02µ−1 to be hashed is

a bit short of twice the block length µ. A typical suffix-free encoding

(for example that of SHA-256) will padM and append an encoding

of the length |M |, to result in a 3-block string m, over which the

compression function is iterated. The compression function is thus

called 3 times. One might hope for better, just 2 calls. More gener-

ally, the savings from dropping one compression function call are

significant since messages in practice are often short. This leads us

to ask why not use a minimal splitting scheme, like just 10∗ pad

the message, which in our example results in m = 02µ−11 being 2

blocks long, so that MD will use only two calls to the compression

function. But this splitting function is not suffix-free, and did we not

show that the suffix-freeness assumption on Split is necessary for

CR of H? Yes, but that was when the assumption on h is CR. Hence

it is of course also true when the assumption is RccrS, since that is

implied by CR, but in Section 7 we show that mere injectivity of

Split (in particular 10∗ padding of the message) does guarantee CR

of H = MD[h, Split, S] under alternative assumptions on h, specif-

ically that it is both ccr and pre-image resistant. The assumption

seems quite plausible compared to CR so the performance gain and

simplicity of the splitting could make this version of MD attractive.

Our result generalizes, formalizes and strengthens folklore un-

derstanding suggested by the following quote from [3]: łIt was

already known that the plain Merkle-Damgård iteration (so with-

out length strengthening) preserves collision resistance provided

it is hard to find a pre-image for the initial vector ... the latter is

implied by everywhere pre-image resistance ...” Specifically, our no-

tion of pre-image resistance is weaker than everywhere pre-image

resistance: we assume only CCR, rather than CR, of the compres-

sion function, we allow starting points (initial vectors) chosen from

a distribution, our result applies with any injective Split rather than

just plain Merkle-Damgård (a particular choice of Split), and we

give formal definitions, result statements and proofs.

Reduction complexity. As indicated above, many prior works

have claimed or proved that CR of h implies CR of H, either for par-

ticular choices of Split or assuming the latter is suffix free. It is inter-

esting that, with the exception of a work on formal verification [5],

not only papers [1, 5, 15, 17, 18, 24], but also textbooks [20, 22, 31],

fail to explicitly specify the reduction underlying the proof. This

takes attention away from, and makes it difficult to address, the

important question of the (computational) complexity (efficiency)

of the reduction. Whether in showing CR or CCR of h implies CR of



H, we in contrast are interested in the precise complexity of the re-

duction.We accordingly give explicit, pseudocode reductions. In the

main sections, we give the reductions that emanate naturally from

the proof. Then, in Section 9, we revisit the question of complexity

to give alternative reductions that are more memory-efficient [4].

Discussion and related work.MD-based hash functions are also

used for HMAC [8]. If we contemplate changes in splitting functions,

we want to ensure HMAC security is preserved. However, current

analyses of HMAC security [6, 19] show that suffix-free, and even

injective, splitting functions suffice.

Our focus is onMD as a way to achieve collision resistance. Other

works have looked at it for other ends. Use of MD with prefix-free

(as opposed to suffix-free) encodings has been shown in [7, 9] to

preserve PRF security. Its ability to provide indifferentiability from

a random oracle is studied in [18]. More broadly, MD is one of

many possible domain extension methods, and some works [2, 10]

consider methods that preserve multiple properties.

2 NOTATION AND CONVENTIONS

If m is a vector then |m| denotes its length, m[i] denotes its i-th

coordinate and m[i ..j] denotes the vector consisting of coordinates

i through j of m. For example if m = (010, 11, 10, 111) then |m| = 4,

m[2] = 11,m[2..4] = (11, 10, 111). By ε we denote the empty vector,

which has length 0. If D is a set, we say that m is a vector over D if

all its components belong to D, and we let D∗ denote the set of all

finite-length vectors overD. Ifm, y are vectors, their concatenation,

denoted m∥y, is the vector (m[1], . . . ,m[|m|], y[1], . . . , y[|y|]). For

example (01, 11, 1)∥(10, 000) = (01, 11, 1, 10, 000).

A string y is identified with a vector over {0, 1}, so that |y |

denotes its length, y[i] denotes its i-th bit and y[i ..j] denotes bits i

through j of y. For example if y = 0100 then |y | = 4, y[2] = 1 and

y[2..4] = 100. In this case, ε denotes the empty string, {0, 1}∗ is the

set of all binary strings, x ∥y denotes the concatenation of strings

x ,y. For example 010∥11 = 01011. By y we denote the bitwise

complement of string y. (For example if y = 010 then y = 101.)

ByN = {0, 1, 2, ...}we denote the set of all non-negative integers.

For p ∈ N with p ≥ 2, we let Zp = {0, 1, . . . ,p − 1} denote the set

of integers modulo p. If x ,n ∈ N satisfy 0 ≤ x < 2n then ⟨x⟩n
denotes the encoding of x as a binary string of length (exactly) n.

For example ⟨7⟩4 = 0111.

If X is a finite non-empty set, we let x ←$ X denote picking an

element ofX uniformly at random and assigning it to x . Algorithms

may be randomized unless otherwise indicated. Running time and

memory usage are worst case. If A is an algorithm, we let y ←

A(x1, . . . ; r ) denote runningAwith random coins r on inputs x1, . . .

and assigning the output toy. We lety←$A(x1, . . .) be the result of

picking r at random and lettingy ← A(x1, . . . ; r ). We let [A(x1, . . .)]

denote the set of all possible outputs ofAwhen invoked with inputs

x1, . . ..

We use the code based game playing framework of [11]. (See

Fig. 1 for an example.) By Pr[G] we denote the probability of the

event that the execution of game G results in the game returning

true. We adopt the convention that the running time of an adver-

sary refers to the worst-case execution time of the game with the

adversary. We adopt the analogous convention for the memory

usage. This means that usually in reductions, adversary time and

memory complexity can be roughly maintained.

3 RS SECURITY FRAMEWORK

Function families. A function family F : F.Keys× F.Inp→ F.Out

is a 2-argument function taking a key fk in the keyspace F.Keys and

an input x in the input space F.Inp to return an output F(fk,x) in

the output space F.Out. For fk ∈ F.Keyswe let Ffk : F.Inp→ F.Out

be defined by Ffk (x) = F(fk,x) for all x ∈ F.Inp.

RS security. Our definition of security for a function family F

is parameterized by a relation R : {0, 1}∗ × {0, 1}∗ × {0, 1}∗ →

{true, false} and a set S ⊆ {0, 1}∗. Different choices of the pair (R, S)

allow us to recover classical definitions including collision resis-

tance, and to specify extensions and variants including constrained

collision resistance. The formalism considers gameGRS
F
(A) of Fig. 1

associated to R, S, F and adversary A. The latter is given the key fk

and a challenge point s drawn randomly from S, and returns some

output denoted out. It wins (the game returns true) if relation R

returns true on inputs fk, s, out. The advantage of Arelative to R, S,

also called its RS advantage, is defined as AdvRSF (A) = Pr[GRS
H
(A)],

the probability that the game returns true.

Collision resistance. Recall that a collision for a function f is a

pair of distinct points x1,x2 in the domain of f such that f (x1) =

f (x2). Classical collision resistance of a function family F asks

that it be hard for an adversary A, given fk, to find a collision

x1,x2 for the function Ffk . In our framework, this is RcrSε security,

where Sε = {ε} consists of just the empty string and Rcr(fk, s, out)

parses out as a pair, (x0,x1) ← out, and returns true iff F(fk,x1) =

F(fk,x2) and x1 , x2, meaning x1,x2 is a collision for Ffk . We

recover familiar notation for collision resistance by letting game

Gcr
F
(A) = G

RcrSε
F
(A) and AdvcrF (A) = Adv

RcrSε
F
(A).

Pre-image resistance. This is a form of one-wayness where the

adversary, given fk and challenge s, tries to recover a pre-image of

s under Ffk . Generalizing [28], our formalization is parameterized

by the set S from which s is drawn, and is obtained via our RS

framework, as follows. Let Rpre(fk, s, out) return true iff Ffk (out) =

s, meaning out ∈ F.Inp is a pre-image of s under Ffk . Then RpreS

security captures pre-image resistance for challenges drawn from

S. We further discuss this notion, and its relation to other types of

pre-image resistance, in Section 8.

Restricted collision resistance. Restricted collision resistance

makes the adversary’s job harder by asking that the collision x1,x2
satisfy some additional condition that will be specified by R. We

will describe the particular restriction we are interested in later in

Section 6.

4 THE MD TRANSFORM

Compression functions. Let h be a family of functions with do-

main h.Inp = h.Bl × h.Out, meaning h : h.Keys × (h.Bl × h.Out)

→ h.Out. A point in the domain is a pair (m, c) where c , called the

chaining variable, is in the range of h, andm, called a message block,

is in the space h.Bl of message blocks. Such an h is called a compres-

sion function. For example the compression function h = sha256 of



Game GRS
F
(A)

fk←$ F.Keys ; s←$ S ; out←$ A(fk, s)

Return R(fk, s, out)

R out R(fk, s, out) returns true iff

Rcr (x1,x2) x1 , x2 and Ffk (x1) = Ffk (x2) Collision resistance

Rpre x Ffk (x) = s Pre-image resistance

Rccr ((m1, c1), (m2, c2), (a1,a2)) Rcr(fk, ε, (m1, c1), (m2, c2)) ∧ (c1 ∈ {s, Ffk (a1)}) ∧ (c2 ∈ {s, Ffk (a2)}) Constrained CR

Figure 1: Top: Game for defining R-security of function family F. Bottom: Some relations we will use. For Rcr we have s = ε . For

Rccr, function family F : F.Keys × (F.Bl × F.Out) → F.Out is a compression function.

H(k,s)(M )

m← Split(M ) ; c ← s ; n ← |m |

For i = 1, . . . , n do c ← hk ((m[i], c))

Return c

Figure 2: Function family H = MD[h, Split, S] obtained by ap-

plying the MD transform to compression function h, split-

ting function Split and space S of initial vectors.

