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Abstract Combining information from several surveys from the same target population is an
important practical problem in survey sampling. The paper is motivated by work that authors
undertook, sponsored by the Food and Nutrition Technical Assistance III Project (FANTA),
with funding from the U.S. Agency for International Development (USAID) Bureau of Food
Security (BFS). In the project, two surveys were conducted independently for some areas
and we present a measurement error model approach to integrate mean estimates obtained
from the two surveys. The predicted values for the counterfactual outcome are used to create
composite estimates for the overlapped areas. An application of the technique to the project
is provided.

Keywords Counterfactual outcome · Composite estimate · Variance estimation

1 Introduction

Survey integration is an emerging research area of statistics, which concerns combining
information from two or more independent surveys to get improved estimates for various
parameters of interest for the target population. One of the early applications of survey
integration is the Consumer Expenditure Survey [20], where two survey vehicles (a Diary
survey and a quarterly interview survey) were used to obtain improved estimates for the
Diary survey items. Renssen andNieuwenbroek [16],Merkouris [12,13],Wu [18] andYbarra
and Lohr [19] considered the problem of combining data from two independent surveys to
estimate totals at the population and domain levels.

Combining information from two or more independent surveys is a problem frequently
encountered in survey sampling. One of the classical setups used to combine information
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Table 1 Data structure for
combining two surveys with
measurement errors

x y1 y2

Survey A o o

Survey B o o

is two-phase sampling, where the measurement x is observed in both surveys and the study
variable y is observed only from one survey, say, in Survey A. There is no measurement for y
in survey B. In this case, we can treat the union of Survey A and Survey B samples as a phase
one sample and treat the Survey A sample as a phase two sample. Hidiroglou [6] formulated
this problem and developed efficient estimation using a two-phase regression estimation
method. Fuller [4], Legg and Fuller [11], and Kim and Rao [9] considered this problem as a
missing data problem and developed mass imputation to obtain improved estimation for the
total as well as domain totals. Our setup is different from the two-phase sampling approach
in the sense that we have a different measurement of y from two surveys.

We consider a situation where two surveys have common measurement for x but different
measurements for y. For example, x can be demographic information that does not suffer
from measurement errors but y can suffer from survey-specific measurement errors. The
survey-specific difference can occur due to differences in survey questions or survey modes
(e.g. [2]). In Table 1, for example, the Survey A sample contains observations in x and y1
while the Survey B sample contains observations in x and y2. In the case of y1 being the
study variable of interest, if we can assume that y2 is a measurement for y1 with measurement
errors, then at issue is the estimation of the population mean of y1 combining two surveys.

Our research is motivated by work sponsored by The Food and Nutrition Technical
Assistance III Project (FANTA) with funding from U.S. Agency for International Devel-
opment (USAID), to produce integrated estimates from two independent surveys conducted
inGuatemalawhere the geographic areas covered by the two surveys have substantial overlap.

Section 2 provides background on the projects and data descriptions and Sect. 3 introduces
the proposed method for survey integration. In Sect. 4, we illustrate the estimation process
and results of the work sponsored by FANTA, and Sect. 5 provides concluding remarks.

2 The Food and Nutrition Technical Assistance III Project

2.1 Background

FANTA is a 5-year cooperative agreement between the USAID and FHI 360. FANTA aims
to improve the health and well-being of vulnerable groups through technical support in the
areas of maternal and child health and nutrition in development and emergency contexts,
HIV and other infectious diseases, food security and livelihood strengthening, agriculture
and nutrition linkages and emergency assistance in nutrition crises.

