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1. Introduction

Missing data problems are ubiquitous in many research areas, including econometrics, epidemiology, clinical study, and
psychometrics. If analysts do not properly deal with missing data, then the results may be biased, which can lead to incorrect
conclusions. Thus, a proper method for analyzing missing data needs to be developed. Also, it is preferable that the required
assumptions in the proposed method be as weak as possible.

The required assumptions are strongly related to the outcome model or the response mechanism. In this paper, we focus
on estimation with nonresponse data in which study variable is subject to missingness. Let y be the study variable, x be a
fully observed d-dimensional covariate vector, and r be a response indicator of y, i.e., r takes the value 1 if y is observed,
and takes the value 0 if y is missing. Thus, letting z = (x',y)", we observe (x, y) when r = 1, and observe only x when
r = 0. The response mechanism is defined as the conditional probability 7(z) = Pr(R = 1 | z). If the mechanism does not
depend on the study variable y, then it is called missing at random (MAR) and otherwise is called not missing at random
(NMAR) (Little and Rubin, 2002; Kim and Shao, 2013). In the analysis of nonresponse data, MAR (NMAR) is also referred to
as ignorable (nonignorable) missingness.

In this paper, we assume a parametric model on the response mechanism. Let 77(z; ¢) be the parametric response model,
where ¢ is a g-dimensional parameter. In classical approaches for NMAR data, an outcome model f(y | %), which is the
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conditional distribution of y given %, is assumed in addition to the response model (Greenlees et al., 1982). This estimator
has been criticized because of its sensitivity to model assumptions. Recently, some semiparametric methods, which do not
require any outcome model, have been proposed.

Semiparametric estimation is mainly divided into two approaches: (i) the empirical likelihood (EL) approach; and (ii) the
moment-based approach. Qin et al. (2002) derived a consistent and asymptotic normal estimator for ¢ by using a technique
of EL without using any outcome model. Kott and Chang (2010) proposed a moment-based estimator for ¢, also without
using any outcome model. Recently, Morikawa and Kim (2016) proposed two moment-based semiparametric adaptive
estimators.

In this paper, we clarify the relationship between the EL estimator and the moment-base estimator, and show that there
exists a specific case for which these two estimators are exactly the same. Also, we propose an estimation method that is
robust to model misspecification. All technical details are given in the Supplementary Material (see Appendix A).

2. Previous semiparametric estimators

Letz; = (x;,y;)" (i=1,...,n)beindependently and identically distributed realizations from unknown distribution F(z),
andr; (i=1,...,n)beindependently distributed taking binary values, either 0 or 1, with probability Pr(R; = 1 | z;) = 7 (z;)
fori = 1,...,n. Also, without loss of generality, assume that the first m elements are observed and that the remaining
(n — m) elements are missing in y;,i.e.,r; = 1fori=1,...,mandr; = 0fori=m+ 1, ..., n. Qinetal. (2002) constructed
the likelihood without using the data when r = 0 by

l_[nq&zlszl l_[f{l—n(bz VdF(z) (1)

i=m+1

and discretized the distribution F by w; (i = 1, ..., m). The discretized distribution w; can be estimated by maximizing
[Ti~,wi under the following constraints:

w; > 0, Zw1_1 Zw, w($; z;) — W} =0,

W =Pr(R=1) = [ 7(z; ¢po)dF(z),and Y ;" wi{h(x;)— h,} = 0,whereh : RY — RP! (p; > q—1)isanarbitrary function of ,
and h, = n~! Z;:]h x;). The h(x) function helps to improve the efficiency. By introducing Lagrange multipliers, the solution
to the above optimization problem is ﬁ)i‘l =m[l1+ XlT{h(x,-) — h,} + X {7 (¢; z;) — W}]. By profiling out the unknown F

with the estimates w; (i = 1, ..., m)in (1) and taking the logarithm, we obtain the profile pseudo-loglikelihood:
e(¢a W7 )"l)
m m _
= logm(:zi) — Y _logll +A{ (h(x;) — ha} + Aa{w(; 2:) — W] 2)

i=1
+ (n — m)log(1 — W),

where A, = (n/m — 1)/(1 — W). Qin et al. (2002) proposed a semiparametric estimator for ¢ that maximizes the profile
pseudo-loglikelihood. In the optimization procedure, some computational techniques are needed (see Chen et al., 2002)
because the maximizer of (2) must satisfy w; > 0.