SHA256 has sha256.Bl = {0, 1}512 and sha256.Out = {0, 1}256. Its

key space sha256.Keys = {k} is a singleton, where k consists of 64

32-bit strings which are the first 32 bits of the fractional parts of

the cube roots of the first 64 primes [25].

Splitting functions. Let Split : Split.Inp → Split.Bl∗ be a func-

tion that takes a message M ∈ Split.Inp and returns a vector

m = Split(M) over a set Split.Bl. We require that this function is in-

jective, and there is an inverse Split−1 : Split.Bl∗ → Split.Inp∪{⊥}

such that Split−1(m) = M ifm = Split(M) and ⊥ otherwise. We call

Split a splitting function. The domain Split.Inp is expected to be a

large set, usually all strings of length up to some very high maxi-

mum. In usage, Split.Bl = h.Bl will be the set of message blocks for

a compression function.

The MD transform. Let h : h.Keys × (h.Bl × h.Out) → h.Out be

a compression function. Let Split : Split.Inp→ h.Bl∗ be a splitting

function whose range Split.Bl∗, as the notation indicates, is h.Bl∗.

Let S ⊆ h.Out be a set of starting points, also called initial vectors.

The MD transform MD[h, Split, S] associates to them the family of

functions H that is defined as follows. Let H.Inp = Split.Inp be the

set of messages that are possible inputs to the splitting function.

Let H.Out = h.Out. Let H.Keys = h.Keys× S, so that a key for H is

a pair (k, s) consisting of a key k for the compression function and

a particular starting point (initial vector) s ∈ S. Then H is specified

in Fig. 2.

Splitting in SHA. Our rendition of MD generalizes prior ones,

both from the literature [1, 14, 23] and from standards [25], all of

which can be seen as particular choices of Split and S. We illustrate

by recovering SHA256 asMD[sha256, SplitSha(µ,e), {s}] for choices

of the components that we now specify. The compression function

sha256 : {k} × ({0, 1}512 × {0, 1}256) → {0, 1}256 is of course the

compression function of SHA256 as per [25], with k the 64 · 32 bit

key discussed above. The starting point s, as specified in [25], is a

256-bit string, viewed as 8 32-bit blocks which are the first 32 bits

of the square roots of the first 8 primes. We define SplitSha(µ,e) as

the general splitting function for the SHA function families: SHA1,

SHA256, SHA512. It is parameterized by µ, the block length, and e,

the length of the encoding of the message length. These values are

shown for each SHA function in Fig. 4. Specifically for SHA256, µ =

512 and e = 64. To define SplitSha(µ,e), first define function pad(µ,e)

to take as input an integer L, with 0 ≤ L < 2e , and return 1∥0ℓ ∥⟨L⟩
e
,

where ⟨L⟩
e
is an e-bit encoding of L, and ℓ ≥ 0 is the smallest integer

such that L + e + 1 + ℓ is a multiple of µ. Let SplitSha.Inp be the

set of all strings of length at most 2e , and let SplitSha.Bl = {0, 1}µ .

The function SplitSha : SplitSha.Inp → SplitSha.Bl∗, on input M ,

lets L = |M | be the length ofM , and lets X = M ∥pad(µ,e)(L). Note

that the length of string X is a multiple of µ. Let n ← |X |/µ, and

let m[i] = X [1 + µ(i − 1)..µi] be the µ bit-block consisting of bits

1+µ(i−1) through µi ofX , for 1 ≤ i ≤ n. Then SplitSha(M) returns

m, which is a vector over {0, 1}µ .

5 CR PRESERVATION OF MD

Here we recall the classical problem of showing collision resistance

of the hash function H = MD[h, Split, S] assuming only collision

resistance of the compression function h. As noted in the intro-

duction, several works have noted that suffix-freeness of Split is

sufficient for this purpose [1, 5, 17, 18]. For completeness, we will

provide a formal claim together with the (easy) proof in our setting.

We then expand on this knowledge to establish a novel result

that the property of being suffix-free is precisely the property re-

quired for this proof; it is a necessary condition in addition to being

sufficient. To demonstrate this, we construct, for any splitting func-

tion which is not suffix-free, a compression function that is collision

resistant in isolation, but for which the result of applying the MD

transform is not collision resistant.

Suffix-freeness. Let x ,y ∈ D∗ be vectors over a set D. We say

that x is a suffix of y, written y ⊒ x , if there exists a vector z ∈ D∗

such that y = z∥x . (The notation y ⊒ x is intended to visual-

ize x being the right-hand side of y.) For example, (10, 11) is a

suffix of (00, 11, 10, 11), namely (00, 11, 10, 11) ⊒ (10, 11), by let-

ting z = (00, 11). However, (01, 11) is not a suffix of (00, 11, 10, 11),

namely (00, 11, 10, 11) A (01, 11). We say that splitting function

Split : Split.Inp → Split.Bl∗ is suffix-free if for any two distinct



SplitSha(µ,e)(M )

L ← |M |

X ← M ∥pad(µ,e)(L) ; n ← |X |/µ

For 1 ≤ i ≤ n do

m[i] ← X [1 + µ(i − 1)...µi]

Return m

pad(µ,e)(L)

ℓ ← (µ − e − 1 − L) mod µ

Return 1∥0ℓ ∥ ⟨L⟩
e

Figure 3: SplitSha and pad, the splitting function and padding

function, respectively, of the SHA function families. They

are parameterized by µ, the block length, and e, the length

of the encoding of the message length.

Function µ σ e

SHA1 512 160 64

SHA256 512 256 64

SHA512 1024 512 128

Figure 4: Choices of parameters across different hash func-

tions.

messages M1,M2 ∈ Split.Inp we have Split(M1) A Split(M2), that

is, Split(M2) is not a suffix of Split(M1).

Suffix-freeness of SplitSha. We discussed above how SHA256 is

underlain by a particular splitting function that we defined and

called SplitSha(µ,e). Here we show that this function is suffix-free

to provide an example of a suffix-free scheme.

Proposition 5.1. The function SplitSha(µ,e) is suffix-free.

Proof. (of Proposition 5.1) Let M1,M2 ∈ SplitSha(µ,e).Inp be

distinct. Consider when |M1 | , |M2 |. Then the last blocks of

vectors SplitSha(µ,e)(M1) and SplitSha(µ,e)(M2) are, respectively,

pad(µ,e)(|M1 |) and pad(µ,e)(|M2 |). But then ⟨|M1 |⟩e , ⟨|M2 |⟩e , which

implies pad(µ,e)(|M1 |) , pad(µ,e)(|M2 |) and so neither vector can

be a suffix of the other.

We now consider the case when |M1 | = |M2 |. This will imply

that |SplitSha(µ,e)(M1)| = |SplitSha(µ,e)(M2)|. Then in order for

SplitSha(µ,e)(M1) ⊒ SplitSha(µ,e)(M2) or the opposite to hold it

must be that SplitSha(µ,e)(M1) = SplitSha(µ,e)(M2). Notice that

SplitSha(µ,e)(M) prepends the messageM to its output. SinceM1 ,

M2, we have that SplitSha(µ,e)(M1) , SplitSha(µ,e)(M2) and so

SplitSha(µ,e)(M1) A SplitSha(µ,e)(M2) as required. □

The structure of MD collisions. We now proceed to a simple

lemma about the structure of collisions in the MD transform. This

will be used for our proof that the MD transform preserves collision

resistance when the splitting function is suffix-free. This lemma

argues the correctness of an algorithm Bcr to formalize the obser-

vation that ifM1,M2 form a collision for the MD transform with a

suffix-free splitting function, then by examining the computation

of the hash function on these inputs we can easily find a collision

for the underlying compression function.

Lemma 5.2. Let h be a compression function, let Split be a split-

ting function with Split.Bl = h.Bl and let S ⊆ h.Out be a set of

possible starting points. Let H = MD[h, Split, S] be the hash function

associated to these components via the MD transform of Fig. 2. Let

k ∈ h.Keys, s ∈ S. Suppose M1,M2 ∈ Split.Inp are a pair of dis-

tinct messages satisfying (1) Split(M1) A Split(M2) and Split(M2) A

Split(M1) and (2) M1,M2 are a collision for H(k,s). Then, on inputs

(k, s),M1,M2, algorithm Bcr of Fig. 5 returns (x1, c1), (x2, c2) that

form a collision for hk .

Proof. (of Lemma 5.2) From algorithm Bcr, let m1 = Split(M1),

m2 = Split(M2), n1 = |m1 |, and n2 = |m2 |. First Bcr computes the

vectors of chaining variables, c1 and c2 as shown in the pseudocode.

Assume (without loss of generality) that n1 ≥ n2, i.e. that |m1 | ≥

|m2 |. SinceM1,M2 are a collision for H(k,s), we have H(k,s)(M1) =

H(k,s)(M2). Because m1 ̸⊒ m2 and m2 ̸⊒ m1, there must exist i ∈

{0, . . . ,n2−1} such that (m1[n1−i], c1[n1−i]) , (m2[n2−i], c2[n2−

i]). Let j represent the minimal such value. Then it will hold that

c1[n1 − j + 1] = c2[n2 − j + 1]. Thus, the pair (m1[n1 − j], c1[n1 − j]),

(m2[n2− j], c2[n2− j]), return by Bcr will form a collision for hk . □

Suffix-freeness preserves CR. Finally, we show a reduction from

the collision resistance of the hash function H = MD[h, Split, S] to

the collision resistance of the compression function h when using

a suffix-free splitting function Split.

Theorem 5.3. Let h be a compression function, let Split be a suffix-

free splitting function with Split.Bl = h.Bl and let S ⊆ h.Out be a

set of possible starting points. Let H = MD[h, Split, S] be the hash

function associated to these components via the MD transform of

Fig. 2. Given an adversary AH, let Ah be the adversary of Fig. 5 using

Bcr.

Then

AdvcrH (AH) ≤ Advcr
h
(Ah). (1)

The time complexity of Ah is the sum of the time complexities of

AH and Bcr. The memory complexity of Ah is the maximum of the

memory complexity of AH and the memory complexity of Bcr.

In Section 9, we revisit this and other reductions to give alterna-

tive reductions that are more memory-efficient [4].