USAID is the lead U.S. government agency that works to end extreme global poverty and
enable resilient, democratic societies to realize their potential. The Feed the Future Initiative
(FTF) was launched in 2010 by the United States government to address global hunger and
food insecurity. The Initiative is coordinated primarily by the USAID and is housed within
the Bureau of Food Security (BFS), but includes the Office of Food for Peace (FFP). The
main objectives of the FTF initiative are the advancement of global agricultural develop-
ment, increased food production and food security, and improved nutrition particularly for
vulnerable populations such as women and children. The FTF initiative is active in 19 focus

123



A measurement error model approach to survey data. . . 347

Table 2 Eleven common indicators

Level Indicator

Household Daily per capita expenditures (PCE)

Prevalence of households with hunger (HHS)

Prevalence of poverty (PP)

Mean depth poverty (MDP)

Individual (children) Prevalence of stunted children

Prevalence of wasted children

Prevalence of underweight children

Prevalence of children receiving a minimum acceptable diet (MAD)

Prevalence of exclusive breastfeeding (EBF)

Individual (women) Prevalence of underweight women

Women’s dietary diversity score (WDDS)

developing countries in Africa, Asia and Latin America. One of these focus countries is
Guatemala.

Both BFS (through the FTF initiative) and FFP sponsor periodic baseline, interim and
end-line household surveys to gauge the extent of progress towards achieving the goals of
the FTF initiative. In 2013, FFP engaged a third party contractor, ICF International, to con-
duct a baseline household survey in five departments of theWestern Highlands of Guatemala.
In the same year, BFS/FTF (henceforth referred to as FTF) engaged a third party contractor,
UNC MEASURE, to conduct an interim household survey in the same five departments in
Guatemala. Although the surveys were conducted in the same five departments, the geogra-
phy of the two surveys did not exactly coincide; however, there was substantial geographic
overlap. The union of the geography covered by the two surveys represents the FTF Zone of
Influence (ZOI), where some of the most food insecure parts of the population in the country
reside. Because, FTF was interested in obtaining ZOI-level estimates for a number of key
indicators using data from the two independent surveys, they provided funding to FANTA,
who in turn, engaged the authors to undertake the work. Because of the overlapped geography
from the two surveys, it was necessary to use data integration methods to produce overall
ZOI-level estimates.

Guatemala has 22 departments, which are geographic entities, divided into 334 munic-
ipalities. The two surveys were each conducted in the following five departments of the
Western Highlands of Guatemala: San Marcos, Totonicapan, Quiche, Quezaltenango, and
Huehuetenango. Thus, two surveys were conducted in the areas and the survey data from the
two samples are ready to be combined for survey integration. More details of this project can
be found from the reference provided by USAID [17].

2.2 Common indicators

ICF International (FFP) and UNC MEASURE (FTF) used their own questionnaire for the
surveys, and among the indicators in the questionnaires, there were 11 common indicators in
both surveys indicating maternal and child health status. Among the 11 common indicators,
4 were collected at the household-level and the remaining 7 were collected at the individual-
level. Five indicators of the 7 individual-level indicators pertained to children and remaining
2 to women. Table 2 presents the common indicators and their descriptions.
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Table 3 Survey design of the
FFP project

Department Strata Total no.
of clusters

No. of
selected clusters

1. San Marcos 11 89 17

12 30 17

2. Totonicapan 21 85 22

22 22 19

3. Quiche 31 62 22

32 19 13

4. Huehuetenango 41 48 12

42 18 12

5. Quetzaltenango 51 24 16

Most indicator variables are dichotomous, taking the values of either 0 or 1 in both data
sets, but the other two indicator variables, which are ‘PCE’ and ‘WDDS,’ are numeric in
both data sets. In this paper, we focus on the ‘PCE’ and the ‘HHS’ indicators for analysis as
examples of a numeric variable and a dichotomous variable, respectively.

2.3 Survey design

2.3.1 FFP survey

The survey for the FFP project used a three-stage sampling design. In the first stage, the
primary sampling unit is the village, where the village population for five departments is
divided into two substrata in each department. Each department has two substrata except for
Quetzaltenango which has one stratum. So, we have nine strata and the first stage sample
selection probability is based on the number of villages in the sampling frame and the size of
the village within each stratum. The sampling frame for the first stage sampling included all
the villages identified for program implementation. Table 3 shows the summary of sample
clusters in each stratum.

In the second stage sampling, sample households were selected randomly from each
sampled village. The target number of households selected for each village was 40. The
second stage sample selection probability is based on the number of households selected for
each village divided by the total number of households in each village.