On the other hand, under the same assumptions, Kott and Chang (2010) proposed another semiparametric estimator
that solves the following estimating equation:

n
Ti
—1tg(x)=0, (3)
; {ﬂ(fb; 2) } ’
where g : RY — RY is an arbitrary function of x. This equation is called “calibration” equation in the literature of survey
sampling. A typical choice for g whend = 1is g(x) = (1,x,...,x9"1)T. It is hard to decide the control variables in the

calibration condition when d > 1. Also, when the dimension of g(x) is larger than g, say p,, the model is over-identified and
the generalized method of moments (GMM) method (Hansen, 1982) can be used to estimate ¢. The GMM estimator can be
constructed by

2
—argmmZ{ M }g(xiﬁ?”(wg(xn, (4)

where V(¢) = n~' Y1, {ri/7(; z;) — 1)2g(x;)®* and B®? = BB for any matrix B. The optimizations in (3) and (4) are much
simpler than that of Qin et al. (2002) since there is no constraint in the optimization.
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Remark 2.1. Regarding the choice of g(x) in (3), Morikawa and Kim (2016) proposed an optimal g function,

_ Ei{ii(@o; &, Y)/7(Pg; 8, V) | X)
Ei[{1 — (o %, Y)}/7(dg; X, Y)* | &]
where Eq(- | X) is the conditional expectation ony givenx and r = 1. Let f;(y | ®; B) be the working model of the conditional
distribution of y givenxand r = 1, and B be the maximum likelihood estimator of 8 obtained from the set of full respondents.
Then it can be shown that the solution of (3) with g*(x) and f(y | x; B) attains the semiparametric efficiency bound when the
f1 model is correctly specified. Also even if the f; model is wrong, the estimator has consistency and asymptotic normality.

Furthermore, nonparametric estimation can be used for both of denominator and numerator in (5). For example, the
denominator can be estimated by using a kernel smoothing without assuming any parametric model on f; by

1¢ i—x\ 1— ; Xi, i
L e () Lo
n h (o Xi, i)

where K(-) is a kernel function and h is a bandwidth satisfying some regularity conditions, see Morikawa and Kim (2016)
for more details.

g'®) (5)

The two semiparametric estimation methods use the same assumptions but they seem to provide different estimation
results. One natural question is which one is better, or whether there are any real differences between the two methods. We
will answer these questions in the next section.

3. Theoretical comparison of the semiparametric estimators

In this section, we show that when q = p; + 1 = p», for a specific choice of g(x) and h(x) functions, the two estimators
are exactly the same.

Theorem 3.1. When q = p; + 1 = p,, EL and GMM estimators are exactly the same if and only if g(x) = {1, h(x)"}T.

We now consider the other case of estimating ¢ by using the method of Qin et al. (2002) with the same h(x) function.
Theorem 3.1 implies that, when g = p;+ 1, there is no reason to use the procedure for EL, so we just use the GMM estimating
Eq. (3) with g(x) = {1, h(x)"} ", which is much simpler in terms of computation.

Furthermore, we can see that the GMM estimator including g*(x) as the constraint also attains the semiparametric
efficiency bound.

Theorem 3.2. When q < p; + 1 = p,, the GMM estimator attains the semiparametric efficiency bound if g(x) defined in (4)
contains g*(x), i.e., g(x) = {k(x)7,g*(x)7}T, where k : RY — R¥ is an arbitrary function of x, ¥ € R! is a positive integer, and
g*(x) is defined in Remark 2.1.

This estimator enjoys two properties: (i) robustness to misspecification of the response model; and (ii) semiparametric
efficiency. The robustness is achieved because of the constraints, which are proposed by Qin and Zhang (2007) and Imai
and Ratkovic (2014) for observational studies in the case of MAR. Our study can be considered as an extension of their work
to NMAR.