Proof. (of Theorem 5.3) It is clear that the time and memory

complexity of adversary Ah are as stated in the theorem.

Let k ∈ h.Keys, s ∈ S be the values sampled whenAh is executed

andM1,M2 ∈ Split.Inp be the values returned byAH. Suppose they

form a collision for H(k,s).

Then we have Split(M1) A Split(M2) and Split(M2) A Split(M1)

because Split is suffix-free, so they fulfill the conditions of Lemma 5.2

and is Bcr guaranteed to return a collision for hk . As an immediate

result Equation (1) holds, completing the proof. □

Necessity.We can now complete the picture for splitting functions

when assuming the compression function is collision resistant by

showing that the suffix-free restriction is precisely the correct re-

striction on the splitting function. In particular, we will establish



Adversary Ah(k, ε )

s←$ S ; (M1, M2) ← AH((k, s), ε )

Return Bcr((k, s), M1, M2)

Algorithm Bcr((k, s), M1, M2)

m1 ← Split(M1) ; m2 ← Split(M2) ; n1 ← |m1 | ; n2 ← |m2 |

c1[1] ← s ; c2[1] ← s

For i = 1, . . . , n1 do c1[i + 1] ← hk ((m1[i], c1[i]))

For i = 1, . . . , n2 do c2[i + 1] ← hk ((m2[i], c2[i]))

n ← min(n1, n2)

For i = 0, . . . , n − 1 do

(x1, c1) ← (m1[n1 − i], c1[n1 − i])

(x2, c2) ← (m2[n2 − i], c2[n2 − i])

If (x1, c1) , (x2, c2) then return ((x1, c1), (x2, c2))

Return ⊥

Figure 5: Adversary Ah for the proof of Theorem 5.3 and al-

gorithm Bcr for Lemma 5.2.

that Split being suffix-free is a necessary condition for proving that

MD[h, Split, S] is secure under the assumption that h is collision

resistant, in addition to a sufficient one.

Given an arbitrary splitting function Split and a pair of inputs

M1,M2 such that Split(M1) ⊒ Split(M2), we construct a compres-

sion function h which is collision resistant (from another function

which we assume to be collision resistant), but for which the pair

M1,M2 is a collision for MD[h, Split, S] (with high probability over

the choice of s ∈ S in the case that S = h.Out).

For simplicity, we will first consider the simpler case when S

consists of a single, fixed value s onwhich our choice of compression

function can depend. For this case, we can directly construct the

compression function so that when chained with the starting value

s on the blocks contained uniquely in Split(M1) but not those in

Split(M2), it "loops" back to s. We then extend this technique to

cover the case when S is some larger set from which s is sampled

randomly.

It will be convenient to describe our results in terms of the MD

transform applied to messages that have already been split into

blocks. For any set Bl we let I : Bl∗ → Bl∗ be the splitting function

which simply outputs its input unchanged. For some compression

function h and set S , let HI
= MD[h, I, S]. We will informally say

that h loops on (s, u) if HI
(k,s)
(u) = s for all k ∈ h.Keys. The fol-

lowing lemma observes that if h loops on (s, u) and Split(M1) =

u∥Split(M2), then the pairM1,M2 is a collision forMD[h, Split, S].

Lemma 5.4. Let h : h.Keys × (h.Bl × h.Out) → h.Out be a com-

pression function, Split : Split.Inp → h.Bl∗ be a splitting function,

and S ⊆ h.Out be a set of starting points. Let H = MD[h, Split, S] be

the hash function associated to these components via the MD trans-

form of Fig. 2. Let I be the splitting function described above and

HI
= MD[h, I, S] be the corresponding hash function obtained via

the MD transform. SupposeM1,M2 ∈ Split.Inp are a pair of distinct

messages satisfying Split(M1) ⊒ Split(M2). Let u be the vector for

which Split(M1) = u∥Split(M2). For any choice of (k, s) ∈ H.Keys, if

HI
(k,s)
(u) = s thenM1,M2 is a collision for H(k,s).

Proof. (of Lemma 5.4) First note that for any vectorsm, y ∈ Bl∗,

HI
(k,s)
(m∥y) = HI

(k,s′)
(y) where s′ = HI

(k,s)
(m). This is a simple

observation from the code of the MD transform shown in Fig. 2.

The chaining variable c[|m| + 1] obtained during the computation

of HI
(k,s)
(m∥y) would be the output of HI

(k,s′)
(m). The rest of the

computation then exactly mirrors HI applied to y with c[|m| + 1]

serving the role of the starting point.

Using this observation, the proof is straightforward. We can

rewrite H on inputM1 as follows

H(k,s)(M1) = HI
(k,s)(u∥Split(M2))

= HI
(k,s′)(Split(M2))

= H(k,s′)(M2)

where s′ = HI
(k,s)
(u). From our assumption, this equals s. Thus

H(k,s)(M1) = H(k,s)(M2), as desired. □

First we will handle the case when the s used for the MD trans-

form is an a priori fixed value.

Proposition 5.5. Let Split be a splitting function andM1,M2 ∈

Split.Inp satisfy Split(M1) ⊒ Split(M2). Let u be the vector for which

it holds that Split(M1) = u∥Split(M2). Let b ∈ N and a = b + |u|. Let

f be a family of functions with f.Inp = Split.Bl×Za and f.Out = Zb .

Then we can build a compression function gu (shown in Fig. 6,

with g.Inp = f.Inp and g.Out = Za ) such that for all adversaries A,

Advcrgu (A) ≤ Advcr
f
(A). Furthermore, letting G = MD[gu, Split, {0}],

we can build an efficient adversary B (shown in Fig. 6) such that

AdvcrG (B) = 1.

The compression function gu above is specifically defined in a

contrived way so that it loops on (0, u) and thusM1,M2 is a collision

for the MD transform.

In the above we fixed the starting point s to 0 and the set of

chaining variables gu.Out to Za . This is without loss of generality

because the lemma can easily be extended to any reasonable choice

of gu.Out and fixed s ∈ gu.Out by choosing an efficiently com-

putable and invertible mapping e(·) : gu.Out → Z |gu .Out | which

satisfies e(s) = 0.

Proof. (of Proposition 5.5) We will first show that any colli-

sion for gu is also a collision for f by proving that if gu
k
((m, c)) =

gu
k
((m′, c ′)) it either holds that (m, c) = (m′, c ′) or that fk ((m, c)) =

fk ((m
′, c ′)). As such, suppose gu

k
((m, c)) = gu

k
((m′, c ′)).

Note that the first return statement of gu always outputs a value

less than |u| while the second always outputs a value greater than

|u|. We can consider these two cases separately.

Let us first suppose that gu
k
((m, c)) < |u|. This then means that

c + 1 = c ′ + 1 (mod |u|), so c and c ′ must be the same (because the

condition of the if statement guarantees that both are less than |u|).

The if statement inside gu must evaluate to true for both pairs, so

we havem = u[c + 1] = u[c ′ + 1] =m′ and so (m, c) = (m′, c ′).

Now consider the other case, that gu
k
((m, c)) ≥ |u|. Then this

must mean that fk ((m, c)) + |u| and fk ((m
′, c ′)) + |u| are the same

and so fk ((m, c)) = fk ((m
′, c ′)).

Because any collision for gu is also a collision for f, for any

adversary A it must hold that Advcrgu (A) ≤ Advcr
f
(A).



gu
k
((m, c))

If (c < |u |) and (m = u[c + 1])

Return c + 1 mod |u |

Return fk ((m, c)) + |u |

Adversary B(k, s)

Return (M1, M2)

hu
k
((m, c))

(bc , qc , rc ) ← c

If (bc = 0) and (m = u[rc + 1])

Return (0, qc , (rc + 1 mod |u |))

(q, r ) ← fk ((m, c))

Return (1, q, r )

Figure 6: Compression functions and adversary used for

Proposition 5.5 and Theorem 5.6.

To prove thatBhas advantage 1, we will make use of Lemma 5.4

by showing that HI
(k,0)
(u) = 0 where HI is defined as in the lemma.

Let c be the vector of values that would be obtained in the compu-

tation of HI
(k,0)
(u); that is, let c[1] = 0 and c[i + 1] = gu

k
((u[i], c[i]))

for i = 1, . . . , |u|.

Following the code of gu we can then see that its if statement will

always evaluate to true in this computation and so c[i+1] = c[i]+1

(mod |u|) holds for all i . Consequently, c[i] = i for i = 1, . . . , |u|

and then c[|u| + 1] = 0. The latter is the value returned by HI so

HI
(k,0)
(u) = 0 and the pair M1,M2 is a collision for H. It follows

that the advantage of B is exactly 1. □

The lemma above might seem somewhat contrived, because

we allowed our compression function g to depend on the starting

point used for the MD transform. This makes it, in some senses,

a weak result and one might naturally wonder this dependency

was necessary for the result. It is not. At the cost of some added

complexity and lost success probability for Bwe can extend this to

the case when s is randomly chosen from some set instead of fixed.

Theorem 5.6. Let a ∈ N. Let Split be a splitting function. Suppose

Split(M1) ⊒ Split(M2) and in particular Split(M1) = u∥Split(M1).

Let f be a family of functions with f.Inp = Split.Bl×(Z2 ×Za ×Z |u |)

and f.Out = Za × Z |u | .

Now let hu : Split.Bl × (Z2 × Za × Z |u |) → Z2 × Za × Z |u | be the

compressions function shown in Fig. 6. For all adversary A, it holds

that Advcr
hu
(A) ≤ Advcr

f
(A). Furthermore, letting S = hu.Out and

H = MD[hu, Split, S], we can build an efficient adversary B (shown

in Fig. 6) satisfying,

AdvcrH (B) ≥ 1/(2|u|).

The compression function hu above is specifically designed so

that it loops on s, u for any s of the form (0,q, 0), giving the desired

collision between M1 and M2 with the specified probability over

the random choice of s

Again, this theorem can be extended to cover any reasonable

choice of hu.Out. One can firstmap hu.Out toZ |hu .Out | as discussed

earlier. Then from c ∈ Z |hu .Out | one can obtain the tuple (bc ,qc , rc )

via bc ← c mod 2, y ← ⌊c/2⌋, rc ← y mod |u|, and qc ← ⌊y/2⌋.

