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Abstract: This article studies convergence properties of optimal values and actions for discounted and average-cost Markov deci-
sion processes (MDPs) with weakly continuous transition probabilities and applies these properties to the stochastic periodic-review
inventory control problem with backorders, positive setup costs, and convex holding/backordering costs. The following results are
established for MDPs with possibly non-compact action sets and unbounded cost functions: (i) convergence of value iterations to
optimal values for discounted problems with possibly non-zero terminal costs, (ii) convergence of optimal finite-horizon actions
to optimal infinite-horizon actions for total discounted costs, as the time horizon tends to infinity, and (iii) convergence of optimal
discount-cost actions to optimal average-cost actions for infinite-horizon problems, as the discount factor tends to 1. Being applied
to the setup-cost inventory control problem, the general results on MDPs imply the optimality of (s, S) policies and convergence
properties of optimal thresholds. In particular this article analyzes the setup-cost inventory control problem without two assumptions
often used in the literature: (a) the demand is either discrete or continuous or (b) the backordering cost is higher than the cost of
backordered inventory if the amount of backordered inventory is large. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 00:
000–000, 2017
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1. INTRODUCTION

Since Scarf [29] proved the optimality of (s, S) policies
for finite-horizon problems with continuous demand, there
have been significant efforts to extend this result to other
models. Arthur F. Veinott [35, 36] was one of the pioneers
in this exploration, and he combined a deep understanding
of Markov decision processes (MDPs) with a passion for the
study of inventory control. It is a great pleasure to dedicate
this article to him.

This article introduces new results on MDPs with infinite
state spaces, weakly continuous transition probabilities, one-
step costs that can be unbounded, and possibly non-compact
action sets under the discounted and average-cost criteria. The
results on MDPs are applied to the stochastic periodic-review
setup-cost inventory control problem. We show that this prob-
lem satisfies general conditions sufficient for the existence of
optimal policies, the validity of the optimality equations, and
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the convergence of value iterations. In particular, these results
are used to show the optimality of (s, S) policies for finite-
horizon problems, and for infinite-horizon problems with the
discounted and long-term average-cost criteria.

Since the 1950s, inventory control has been one of
the major motivations for studying MDPs. However, until
recently there has been a gap between the available results in
the MDP theory and the results needed to analyze inventory
control problems. Even now most work on inventory con-
trol assumes that the demand is either discrete or continuous.
Moreover, the proofs are often problem-specific and do not
use general results on MDPs, which often provide additional
insight. For example, Theorem 6.10 below states convergence
properties of optimal thresholds in addition to the existence of
optimal (s, S) policies, and the proof of this theorem is based
on Theorem 3.6 and Corollary 4.4 established for MDPs.

With such a long history, the inventory control litera-
ture is far too expansive to attempt a complete literature
review. The reader is pointed to the books by Bensoussan
[1], Beyer et al. [4], Heyman and Sobel [23], Porteus [27],
Simchi-Levi et al. [33], and Zipkin [40]. Applications of
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MDPs to inventory control are also discussed in Bertsekas
[2]. In the case of inventory control, under the average cost
criterion the optimality of (s, S) policies was established by
Iglehart [25] and Veinott and Wagner [37] in the continu-
ous and discrete demand cases, respectively. As explained
in Beyer and Sethi [5, p. 526] in detail, the analysis in Igle-
hart [25] assumes the existence of a demand density. The
proofs for discrete demand distributions were significantly
simplified by Zheng [39]. Zabel [38] corrected Scarf’s [29]
results on finite-horizon inventory control. Beyer and Sethi
[5] described and corrected gaps in the proofs in Refs. 25
and 37. Almost all studies of infinite-horizon inventory con-
trol deal with either discrete or continuous demand. In some
cases, the choice between the use of discrete and continu-
ous distributions depends on a particular application. There
is an important practical reason why many studies use dis-
crete demand. In operations management practice, the over-
whelming majority of information systems record integer
quantities of demand and stock level. Without assumptions
that the demand is discrete or continuous, the optimality
of (s, S) policies for average cost inventory control prob-
lems follows from Chen and Simchi-Levi [9], where under
some technical assumptions coordinated price-inventory con-
trol is studied and methods specific to inventory control are
used. Huh et al. [24] developed additional problem-specific
methods for inventory control problems with arbitrary distrib-
uted demands. Under some additional assumptions, includ-
ing the assumption that holding costs are bounded above
by polynomial functions, the optimality of (s, S) policies
also takes place when the demand evolves according to
a Markov chain; see Beyer et al. [4] and the references
therein.

Early studies of MDPs dealt with finite-state problems
and infinite-state problems with bounded costs. The case of
average costs per unit time is more difficult than the case
of total discounted costs. Sennott [32] developed the theory
for the average-cost criterion for countable-state problems
with unbounded costs. Schäl [30, 31] developed the theory
for uncountable state problems with discounted and average-
cost criteria when action sets are compact. In particular,
Schäl [30, 31] identified two groups of assumptions on transi-
tion probabilities: weak continuity and setwise continuity. As
explained in Feinberg and Lewis [17, Section 4], models with
weakly continuous transition probabilities are more natural
for inventory control than models with setwise continuous
transition probabilities. Hernández-Lerma and Lasserre [22]
developed the theory for problems with setwise continuous
transition probabilities, unbounded costs, and possibly non-
compact action sets. Luque-Vasques and Hernández-Lerma
[26] identified an additional technical difficulty in dealing
with problems with weakly continuous transition probabili-
ties even for finite-horizon problems by demonstrating that
Berge’s theorem, which ensures semi-continuity of the value

function, does not hold for problems with non-compact action
sets. Feinberg and Lewis [17] investigated total discounted
costs for inf-compact cost functions and obtained sufficient
optimality conditions for average costs. Compared to Schäl
[31] these results required an additional local boundedness
assumption that holds for inventory control problems, but its
verification is not easy. Feinberg et al. [14, 15] introduced
a natural class of K-inf-compact cost functions, extended
Berge’s theorem to non-compact action sets, and developed
the theory of MDPs with weakly continuous transition prob-
abilities, unbounded costs, and with the criteria of total dis-
counted costs and long-term average costs. In particular, the
results from Ref. 14 do not require the validity of the local
boundedness assumption. This simplifies their applications to
inventory control problems. Such applications are considered
in Section 6 below. The tutorial by Feinberg [11] describes in
detail the applicability of recent results on MDPs to inventory
control.

Section 2 of this article describes an MDP with an infinite
state space, weakly continuous transition probabilities, pos-
sibly unbounded one-step costs, and possibly non-compact
action sets. Sections 3 and 4 provide the results for dis-
counted and average cost criteria. In particular, new results
are provided on the following topics: (i) convergence of value
iterations for discounted problems with possibly non-zero
terminal values (Corollary 3.5), (ii) convergence of optimal
finite-horizon actions to optimal infinite-horizon actions for
total discounted costs, as the time horizon tends to infinity
(Theorem 3.6), and (iii) convergence of optimal discount-cost
actions to optimal average-cost actions for infinite-horizon
problems, as the discount factor tends to 1 (Theorems 4.3
and 4.5). Studying the convergence of value iterations and
optimal actions for discounted costs with non-zero terminal
values in this article is motivated by inventory control. As
was understood by Veinott and Wagner [37], without addi-
tional assumptions (s, S) policies may not be optimal for
problems with discounted costs, but they are optimal for large
values of discount factors. Even for large discount factors, (s,
S) policies may not be optimal for finite-horizon problems
with discounted cost criteria and zero terminal costs. How-
ever, (s, S) policies are optimal for such problems with the
appropriately chosen non-zero terminal costs, and this obser-
vation is useful for proving the optimality of (s, S) policies
for infinite-horizon problems.

Section 5 relates MDPs to problems whose dynamics are
defined by stochastic equations, as this takes place for inven-
tory control. Section 6 studies the inventory control problem
with backorders, setup costs, linear ordering costs, and con-
vex holding costs and provides two results on the existence of
discounted and average-cost optimal (s, S) policies. The first
result, Theorem 6.10, states the existence of optimal (s, S)
policies for large discount factors and average costs. It does
not use any additional assumptions, and the proof is based on
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adding terminal costs to finite-horizon problems. The second
result, Theorem 6.12, states the existence of optimal (s, S)
policies for all discount factors under an additional assump-
tion that it is expensive to keep a large backordered amount of
inventory. Such assumptions are often used in the literature;
see Bertsekas [2], Beyer et al. [4], Chen and Simchi-Levi
[8, 9], Huh et al. [24], and Veinott and Wagner [37]. Theo-
rems 6.10 and 6.12 also describe the convergence properties
of optimal thresholds for the following two cases: (i) the hori-
zon length tends to infinity, and (ii) the discount factor tends
to 1.

In the conclusion of the introduction, we would like to men-
tion that the results on MDPs with weakly continuous tran-
sition probabilities, non-compact action sets and unbounded
costs presented in this article are broadly applicable to a wide
range of engineering and managerial problems. Potential
applications include resource allocation problems, control of
workload in queues, and a large variety of inventory con-
trol problems. In particular, the presented results should be
applicable to combined pricing-inventory control and to sup-
ply chain management; see Refs. 8, 9 and 33. Moreover, as
mentioned above, the results for MDPs presented below sig-
nificantly simplify the analysis of the stochastic cash balance
problem investigated in Ref. 17 because the current results
do not require verifying the local boundedness assumption
introduced in Ref. 17. Instead Theorem 4.1 below can be
employed. The periodic-review setup-cost inventory con-
trol problem was selected as an application in this article
mainly because it is probably the most highly studied inven-
tory control model. We provide new results for this classic
problem.