4. Simulation study

We conduct a simulation study (i) to confirm the asymptotic behavior of EL and GMM estimators whenq < p; + 1 = p,
andg(x) = {1, h(x)"}T; and (ii) to check the performance of the estimators proposed in Theorem 3.2 when both the response
and fi(y | x) models are misspecified. In Theorem 3.1, we have shown that EL and GMM estimators are exactly the same when
q = p1 + 1 = p,. However, we have not shown anything about the relationship between the two types of estimators when
q < p1 + 1 = p,. Thus, we check the relationship here. For (ii), in Theorem 3.2, we have shown that any function k(x) can
be included in our GMM constraints without loss of efficiency as long as g*(x) is used. We check that the other function k(x)
can potentially reduce the bias when both models are misspecified.

Let the covariatebe X ~ N(—1,1)and Y | X = x ~ N(2x(x — 3/4)(x + 3/4), 1/3). We prepare six different response
mechanisms: M1 (linear nonignorable): logit{rr(y)} = 0.90 — 1.0y; M2 (linear ignorable): logit{z(x)} = 0.90 — 1.0x; M3
(quadratic nonignorable): logit{z(y)} = 1.3 — 0.5y — y?; and M4 (log-log nonignorable): 7(x, y) = 1 — exp{— exp(0.25 +
0.5x — y)}. In this simulation study, we specify a response model by 7 (y; ¢) = {1+ exp(¢o + ¢1y)} !, where ¢ = (¢, ¢1) .
Therefore, all models except for M1 are misspecified.

Furthermore, we assume that fi(y | x) is normally distributed with a mean function u(x; 8) and variance o2, although,
strictly speaking, this f1(y | x) misspecifies the true f;, because it is given by f1(y | x) o« w(x, y)f (v | x). Thus, the true model for
f1(y | x) depends on its response mechanism as well as the distribution of outcome, and is not normal. However, as is stated
in Remark 2.1, this misspecification does not affect the consistency of ¢. We consider two settings for the mean function:
(1) (Heavily misspecified model) 11(x; B) = Bo + B1x; (2) (Slightly misspecified model) p(x; B) = Bo + BiX + Bax® + B3x>,
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where in the second model an appropriate 8 = (8o, 81, B2, B3)" is chosen by the Akaike information criterion (AIC). The
first mean function is linear with respect to x, whereas the second function is cubic. It is expected that estimators with the
second mean function are more efficient than those with the first one.

For EL estimators, we consider three types of h(x) function: (1) h;(x) = (x,x?)"; (2) ho(x) = g*(x); and (3) hs(x) =
{x,g*(x)T}T. For GMM estimators, we consider four types of g(x) function: (1) g;(x) = (1,x,x*)7; (2) &2(x) = g*(x); (3)
g(x)={1,g*(x)"}7; and (4) ga(x) = {1, x, g*(x)"} T. We can check (i) the asymptotic behaviors of EL and GMM estimators
whenq < p; +1 = p, and g(x) = {1, h(x)"}7, for example, by comparing estimators using h;(x) and g;(x), because
g1(x) = {1, hy(x)T}7. The parameter ¢ is estimated by (3) whenq = p; + 1 = p,, and by (4) whenq < p; + 1 = p,,
for which two-step GMM estimation procedure is used. Instead of using the two-step procedure, there are some different
versions of GMM procedures such as continuous updating procedure (Pakes and Pollard, 1989; Hansen et al., 1996). Although
the small size property of the procedures is somewhat different, the asymptotic properties are the same. We use the two-
step procedure because the sample size is large enough and the procedure is easy to conduct. The algorithm can be easily
implemented by using the package “gmm” in the R programing language.