There are technical details to be considered regarding the fact that

2 and |u| may not be divisors of |hu.Out| and that S may not be

łnicely” distributed in Z |hu .Out | , but for any reasonable choice of

hu.Out and S this should not be an issue.

For our theorems we have assumed that we were given a pair

M1,M2 such that Split(M1) ⊒ Split(M2). It is not difficult to come

up with (contrived) splitting functions which are not suffix-free, but

for whichwe believe it is computationally difficult to find such a pair.

We chose our formalization that M1 and M2 are a priori known

because, for specific, prior splitting functions, either they were

suffix-free, or it was trivially easy to findM1 andM2 violating suffix-

freeness. An alternative way to address this would be to make suffix-

freeness a computational condition, and then say that, given an

adversary returningM1 andM2 violating suffix-freeness with high

probability, we build our compression function and adversary. (Of

course, one might then ask about finding the adversary, analogous

to keyless collision resistance, but the philosophical position would

at least seem on par with prior ones.)

Proof. (of Theorem 5.6) The basic structure of this proof closely

follows that of the proof for Proposition 5.5. Throughout this proof

for a string c we will let bc ,qc , rc denote the corresponding values

used by hu on input (m, c) for some c .

To start, we will show that any collision for hu is also a collision

for f by proving that if hu
k
((m, c)) = hu

k
((m′, c ′)) it either holds that

(m, c) = (m′, c ′) or that fk ((m, c)) = fk ((m
′, c ′)). As such, suppose

hu
k
((m, c)) = hu

k
((m′, c ′)).

Note that the first return statement of hu always outputs a tuple

whose first element is 1 while the second always outputs a tuple

whose first element is 0. We will consider these two cases separately.

Let y = hu
k
((m, c)) and y′ = hu

k
((m′, c ′)).

Let us first suppose that y[1] = 0. This means that qc = qc ′

and rc + 1 = rc ′ + 1 (mod |u|). The if statement in hu must have

evaluated to true on both inputs so we have bc = 1 = bc ′ and

m = u[rc + 1] = u[rc ′ + 1] =m
′. Putting this all together, we have

shown that (m, c) = (m′, c ′).

Now consider the other case when y[1] = 1. Then we have that

fk ((m, c)) = fk ((m
′, c ′)).

Because any collision for hu is also a collision for f, for any

adversary A it must hold that Advcr
h
(A) ≤ Advcr

f
(A).

To prove our statement about the advantage of Bwe will make

use of Lemma 5.4 and bound the probability that HI
(k,s)
(u) = s over

the random choice of s (where HI is defined as in the lemma).

Suppose s is of the form (0,q, 0) for some q ∈ Za . Let c be the

vector of values that would have been obtained in the computation

of HI
(k,s)
(u); that is, let c[1] = s and c[i + 1] = hu

k
((u[i], c[i])) for

i = 1, . . . , |u|.

Following the code of hu we can see that the if statement will

always return true in this computation, and so c[i] = (0,q, i) for

i = 1, . . . , |u| and then c[|u| + 1] = (0,q, 0) = s. The latter is the

value returned byHI soHI
(k,s)
(u) = s as desired and the pairM1,M2

is a collision for H.

Then the advantage of B is bounded by the probability that s is

of the form (0,q, 0) which is exactly 1/(2|u|). □



hs
k
((m, c))

If c[1] = s[1] then return s[1] ∥h′
k
((m, c[2... |c |]))

Return s

Figure 7: hs
k
for Proposition 6.1, Proposition 6.2, and Propo-

sition 6.3

6 WEAKENING ASSUMPTIONS ON H

In this section we improve on the classic result that the collision

resistance of h guarantees that H will be collision resistant. In par-

ticular, we will explore the possibility of weakening the assumption

made of h and provide a natural, less stringent variation of collision

resistance from which we are able to assure the collision resistance

of h obtained via the MD transform.

Using a non-CR h. We have shown that the collision resistance

of the compression function h implies the collision resistance of

the hash function H obtained by the MD transform. However, the

collision resistance of H may not always rely on h being collision

resistant. We will show by construction that H can be collision

resistant even when h is not.

Let b, c ∈ N. Given a compression function h′ : h′.Keys ×

({0, 1}b × {0, 1}c ) → {0, 1}c and some s ∈ {0, 1}c+1, we construct

the compression function hs : h′.Keys × ({0, 1}b × {0, 1}c+1) →

{0, 1}c+1 shown in Fig. 7. Let Split be a suffix-free splitting function

with Split.Bl = h.Bl and define the set of starting points by S = {s}.

Let H = MD[hs, Split, S] be the hash function associated to these

components via the MD transform of Fig. 2. We will think of h′

as being a good collision resistant compression function. Then we

will show that while hs is a poor collision resistant compression

function, H nonetheless remains a good collision resistant hash

function.

The idea motivating our construction of hs should be clear. Cre-

ating a collision for hs is trivial by making the if statement evaluate

to false. However, when hs is used inside of the MD transform with

s as a starting point, this case will never occur.

Proposition 6.1. Let M1 = (0
b , s), M2 = (1

b , s), and B be the

adversary shown in Fig. 6. Then Advcr
hs
(B) = 1.

Put simply, the above tells us that hs is not collision resistant

because B is clearly efficient.

Proof. (of Proposition 6.1) When we compute hs
k
(M1), we see

that s[1] , s[1], so s is returned. Similarly, s is returned when we

compute hs
k
(M2). Notice thatM1 , M2 yet h

s
k
(M1) = hs

k
(M2). Thus,

hs is not collision resistant. □

The following proposition is a useful stepping stone for showing

that H is collision resistant if h′ is.

Proposition 6.2. Let k ∈ h′.Keys. Then for each iteration of hs
k

in the computation of Hk , h
s
k
never returns s.

Proof. (of Proposition 6.2) FixM ∈ Split.Inp and let m, c be the

vectors computed by Hk (M). Suppose, for a contradiction, that for

some i from 1 to |m|, hs
k
(m[i], c[i]) = s and let d = s[1]. Note then

the first bit of c[i] must be d because the if statement in hs
k
must

Adversary Ah′ (k, ε )

s←$ S ; (M1, M2) ← AH((k, s), ε )

((m1, c1), (m2, c2)) ← Bcr((k, s), M1, M2)

Return ((m1, c1[2... |c1 |]), (m2, c2[2... |c2 |]))

Figure 8: Adversary Ah′ for the proof of Proposition 6.3

have evaluated to false. Essentially the same reasoning implies the

first bit of c[i − 1] is d .

We can continue this argument for each i back to 1. However,

this contradicts the fact that c[1] = s, so hs
k
never returns s. □

Proposition 6.3. Given an adversaryAH, letAh′ be the adversary

of Fig. 8. Then

AdvcrH (AH) ≤ Advcr
h′
(Ah′). (2)

The time complexity of Ah is the sum of the time complexities of

AH and Bcr. The memory complexity of Ah is the maximum of the

memory complexity of AH and the memory complexity of Bcr.

Notice that Equation (2) tells us that if h′ is collision resistant,

then H is as well. Let AH be a practical adversary against H. Then

Ah′ is also practical because its efficiency is about that of AH. This

means that if h′ is collision resistant,Advcr
h′
(Ah′) is low. Equation (2)

tells us that AdvcrH (AH) will be at most Advcr
h′
(Ah′), which means

H is also collision resistant.

Proof. (of Proposition 6.3) The facts about the time andmemory

of Ah′ are clear from its pseudocode.

Nowwe claim that if themessage pairM1,M2 returned byAH is a

collision forH(k,s) thenAh′ will return a collision for h
′
k
. Adversary

Ah′ takes input k ∈ h.Keys. It then runs AH on input ε given key

(k, s) to get a pair of messages (M1,M2) in Split.Inp. Then it runs

Bcr to obtain a pair of inputs to h, which we will refer to as (m1, c1)

and (m2, c2). It then returns these (after removing the first bits of

c1 and c2).

Suppose M1,M2 is a collision for H(k,s). Since Split is suffix-

free, Split(M1) A Split(M2) and Split(M2) A Split(M1). Then by

Lemma 5.2, we know that Bcr will have returned a collision for hs
k
.

From Proposition 6.2 we also know that hs
k
((m1, c1)) , s and

hs
k
((m2, c2)) , s. Then it must be the case that they cause the if

statement in hs to evaluate to true and so h′
k
((m1, c1[2...|c1 |])) =

h′
k
((m2, c2[2...|c2 |])). Furthermore, (m1, c1) , (m2, c2) and c1[1] =

c2[1] = s[1], so (m1, c1[2...|c1 |]) , (m2, c2[2...|c2 |]) and thus they

form a collision for h′
k
.

Therefore, adversary Ah′ finds a collision in h′
k
whenever AH

does forH(k,s). This justifies Equation (2), completing the proof. □

Defining a new constraint for CR. The previous example es-

tablished that traditional definitions of collision resistance with the

MD transform do not fully capture the security behind the con-

struction. Although the compression function h used to construct

the hash function H was not collision resistant, we were still able

to prove the collision resistance of H.

An obvious question at this point is whether there is a natural,

weaker assumption we could place on h from which we can still



prove H is collision resistant. We answer this in the affirmative

with a new security definition in the RS security framework. For

this, we now define a new relation which is strictly harder for the

adversary to satisfy than Rcr, making it a weaker assumption on

h. Despite this, we can recover our result that the MD transform

is fully collision resistant under the assumption that h is RcrS se-

cure for any suffix-free splitting function. We call our new security

definition constrained collision resistance, or Rccr, and provide the

pseudocode for the relation below. We previously defined Rccr in

Fig. 1.

Relation Rccr(k, s, out)

(x1,x2,a1,a2) ← out ; (m1, c1) ← x1 ; (m2, c2) ← x2
coll← Rcr(k, ε, ((m1, c1), (m2, c2)))

valid← ((c1 ∈ {s, hk (a1)}) and (c2 ∈ {s, hk (a2)}))

Return (coll and valid)

This relation makes the adversary’s job harder than for collision

resistance by putting further restrictions of the collisions it is al-

lowed to submit. In particular, it requires that for both chaining

variables in the collision submitted by the adversary, this chaining

variable must be s or the adversary must know a pre-image for it.