The third stage sampling was done at the individual level to select woman and children
in households. The third stage sample selection probability is based on the total number of
individuals selected for each interview module and the number of eligible individuals in the
household. Only one eligible woman was randomly selected using the Kish grid [10], but all
children were selected to be interviewed.

The final sampling weights are computed as the inverse of products of the three stage
first-order inclusion probabilities.

2.3.2 FTF survey

The survey for the FTF project also used a three-stage sampling design using census sectors
as the primary sampling units. In the first stage, the census areas (urban/rural) were formed in
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Table 4 Survey design of the
FTF project

Department Strata Total no. of
clusters

No. of
selected clusters

1. San Marcos Rural 192 25

Urban 99 3

2. Totonicapan Rural 237 5

Urban 128 1

3. Quiche Rural 284 33

Urban 97 7

4. Huehuetenango Rural 336 39

Urban 80 8

5. Quetzaltenango Rural 117 1

Urban 190 1

each department and census sectors were sampled within the census area. From the sampled
census sectors, the sample households were randomly selected in the second stage sampling.
For the third stage sampling, data on individual-level women and children were collected.
All women and children in a household are included in the sample, but the weights associated
withwomen and children are adjusted for nonresponse. Table 4 shows the summary of sample
clusters in each stratum.

3 Survey data integration

We present the proposed method in the context of measurement error models. In a classical
measurement error model problem, the interest lies in estimating the regression coefficient
for the regression of y on x and the covariate x is subject to measurement errors [5]. In our
problem, the measurement error occurs in y for one survey (Survey B) and we are interested
in combining two surveys to estimate the population mean of y more efficiently. Thus, we
still consider the data structure in Table 1. We treat y1 as the gold standard, y1 = y, in the
sense that there is no measurement error in y1.

Let f1(y1 | x; θ1) be the density for the conditional distribution of y1 on x , characterized
by parameter θ1. Model for f1(y1 | x; θ1) can be called a structural equation model [3]. Let
f2(y2 | x, y1; θ2) be the density for the conditional distribution of y2 on (x, y1), characterized
by parameter θ2. For parameter identifiability, we assume that

f2(y2 | x, y1) = f2(y2 | y1). (1)

Such assumption is sometimes called the nondifferential measurement error assumption [1,
p. 7] in the measurement error model literature. That is, x is an instrumental variable for y1.
The nondifferential measurement error assumption is used to obtain a reduced model.

Given the sample with the data structure in Table 1, the imputed values for y1 in sample
B are used to obtain the composite estimator that combines direct observations in the sample
A and synthetic values in the sample B. The imputed values are the best predicted values of
the counterfactual outcome variable y1 in sample B, which correct for measurement errors
in observed valued of y2. The imputed values are generated using the prediction model for
y1, f (y1 | x, y2).
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For the parameter estimation, the (pseudo) maximum likelihood estimator of θ1 and θ2
can be obtained by using the full EM algorithm as follows:

[E-step] Compute

Q1(θ1|θ(t)
1 , θ

(t)
2 ) =

∑

i∈Sa
wia log f1(y1i |xi ; θ1)

+
∑

i∈Sb
wibE

[
log f1(y1i |xi ; θ1) | xi , y2i ; θ

(t)
1 , θ

(t)
2

]

and

Q2(θ2|θ̂ (t)
1 , θ

(t)
2 ) =

∑

i∈Sa
wiaE

[
log f2(y2i |y1i ; θ2) | xi , y1i ; θ̂

(t)
1 , θ

(t)
2

]

+
∑

i∈Sb
wibE

[
log f2(y2i |y1i ; θ2) | xi , y2i ; θ̂

(t)
1 , θ

(t)
2

]
,

where Sa and Sb are the index sets for the Survey A sample and the Survey B
sample, respectively. Also, wia and wib are the sampling weight for unit i ∈ Sa
and for unit i ∈ Sb, respectively. The conditional expectation in Q1 is taken with
respect to

f (y1|x, y2; θ1, θ2) = f1(y1|x; θ1) f2(y2|y1; θ2)∫
f1(y1|x; θ1) f2(y2|y1; θ2)dy1

evaluated at θ1 = θ
(t)
1 and θ2 = θ

(t)
2 for Q1 and at θ1 = θ̂

(t)
1 and θ2 = θ

(t)
2 .