2. DEFINITION OF MDPS WITH BOREL STATE
AND ACTION SETS

Consider a discrete-time MDPs with the state space X,
action space A, one-step costs c, and transition probabilities
q. The state space X and action space A are both assumed to be
Borel subsets of Polish (complete separable metric) spaces.
If an action a ∈ A is selected at a state x ∈ X, then a cost c(x,
a) is incurred, where c : X × A → R = R ∪ {+∞} , and the
system moves to the next state according to the probability
distribution q(·|x, a) on X. The function c is assumed to be
bounded below and Borel measurable, and q is a transition
probability, that is, q(B|x, a) is a Borel function on X × A

for each Borel subset B of X, and q(·|x, a) is a probability
measure on the Borel σ -field of X or each (x, a) ∈ X × A.

The decision process proceeds as follows: at time t =
0, 1, . . . the current state of the system, xt , is observed.
A decision-maker decides which action, a, to choose, the
cost c(x, a) is accrued, the system moves to the next state
according to q(·|x, a), and the process continues. Let Ht =

(X × A)t × X be the set of histories for t = 0, 1, . . . .
A (randomized) decision rule at epoch t = 0, 1, . . . is a
regular transition probability πt from Ht to A. In other
words, (i) πt(·|ht ) is a probability distribution on A, where
ht = (x0, a0, x1, . . . , at−1, xt ) and (ii) for any measurable sub-
set B ⊆ A, the function πt(B|·) is measurable on Ht . A policy
π is a sequence (π0, π1, . . . ) of decision rules. Moreover, π is
called non-randomized if each probability measure πt(·|ht ) is
concentrated at one point. A non-randomized policy is called
Markov if all decisions depend only on the current state and
time. A Markov policy is called stationary if all decisions
depend only on the current state. Thus, a Markov policy φ

is defined by a sequence φ0, φ1, . . . of measurable mappings
φt : X → A. A stationary policy φ is defined by a measurable
mapping φ : X → A.

The Ionescu Tulcea theorem (see Ref. 3, p. 140–141 or 22,
p. 178) implies that an initial state x and a policy π define a
unique probability distribution P

π
x on the set of all trajectories

H∞ = (X × A)∞ endowed with the product σ -field defined
by Borel σ -fields of X and A. Let E

π
x be the expectation with

respect to this distribution. For a finite horizon N = 0, 1, . . .
and a bounded below measurable function F : X → R called
the terminal value, define the expected total discounted costs

vπ
N ,F,α(x) := E

π
x

[
N−1∑
t=0

αtc(xt , at ) + αNF(xN)

]
, (2.1)

where α ∈ [0, 1), vπ
0,F,α(x) = F(x), x ∈ X. When F(x) = 0

for all x ∈ X, we shall write vπ
N ,α(x) instead of vπ

N ,F,α(x).
When N = ∞ and F(x) = 0 for all x ∈ X, (2.1) defines the
infinite horizon expected total discounted cost of π denoted
by vπ

α (x) instead of vπ∞,α(x). The average costs per unit time
are defined as

wπ(x) := lim sup
N→∞

1

N
E

π
x

N−1∑
t=0

c(xt , at ). (2.2)

For each function V π(x) = vπ
N ,F,α(x), vπ

N ,α(x), vπ
α (x), or

wπ(x), define the optimal cost

V (x) := inf
π∈�

V π(x), (2.3)

where � is the set of all policies. A policy π is called optimal
for the respective criterion if V π(x) = V (x) for all x ∈ X.

We remark that the definition of an MDP usually includes
the sets of available actions A(x) ⊆ A, x ∈ X. We do
not do this explicitly because we allow c(x, a) to be equal
to +∞. In other words, a feasible pair (x, a) is modeled
as a pair with finite costs. To transform this model to one
with feasible action sets, it is sufficient to consider the sets
of available actions A(x) such that A(x) ⊇ Ac(x), where
Ac(x) = {a ∈ A : c(x, a) < +∞} , x ∈ X. In particular, it
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is possible to set A(x) := Ac(x), x ∈ X. In order to trans-
form an MDP with action sets A(x) to a MDP with action
sets A, x ∈ X, it is sufficient to set c(x, a) = +∞ when
a ∈ A \ A(x). Of course, certain measurability conditions
should hold, but this is not an issue when the function c is
measurable. We remark that early works on MDPs by Black-
well [7] and Strauch [34] considered models with A(x) = A

for all x ∈ X. This approach caused some problems with the
generality of the results because the boundedness of the cost
function c was assumed and therefore c(x, a) ∈ R for all
(x, a). If the cost function is allowed to take infinitely large
values, models with A(x) = A are as general as models with
A(x) ⊆ A, x ∈ X.

3. OPTIMALITY RESULTS FOR DISCOUNTED
COST MDPS WITH BOREL STATE AND ACTION

SETS

It is well-known (see e.g. Ref. 3, Proposition 8.2) that
vt ,F,α(x) satisfies the following optimality equation,

vt+1,F,α(x) = inf
a∈A

{
c(x, a) + α

∫
vt ,F,α(y)q(dy|x, a)

}
,

x ∈ X, t = 0, 1, . . . . (3.1)

In addition, a Markov policy φ, defined at the first N + 1
steps by the mappings φ0, . . . , φN satisfying the following
equations for all x ∈ X and all t = 0, . . . , N ,

vt+1,F,α(x) = c(x, φN−t (x))

+ α

∫
vt ,F,α(y)q(dy|x, φN−t ,α(x)), x ∈ X,

(3.2)

is optimal for the horizon N + 1; see e.g. Ref. 3, Lemma 8.7.
It is also well-known (see e.g. Ref. 3, Proposition 9.8)

that vα(x) satisfies the following discounted cost optimality
equation,

vα(x) = inf
a∈A

{
c(x, a) + α

∫
vα(y)q(dy|x, a)

}
, x ∈ X.

(3.3)

According to Ref. 3, Proposition 9.12, a stationary policy φα

is optimal if and only if

vα(x) = c(x, φα(x)) + α

∫
vα(y)q(dy|x, φα(x)), x ∈ X.

(3.4)

However, additional conditions on cost functions and tran-
sition probabilities are needed to ensure the existence of
optimal policies. Earlier conditions required compactness of

action sets. They were introduced by Schäl [30] and consisted
of two sets of conditions that required either weak or setwise
continuity assumptions. For setwise continuous transition
probabilities, Hernandez-Lerma and Lasserre [22] extended
these conditions to MDPs with general action sets and cost
functions c(x, a) that are inf-compact in the action variable a.
Feinberg and Lewis [17] obtained results for weakly contin-
uous transition probabilities and inf-compact cost functions.
Feinberg et al. [14] generalized and unified the results by
Schäl [30] and Feinberg and Lewis [17] for weakly continu-
ous transition probabilities to more general cost functions
by using the notion of a K-inf-compact function. K-inf-
compact functions were originally introduced in Ref. 14,
Assumption W* without using the term K-inf-compact, and
formally introduced and studied in Feinberg et al. [13, 15].
As explained in Feinberg and Lewis [17, Section 4], weak
continuity holds for periodic review inventory control prob-
lems. The setwise continuity assumption may not hold, but it
holds for problems with continuous or discrete demand distri-
butions. This article focuses on the essentially more general
case of weakly continuous transition probabilities.

Let U be a metric space and U ⊆ U. Consider a function
f : U → R. For V ⊆ U define the level sets

Df (λ; V ) := {y ∈ V : f (y) ≤ λ} , λ ∈ R. (3.5)

A function f : U → R is called lower semi-continuous
at a point y ∈ U if f (y) ≤ lim infn→∞f (y(n)) for every
sequence

{
y(n) ∈ U

}
n=1,2,... converging to y. A function f :

U → R is called lower semi-continuous if it is lower semi-
continuous at each y ∈ U . A function f : U → R is called
inf-compact if all the level sets Df (λ; U) are compact. Inf-
compact functions are lower semi-continuous. For three sets
U, V, and W, where V ⊂ U , and two functions g : V → W

and f : U → W , the function g is called the restriction of f
to V if g(x) = f (x) when x ∈ V .

DEFINITION 3.1: (cf. Feinberg et al. [13, 15], Feinberg
and Kasyanov [12]) Let S

(i) be metric spaces and S(i) ⊆ S
(i)

be their non-empty Borel subsets, i = 1, 2. A function
f : S(1) × S(2) → R is called K-inf-compact if, for any
non-empty compact subset K of S(1), the restriction of f to
K × S(2) is inf-compact.

We are mainly interested in applying this definition to the
function f = c, where c is the one-step cost. In this case,
X and A are Borel subsets of the Polish spaces S

(1) and S
(2)

mentioned in the definition of an MDP. Inventory control
applications often deal with S

(1) = X and S
(2) = A. However,

other applications are possible. For example, assumption (ii)
of Theorem 5.3 deals with S

(1) = A and S
(2) = X.

The next proposition, which follows directly from Fein-
berg et al. [15, Lemma 2.1], demonstrates that K-inf-compact
cost functions are natural generalizations of inf-compact
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cost functions considered in Feinberg and Lewis [17] and
lower semi-continuous cost functions considered in the lit-
erature on MDPs with compact action sets, see e.g., Schäl
[30, 31].

PROPOSITION 3.2: The following two statements hold:

(i) an inf-compact function f : X × A → R is
K-inf-compact;

(ii) if A : X → 2A \{∅} is a compact-valued upper semi-
continuous set-valued mapping and f : X × A →
R is a lower semi-continuous function such that
f (x, a) = +∞ for x ∈ X and for a ∈ A\A(x), then
the function f is K-inf-compact, where 2U denotes
the set of all subsets of a set U.