Now we proceed to proving that the MD transform gives a colli-

sion resistant hash function if the splitting function is suffix-free

and the compression function is constrained-collision resistant.

This result helps provide some theoretical understanding to the

observation that collisions in the compression functions underly-

ing MD-style hash functions tend not to immediately result in the

entire hash function being broken.

Theorem 6.4. Let h be a compression function, let Split be a suffix-

free splitting function with Split.Bl = h.Bl and let S ⊆ h.Out be a

set of possible starting points. Let H = MD[h, Split, S] be the hash

function associated to these components via the MD transform of

Fig. 2. Given an adversary AH, let Ah be the adversary of Fig. 9 using

algorithm Bccr. Then

AdvcrH (AH) ≤ Adv
RccrS
h
(Ah). (3)

The time complexity of Ah is the sum of the time complexities of

AH and Bccr. The memory complexity of Ah is the maximum of the

memory complexity of AH and the memory complexity of Bccr.

The algorithm Bccr mentioned above (and defined in Fig. 9) is an

extension of Bcr to also return the values a1,a2 expected by Rccr.

We discuss it in more detail in the proof.

Equation (1) tells us that if h is constrained-collision resistant,

thenH is collision resistant. LetAH be a practical adversary against

H. Then Ah is also practical because its efficiency is about that

of AH. If h is constrained collision resistant, then Adv
RccrS
h
(Ah)

will be low. Equation (3) tells us that AdvcrH (AH) will be at most

Adv
RccrS
h
(Ah), which means H is collision resistant.

Proof. (of Theorem 6.4) The claimed bounds on the complexity

of Ah are clear from its pseudocode.

Adversary Ah takes as input a random (k, s) ∈ h.Keys × S. It

runsAH on input ε and key (k, s) to get a pair of messages (M1,M2)

in Split.Inp. Note this exactly matches the input distribution AH

expects to be given. Adversary Ah can then run the algorithm

Bccr shown in Fig. 9 with inputs ((k, s),M1,M2) for it to extract a

collision and appropriate information about the pre-images of this

collision, if required.

Assume thatM1,M2 is a collision for H(k,s). Since Split is suffix-

free, Split(M1) A Split(M2) and Split(M2) A Split(M1).

Wemay think of Bccr as a similar algorithm to Bcr, with the added

task of finding pre-images for the chaining variables in its colliding

messages. Indeed, Bccr creates the vectors of chaining variables, c1
and c2, and searches for a collision in the same way as Bcr, returning

this message pair at which it found a collision. Thus, Lemma 5.2

guarantees that the pair (m1, c1), (m2, c2) forms a collision for hk .

We must verify that a1,a2 returned by Bccr additionally satisfies

c1 ∈ {s,hk (a1)} and c2 ∈ {s,hk (a2)}. Let m1, c1,n1 and m2, c2,n2
be the values calculated by Bccr when run by AHH .

First suppose that Bccr halts in the middle of the execution of its

for loop. Then it is clear for the manner they were created that a1
will be a pre-image for c1 and a2 will be a pre-image for c2.

Now suppose that Bccr does not halt until after the for loop is

complete. We will separately analyze the case that n1 = n2 and the

case that n1 , n2. In the former case the chaining variables c1 and

c2 specifying the collision are c1[1] and c2[1], respectively. Since

these are both equal to s, Ah does not need to provide a pre-image

for them and we are done. In the latter case the above reasoning

tells us that cb = s (because cb corresponds to the shorter vector)

and so a pre-image is not required for it. This will, presumably,

not hold for c3−b (which corresponds to the longer vector), so a

pre-image is required for it. As with our earlier analysis we can see

that a3−b is a pre-image for c3−b under hk . Then for compactness

Ah arbitrarily returns this pre-image for both messages and we are

again done.

Thus, on any input (k, s), adversary Ah finds a constrained

collision in hk when AH finds a collision in H(k,s). This justifies

Equation (3). □

A CCR h. With the introduction of RccrS security, one might ask

whether this assumption is necessary for any h to produce an MD

transform that is collision resistant. It is, in fact, not necessary,

although it is sufficient. Indeed, the compression function hs
k
given

in Fig. 7 is itself not RccrS secure, yet we have shown that it results

in a collision resistant MD transform. We prove this result below.

This shows that an assumption on h even weaker than CCR could

suffice, and the benefit of our framework is that one could easily

do so. However, one has to make some value judgment about the

tradeoff between the assumptions and the result. In the extreme,

the assumption on h could just be that the MD transform on it is

RcrS secure, which is not a useful result. The advantage of RccrS

is that it is appropriately balanced: it is meaningfully weaker than

RcrS, yet the implication that the MD transform is RcrS secure is

still non-trivial.

Proposition 6.5. Let M1 = a1 = (0
b , s), M2 = a2 = (1

b , s), and

Bhs be the adversary shown in Fig. 10. Then Adv
RccrS
hs
(Bhs ) = 1.

Put simply, the above tells us that hs is not constrained collision

resistant because Bhs is clearly efficient.



Algorithm Bccr((k, s), M1, M2)

m1 ← Split(M1) ; m2 ← Split(M2) ; n1 ← |m1 | ; n2 ← |m2 |

c1[1] ← s ; c2[1] ← s

For i = 1, . . . , n1 do c1[i + 1] ← hk ((m1[i], c1[i]))

For i = 1, . . . , n2 do c2[i + 1] ← hk ((m2[i], c2[i]))

b ← argmind (nd )

For i = 0, . . . , nb − 2 do

(m1, c1) ← (m1[n1 − i], c1[n1 − i])

(m2, c2) ← (m2[n2 − i], c2[n2 − i])

a1 ← (m1[n1 − i − 1], c1[n1 − i − 1])

a2 ← (m2[n2 − i − 1], c2[n2 − i − 1])

If (m1, c1) , (m2, c2) then

return ((m1, c1), (m2, c2), a1, a2)

If n1 = n2 then

(m1, c1) ← (m1[1], c1[1]) ; (m2, c2) ← (m2[1], c2[1])

a1 ← 1;a2 ← 2

Return ((m1, c1), (m2, c2), a1, a2)

(m1, c1) ← (m1[n1 − nb + 1], c1[n1 − nb + 1])

(m2, c2) ← (m2[n2 − nb + 1], c2[n2 − nb + 1])

a3−b ← (m3−b [n3−b − nb ], c3−b [n3−b − nb ])

ab ← a3−b
Return ((m1, c1), (m2, c2), a1, a2)

Adversary Ah(k, s)

(M1, M2) ← AH((k, s), ε )

Return Bccr((k, s), M1, M2)

Figure 9: Adversary Ah for the proof of Theorem 6.4

Adversary Bhs (k, s)

Return (M1, M2, a1, a2)

h†
k
((m, c))

If (m, c) ∈ {(0b, 1∥0c ), (1b, 12 ∥0c−1)}

Return 1c+1

Return 0∥h′
k
((m, c))

Adversary Bh′′ (k, ε )

((m1, c1), (m2, c2), a1, a2) ← Ah† (k, ε )

Return ((m1, c1), (m2, c2))

Figure 10:Bhs for Proposition 6.5,h
†
k
for Proposition 6.6, and

Bh′′ for Proposition 6.6

Proof. (of Proposition 6.5) As shown in the proof of Proposi-

tion 6.1, M1 and M2 form a collision for hs. Notice that for M1 =

(0b , s), a preimage for s is simplyM1 itself. SimilarlyM2 is a preim-

age for s. We thus let a1 = M1 and a2 = M2. Therefore, h
s is not

constrained collision resistant. □

A natural question that might arise is whether RccrS security

is actually strictly weaker than RcrS. With the revelation that hs
k

in Fig. 7 is not RcrS secure, is there any compression function

that is RccrS secure yet is not RcrS secure? We claim that such a

compression function does exist and give an example in Fig. 10.

We again let b, c ∈ N. Given a good collision resistant func-

tion h′′ : h′′.Keys × ({0, 1}b × {0, 1}c+1) → {0, 1}c , we construct

the compression function h† : h′′.Keys × ({0, 1}b × {0, 1}c+1) →

{0, 1}c+1 shown in Fig. 10.

It is clear that h† is not collision resistant, since for the distinct

inputs (0b , 1∥0c ) and (1b , 12∥0c−1) it returns 1c+1. Despite this, we

now show that h† is instead constrained collision resistant.

Proposition 6.6. Given an adversary Ah† , let Bh′′ be the adver-

sary of Fig. 10. Then

Adv
RccrS

h†
(Ah† ) ≤ Advcr

h′′
(Bh′′) (4)

and both the time and memory complexity of Bh′′ are about that of

Ah† .

Notice that Equation (4) tells us that if h′′ is collision resistant,

then h† is constrained collision resistant. Let Ah† be a practical ad-

versary against h†. Then Bh′′ is also practical because its efficiency

is about that of Ah† . This means that if h′′ is collision resistant,

Advcr
h′′
(Bh′′) is low. Equation (4) tells us that AdvRccrS

h†
(Ah† ) will

be at most Advcr
h′′
(Bh′′), which means h† is constrained collision

resistant.

Proof. (of Proposition 6.6) The running time claim is analogous

to our prior ones.

We claim that if the tuple (M1,M2,a1,a2) returned by Ah† is a

constrained collision for h† then Bh′′ will return a collision for h′′
k
.

Adversary Bh′′ takes input k ∈ h.Keys. It then runs Ah† on in-

put the given key k and ε to get the tuple ((m1, c1), (m2, c2),a1,a2),

where (m1, c1), (m2, c2) ∈ {0, 1}
b × {0, 1}c+1 and a1,a2 ∈ {0, 1}

c+1.

Since Ah† returns a constrained collision, it must be true that

(m1, c1) , (m2, c2), h
†
k
((m1, c1)) = h

†
k
((m2, c2)), c1 ∈ {s,h

†
k
(a1)},

and c2 ∈ {s,h
†
k
(a2)}.