For Q2, the first conditional expectation is taken with respect to f (y2i |xi , y1i ) =
f (y2i |y1i ) by the assumption (1), evaluated at θ2 = θ

(t)
2 .

[M-step] Update θ1 by maximizing Q1(θ1|θ(t)
1 , θ

(t)
2 ) with respect to θ1 and update θ2 by

maximizing Q2(θ2|θ̂ (t)
1 , θ

(t)
2 ) with respect to θ2.

Based on the estimated parameters θ̂1 and θ̂2, the best predictor of y1 of the Survey B
sample is obtained as the expectation of the predictive distribution, which is the conditional
distribution of y1 given x and y2. That is, the best predictor of y1i is

ŷ∗
1i = E

(
y1i |xi , y2i ; θ̂1, θ̂2

)
. (2)

The parametric fractional imputation of [7] can be used to generate fractionally imputed
values for y1 in sample B under the general parametric models [14]. When f1(y1|x; θ1)

and f2(y2|x, y1; θ2) have general parametric models, the prediction model may not have a
closed form. In this case, the parametric fractional imputation can be used following two-step
method:

1. For each i ∈ Sb, generate y∗( j)
1i from f1(y1i | xi ; θ̂1) for j = 1, . . . ,m.

2. Let y∗( j)
1i be the j-th imputed value of y1i obtained from Step 1. The fractional weight

assigned to y∗( j)
1i is

w
∗( j)
i = f2(y2i | xi , y∗( j)

1i ; θ̂2)
∑m

k=1 f2(y2i | xi , y∗(k)
1i ; θ̂2)

.
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Once we use the parametric fractional imputation, the conditional expectation in (2) can
by computed by a Monte Carlo approximation. That is, the conditional expectation can be
written by

ŷ∗
1i

∼=
m∑

j=1

w
∗( j)
i y∗( j)

1i .

Using the counterfactual values (2) of the Sample B and observations of the SurveyA sample,
we can construct a composite estimator that combines two values. The combined estimator
is

ȳ∗
com =

∑
i∈Sa wia y1i + ∑

i∈Sb wib ŷ∗
1i∑

i∈Sa wia + ∑
i∈Sb wib

.

Kim et al. [8] have investigated the parametric fractional imputation of Kim [7] in the con-
text of statistical matching where the main interest lies in estimating θ2 in f2(y2 | x, y1; θ2).
In their simulation study, the imputation model is based on the nondifferential measurement
error assumption, but they noticed that departure from the assumption does not affect the
validity of the imputation estimator for the population mean of y1, even though it leads to
biased estimation of the regression parameters. Note that if the assumption does not hold,
then the imputation model (based on the assumption) is incorrectly specified. Under the
incorrectly specified model, the imputed estimator is still unbiased for the mean estimation,
as long as an intercept term is included in the model [9].

4 Application of methodology to USAID surveys in Guatemala

Based on the two estimates obtained from the two independent surveys on the overlap areas,
we can improve the efficiency of the estimation by combining the two estimates.

4.1 Survey data integration

In this section, we use a measurement error model approach to integrate two surveys, the FFP
and the FTF, presented in Sect. 3. In the view of the measurement error model approach, we
treat one sample as a gold standard and the other sample containing measurement errors.

Throughout this study, the FFP sample was used as a benchmark and we predicted the
counterfactual outcomes of the FTF sample, which is the value that would have obtained
when the FTF sample was collected by ICF International who conducted the FFP project.
This is based on the idea that measurement errors between two surveys are diminished when
we consider the predicted values of the counterfactual values instead of the original values
from the survey. We chose the FFP sample as a reference point since it has a smaller residual
sum of squares compares to the one from the FTF sample.