DEFINITION 3.3: The transition probability q is called
weakly continuous, if

∫
X

f (x)q(dx|x(n), a(n)) →
∫

X

f (x)q(dx|x(0), a(0)),

as n → ∞, (3.6)

for every bounded continuous function f : X → R and
for each sequence

{
(x(n), a(n)), n = 1, 2, . . .

}
on X × A

converging to (x(0), a(0)) ∈ X × A.

Assumption W*. The following conditions hold:

(i) the cost function c is bounded below and K-inf-
compact;

(ii) if (x(0), a(0)) is a limit of a convergent sequence{
(x(n), a(n)), n = 1, 2, . . .

}
of elements of X×A such

that c(x(n), a(n)) < +∞ for all n = 0, 1, 2, . . . , then
the sequence

{
q(·|(x(n), a(n))), n = 1, 2, . . .

}
con-

verges weakly to q(·|(x(0), a(0))); that is, (3.6) holds
for every bounded continuous function f on X.

For example, Assumption W*(ii) holds if the transition
probability q(·|x, a) is weakly continuous on X×A. The fol-
lowing theorem describes the structure of optimal policies,
continuity properties of value functions, and convergence of
value iteration.

THEOREM 3.4: (Feinberg et al. [14, Theorem 2]) Sup-
pose Assumption W* holds. For t = 0, 1, . . . , N = 0, 1, . . . ,
and α ∈ [0, 1), the following statements hold:

(i) the functions
{
vt ,α , t ≥ 0

}
and vα are lower semi-

continuous on X, and vt ,α(x) → vα(x) as t → +∞
for each x ∈ X;

(ii) the value functions
{
vt ,α , t ≥ 0

}
satisfy the optimal-

ity equations

vt+1,α(x) = min
a∈A

{
c(x, a) + α

∫
X

vt ,α(y)q(dy|x, a)

}
,

x ∈ X, (3.7)

and the non-empty sets At ,α(x) := {a ∈ A :
vt+1,α(x) = c(x, a) + α

∫
X

vt ,α(y)q(dy|x, a)}, x ∈
X, satisfy the following properties:

(a) the graph GrX(At ,α) = {(x, a) : x ∈ X, a ∈
At ,α(x)} is a Borel subset of X × A;

(b) the following hold:
(b1) if vt+1,α(x) = +∞, then At ,α(x) = A;
(b2) if vt+1,α(x) < +∞, then At ,α(x) is
compact;

(iii) for each horizon (N + 1), there exists a Markov
optimal policy (φ0, . . . , φN);

(iv) if for an (N+1)-horizon Markov policy (φ0, . . . , φN)

the inclusions φN−t (x) ∈ At ,α(x), x ∈ X, t =
0, . . . , N hold, then this policy is (N + 1)-horizon
optimal;

(v) the value function vα satisfies the optimality equation

vα(x) = min
a∈A

{
c(x, a) + α

∫
X

vα(y)q(dy|x, a)

}
,

x ∈ X; (3.8)

(vi) the non-empty sets Aα(x) := {a ∈ A : vα(x) =
c(x, a) + α

∫
X

vα(y)q(dy|x, a)}, x ∈ X, satisfy the
following properties:

(a) the graph GrX(Aα) = {(x, a) : x ∈ X, a ∈
Aα(x)} is a Borel subset of X × A;

(b) if vα(x) = +∞, then Aα(x) = A and, if
vα(x) < +∞, then Aα(x) is compact;

(vii) for the infinite horizon there exists a stationary
discount-optimal policy φα , and a stationary policy
is optimal if and only if φα(x) ∈ Aα(x) for all x ∈ X;

(viii) (Feinberg and Lewis [17, Proposition 3.1(iv)]) if the
cost function c is inf-compact, then the functions vt ,α ,
t = 1, 2, . . . , and vα are inf-compact on X

The following corollary extends the previous theorem to
non-zero terminal values F. This extension is useful for the
analysis of inventory control problems.

COROLLARY 3.5: Let Assumption W* hold. Consider a
bounded below, lower semi-continuous function F : X → R.
The following statements hold for t = 0, 1, 2, . . . , N = 0,
1, 2, . . . , and α ∈ [0, 1) :

(i) the functions vt ,F,α are bounded below and lower
semi-continuous;

Naval Research Logistics DOI 10.1002/nav
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(ii) the value functions vt+1,F,α satisfy the optimality
equations

vt+1,F,α(x)

= min
a∈A

{
c(x, a) + α

∫
X

vt ,F,α(y)q(dy|x, a)

}
,

x ∈ X, (3.9)

where v0,F,α(x) = F(x) for all x ∈ X;
(iii) the non-empty sets

At ,F,α(x) : =
{
a ∈ A : vt+1,F,α(x) = c(x, a)

+ α

∫
X

vt ,F,α(y)q(dy|x, a)

}
, x ∈ X,

satisfy the following properties:
(a) the graph GrX(At ,F,α) = {(x, a) : x ∈

X, a ∈ At ,F,α(x)} is a Borel subset of X×A;
(b) the following hold:

(b1) if vt+1,F,α(x) = +∞, then At ,F,α(x) =
A;
(b2) if vt+1,F,α(x) < +∞, then At ,F,α(x) is
compact;

(iv) for an (N + 1)-horizon problem with the termi-
nal value function F, there exists a Markov opti-
mal policy (φ0, . . . , φN) and if, for an (N + 1)-
horizon Markov policy (φ0, . . . , φN) the inclusions
φN−t (x) ∈ At ,F,α(x), x ∈ X, t = 0, . . . , N , hold
then this policy is (N + 1)-horizon optimal;

(v) if F(x) ≤ vα(x) for all x ∈ X, then vt ,F,α(x) →
vα(x) as n → +∞ for all x ∈ X;

(vi) if the cost function c is inf-compact, then each of the
functions vt ,F,α , t = 1, 2, . . . , is inf-compact.

PROOF: Statements (i)–(iv) are corollaries from state-
ments (i)–(iii) of Theorem 3.4. Indeed, the statements of
Theorem 3.4, that deals with the finite horizon N, hold
when one-step costs at different time epochs vary. In par-
ticular, if the one-step cost at epoch t = 0, 1, . . . , N is
defined by a bounded below, measurable cost function ct

rather than by the function c. This case can be reduced to
the single function c by replacing the state space X with the
state space X × {0, 1, . . . , N} , setting c((x, t), a) = ct (x, a),
and applying the corresponding statements of Theorem 3.4.
In our case, ct (x, a) = c(x, a) for t = 0, 1, . . . , N , and
cN(x, a) = c(x, a) + ∫

X
F(y)q(dy|x, a). The function cN

is bounded below and lower semi-continuous.
To prove (v) and (vi), consider first the case when the

functions c and F are non-negative. In this case,

vt ,α(x) ≤ vt ,F,α(x) ≤ vt ,vα ,α(x) = vα(x),

x ∈ X, t = 0, 1, . . . . (3.10)

Therefore, for non-negative cost functions, Statement (v) fol-
lows from Theorem 3.4(i). Statement (vi) follows from (v),
Theorem 3.4(viii), and the fact that vt ,F,α ≥ vt ,α since F is
non-negative. In a general case, consider a finite positive con-
stant K such that the functions c and F are bounded below
by (−K). If the cost functions c and F are increased by K,
then the new cost functions are non-negative, each finite-
horizon value function vt ,F,α is increased by the constant
dt = K(1 − αt+1)/(1 − α), and the infinite-horizon value
function vα is increased by the constant d = K/(1 − α).
Since dt ≤ d and dt → d as t → ∞, the general case
follows from the case of non-negative cost functions. �

While Theorem 3.4 and Corollary 3.5 state the convergence
of value functions and describe the structure of optimal sets of
actions, the following theorem describes convergence prop-
erties of optimal actions. For x ∈ X and α ∈ [0, 1), define
the sets D∗

α(x) := {a ∈ A : c(x, a) ≤ vα(x)} .

THEOREM 3.6: Let Assumption W* hold and α ∈ [0, 1).
Suppose F : X → R is bounded below, lower semi-
continuous, and such that for all x ∈ X

F(x) ≤ vα(x) and v1,F,α(x) ≥ F(x). (3.11)

For x ∈ X, such that vα(x) < ∞, the following two
statements hold:

(i) the set D∗
α(x) is compact, and At ,F,α(x) ⊆ D∗

α(x) for
all t = 1, 2, . . . , where the sets At ,F,α(x) are defined
in Corollary 3.5(iii);

(ii) each sequence
{
a(t) ∈ At ,F,α(x), t = 1, 2, . . .

}
is

bounded, and all its limit points belong to Aα(x).

In particular, if c(x, a) ≥ 0 for all x ∈ X, a ∈ A, then
the function F(x) ≡ 0 satisfies conditions (3.11). In order to
prove Theorem 3.6, we need the following lemma, which is
a simplified version of Ref. 22, Lemma 4.6.6.

LEMMA 3.7: Let A be a compact subset of A and f,
fn : A → R, n = 1, 2, . . . , be non-negative, lower semi-
continuous, real-valued functions such that fn(a) ↑ f (a)

as n → ∞ for all a ∈ A. Let a(n) ∈ argmina∈Afn(a),
n = 1, 2, . . . , and a∗ be a limit point of the sequence{
a(n), n = 1, 2, . . .

}
. Then a∗ ∈ argmina∈Af (a).

PROOF: Let a′ ∈ argmina∈Af (a). Then f (a′) ≥
fn(a

(n)) ≥ fk(a
(n)) for all n ≥ k. Since A is compact,

then a∗ ∈ A. Lower semi-continuity of f and the previous
inequalities imply fk(a

∗) ≤ liminfn→∞fn(a
(n)) ≤ f (a′).