It is meaningless to compare the estimated parameters of the response model because it is misspecified in models
M2-M4, and the true parameter value is unknown. Therefore, we assess robustness by estimating & = E(Y) with the
estimated response model, as follows:

» ¢ 1Y { i ] N L Aj|
0=— ——+ 1= —1E*(Y | x50, 8) |,
n ; [”(J’ﬁ é) 7(yi; P)

where

Ei[Y{1—n(Y; $)}/n(Y; ) | x]

Eil{1 —7(Y; $)}/m(Y; 92 | x]

This estimator attains the semiparametric efficiency bound when both 7 (y; ¢) and fi(y | x; B) are correctly specified;
however, it still has consistency even if fi(y | x; B) is misspecified (Morikawa and Kim, 2016).

Under this setup, Monte Carlo samples of size n = 2000 are generated independently with 2,000 replications. The results
with response mechanisms M1-M4 are shown in Fig. 1. In the boxplots, the samples not having converged are removed.
In particular, for EL estimators with hs3(x) under the heavily misspecified mean function w1(x), almost all samples did not
converge for all response mechanisms while g4(x) with the same mean structure did, which indicates the difficulty of
optimization in the EL method. For estimators using g,(x) and h,(x) with p1(x), nearly half of the samples did not converge.
For the other estimators, most of samples converged except for those using g4(x) with w1(x) in M3. This result tells us
importance of the correct specification of the model for fi(y | x; 8). Furthermore, all estimators are correctly estimated in
M1, i.e., when the response model is correct. However, even when the response model is misspecified, the estimators using
u2(x) are quite well estimated. Overall, the performance of the GMM estimator using g,(x) or g3(x) with mean function u,(x)
is the best. Surprisingly, the estimators in M2 still work well even though the true response mechanism is MAR.

We would like to note the following about issue (i). It can be inferred from the results of estimators using g;(x) and
h1(x) under mechanisms M1-M4 that Theorem 3.1 does not hold when ¢ < p; + 1 = p,. This implies that EL estimators
may not attain the semiparametric efficiency bound. In the case of (ii), we can see that having more constraints leads to
less biased estimators by comparing estimators using g>(x), g3(x), and g4(x) with 11(x) as the mean function, though some
estimators using the most constrained function g4(x) were not estimated well. However, on the flip side, it follows from
the results of estimators using g4(x) with u,(x) as the mean function that having more constraints leads to difficulty in
the optimization computation or a lack of identification. Therefore, choosing an appropriate constraint function k(x) in
g(x) = {g*(x)7,k(x)"}T from observed data is important. One way to check the over-identification of the k(x) function
is to use Sargan-Hansen'’s ] test (Hansen, 1982). We have conducted the Sargan-Hansen’s ] test, which is shown in the
Supplementary Material (see Appendix A).

It is of interest to know ignorability of the response model because if the response mechanism is MAR, then we do not
have to model the outcome model at all or can use estimators enjoying fascinating properties such as the double or multiple
robustness (Robins et al., 1994; Han, 2014). The result is shown in the Supplementary Material (see Appendix A).

E'(Y | x; 6. B) =

5. Conclusion

In this paper, we have investigated the relationship between the two semiparametric methods, the EL and GMM
approaches, for estimation of the response model. We have shown that the EL estimators can be solved by using the moment-
based method when q = p; + 1 = p,, where p; and p, are defined in Section 2. Also, we have pointed out that EL and GMM
estimators may not be asymptotically equivalent when g < p; + 1 = p,, based on a numerical study. Furthermore, we have
shown that a constraint function including the best function g*(x), defined in Remark 2.1, also attains the semiparametric
efficiency bound (Rotnitzky and Robins, 1997; Morikawa and Kim, 2016). This property is useful in practice because the
estimated response model is robust to model misspecification due to the other constraints, and the true response mechanism
is generally unknown.

However, as is shown in Section 4, having more constraints may lead to a lack of identification which leads to numerical
problems. Thus, a method for choosing an appropriate constraint function will be a topic of our future research.
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Fig. 1. Boxplots of eleven estimators for E(Y) with M1-M4 response mechanisms. Black indicates without the fi(y | x) model, blue indicates with mean
function 11(x) (heavily misspecified model), and pink indicates with u,(x) (slightly misspecified model). The first element of the method name indicates
the constraint used for the estimators, and the second element, “lin” or “cub”, refers to either the linear or cubic model, respectively, for the mean function

of fi(y | x).
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