4.1.1 Case 1: continuous study variable

Since the PCE indicator has continuous values, we treat a structural equation model and a
measurement error model both follow normal distributions. Assume that a structural equation
model for y1 is

y1i = β1x1i + β2x2i + ei , (3)
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Fig. 1 Model diagnostics of model (3)

where x1i is a department indicator and x2i is a variable indicating the total number of
household members, and ei ∼ N (0, σ 2

e ). Also, a measurement error model for y2 is

y2i |y1i = α0 + α1y1i + ui ,

where ui ∼ N (0, σ 2
u ). By using the Bayes theorem, the predictive distribution can be derived

as
y1i |y2i , xi ∼ N (μi , v

2), (4)

where xi = (x1i , x2i ) with β = (β1, β2) and

μi = ciβxi + (1 − ci )α
−1
1 (y2i − α0)

with

ci = 1/σ 2
e

1/σ 2
e + α2

1/σ
2
u

and

v2 = σ 2
e σ 2

u /α2
1

σ 2
e + σ 2

u /α2
1

.

For the analysis of the PCE indicator, we assumed a linear regression model (3). The model
diagnostics for the model assumptions are given in Fig. 1. Two plots show that the normality
assumption and the homogeneity of variance assumption are appropriate. Residual plot also
shows no particular pattern in residuals so the model assumptions in (3) are regarded as
reasonable.

For the parameter estimation, we write θ1 = (β1, β2, σ
2
e ) and θ2 = (α0, α1, σ

2
u ). The best

estimator of θ1 and θ2 can be obtained by the full EM algorithm as explained in Sect. 3. In
this example, the Q1 and Q2 are as follows:
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[E-step] Compute

Q1(θ1|θ(t)
1 , θ

(t)
2 ) =

∑

i∈Sa
wia

{
−1

2
log(σ 2

e ) − 1

2σ 2
e

(y1i − βxi )2
}

+
∑

i∈Sb
wibE

[
−1

2
log(σ 2

e ) − 1

2σ 2
e

(y1i − βxi )2 | xi , y2i ; θ
(t)
1 , θ

(t)
2

]

and

Q2(θ2|θ̂ (t)
1 , θ

(t)
2 )

=
∑

i∈Sa
wiaE

[
−1

2
log(σ 2

u ) − 1

2σ 2
u

(y2i − α0 − α1y1i )
2

∣∣∣ xi , y1i ; θ̂
(t)
1 , θ

(t)
2

]

+
∑

i∈Sb
wibE

[
−1

2
log(σ 2

u ) − 1

2σ 2
u

(y2i − α0 − α1y1i )
2

∣∣∣ xi , y2i ; θ̂
(t)
1 , θ

(t)
2

]
,

where the conditional distribution for

f (y1|x, y2; θ1, θ2) = f1(y1|x; θ1) f2(y2|y1; θ2)∫
f1(y1|x; θ1) f2(y2|y1; θ2)dy1

is also normal as in (4), evaluated at θ1 = θ̂
(t)
1 and θ2 = θ̂

(t)
2 .

[M-step] Update θ1 by maximizing Q1(θ1|θ(t)
1 , θ

(t)
2 ) with respect to θ1 and update θ2 by

maximizing Q2(θ2|θ̂ (t)
1 , θ

(t)
2 ) with respect to θ2.

Based on the estimated parameters θ̂1 and θ̂2, the best predictor of y1 of the FTF sample is
obtained as a mean of the predictive distribution, which is a conditional expectation of y1
given x and y2. That is,

ŷ∗
1i = Ê (y1i |xi , y2i ) = β̂xi/σ̂ 2

e + α̂1(y2i − α̂0)/σ̂
2
u

1/σ̂ 2
e + α̂2

1/σ̂
2
u

is the best prediction of y1i in the FTF sample that correct for measurement errors in y2i .
Using the counterfactual values of the FTF sample and observations of the FFP sample,

we can construct a composite estimator that combines two values. The combined estimator
is

ȳ∗
com =

∑
i∈Sa wia y1i + ∑

i∈Sb wib ŷ∗
1i∑

i∈Sa wia + ∑
i∈Sb wib

, (5)

where Sa and Sb denote the FFP sample and the FTF sample, respectively.