Thus f (a′) ≥ fk(a
∗) ↑ f (a∗). Since f (a∗) ≤ f (a′), then

a∗ ∈ argmina∈Af (a). �

Naval Research Logistics DOI 10.1002/nav



Feinberg and Lewis: Convergence of Optimal Actions for MDPs 7

PROOF OF THEOREM 3.6: We assume without loss of
generality that the bounded below functions c and F are non-
negative. We can do this because of the arguments provided
at the end of the proof of Corollary 3.5 and the additional
argument that, if the one-step cost functions c and terminal
cost functions are shifted by constants, then the set of opti-
mal finite-horizon actionAt ,F,α(·) and infinite-horizon actions
Aα(·) remain unchanged.

Fix x ∈ X. Since the function vt ,F,α is non-negative and,
in view of (3.10), vt+1,F,α(x) ≤ vα(x),

At ,F,α(x) =
{
a ∈ A : c(x, a) + α

∫
X

vt ,F,α(y)q(dy|x, a)

= vt+1,F,α(x)

}
⊆ D∗

α(x), t = 1, 2, . . . .

Statement (i) is proved. Since D∗
α(x) is compact, every

sequence
{
a(t) ∈ At ,F,α(x)

}
t=1,2,... is bounded and has a limit

point. The theorem follows from Lemma 3.7 applied to the
set A := D∗

α(x) and functions

f (a) = c(x, a) + α

∫
X

vα(y)q(dy|x, a), a ∈ A,

ft (a) = c(x, a) + α

∫
X

vt ,F,α(y)q(dy|x, a),

a ∈ A, t = 0, 1, . . . .

To verify the conditions of Lemma 3.7, observe that for all
z ∈ X

vα(z) = vt ,vα ,α(z) ≥ vt ,F,α(z) ≥ vt ,α(z) ↑ vα(z),

where the first equality follows from the optimality equa-
tion, the first and the second inequalities follow from vα(·) ≥
F(·) ≥ 0, and the convergence is stated in Theorem 3.4(i); this
convergence is monotone because c and F are non-negative
functions. The inequality v1,F,α(·) ≥ F(·) in (3.11), equality
(3.9), and standard induction arguments imply vt+1,F,α(·) ≥
vt ,F,α(·), t = 0, 1, . . . . Thus Assumption (3.11) implies that
vt ,F,α ↑ vα , and the monotone convergence theorem implies
ft ↑ f as t → ∞. �

4. AVERAGE-COST MDPS WITH BOREL STATE
AND ACTION SETS

The average cost case is more subtle than the case of
expected total discounted costs. The following assumption
was introduced by Schäl [31]. Without this assumption the
problem is trivial because w(x) = +∞ for all x ∈ X, and
therefore every policy is optimal.

Assumption G. w∗ := inf
x∈X

w(x) < +∞.

Assumption G is equivalent to the existence of x ∈ X and
π ∈ � with wπ(x) < ∞. Define the following quantities for
α ∈ [0, 1):

mα = inf
x∈X

vα(x), uα(x) = vα(x) − mα ,

w = lim inf
α↑1

(1 − α)mα , w̄ = lim sup
α↑1

(1 − α)mα .

Observe that uα(x) ≥ 0 for all x ∈ X. According to Schäl
[31, Lemma 1.2], Assumption G implies

0 ≤ w ≤ w̄ ≤ w∗ < +∞. (4.1)

Moreover, Schäl [31, Proposition 1.3], states that, if there
exist a measurable function u : X → R

+, where R
+ :=

[0, +∞), and a stationary policy φ such that

w + u(x) ≥ c(x, φ(x)) +
∫

u(y)q(dy|x, φ(x)), x ∈ X,

(4.2)

then φ is average cost optimal and w(x) = w∗ for all
x ∈ X. The following condition plays an important role for
the validity of (4.2).

Assumption B. Assumption G holds and supα∈[0,1)uα(x) <

∞ for all x ∈ X.

We note that the second part of Assumption B is Condi-
tion B in Schäl [31]. Thus, under Assumption G, which is
assumed throughout Ref. 31, Assumption B is equivalent to
Condition B in Ref. 31.

For x ∈ X and for a non-negative lower semi-continuous
function u : X → R

+, define the set

A∗
u(x) :=

{
a ∈ A : w + u(x) ≥ c(x, a)

+
∫

X

u(y)q(dy|x, a)}, x ∈ X. (4.3)

A stationary policy φ satisfies (4.2) if and only if A∗
u(x) �= ∅

and φ(x) ∈ A∗
u(x) for all x ∈ X.

Following Feinberg et al. [14, Formula (21)], define

u(x) := lim inf
(y,α)→(x,1−)

uα(y), x ∈ X. (4.4)

In words, u(x) is the largest number such that u(x) ≤
liminfn→∞uαn

(yn) for all sequences {yn, n ≥ 1} and
{αn, n ≥ 1} such that yn → x and αn → 1.

Naval Research Logistics DOI 10.1002/nav



8 Naval Research Logistics, Vol. 00 (2017)

Following Schäl [31, Page 166], where the notation w is
used instead of ũ, and Feinberg et al. [14, Formula (38)], for
a particular sequence αn → 1−, define

ũ(x) := lim inf
(y,n)→(x,∞)

uαn
(y), x ∈ X. (4.5)

In words, ũ(x) is the largest number such that ũ(x) ≤
liminfn→∞uαn

(yn) for all sequences {yn, n ≥ 1} converging
to x.

It follows from these definitions that u(x) ≤ ũ(x), x ∈ X.
However, the questions, whether u = ũ and whether the
values of ũ depend on a particular choice of the sequence
αn, have not been investigated. If Assumption B holds, then
ũ(x) < +∞, x ∈ X. If Assumption B holds and the cost
function c is inf-compact, then the functions vα , u, and ũ are
inf-compact as well; see Theorem 3.4(i) for this fact for vα

and Feinberg et al. [14, Theorem 4(e) and Corollary 2] for u
and ũ.

THEOREM 4.1: (Feinberg et al. [14, Theorem 4 and
Corollary 2]). Suppose Assumptions W* and B hold. The
following two properties hold for the function u defined in
(4.4) and for u = ũ, where ũ is defined in (4.5) for a sequence
{αn, n ≥ 1} such that αn ↑ 1 :

(a) for each x ∈ X the set A∗
u(x) is non-empty and

compact;
(b) the graph GrX(A∗

u) = {
(x, a) : x ∈ X, a ∈ A∗

u(x)
}

is a Borel subset of X × A.

Furthermore, the following statements hold:

(i) there exists a stationary policy φ satisfying (4.2);
(ii) every stationary policy φ satisfying (4.2) is optimal

for the average cost per unit time criterion, and

wφ(x) = w(x) = w∗ = w = w̄ = lim
α↑1

(1 − α)vα(x)

= lim
N→∞

1

N
E

π
x

N−1∑
t=0

c(xt , at ), x ∈ X. (4.6)

If the one-step cost function c is inf-compact, the minima
of functions vα possess additional properties. Set

Xα := {x ∈ X : vα(x) = mα} , α ∈ [0, 1). (4.7)

Since Xα = {x ∈ X : vα(x) ≤ mα} , this set is closed if
Assumptions G and W* hold. If the function c is inf-compact
then inf-compactness of vα implies that the sets Xα are non-
empty and compact. The following fact is useful for verifying
the validity of Assumption B; see Feinberg and Lewis [17,
Lemma 5.1] and the references therein.

THEOREM 4.2: (Feinberg et al. [14, Theorem 6]). Let
Assumptions G and W* hold. If the function c is inf-compact,
then there exists a compact set K ⊆ X such that Xα ⊆ K for
all α ∈ [0, 1).

According to Feinberg et al. [14, Theorem 5 and Corollary
3], certain average cost optimal policies can be approxi-
mated by discount optimal policies with a vanishing discount
factor. The following theorem describes particular construc-
tions of such approximations. Recall that, for the function
u(x) defined in (4.4), for each x ∈ X there exist sequences
{αn, n ≥ 1} and

{
x(n), n ≥ 1

}
such that αn ↑ 1 and x(n) → x,

where x(n) ∈ X, such that u(x) = limn→∞uαn
(x(n)). Simi-

larly, for a sequence {αn, n ≥ 1} such that αn ↑ 1 consider
the function ũ defined in (4.5). For each x ∈ X there exist
a sequence

{
x(n), n ≥ 1

}
of points in X converging to x and

a subsequence
{
α∗

n, n ≥ 1
}

of the sequence {αn, n ≥ 1} such
that ũ(x) = limn→∞uα∗

n
(x(n)).

THEOREM 4.3: Let Assumptions W* and B hold. For
x ∈ X and a∗ ∈ A, the following two statements hold:

(i) Consider a sequence
{
(x(n), αn), n ≥ 1

}
with 0 ≤

αn ↑ 1, x(n) ∈ X, x(n) → x, and uαn
(x(n)) → u(x)

as n → ∞. If there are sequences of natural numbers
{nk , k ≥ 1} and actions

{
a(nk) ∈ Aαnk

(x(nk)), k ≥ 1
}

,
such that nk → ∞ and a(nk) → a∗ as k → ∞, then
a∗ ∈ A∗

u(x), where the function u is defined in (4.4);
(ii) Suppose {αn, n ≥ 1} is a sequence of discount factors

such that αn ↑ 1. Let
{
α∗

n, n ≥ 1
}

be its subsequence
and

{
x(n), n ≥ 1

}
be a sequence of states such that

x(n) → x and uα∗
n
(x(n)) → ũ(x) as n → ∞, where

the function ũ is defined in (4.5) for the sequence
{αn, n ≥ 1}. If there are actions a(n) ∈ Aα∗

n
(x(n)) such

that a(n) → a∗ as n → ∞, then a∗ ∈ A∗
ũ
(x).