Since h†
k
will only output strings of all 1s or strings that start

with 0, it can never output 1∥0c or 12∥0c−1. Thus, neither string

has a pre-image, so (m1, c1), (m2, c2) < {(0
b , 1∥0c ), (1b , 12∥0c−1)}.

On input (m1, c1), the if statement in h
†
k
will be false, so h

†
k
will

return 0∥h′′
k
((m1, c1)). Similarly, on input (m2, c2), h

†
k
will return

0∥h′′
k
((m2, c2)). Since h

†
k
((m1, c1)) = h

†
k
((m2, c2)), we can conclude

that h′′
k
((m1, c1)) = h′′

k
((m2, c2)), therefore forming a collision for

h′′
k
. Adversary Bh′′ returns this message pair, so it finds a colli-

sion in h′′
k
whenever Ah† finds a constrained collision for h†. This

justifies Equation (4), completing the proof. □

7 A MINIMAL TRANSFORM

Having to use a suffix-free splitting function necessarily adds some

computational overhead to the computation of the MD hash func-

tion over what would have been necessary if we were able to use a

minimal splitting function. For instance, one such splitting func-

tion could be padding M with a single one bit and then with as

many zeros as necessary to be of a block size. If the message M

is particularly short, this padding scheme may only require one

invocation of h when a suffix-free padding function would likely

have increased the length of M enough to require a second such

invocation.



As such, in some use cases it would be beneficial to use such a

minimal splitting function in the transform. We saw earlier that

we cannot hope to use a splitting function which is not suffix-

free assuming only that the underlying compression function is

collision resistant, so it may seem that this efficiency gain would

be countered by a loss in provable security. In this section we show

this is not the case, establishing that if the compression function is

constrained collision resistant and it is difficult to find a pre-image

for a randomly chosen s from S, then it suffices for the splitting

function to be injective. This result serves to generalize, formalize,

and strengthen the informal folklore claim of Andreeva and Stam [3]

that the plainMD transform preserves collision resistance assuming

it is hard to find a pre-image of the initial vector.

It is important to emphasize here that our proof assumes only the

constrained collision resistance of the compression function and,

thus, this use of MD may similarly enjoy collision resistance even

after a collision is found in the underlying compression function.

We leave it to others to decide when this gain in efficiency is worth

the security tradeoff required in assuming an additional security

property of the hash function.

It will be convenient to first prove a lemma we will use in our

proof. The lemma establishes that any collision in theMD transform

must necessarily give either a collision in the underlying compres-

sion function or a pre-image of s in that compression function.

This builds on Lemma 5.2 to classify MD collisions by additionally

considering what happens when the splitting function is not neces-

sarily suffix-free. It again is not a computational statement; it is a

fact about the structure of collisions for the MD transform.

Lemma 7.1. Let h be a compression function, Split be a splitting

function with Split.Bl = h.Bl∗, and S ⊆ h.Out be a set of possible

starting points. Let H = MD[h, Split, S]. Let k ∈ h.Keys, s ∈ S and

supposeM1,M2 ∈ Split.Inp form a collision for H(k,s). Then at least

one of the following two conditions holds:

(1) On inputs (k, s),M1,M2, the algorithm Bccr shown in Fig. 9

returns ((m1, c1), (m2, c2),a1,a2) such that (m1, c1), (m2, c2)

form a collision for hHk and both (c1 ∈ {s,hHk (a1)}) and

(c2 ∈ {s, hHk }) hold.

(2) On input (k, s),M1,M2, algorithm Bpre of Fig. 11 returns a

pre-image for s under hHk .

Proof. (of Lemma 7.1) Let m1 = Split(M1), m2 = Split(M2),

n1 = |m1 |, and n2 = |m2 |, as defined in algorithms Bccr and Bpre.

As detailed in the proof of Theorem 6.4 and from Lemma 5.2, if

m1 ̸⊒ m2 and m2 ̸⊒ m1, then the first condition holds. So suppose

without loss of generality that m1 ⊒ m2. Note it then must hold

that n1 ≥ n2.

First suppose there exists an i ∈ {0, . . . ,n2−1} such that (m1[n1−

i], c1[n1 − i]) , (m2[n2 − i], c2[n2 − i]). Let j be the smallest such

value. It will then hold that c1[n1 − (j − 1)] = c2[n2 − (j − 1)], so

(m1[n1 − j], c1[n1 − j]) and (m2[n2 − j], c2[n2 − j]) form a collision

for hk . During the execution of Bccr it will then return this collision

when i = j in the for loop (or after the for loop in the case that

j = n2 − 1). The same reasoning as in the proof of Theorem 6.4 tells

us that the condition (c1 ∈ {s,hHk (a1)}) and (c2 ∈ {s,hHk }) will

hold of the values returned by Bccr.

Algorithm Bpre((k, s), M1, M2)

m1 ← Split(M1); n1 ← |m1 |

m2 ← Split(M2); n2 ← |m2 |

b ← argmaxd (nd )

For i = 1, . . . , nb − n3−b do

cb [i + 1] ← hk ((mb [i], cb [i]))

Return (mb [nb − n3−b ], cb [nb − n3−b ])

Adversary Bh(k, s)

(M1, M2) ←$ AH(k, s)

Return Bpre(k, s)

Figure 11: Adversary Bh for Theorem 7.2.

Now suppose (m1[n1− i], c1[n1− i]) , (m2[n2− i], c2[n2− i]) for

all i ∈ {0, . . . ,n2 − 1}. This implies, in particular, that c1[n1 − (n2 −

1)] = c2[n2 − (n2 − 1)] = s. Note it must then hold that n1 > n2
(because otherwise we would have m1 = m2 contradicting the fact

that M1 , M2). Hence, hk ((m1[n1 − n2], c1[n1 − n2])) = s. Noting

then that (m1[n1 − n2], c1[n1 − n2]) will be returned by Bpre, we

have that in all cases at least one of the two conditions of the lemma

hold as desired. □

Having established the above lemma we can move on to the

main result of this section, that Split being merely injective (and

not necessarily suffix-free) suffices to prove that the MD transform

gives collision resistance if it is hard to find a pre-image for a

starting point randomly chosen from S. Mirroring Theorem 6.4, we

will in fact show the result assuming only the weaker notion of

constrained collision resistance for the compression function h.

Theorem 7.2. Let h be a compression function, let Split be an

injective splitting function with Split.Bl = h.Bl∗ and let S ⊆ h.Out

be a set of possible starting points. Let H = MD[h, Split, S]. Given

an adversary AH, let Ah be the adversary of Fig. 9 and Bh be the

adversary of Fig. 11. Then

AdvcrH (AH) ≤ Adv
RccrS
h
(Ah) + Adv

RpreS

h
(Bh). (5)

The time complexity of Ah is about that of AH plus that of Bccr. The

memory complexity of Ah is the maximum of that of AH and that

of Bccr. The time complexity of Bh is about that of AH plus that of

Bpre. The memory complexity of AH is the maximum of that of AH

and that of Bpre.

Stating that Split is injective is redundant (splitting functions

are required to be injective), but we state this explicitly above to

emphasize that injectivity is the only property we assume of Split.

The theorem proceeds fairly easily from Lemma 7.1 because the

adversaries simply run Bccr and Bpre.

Proof. (of Theorem 7.2) Consider the view of adversary AH

when run by either Ah, Bh, or in Gcr
F
(AH). In each, it consists of a

key k and starting point s, both of which were chosen uniformly

at random from their respective sets. From Lemma 7.1, we know

if AH successfully finds a collision in H for (k, s) it must be the

case that one of Ah or Bh will be successful in their respective

games (because they simply run Bccr and Bpre, respectively). Then



we have the following inequality, that establishes the result,

AdvcrH (AH) = Pr[Gcr
F (AH)]

≤ Pr[GRccrS
h
(Ah)] + Pr[G

RpreS

h
(Bh)]

= Adv
RccrS
h
(Ah) + Adv

RpreS

h
(Bh).

The claims on the time and memory complexities of the adversaries

are clear. □

8 ASSUMPTION OF PRE-IMAGE RESISTANCE

We showed that the MD transform can be simplified by additionally

assuming that the compression function h satisfies a pre-image

resistance property. To help understand this result we restate some

results for the literature in our language, as well as prove some new

results to understand how strong of an assumption this is.

The notion of RpreS, defined in Fig. 1, with S = h.Out has been

considered under several different names. In [13], Brown refers to it

as both one-wayness and pre-image resistance and uses it as one of

several assumptions on a hash function to prove a digital signature

scheme is secure. BRS [12] refer to it as inversion resistance and

analyze the security of hash functions in an idealized model. In [21],

Laccetti and Schmid refer to it as pre-image resistance and analyze

the success probability of a brute force attack. In [32], Stinson refers

to it as the pre-image problem and bounds the advantage of an

adversary in the random oracle model as well as giving reductions

between it and some other security notions. Andreeva and Stam [3]

refer to it as range-oriented pre-image finding and relate its security

to various other notions of pre-image resistance. Finally, DRS [18]

refer to it as a variant of pre-image resistance and cite [17] for the

definition, though the latter actually considers a weaker notion.

The notion of RpreS0 (where S0 = {0} is the singleton set con-

taining only some fixed zero string) is considered by both [13] and

[32], where it is referred to, respectively, as zero-finder-resistance

and the zero pre-image problem.

The everywhere pre-image resistant (ePre) security notion of

[28] defines the advantage of an adversary as maxS∈SAdv
RpreS

F
(A)

whereSis defined as the set of all sets S ⊆ {0, 1}∗ with |S| = 1. They

consider the relationship between this and six other security no-

tions. In their framework, this is equivalent to a definition in which

s is chosen from an arbitrary adversarially chosen distribution. This

is the case when only reasoning about worst case adversaries, but

is not equivalent when one worries about explicit reductions, as

we do.

Most of these works [12, 13, 17, 18, 21, 32] were interested only

in keyless hash functions while [28] was interested only in keyed

hash functions. We intentionally model both situations.

Negative Results. Pre-image resistance and collision resistance

are not, in general, implied by each other. To see that pre-image

resistance does not imply collision resistance, consider the hash

function g which on any input x returns its randomly chosen key

k as output. This is trivially pre-image resistant but not collision

resistant as formalized by the following proposition.