4.1.2 Case 2: dichotomous study variable

When a study variable is dichotomous, such as the HHS indicator in the project, the normal
distribution assumption does not hold for both the structural equation model and the mea-
surement error model. In this case, we consider a logistic regression model for the structural
equation model and the misclassification model is used instead of the measurement error
model [1]. The structural equation model for y1 is

y1i |xi ∼ Ber(ri ),
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where xi = (x1i , x2i ) and

ri = exp(β1x1i + β2x2i )

1 + exp(β1x1i + β2x2i )
,

where x1i is a department indicator and x2i is a variable indicating total number of household
members. The misclassification model is given

f (y2i |y1i ) = py1i y2i (1 − p)y1i (1−y2i )q(1−y1i )y2i (1 − q)(1−y1i )(1−y2i ),

where p = P(y2i = 1|y1i = 1) and q = P(y2i = 1|y1i = 0) are the misclassification
parameters.

Denote the parameters θ1 = (β1, β2) and θ2 = (p, q). Then, the implementation of the
EM algorithm via parametric fractional imputation involves the following steps:

[E-step]

Q1(θ1|θ(t)
1 , θ

(t)
2 ) =

∑

i∈Sa
wia

[
y1i (β1x1i + β2x2i ) − log

{
1 + exp(β1x1i + β2x2i )

} ]

+
∑

i∈Sb
wib

2∑

j=1

w
∗( j)
1i

[
y∗( j)
1i (β1x1i + β2x2i ) − log

{
1 + exp(β1x1i + β2x2i )

} ]

and

Q2(θ2|θ̂ (t)
1 , θ

(t)
2 ) =

∑

i∈Sa
wia

2∑

j=1

w
∗( j)
2i

[
y∗( j)
2i {y1i log p + (1 − y1i ) log q} ]

+
∑

i∈Sa
wia

2∑

j=1

w
∗( j)
2i

[
(1 − y∗( j)

2i ) {y1i log(1 − p) + (1 − y1i ) log(1 − q)} ]

+
∑

i∈Sb
wib

2∑

j=1

w
∗( j)
1i

[
y∗( j)
1i {y2i log p + (1 − y2i ) log(1 − p)} ]

+
∑

i∈Sb
wib

2∑

j=1

w
∗( j)
1i

[
(1 − y∗( j)

1i ) {y2i log q + (1 − y2i ) log(1 − q)} ]
,

where y∗(1)
ki = 1 and y∗(2)

ki = 0 for k = 1, 2 and

w
∗( j)
1i = P(y∗( j)

1i |y2i , xi )
∝ f (y∗( j)

1i |xi )P(y2i |y∗( j)
1i )

w
∗( j)
2i = P(y∗( j)

2i |y1i , xi )
= P(y∗( j)

2i |y1i ),
where

∑
j w

∗( j)
1i = 1 and

∑
j w

∗( j)
2i = 1.

[M-step] Update θ1 by maximizing Q1(θ1|θ(t)
1 , θ

(t)
2 ) with respect to θ1 and update θ2 by

maximizing Q2(θ2|θ̂ (t)
1 , θ

(t)
2 ) with respect to θ2.

The best predictor of y1i of the FTF sample can be written by

ŷ∗
1i = Ê(y1i |xi , y2i ) =

2∑

j=1

w
∗( j)
1i y∗( j)

1i (6)

and the composite estimator combining two samples can be calculated as (5) using (6).