PROOF: To show (i), consider sequences whose existence
is assumed in the theorem. We have

vαnk
(x(nk)) = c(x(nk), a(nk)) + α

∫
X

vαnk
(y)q(dy|x(nk), a(nk)).

This implies (with a little algebra)

uαnk
(x(nk)) + (1 − αnk

)mαnk

= c(x(nk), a(nk)) + α

∫
X

uαnk
(y)q(dy|x(nk), a(nk)).

Fatou’s lemma for weakly converging measures (see e.g.,
Feinberg et al. [16, Theorem 1.1]), the choice of the sequence
x(nk), and Theorem 4.1 yield

w + u(x) ≥ c(x, a∗) +
∫

X

u(y)q(dy|x, a∗).

Thus a∗ ∈ A∗
u(x). The proof of Statement (ii) is similar. �
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COROLLARY 4.4: Let Assumptions W* and B hold. For
x ∈ X and a∗ ∈ A, the following hold:

(i) if each sequence
{
(α∗

n, x(n)), n ≥ 1
}

, with 0 ≤ α∗
n ↑

1, x(n) ∈ X, and x(n) → x, contains a subsequence
(αnk

, x(nk)), such that there exist actions a(nk) ∈
Aαnk

(x(nk)) satisfying a(nk) → a∗ as k → ∞, then
a∗ ∈ A∗

u(x) with the function u defined in (4.4);
(ii) if there exists a sequence {αn, n ≥ 1} such that αn ↑ 1

and for every sequence of states {xn → x} from X

there are actions a(n) ∈ Aαn
(x(n)), n = 1, 2, . . . , sat-

isfying a(n) → a∗ as n → ∞, then a∗ ∈ A∗
ũ
(x),

where the function ũ is defined in (4.5) for the
sequence {αn, n ≥ 1} .

PROOF: Statement (i) follows from Theorem 4.3(i)
applied to a sequence

{
(α∗

n, x(n)), n ≥ 1
}

with the prop-
erty u(x) = limn→∞uα∗

n
(x(n)). Statement (ii) follows from

Theorem 4.3(ii) applied to a sequence
{
x(n), n ≥ 1

}
and a

subsequence
{
α∗

n, n ≥ 1
}

of {αn, n ≥ 1} such that ũ(x) =
limn→∞uα∗

n
(x(n)). �

The following theorem is useful for proving asymptotic
properties of optimal actions for discounted problems when
the discount factor tends to 1.

THEOREM 4.5: Let Assumptions W* and B hold. For
x ∈ X the following hold:

(i) There exists a compact set D∗(x) ⊆ A such that
Aα(x) ⊆ D∗(x) for all α ∈ [0, 1);

(ii) If {αn, n ≥ 1} is a sequence of discount factors αn ∈
[0, 1), then every sequence of infinite-horizon αn-
discount cost optimal actions

{
a(n), n ≥ 1

}
, where

a(n) ∈ Aαn
(x), is bounded and therefore has a limit

point a∗ ∈ A.

PROOF: For each x, the set of optimal actions Aα(x) in
state x does not change if a constant is added to the cost func-
tion c. Therefore, we assume without loss of generality that
the cost function c is non-negative. Fix x ∈ X and ε∗ > 0.
Since x is fixed, we sometimes omit it. For α ∈ [0, 1) and
a ∈ A define

U(x) := sup
α∈[0,1)

uα(x),

fα(a) := c(x, a) + α

∫
X

vα(y)q(dy|x, a),

gα(a) := c(x, a) + α

∫
X

uα(y)q(dy|x, a).

Observe that gα(a) = fα(a) − αmα and

Aα(x) =
{
a ∈ A : fα(a) = min

b∈A

fα(b)

}

=
{
a ∈ A : gα(a) = min

b∈A

gα(b)

}
.

Assumption B implies that U(x) < +∞, and Theorem
4.1 implies that lim

α↑1
(1 − α)mα = w∗. As shown in Feinberg

et al. [14, the first displayed formula on p. 602], there exists
α0 ∈ [0, 1) such that for α ∈ [α0, 1),

w∗ + ε∗ + U(x) ≥ (1 − α)mα + uα(x) = min
a∈A

gα(a),

This implies that for α ∈ [α0, 1)

Aα(x) ⊆ Dgα
(λ1; A) ⊆ Dg0(λ1; A),

where the definition of the level sets D·(·; ·) is given in (3.5),
λ1 := w∗ + ε∗ + U(x), and the second inclusion holds
because the function uα takes non-negative values. Recall that
f0(a) = g0(a) = c(x, a), a ∈ A, and the function c(x, ·) :
A → R is inf-compact. Therefore, Df0(λ; A) = Dg0(λ; A)

and this set is compact for each λ ∈ R. In addition, for all
α ∈ [0, α0),

vα0(x) ≥ vα(x) = min
a∈A

fα(a),

where the inequality holds because one-step costs c are non-
negative. The equality is simply the optimality Eq. (3.1). This
implies that for α ∈ [0, α0)

Aα(x) ⊆ Dfα
(vα0(x); A) ⊆ Df0(vα0(x); A).

Let D∗(x) := Dg0(λ1; A) ∪ Df0(vα0(x); A). This set is com-
pact as it is the union of two compact sets, and Aα(x) ⊆
D∗(x) for all α ∈ [0, 1). Statement (i) is proved, and it implies
Statement (ii). �

5. MDPS DEFINED BY STOCHASTIC EQUATIONS

Let S be a metric space, B(S) be its Borel σ -field, and μ

be a probability measure on (S, B(S)). Consider a stochas-
tic sequence {xt , t ≥ 0} whose dynamics are defined by the
stochastic equation

xt+1 = f(xt , at , ξt+1), t = 0, 1, . . . , (5.1)

where {ξt , t ≥ 1} are independent and identically distributed
random variables with values in S, whose distributions are
defined by the probability measure μ, and f : X×A×S → X

is a continuous mapping. This equation defines the transition
probability

q(B|x, a) =
∫

S

I {f(x, a, s) ∈ B} μ(ds), B ∈ B(X),

(5.2)

from X × A to X, where I is the indicator function.
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LEMMA 5.1: The transition probability q is weakly con-
tinuous in (x, a) ∈ X × A.

PROOF: For a closed subset B of X and for two sequences
x(n) → x and a(n) → a as n → +∞ defined on X and A

respectively,

lim sup
n→∞

q(B|x(n), a(n))

= lim sup
n→∞

∫
S

I
{
f(x(n), a(n), s) ∈ B

}
μ(ds)

≤
∫

S

lim sup
n→∞

I
{
f(x(n), a(n), s) ∈ B

}
μ(ds) ≤ q(B|x, a),

where the first inequality follows from Fatou’s lemma and
the second follows from (5.2) and upper semi-continuity of
the function I {f(x, a, s) ∈ B} on X × A × S for a closed
set B. The weak continuity of q follows from Billingsley [6,
Theorem 2.1] �

COROLLARY 5.2: Consider an MDP {X, A, q, c} with
the transition function q defined in (5.2) for the continuous
function f introduced in (5.1) and with the non-negative K-
inf compact cost function c. This MDP satisfies Assumption
W* and therefore the conclusions of Theorem 3.4 hold.

PROOF: Assumption W*(i) is assumed in the corollary.
Assumption W*(ii) holds in view of Lemma 5.1. �

For inventory control problems, MDPs are usually defined
by particular forms of (5.1). In addition, the cost function c
has the form

c(x, a) = C(a) + H(x, a), (5.3)

where C(a) is the ordering cost and H(x, a) is either hold-
ing/backordering cost or expected holding/back-ordering
cost at the following step. For simplicity we assume that the
functions take non-negative values. These functions are typ-
ically inf-compact. If C is lower semi-continuous and H is
inf-compact, then c is inf-compact because C is lower semi-
continuous as a function of two variables x ∈ X and a ∈ A,
and a sum of a non-negative lower semi-continuous func-
tion and an inf-compact function is an inf-compact function.
However, as stated in the following theorem, for discounted
problems the validity of Assumption W* and therefore the
validity of the optimality equations, existence of optimal poli-
cies, and convergence of value iteration take place even under
weaker assumptions on the functions C(a) and H(x, a).

THEOREM 5.3: Consider an MDP {X, A, q, c} with the
transition function q defined in (5.2) and cost function c
defined in (5.3). If either of the following two assumptions
holds:

(1) the function C : A → [0, ∞] is lower semi-
continuous and the function H : X × A → [0, ∞] is
K-inf-compact;

(2) the function C : A → [0, ∞] is inf-compact
and the function H : X × A → [0, ∞] is lower
semi-continuous;

then Assumption W* holds and therefore the conclusions
of Theorems 3.4(i)–(vii), 3.6 and Corollary 3.5(i)–(v) hold.
Furthermore, if either of the following two assumptions
holds:

(i) the function C : A → [0, ∞] is lower semi-
continuous and the function H : X × A → [0, ∞] is
inf-compact;

(ii) the function C : A → [0, ∞] is inf-compact and the
function H ∗ : A × X → [0, ∞] is K-inf-compact,
where H ∗(a, x) := H(x, a) for all x ∈ X and all
a ∈ A;

then the function c is inf-compact and therefore the conclu-
sions of Theorems 3.4, 3.6 and Corollary 3.5 hold.