Proposition 8.1. Let Out be a set. Let g be the hash function

shown in Fig. 12 where g.Keys = g.Out = Out and g.Inp is arbitrary.

Let S ⊆ Out. Then for any A it holds that Adv
RpreS
g (Ag) ≤ 1/|Out|.

gk (x )

Return k

adversary Bg(k, s)

Return (x1, x2)

hk ((m, c))

If ((m, c[1]) = (0, 0))

Return c

r ← h′
k
((m, c))

Return 1 | |r

adversary Bh(k, s)

Return (0, s)

f(k,p)(x )

y ← f′
k
(x )

Return y⊕p

adversary Bf′ (k, s
′)

s←$ S; p ← s⊕s′

x ←$ A((k, p), s)

Return x

Figure 12: Compression functions and adversaries used for

Proposition 8.1, Proposition 8.2, and Proposition 8.4.

Additionally, if x1,x2 are two distinct elements of g.Inp, then the

adversary Bg shown in Fig. 12 satisfies Advcrg (Bg) = 1.

Proof. (of Proposition 8.1) The first part of this claim holds

because the only way that a pre-image of the chosen s ∈ S will

even exist is if k happens to equal it. This happens with an exact

probability of 1/|Out|. The second part of this claim holds because

two distinct elements of g.Inp always form a collision for gk . □

It is also the case that pre-image resistance is not implied by

collision-resistance. This is already implicit in our work from the

combination of Theorem 7.2 and Theorem 5.6 for S = h.Out or

Proposition 5.5 for S = {0}. As noted there, those techniques could

be used to show the same result for any łreasonable” choice of S.

For concreteness, we extract out the core idea of these theorems.

First consider S = {s} for some fixed string s and a hash function

h′ whose output space is all bit strings of the same length as s. Then

define h by hk (x) = h′
k
(x)⊕h′

k
(0)⊕s, where 0 is some fixed string

in the input space of h. Then any collision in h is a collision in h′

and 0 is trivially a pre-image of s. So h is not S pre-image resistant,

but it is collision resistant (assuming h′ was).

The following proposition establishes the result for a particular,

larger S = h.Out and can easily be extended to any reasonable

choice of a łlarge” S.

Proposition 8.2. Let a ∈ N. Let h′ be a family of functions

with h′.Inp = {0, 1} × {0, 1}a and h′.Out = {0, 1}a−1. Then let h

be the compression function shown in Fig. 12 with h.Inp = h′.Inp,

h.Out = {0, 1}a , and h.Keys = h′.Keys. Then for all adversaries A,

Advcr
h
(A) ≤ Advcr

h′
(A). Furthermore, letting S = h.Out, we can build

an efficient adversary Bh (shown in Fig. 12) satisfying,

Adv
RpreS

h
(Bh) ≥ 1/2.

Proof. (of Proposition 8.2) To see that the first claim of the

above statement holds, note that no collisions in h are possible

unless the if statement evaluates to false for both inputs of the

collision. In this case, a collision for h is immediately a collision

for h′. To see that the second claim holds, observe that for half

the choices of s ∈ S, specifically those whose first bit are 0, the

compression function hk returns s when given as input (0, s). □

Positive Results. We just showed that pre-image resistance is

not, in general, implied by collision resistance. This implies that

the pre-image resistance assumed for Theorem 7.2 is necessarily



Game Gunif
f
(A)

b ←$ {0, 1}

k←$ f .Keys

x ←$ f .Inp

s0 ← fk (x )

s1←$ f .Out

b′←$ A(k, sb )

Return (b = b′)

Adversary A1(k, s)

x ← A(k, s)

If (fk (x ) = s)

Return 1

Return 0

Adversary A2(k, ϵ )

x1←$ f .Inp

s← fk (x1)

x2 ← A(k, s)

Return (x1, x2)

Figure 13: Game defining uniformity of compression func-

tion F and adversaries used in proof of Theorem 8.3.

Game G0 ,G1

k←$ f .Keys; bad← false

x1←$ f .Inp

s← fk (x1); s←$ f .Out

x2←$ A(k, s)

If (x1 = x2) then

bad← true

Return (fk (x2) = s )

Game G2

k←$ f .Keys; bad← false

x1←$ f .Inp

s← fk (x1)

x2←$ A(k, s)

If (x1 = x2) then

bad← true

Return false

Return (fk (x2) = s )

Figure 14: Games used in proof of Theorem 8.3. Boxed code

is only executed in the comparably boxed game.

a separate assumption than the assumption of collision resistance.

There is, however, an assumption we can make on the structure

of the compression function for which pre-image resistance will

not be a separate assumption. In particular, collision resistance will

imply pre-image resistance when the image of a random point is

indistinguishable from a random range point.

The ideas of this proof are very similar to themethod used by [12]

to show that RpreS is essentially equivalent to the typical notion

of one-way function security for their particular idealized hash

functions. Stinson [32] likewise showed that pre-image resistance

was implied by collision resistance in certain cases. Specifically,

he showed it for the case that the pre-image resistance adversary

was equally likely to succeed for all inputs or the case that every

range point had a łlarge” number of pre-images. Our result can be

considered a generalization of this latter result. It strengthens these

prior results by showing it for potentially keyed hash functions

and by giving an explicit reduction to the uniformity of the hash

function. Thus, the result will hold even if it is only computationally

(but not information theoretically) difficult to distinguish between

the output of the hash function and uniform output.

We will define the uniformity of a hash function by the game

Gunif
f
(A) shown in Fig. 13. This game measures an adversary’s

ability to distinguish between the pairs (k,y) and (k, fk (x)) when

y is picked at random from f.Out and x is picked randomly from

f.Inp. The advantage of an adversary is defined by Advunif
f
(A1) =

2 Pr[Gunif
f
(A)] − 1.

It is important to note that this requires the output of f to look

uniformly random even given k. We now present our theoremwhich

tells us that if f is sufficiently uniform then collision resistance will

imply pre-image resistance.

Theorem 8.3. Let f be a family of functions, S = f.Out, and Abe

an adversary. Then we can build adversaries A1 and A2 (shown in

Fig. 13) such that,

Adv
RpreS

f
(A) ≤ Advunif

f
(A1) + Adv

cr
f
(A2) + |f.Out|/|f.Inp|.

Both A1 and A2 have approximately the same time and memory

complexities as A.

Recall from above that the particular case we are interested in

is when f is a compression function and thus f.Inp = f.Bl × f.Out.

Therefore, the ratio will equal 1/|f.Bl| and the desired implication

will hold as long as f.Bl is large (which is typically the case in

practice). To prove the result we first use the uniformity of f to

switch to a game in whichAis trying to find a pre-image for a point

fk (x) where x is chosen at random instead of a random s. Then we

consider the standard collision resistance adversary which chooses

a random x1, asks A to produce a pre-image of fk (x1), then returns

that together with x1 as its collision. Analyzing the success of this

adversary requires bounding the probability that the pre-image

produced by A is itself x1 because (x1,x1) is not a valid collision.

Proof. (of Theorem 8.3) Consider the sequence of games G0,

G1, and G2 shown in Fig. 14. The boxed code is only included in

G0, meaning that s will be chosen uniformly at random. Note that

G2 only differs from G1 after the bad flag is set to true. Game G0 is

identical to G
RpreS

f
(A) with f and Ahardcoded. In both, A is given

a random key k and string s chosen at random from f.Out. It wins

if it correctly returns a pre-image of s under fk . Thus we have

Adv
RpreS

f
(A) = Pr[G

RpreS

f
(A)]

= Pr[G0]

= (Pr[G0] − Pr[G1]) + (Pr[G1] − Pr[G2]) + Pr[G2].

To bound the first difference, consider the view of Awhen run

by A1 (during the execution of Gunif
f
(A1)). Let bunif denote the

bit chosen by the game Gunif
f
(A1) and b1 denote the bit output by

A1. When bunif = 1, the view of A is k and s chosen uniformly

at random. Then A1 returns b1 = 1 if A returns a pre-image for s.

Similarly when bunif = 0,A is given k and s = fk (x) for a uniformly

random x . In this case, A1 once again returns b1 = 1 if A returns a

pre-image for s. Thus we have

Pr[G0] − Pr[G1] = Pr[b1 = 1|bunif = 1] − Pr[b1 = 1|bunif = 0]

= Advunif
f
(A1).

That the latter equality holds by a standard conditioning argument.

Now games G1 and G2 are identical until bad, so the funda-

mental lemma of game playing [11] says that Pr[G1] − Pr[G2] ≤

Pr[G1 sets bad]. In particular, the bad flag is set when Ahappens

to choose x1 exactly as its pre-image for s. Let k be fixed and f−1
k
(s)

be the set of all pre-images of s under fk . The probability that A is

given a particular s is then exactly |f−1
k
(s)|/|f.Inp| and the probabil-

ity that bad will be set given that A is given s is at most 1/|f−1
k
(s)|.



Summing over all possible choices of s we then have that bad is

set with probability at most |f.Out|/|f.Inp| for our chosen k. This

was independent of the key k, so the probability averaged over

all choices of k will be bounded by the same probability. Hence,

Pr[G1 sets bad] ≤ |f.Out|/|f.Inp|.

Finally, note that the probability A succeeds in G2 is identical

to the probability that adversary A2 succeeds in Gcr
f
(A2). Each

succeeds ifA, given fk (x1), produces an x2 which is a collision with

x1 for fk . Hence Pr[G2] = Advcr
f
(A2).

Combining the given equation gives the stated bound. The stated

complexities are apparent from the code of A1 and A2. □

From the above, believing that f is uniform suffices to remove the

necessity that it is pre-image resistant from Theorem 7.2, but only

in the case that the set of starting points is all of f.Out. However,

for hash functions based on the MD transform which are used

in practice, it is clearly the case that the initial point s was not

chosen uniformly at random from f.Out. In the following theorem

we show how to build a compression function which is S pre-image

resistant for an arbitrary S from one which is pre-image resistant

for S′ = f.Out. Put simply, we include a random pad in the key of

our new compression function which is XORd with the output of f.