123



A measurement error model approach to survey data. . . 355

Table 5 PCE indicator: mean
estimates (standard errors) of the
FFP project, mean estimates
(standard errors) of the FTF
project, and combined mean
estimates (standard errors)

Department FFP FTF Combined

San Marcos 0.558 1.165 0.563

(0.030) (0.038) (0.026)

Totonicapan 0.388 0.895 0.331

(0.030) (0.085) (0.028)

Quiche 0.382 1.045 0.396

(0.030) (0.031) (0.026)

Huehuetenango 0.456 1.140 0.479

(0.044) (0.036) (0.027)

Quetzaltenango 0.695 1.325 0.795

(0.044) (0.232) (0.043)

4.2 Variance estimation of the combined estimator

For variance estimation of the combined estimator, replicate variance estimation method
is applied. More precisely, we used the bootstrap method of Rao and Wu [15]. For each
bootstrap dataset D(b), b = 1, . . . , B, we can calculate estimates for the specific bootstrap
sample, say μ̂(b). Then, the bootstrap approach computes the estimated variance of estimator
ȳ by

V̂ (ȳ) = 1

B − 1

B∑

b=1

(
μ̂(b) − ˆ̄μ)2

,

where ˆ̄μ = B−1 ∑B
b=1 μ̂(b) is the mean of B bootstrap estimates. We used B = 500 in this

study.

4.3 Results

In this section, results of the two examples in Sect. 4.1 are presented: the PCE indicator’s
result is shown in Table 5 and the HHS indicator’s result is shown in Table 6. Both tables
contain mean estimates of the FFP project (FFP), mean estimates of the FTF project (FTF)
and combined mean estimates (Combined) using the original estimate of the FFP project and
the new FTF mean estimates. Also, standard errors of each mean estimate are also reported.

Mean estimates of the FFP sample and the new mean estimates of the FTF sample are
combined using (5) in order to obtain the composite estimates and the result is listed in the
last column of the both tables. From the results in Tables 5 and 6, we find that the combined
estimator provides reasonable estimates for the populationmeanwith smaller standard errors.

Estimates of parameters of the measurement error model for PCE variable are (α̂0, α̂1) =
(0.261, 0.732). The α̂0 = 0.261 can be thought of as the mean of the measurement error
model and it can explain why some combined estimates are outside the confidence interval
of the estimate from the FTF.

In some cases, the combined estimate is not in between the FFP and the FTF. For example,
the combined estimate of PCE in Totonicapan and the combined estimate of HHS in Hue-
huetenango are smaller than the FFP and the FTF. The new estimate of the FTF, which was
adjusted for measurement errors, is even smaller than the FFP and it leads to the combined
estimate that is not between the two original values. The new FTF estimate is not tabulated
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Table 6 HHS indicator:
proportion estimates (standard
errors) of the FFP project,
proportion estimates (standard
errors) of the FTF project, and
combined proportion estimates
(standard errors) (%)

Department FFP FTF Combined

San Marcos 3.76 15.35 3.77

(1.01) (2.22) (1.00)

Totonicapan 11.79 15.01 12.08

(1.70) (6.00) (1.60)

Quiche 7.13 9.73 7.19

(1.50) (1.57) (1.42)

Huehuetenango 8.91 15.58 8.75

(1.90) (2.00) (1.90)

Quetzaltenango 6.84 9.94 6.85

(1.80) (8.25) (1.70)

in the result, but the new estimate of PCE in Totonicapan is 0.275 and the new one of HHS
in Huehuetenango is 8.70, which are smaller than the FFP for both cases.

5 Discussion

This study suggests a new approach to combine information from two surveys using the
measurement error model approach and it can be generalized to combine more than two
sources of information. Using a structural equation model and a measurement error model,
we present a guidance on data integration with illustration of the work sponsored by FANTA.
The results shown in Tables 5 and 6 indicate that the reference estimate and the counterfactual
predicted values of the other sample can be used to produce the combined estimates.

The choice of a benchmark among several surveys can be decided in various ways. We
considered a smaller mean squared error as a criterion in our study. If we have auxiliary
information, such as previous experiences on the surveys, it can be used to determine a gold
standard among several surveys.

The proposed approach can be applied to combine more than two survey data. Similarly,
we can implement the method as follows: set one survey data as a benchmark, remove mea-
surement errors existing in the remaining survey data and calculate the composite estimator
using the estimates from the surveys. Also, multivariate modeling for the structural equation
model can provide a more efficient estimation. Such extension will be a topic for future
research.
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