PROOF: Lemma 5.1 implies the weak continuity of the
transition function q. The definition of a K-inf-compact func-
tion implies directly that the function C∗(x, a) := C(a) is
K-inf-compact on X × A, if the function C : A → [0, ∞] is
inf-compact. Thus under assumptions (1) or (2), c is a K-inf-
compact function because it is a sum of a non-negative lower
semi-continuous function and a K-inf-compact function. In
addition, under assumption (i), as explained in the paragraph
preceding the formulation of the theorem, the one-step cost
function c is inf-compact. Under assumption (ii), the func-
tion c is inf-compact because of the following arguments.
Let c∗(a, x) := C(a) + H ∗(a, x) for all (a, x) ∈ A × X. The
function c∗ : A × X → [0, ∞] is lower semi-continuous
if either Assumption (1) or Assumption (2) holds. Since
c(x, a) = c∗(a, x) for all x ∈ X and a ∈ A, the function
c : X×A → [0, ∞] is inf-compact if and only is the function
c∗ : A×X → [0, ∞] is inf-compact. The function c∗ is a sum
of the non-negative lower semi-continuous function C and the
K-inf-compact function H ∗. Therefore, c∗ is K-inf-compact.
Consider an arbitrary λ ∈ R. Since c∗(a, x) ≥ C(a) > λ for
a /∈ DC(λ; A), then Dc∗(λ; A×X) = Dc∗(λ; DC(λ; A)×X),
and this set is compact because the set DC(λ; A) is compact
and the function c∗ is K-inf-compact. Thus the functions c∗
and c are inf-compact. �

REMARK 5.4: In view of Theorem 3.4, Assumption W*
implies the existence of optimal policies for the expected total
discounted cost criterion. It is also possible to derive suffi-
cient conditions for the validity of Assumptions G and B
and therefore for the existence of stationary optimal policies
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for the average costs per unit time criterion. However, this is
more subtle than for Assumption W*, and in this article we
verify Assumptions G and B directly for the periodic review
inventory control problems.

6. OPTIMALITY OF (s, S) POLICIES FOR
SETUP-COST INVENTORY CONTROL PROBLEMS

In this section we consider a discrete-time periodic-review
inventory control problem with backorders, prove the exis-
tence of an optimal (s, S) policy, and establish several relevant
results. For this problem, the state space is X := R, the
action space is A := R

+, and the dynamics are defined by
the following stochastic equation

xt+1 = xt + at − Dt+1, t = 0, 1, 2, . . . , (6.1)

where xt is the inventory at the end of period t , at is the deci-
sion on how much should be ordered, and Dt is the demand
during period t . The demand is assumed to be i.i.d. In other
words, if we change the notation ξt to Dt+1, the dynamics are
defined by Eq. (5.1) with f(x, a, D) = x +a −D. Of course,
this function is continuous.

The model has the following decision-making scenario:
a decision-maker views the current inventory of a single
commodity and makes an ordering decision. Assuming zero
lead times, the products are immediately available to meet
demand. Demand is then realized, the decision-maker views
the remaining inventory, and the process continues. Assume
the unmet demand is backlogged and the cost of inventory
held or backlogged (negative inventory) is modeled as a con-
vex function. The demand and the order quantity are assumed
to be non-negative. The dynamics of the system are defined
by (6.1). Let

• α ∈ (0, 1) be the discount factor,
• K ≥ 0 be a fixed ordering cost,
• c̄ > 0 be the per unit ordering cost,
• D be a non-negative random variable with the same

distribution as Dt ,
• h(·) denote the holding/backordering cost per period.

It is assumed that h : R → R
+ is a convex function,

h(x) → ∞ as |x| → ∞, and Eh(x − D) < ∞ for
all x ∈ R.

Note that ED < ∞ since, in view of Jensen’s inequality,
h(x − ED) ≤ Eh(x − D) < ∞. Without loss of general-
ity, assume that h is non-negative, h(0) = 0, and h(x) > 0 for
x < 0. Otherwise, let x∗ ∈ R be a point, at which the func-
tion h reaches its minimum value on R. Define the variable
x̄ := x − x∗ and the function h̄(x̄) := h(x̄ + x∗) − h(x∗),
x̄ ∈ R. Then h̄ is a non-negative convex function with

h̄(x̄) → ∞ as |x̄| → ∞, h̄(0) = 0, and h̄(x̄) > 0 for
x̄ < 0.

The cost function c for this model is defined in (5.3) with
C(a) := K1{a>0} + c̄a and H(x, a) := Eh(x + a − D). The
function C : A → R

+ is inf-compact. In fact, it is continuous
at a > 0 and lower semi-continuous at a = 0. The function
H ∗ : A × X → R

+, where H ∗(a, x) := H(x, a) for all
(a, x) ∈ A × X, is K-inf-compact because of the properties
of the function h. Theorem 5.3 (case (ii)) implies that the
function c is inf-compact. Therefore, in view of Proposition
3.2, the function c is K-inf-compact.

The problem is posed with X = R and A = R
+. However,

if the demand and action sets are integer or lattice, the model
can be restated with X = Z, where Z is the set of integer
numbers, and A = {0, 1, . . . } ; see Remark 6.14.

Consider the following corollary from Theorems 3.4, 3.6,
and 5.3.

COROLLARY 6.1: For the inventory control model,
Assumption W* holds and the one-step cost function c is
inf-compact. Therefore, the conclusions of Theorems 3.4,
3.6 and Corollary 3.5 hold.

PROOF: The validity of Assumption W* and inf-
compactness of c follow from Theorem 5.3 (case (ii)). �

Consider the renewal process

N(t) := sup {n|Sn ≤ t} , (6.2)

where t ∈ R
+, S0 = 0 and Sn = ∑n

j=1 Dj for n > 0.
Observe that, if P(D > 0) > 0, then EN(t) < ∞ for each
t ∈ R

+; Resnick [28, Theorem 3.3.1]. Thus, Wald’s identity
yields that for all y ∈ R

+

ESN(x)+1 = E(N(y) + 1)ED < +∞. (6.3)

We next state a useful lemma.

LEMMA 6.2: For fixed initial state x, if P(D > 0) > 0,
then

Ey(x) := Eh(x − SN(y)+1) < +∞, (6.4)

where 0 ≤ y < +∞.

PROOF: Define

h∗(x) :=
{

h(x) forx ≤ 0,

0 forx > 0.

Observe that it suffices to show that

E∗
y (x) := Eh∗(x − SN(y)+1) < +∞. (6.5)
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Indeed, for Z = x − SN(y)+1,

Ey(x) = E1 {Z ≤ 0} h∗(Z) + E1 {Z > 0} h(Z)

≤ E∗
y (x) + h(x).

To show that E∗
y (x) < +∞, we shall prove that

Eh∗(x − SN(y)+1) ≤ (1 + EN(y))Eh∗(x − y − D) < +∞.
(6.6)

Define the function f (z) = h∗(x − y − z). This function
is non-decreasing and convex. Since f is convex, its deriv-
ative exists almost everywhere. Denote the excess of N(y)

by R(y) := SN(y)+1 − y. According to Gut [21, p. 59], for
t , y ∈ R

+

P {R(y) > t} = 1 − FD(y + t)

+
∫ y

0
(1 − FD(y + t − s))dU(s),

where FD is the distribution function of D and U(s) = EN(s)

is the renewal function. Thus,

Eh∗(x − SN(y)+1) = Eh∗(x − y − R(y)) = Ef (R(y))

=
∫ ∞

0
f ′(t)P {R(y) > t} dt = J1 + J2,

(6.7)

where J1 = ∫ ∞
0 f ′(t)(1 − FD(y + t))dt , J2 =∫ ∞

0 f ′(t)
(∫ y

0 (1 − FD(y + t − s))dU(s)
)
dt , and the third

equality in (6.7) holds according to Feinberg [10, p. 263].
Note that since FD is non-decreasing,

J1 ≤
∫ ∞

0
f ′(t)(1 − FD(t))dt = Ef (D)

= Eh∗(x − y − D) ≤ Eh(x − y − D) < +∞, (6.8)

where the first equality follows from Ref. 10, p. 263.
Similarly, by applying Fubini’s theorem,

J2 =
∫ y

0

(∫ ∞

0
f ′(t)(1 − FD(y + t − s))dt

)
dU(s)

≤
∫ y

0

(∫ ∞

0
f ′(t)(1 − FD(t))dt

)
dU(s)

= Ef (D)EU(y) = Eh∗(x − y − D)EN(y). (6.9)

Combining (6.7)–(6.9) yields (6.6). �

The following proposition is useful for the average-cost
criterion. In addition to this proposition, observe that the case
D = 0 almost surely is trivial for this criterion. In this case,
the policy φ, ordering up to the level 0, if x < 0, and doing

nothing otherwise, is average-cost optimal. For this policy
w(x) = wφ(x) = 0, if x ≤ 0, and w(x) = wφ(x) = h(x), if
x > 0. Observe that φ is the (0, 0) policy. Since w(x) depends
on x, then Theorem 4.1 implies that Assumption B does not
hold when D = 0 almost surely.

PROPOSITION 6.3: The inventory control model satisfies
Assumption G and, therefore, the conclusions of Theorem 4.2
hold. Furthermore, if P(D > 0) > 0, then Assumption B is
satisfied and the conclusions of Theorems 4.1, 4.3 and 4.5
hold.

PROOF: Consider the policy φ that orders up to the level
0, if the inventory level is less than 0, and does nothing other-
wise. Then wφ(0) = KP(D > 0)+c̄ED+Eh(−D) < +∞.
That is, Assumption G holds.

In view of Corollary 6.1, Theorem 3.4 implies that for every
discount factor α ∈ [0, 1) there exists a stationary discount-
optimal policy φα . Theorem 4.2 implies that ∪α∈[0,1)Xα ⊆ K
for some K ⊆ R. Let [x∗

L, x∗
U ] be a bounded interval in R

such that K ⊆ [x∗
L, x∗

U ]. Thus,

∪α∈[0,1)Xα ⊆ [x∗
L, x∗

U ].
For a discount factor α ∈ [0, 1), fix a stationary optimal pol-
icy φα and a state xα ∈ [x∗

L, x∗
U ] such that vα(xα) = mα .