Proposition 8.4. Let f′ be a family of functions with f′.Out =

{0, 1}a for some a ∈ N. and f be the compression function shown

in Fig. 12 with f.Keys = f′.Keys × f′.Out. Let S′ = f.Out and S ⊆

{0, 1}a be a set. Then given an adversary A, we can build an efficient

adversary Bf′ (shown in Fig. 12) satisfying,

Adv
RpreS

f
(A) ≤ Adv

RpreS
′

f′
(Bf′).

The time and memory complexity of Bf′ are essentially that of A.

The use of this new compression function in the MD transform

could alternatively be viewed as a variation of the transform in

which an additional key is added that gets XORd with all interme-

diate chaining variables. In terms of collision resistance security,

however, this does not gain anything that would not have been

equivalently obtained by simply choosing the starting point uni-

formly at random.

Proof. (of Proposition 8.4) The view of Awhen run by Bf′

consists of a random key k ∈ f′.Keys, a random pad p ∈ f′.Out,

and a random element s from S. This is identical to the view it

expects when run in G
RpreS

f
(A), so it will have the same probability

of returning an x such that s = f(k,p)(x) = f′
k
(x)⊕p. Then from the

perspective of Bf′ , such an x satisfies f′
k
(x) = s⊕p = s⊕(s⊕s′) =

s′. This gives us the stated advantage bound because Bf′ wins

whenever Awould.

The stated complexities are apparent from the code of Af′ . □

9 REDUCTION COMPLEXITY

We will now briefly revisit some of our reductions to provide alter-

native reductions that are more memory-efficient [4].

Consider, for example, Theorem 5.3. The primary technical com-

ponent underlying that theorem is the collision-finding algorithm

Bcr which, given as input a collision for the hash function H, finds a

collision for the underlying compression function h. This collision-

finding algorithm naturally emanates from various proofs of the

MD transform’s collision resistance which do not explicitly give

an algorithm.[1, 5, 15, 17, 18, 20, 22, 24, 31]. We observe that Bcr is

a less memory efficient algorithm than the algorithm specified by

BBBGKSZ in [5].

Recall the algorithm Bcr shown in Fig. 5. It first precomputes

the entire vectors m1, m2, c1, and c2, then processes them back-

wards to find the collision described in the proof of the lemma. Its

memory complexity is thus the memory required to store the entire

precomputed vectors.

However, this reduction can be done in a more memory efficient

manner. We present such an algorithm, called Bmem, in Fig. 5. It

scans for the collision in the opposite direction, as compared to

Bcr. By doing so, it avoids the need to precompute the vector c

and instead only computes the individual blocks of c that it needs

in a streaming fashion. Furthermore, for most choices of splitting

function considered in practice (e.g. SplitSha), the individual blocks

of Split(M) can be computed independently in a memory-efficient

manner which would allow Bmem to use only a constant amount of

memory overhead.

Theorem 9.1. Let h be a compression function, let Split be a suffix-

free splitting function with Split.Bl = h.Bl and let S ⊆ h.Out be a

set of possible starting points. Let H = MD[h, Split, S] be the hash

function associated to these components via the MD transform of

Fig. 2. Given an adversary AH, let Ah be the adversary of Fig. 15

using Bmem from the same figure.

Then

AdvcrH (AH) ≤ Advcr
h
(Ah). (6)

The time complexity of Ah is the sum of the time complexities of

AH and Bcr. The memory complexity of Ah is the maximum of the

memory complexity of AH and the memory complexity of Bmem.

Wemake no value statement on how likely the improvedmemory

usage of Bmem is to matter in practice. Our point is simply that it

is more memory efficient and that these differences are hidden by

proofs in which the explicit reduction algorithms are not provided.

The proof of the theorem mirrors that of Theorem 5.3, only re-

quiring arguing that Bmem also correctly returns a collision when-

ever AH does.

Proof. (of Theorem 9.1) It is clear that the time and memory

complexity of adversary Ah are as stated in the theorem.

Let k ∈ h.Keys, s ∈ S be the values sampled whenAh is executed

and M1,M2 ∈ Split.Inp be the values returned by AH. We have

Split(M1) A Split(M2) and Split(M2) A Split(M1), so if they form a

collision for H(k,s), then they fulfill the conditions of Lemma 5.2 so

Bcr would be guaranteed to return a collision for hk . It is clear from

examining the code that if Bcr finds a collision on any input, then

Bmem will find a collision on the same input (though they might

output different collisions). As an immediate result Equation (6)

holds, completing the proof. □

In Fig. 16 we present an analogous memory efficient algorithm

Bmem2 and the corresponding Ah which would obtain the same

sorts of memory savings for Theorem 6.4 and Theorem 7.2. For

notational convenience, the presented pseudocode of Bmem2 uses

vectors c1 and c2, but we note that they can easily be computed

only as needed using constant memory. Furthermore, we use the



Algorithm Bmem((k, s), M1, M2)

m1 ← Split(M1) ; m2 ← Split(M2) ; n1 ← |m1 | ; n2 ← |m2 |

n ← min(n1, n2)

c1 ← s ; c2 ← s

If (n1 > n2) then

For i = 1, . . . , n1 − n2 do c1 ← hk ((m1[i], c1))

If (n2 > n1) then

For i = 1, . . . , n2 − n1 do c2 ← hk ((m2[i], c2))

For i = 1, . . . , n do

c′1 ← hk ((m1[n1 − n + i], c1))

c′2 ← hk ((m2[n2 − n + i], c2))

If (c′1 = c
′
2) and (m1[n1 − n + i], c1) , (m2[n2 − n + i], c2) then

Return ((m1[n1 − n + i], c1), (m2[n2 − n + i], c2))

c1 ← c′1; c2 ← c′2
Return ⊥

Adversary Ah(k, ε )

s←$ S ; (M1, M2) ← AH((k, s), ε )

Return Bmem((k, s), M1, M2)

Figure 15: Memory efficient algorithm Bmem and adversary

Ah used for Theorem 9.1.

Algorithm Bmem2((k, s), M1, M2)

m1 ← Split(M1) ; m2 ← Split(M2) ; n1 ← |m1 | ; n2 ← |m2 |

c1[1] ← s ; c2[1] ← s; n ← min(n1, n2)

If (n1 > n2) then

For i = 1, . . . , n1 − n2 do c1[i + 1] ← hk ((m1[i], c1[i]))

If (n2 > n1) then

For i = 1, . . . , n2 − n1 do c2[i + 1] ← hk ((m2[i], c2[i]))

For i = 1, . . . , n do

m1 ← m1[n1 − n + i]; c1 ← c1[n1 − n + i]

m2 ← m2[n2 − n + i]; c2 ← c2[n2 − n + i]

c′1 ← hk ((m1, c1))

c′2 ← hk ((m2, c2))

If (c′1 = c
′
2) and (m1, c1) , (m2, c2) then

a1 ← (m1[n1 − n + i − 1], c1[n1 − n + i − 1])

a2 ← (m2[n2 − n + i − 1], c2[n2 − n + i − 1])

Return ((m1, c1), (m2, c2), a1, a2)

c1[n1 − n + i + 1] ← c′1
c2[n2 − n + i + 1] ← c′2

Return ⊥

Adversary Ah(k, s)

(M1, M2) ← AH((k, s), ε )

Return Bmem2((k, s), M1, M2)

Figure 16: Memory efficient algorithm Bmem2 and adversary

Ah to improve Theorem 6.4 and Theorem 7.2.

convention that out of bounds accesses to an array are accesses

to its first element (this simplifies notation for the case that the

initialization vector is part of the collision).

We note that ACFK [4] make the claim that collision-resistance

is not a memory sensitive problem, saying for example łt-collision-

resistance is not memory sensitive for t = 2.” This seems to imply

that there is no reason to worry about memory tightness in our

setting because we are doing a reduction to collision resistance.

However, this statement is somewhat deceptive. When one unpacks

this statement, the actual claim they are making is that the best

known generic attack does not require much memory. This tells

us nothing about whether there may exist better, not yet known,

generic attacks or whether there exist better non-generic attacks

against specific hash functions for which memory is a dominating

factor.

We also observe that, as a community, there is much work to

be done in this setting to determine how the memory usage of an

adversary łshould” be measured to best capture the reality. For

example, in their work ACFK observe that many reductions in the

random oracle model are highly inefficient in terms of memory

complexity. They then show that, in some cases, a PRF can be used

to make reductions more tight. However, the value of these points

depends heavily on the fact that they adopt a convention of the

memory used by the underlying game not counting towards the

memory complexity of the adversary. When using our convention

that the memory complexity of the adversary includes the memory

used by the game in which it is executed (this way of measuring of

memory complexity is referred to as LocalMem in their work), the

value of this observation disappears. In this setting, the straight-

forward security reductions typically being done in the literature

would already be memory-tight. By giving our reduction algorithms

explicitly, we aim to make it easy for their memory complexity to

be analyzed using whichever convention one desires.

10 CONCLUSION

This paper revisited the MD transform to unify prior work and

variants, improve security guarantees and formalize folklore re-

sults. We introduced the RS security framework for hash functions

with which we simultaneously capture several standard notions

of security for hash functions and introduce our new notion of

constrained collision resistance. Our new security notion allows us

to understand ways in which an MD hash function can satisfy col-

lision resistance despite collisions being known for its underlying

compression function. In more detail, we have considered a param-

eterized MD transform that constructs a hash function H = MD[h,

Split, S] from a compression function h, splitting function Split, and

set S of starting points. We have then comprehensively investigated

what assumptions on h and Split guarantee collision resistance

(CR) of H. We have shown that MD is better than advertised in

the sense that conditions on h weaker than CR, formalized in our

RS framework as constrained collision resistance (RccrS), suffice

for H to be CR. This strengthens guarantees on hash functions

and partially explains why, historically, attacks on compression

functions have not immediately translated to attacks on the hash

functions. The consequences are the usual benefits of weakening

assumptions, namely that weaker compression functions are easier

to design, harder to break and more likely to last. Furthermore, we

have also shown how to speed up hashing by using very simple

Split functions.
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