Observe that φα(xα) = 0. Indeed, let φα(xα) = a > 0. We
have

vα(xα) = K + ca + h(xα + a − D) + αEvα(xα + a − D)

> K + c
(a

2

)
+ h

((
xα + a

2

)
+ a

2
− D

)
+ αEvα

((
xα + a

2

)
+ a

2
− D

)
≥ vα

(
xα + a

2

)
,

where the second inequality follows since the optimal action
in state xα + α

2 may not be to order a
2 . The inequality

vα(xα) > vα(xα + a
2 ) contradicts vα(xα) = mα .

Let σ be the policy defined by the following rules depend-
ing on the initial state x : (i) if x < xα , then at the initial
time instance σ orders up to a level xα and then switches to
φα , and (ii) if x ≥ xα , the policy σ does not order as long as
the inventory level is greater than or equal to xα and starting
from the time, when the inventory level becomes smaller than
to xα , the policy σ behaves as described in (i) starting from
time 0.

For x < xα ,

vσ
α (x) = K + c̄(xα − x) + vα(xα) ≤ K + c̄(x∗

U − x) + mα .
(6.10)

The inequality in (6.10) yields for x < xα ,

vα(x) − mα ≤ vσ
α (x) − mα ≤ K + c̄(x∗

U − x) < +∞.
(6.11)
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For x ≥ xα ,

vα(x) ≤ vσ
α (x) = E

[ N(x−xα)+1∑
t=1

αt−1h(xt ) + αN(x−xα)+1

× [K + c̄(xα − xN(x−xα)+1) + vα(xα)]
]

.

(6.12)

Let E(x) := h(x) + Ex−x∗
L
(x) < ∞, where the function

Ey(x) is defined in (6.4) and its finiteness is stated in Lemma
6.2. Since the non-negative function h is convex, then for
xt = x − St , t = 1, . . . , N(x − x∗

L) + 1,

0 ≤ h(xt )

≤ max
{
h(x − SN(x−x∗

L)+1), h(x)
}

≤ h(x) + h(x − SN(x−x∗
L)+1) (6.13)

and

Eh(xt ) ≤ h(x) + Eh(x − SN(x−x∗
L)+1) = E(x). (6.14)

Observe that

E

[
N(x−xα)+1∑

t=1

αt−1h(xt )

]
≤ E

⎡
⎣N(x−x∗

L)+1∑
t=1

h(xt )

⎤
⎦

≤ E(x)(1 + EN(x − x∗
L)),

(6.15)

where the first inequality follows from x∗
L ≤ xα and

α ∈ [0, 1); the second inequality follows from x∗
L ≤ xα ,

(6.13),(6.14), and Wald’s identity. In addition,

E[αN(x−xα)+1[K + c̄(xα − xN(x−xα)+1) + vα(xα)]
≤ K + c̄(xα − x + ESN(x−xα)+1) + mα

≤ K + c̄(1 + EN(x − x∗
L))ED + mα , (6.16)

where the first inequality follows from α ∈ [0, 1), xt = x−St ,
and vα(xα) = mα; the second inequality follows from
x ≥ xα ≥ x∗

L and Wald’s identity. Formulae (6.12), (6.15),
and (6.16) imply that for x ≥ xα

vα(x) − mα ≤ K + (E(x) + c̄ED)(1 + EN(x − x∗
L))

< +∞. (6.17)

Inequalities (6.11) and (6.17) imply that Assumption B
holds. �

Consider a non-negative, real-valued, lower semi-
continuous terminal value F. In view of Corollaries 3.5, 6.1,
Theorems 3.4, 4.1, and Proposition 6.3, Eqs. (3.9), (3.8) and,

for the case P(D > 0) > 0, inequality (4.2) can be rewritten
as

vt+1,F,α(x) = min

{
min
a≥0

[K + Gt ,F,α(x + a)], Gt ,F,α(x)

}
− c̄x, (6.18)

vα(x) = min

{
min
a≥0

[K + Gα(x + a)], Gα(x)

}
− c̄x,

(6.19)

w + u(x) ≥ min

{
min
a≥0

[K + H(x + a)], H(x)

}
− c̄x,

(6.20)

where t = 0, 1, . . . and w := w(x) = w∗ = w = w̄, x ∈ X,
and the last three equalities hold in view of (4.6), and

Gt ,F,α(x) := c̄x + Eh(x − D) + αEvt ,F,α(x − D), (6.21)

Gα(x) := c̄x + Eh(x − D) + αEvα(x − D), (6.22)

H(x) := c̄x + Eh(x − D) + Eu(x − D). (6.23)

We explain the correctness of (6.18). The explanations
for (6.19) and (6.20) are similar. For this particular prob-
lem, optimality Eq. (3.9) is equivalent to vt+1,F,α(x) =
min

{
inf
a>0

[K + Gt ,F,α(x + a)], Gt ,F,α(x)

}
− c̄x, and the inter-

nal infimum can be replaced with the minimum in (6.18)
because of the following two arguments:

(i) the function K +Gt ,F,α(y) is lower semi-continuous
on [x, ∞) and Gt ,F,α(y) → ∞ as y → ∞, and

(ii) K + Gt ,F,α(x) ≥ Gt ,F,α(x) since K ≥ 0.

We remark that, in general, while Eqs. (6.18) and (6.19)
are the necessary and sufficient conditions of optimality,
inequality (6.20) is the sufficient condition of optimality.
Also, if P(D = 0) = 1, then inequality (6.20) does not
hold because w(x) is not a constant function, as explained
before Proposition 6.3.

COROLLARY 6.4: Let α ∈ [0, 1). The following state-
ments hold:

(a) the function Gα(·) is lower semi-continuous,
(b) if F is non-negative, real-valued, and lower semi-

continuous, then the functions
{
Gt ,F,α(·)}

t=0,1,... are
lower semi-continuous, and

(c) if P(D > 0) > 0, then H is lower semi-continuous.

PROOF: In view of (6.21)–(6.23), each of these functions
is a sum of several functions, two of which are continuous
and the third one is lower semi-continuous, as follows from
Corollary 6.1 and from Proposition 6.3. �
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LEMMA 6.5: Let α ∈ [0, 1). Then Gα(x) < +∞ for all
x ∈ X. Furthermore, if 0 ≤ F(x) ≤ vα(x) for all x ∈ X, then
Gα,F,t (x) < +∞ for all x ∈ X and for all t = 0, 1, . . . .

PROOF: Since Gα,F,t ≤ Gα , in view of (6.22), the lemma
follows from Evα(x − D) < +∞. To prove this inequality,
consider the policy φ that orders up to the level 0 if the inven-
tory level is non-positive and orders nothing otherwise. For
x ≤ 0

vα(x) ≤ vφ
α (x) ≤ K − c̄x + α(K + c̄ED + Eh(−D))

1 − α
.

(6.24)

Letting Bα := α(K+c̄ED+Eh(−D))

1−α
, we have Evα(x − D) ≤

K − c̄E(x − D) + Bα < +∞. For x > 0,

vα(x) ≤ vφ
α (x)

= E

[
N(x)+1∑

t=1

αth(x − St ) + αN(x)+1vφ
α (x − SN(x)+1)

]

≤ h(x)EN(x) + Eh(x − SN(x)+1)

+ K − c̄(x − ESN(x)+1) + Bα < +∞,

where the second inequality follows from the facts thatαt < 1
for t ≥ 1, 0 ≤ h(x − St ) ≤ h(x) for t = 1, . . . , N(x), and
(6.24). The second inequality holds because EN(x) < ∞,
Lemma 6.2, and (6.3). Let α ∈ (0, 1). Since vφ

α (x) =
Eh(x − D) + αEvφ

α (x − D) < +∞, then Evα(x − D) ≤
Evφ

α (x −D) < +∞. In addition, vφ

0 (x −D) ≤ vφ
α (x −D) <

+∞. The result follows. �

Recall the following classic definition.

DEFINITION 6.6: For a real number K ≥ 0, a function
f : R → R is called K-convex, if for each x ≤ y and for
each λ ∈ (0, 1),

f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y) + λK .

The following lemma summarizes some properties of K-
convex functions.

LEMMA 6.7: The following statements hold for a K-
convex function g : R → R :

1. If the function g is measurable and D is a random
variable, then Eg(x − D) is also K-convex provided
E|g(x − D)| < ∞ for all x ∈ R.

2. Suppose g is inf-compact (that is, lower semi-
continuous and g(x) → ∞ as |x| → ∞). Let

S ∈ argminx∈R
{g(x)} , (6.25)

s = inf {x ≤ S | g(x) ≤ K + g(S)} . (6.26)

Then

(a) g(S) + K < g(x) for all x < s,
(b) g(x) is decreasing on (−∞, s] and, therefore, g(s) <

g(x) for all x < s,
(c) g(x) ≤ g(z) + K for all x such that s ≤ x ≤ z,

PROOF: See Bertsekas [2, Lemma 4.2.1] and Simchi-Levi
et al. [33, Lemma 8.3.2] for the case of a continuous function
g. The proofs there with minor adjustments cover the case
when g satisfies the measurability and continuity properties
stated in the lemma. �

Consider the discounted cost problem and suppose Gα is
K-convex, lower semi-continuous and approaches infinity as
|x| → ∞. If we define Sα and sα by (6.25) and (6.26) with
g replaced by Gα , Statement 2(a) of Lemma 6.7, along with
the optimality Eq. 6.19, imply that it is optimal to order up
to Sα when x < sα . Statement 2(c) of Lemma 6.7 imply that
it is optimal not to order when x ≥ sα . Our next goal is the
established these properties of the function Gα and of some
relevant functions.

For a fixed ordering cost K ≥ 0 we sometimes write
vK

α , vK
t ,α , vK

t ,F,α , GK
α , and GK

t ,F,α , instead of vα , vt ,α , vt ,F,α ,
Gα , and Gt ,F,α , respectively. Consider the terminal value
F(x) = v0

α(x), x ∈ X. According to Theorem 3.4(viii)
and Corollary 3.5(vi), the functions vα , v0

α , vt ,α , and vt ,v0
α ,α ,

t = 1, 2, . . . , are inf-compact.

LEMMA 6.8: The following statements hold:

(i) the functions vα and vt ,v0
α ,α , t = 0, 1, . . . , are

inf-compact;
(ii) the functions Gα and Gt ,v0

α ,α , t = 0, 1, . . . , are lower
semi-continuous, and

lim
x→+∞Gα(x) = lim

x→+∞Gt ,v0
α ,α(x) = +∞,

t = 0, 1, . . . ;

(iii) there exists α∗ ∈ [0, 1) such that G0
α(x) → ∞ as

x → −∞ for all α ∈ [α∗, 1);
(iv) for α ∈ [α∗, 1), where α∗ is the constant α∗ ∈

[0, 1) whose existence is stated in Statement (iii),
the functions Gα(x) and Gt ,v0

α ,α(x), t = 0, 1, . . . ,
are K-convex and tend to +∞ as x → −∞, and
therefore, in view of Statement (ii), these functions
are inf-compact. Furthermore, the functions vα and
vt ,v0

α ,α(x), t = 0, 1, . . . , are K-convex.

PROOF: In view of Corollary 6.1, Statement (i) follows
from Theorem 3.4(viii) and Corollary 3.5(vi). Statement
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(ii) follows from Statement (i), non-negativity of costs, and
definitions (6.21) and (6.22).

To prove Statement (iii) note that it is well-known that the
function G0

α is convex, where α ∈ [0, 1). Indeed, the function
v0

0,α = 0 is convex. For K = 0, Eqs. (6.18), (6.21) and induc-
tion based on Heyman and Sobel [23, Proposition B-4] imply
that the functions v0

t ,α , t = 1, 2, . . . , are convex. Convergence
of value iterations, stated in Theorem 3.4(i), implies the con-
vexity of the functions v0

α . The convexity of G0
α follows from

(6.22).
We show by contradiction that there exists α∗ ∈ [0, 1)

such that G0
α is decreasing on an interval (−∞, Mα] for some

Mα > −∞ when α ∈ [α∗, 1). Suppose this is not the case.
For K = 0, (6.19) can be written as

v0
α(x) = inf

a≥0

{
G0

α(x + a)
} − c̄x. (6.27)

If a constant Mα does not exist for some α ∈ (0, 1), then
the convexity of G0

α(x) implies that the policy ψ , that never
orders, is optimal for the discount factor α. If there is no
α∗ with the described property, Corollary 4.4 implies that the
policy ψ is average-cost optimal. This is impossible because,
if x is small enough that the convex function h(x) is decreas-
ing at x, then wψ(x) ≥ Eh(x − D) > h(x) → +∞ as
x → −∞, but, in view of Theorem 4.1, w(x) is a finite
constant. This contradiction implies that for α ∈ [α∗, 1)

the functions G0
α decreases when x ∈ (−∞, Mα], where

Mα > −∞. The convexity of G0
α implies that G0

α(x) → ∞
as x → −∞.

Let us prove Statement (iv). The convergence of the func-
tions to +∞, as x → −∞, follows from Statement (iii) and
the inequalities GK

α (x) ≥ G0
α(x) and GK

t ,v0
α ,α(x) ≥ G0

α(x),
which hold for all x ∈ X. Indeed, the first inequality follows
from vK

α (x) ≥ v0
α(x), x ∈ X, and (6.22). The second inequal-

ity follows from vK
t ,v0

α ,α(x) ≥ v0
t ,v0

α ,α(x) = v0
α(x), x ∈ X, and

(6.21).
Now let α ∈ [α∗, 1). As explained in the proof of (iii),

the function G0
α is convex and therefore it is K-convex. For-

mulae (6.18), (6.21), Heyman and Sobel [23, Lemma 7–2,
p. 312], and induction arguments imply that the functions
Gt ,v0

α ,α and vt+1,v0
α ,α , t = 1, 2, . . . are K-convex. In addition,

vt ,v0
α ,α(x) ↑ vα(x) as t → ∞ in view of Corollary 3.5(v)

and since all the costs are non-negative. Formulae (6.21),
(6.22) and the monotone convergence theorem imply that
Gt ,v0

α ,α(x) ↑ Gα(x) as t → ∞. Thus, the functions vα and
Gα are K-convex. �

DEFINITION 6.9: Let st and St be real numbers such that
st ≤ St , t = 0, 1, . . . . Suppose xt denotes the current inven-
tory level at decision epoch t . A policy is called an (st , St )

policy at step t if it orders up to the level St if xt < st and does
not order when xt ≥ st . A Markov policy is called an (st , St )

policy if it is an (st , St ) policy at all steps t = 0, 1, . . . . A

policy is called an (s, S) policy if it is stationary and it is an
(s, S) policy at all steps t = 0, 1, . . . .

The following theorem is the main result of this section.

THEOREM 6.10: Consider α∗ ∈ [0, 1) whose existence
is stated in Lemma 6.8. The following statements hold for
the inventory control problem.

(i) For α ∈ [α∗, 1) and t = 0, 1, . . . , define g(x) :=
Gt ,v0

α ,α(x), x ∈ R. Consider real numbers S∗
t ,α sat-

isfying (6.25) and s∗
t ,α defined in (6.26). For each

N = 1, 2, . . . , the (st , St ) policy with st = s∗
N−t−1,α

and St = S∗
N−t−1,α , t = 0, 1, . . . , N − 1, is optimal

for the N-horizon problem with the terminal values
F(x) = v0

α(x), x ∈ R.
(ii) For the infinite-horizon expected total discounted

cost criterion with a discount factor α ∈ [α∗, 1),
define g(x) := Gα(x), x ∈ R. Consider real num-
bers Sα satisfying (6.25) and sα defined in (6.26). The
(sα , Sα) policy is optimal for the discount factor α.
Furthermore, a sequence of pairs

{
(s∗

t ,α , S∗
t ,α)

}
t=0,1,...

is bounded, where s∗
t ,α and S∗

t ,α are described in State-
ment (i), t = 0, 1, . . . . If (s∗

α , S∗
α) is a limit point of

this sequence, then the (s∗
α , S∗

α) policy is optimal for
the infinite-horizon problem with the discount factor
α.

(iii) Consider the infinite-horizon average cost criterion.
For each α ∈ [α∗, 1), consider an optimal (s ′

α , S ′
α)

policy for the discounted cost criterion with the dis-
count factor α, whose existence follows from State-
ment (ii). Let αn ↑ 1, n = 1, 2, . . . , with α1 ≥ α∗.
Every sequence

{
(s ′

αn
, S ′

αn
), n ≥ 1

}
is bounded and

each its limit point (s, S) defines an average-cost opti-
mal (s, S) policy. Furthermore, if P(D > 0) > 0, this
policy satisfies the optimality inequality (6.20) with
u = ũ, where the function ũ is defined in (4.5) for
an arbitrary subsequence

{
αnk

}
k=1,2,... of {αn, n ≥ 1}

satisfying (s, S) = lim
k→∞(s ′

αnk
, S ′

αnk
).

PROOF: To prove Statements (i) and (ii), let α ∈ [α∗, 1).
In view of Lemma 6.8(iv), the functions Gα and Gt ,v0

α ,α ,
t = 0, 1, . . . , are K-convex and inf-compact. The optimal-
ity of (st , St ) policies and (s, S) policies with s = sα and
S = Sα stated in (i) and (ii) follows from optimality Eqs.
(6.18), (6.19), Lemma 6.7 with g = GN ,v0

α ,α and g = Gα

respectively, and Theorem 3.4.
Consider now the remaining claims in (ii). Since

G0
α(x) ≤ Gt ,v0

α ,α(x) ≤ Gt+1,v0
α ,α(x) ≤ Gα(x), x ∈

R, the points s∗
t ,α and S∗

t ,α belong to the compact
set

{
x ∈ R : G0

α(x) ≤ K + minx∈RGα(x)
}

. Therefore, the
sequence

{
(s∗

t ,α , S∗
t ,α)

}
t=0,1,...

is bounded and has a limit point

(s∗
α , S∗

α). The function F(x) = v0
α(x) satisfies inequalities in
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(3.11), and therefore the assumptions of Theorem 3.6 hold.
Theorem 3.6 implies that, for the infinite-horizon problem
with the discount factor α, the following decisions are optimal
for the corresponding states: no inventory should be ordered
for x > s∗

α and the inventory up to the level S∗
α should be

ordered for x < s∗
α . This implies that Gα(x) ≤ K + Gα(S∗

α)

for x ∈ (s∗
α , S∗α). Lower semi-continuity of Gα(x) implies

that Gα(s∗
α) ≤ K + Gα(S∗

α). Thus, the decision, that inven-
tory should not be ordered, is optimal at x = s∗

α . That is,
the (s∗

α , S∗
α) policy is optimal for the infinite-horizon problem

with the discount factor α.
It remains to prove Statement (iii). Let P(D > 0) > 0.

We start with the proof that the sequence
{
(s ′

αn
, S ′

αn
)
}

n=1,2,...

is bounded. First, we prove that the sequence
{
s ′
αn

, n ≥ 1
}

is
bounded below. If this is not true, then limk→∞s ′

αnk
= −∞

for some nk → ∞ as k → ∞. This means that for each
x ∈ R there is a natural number k(x) such that x > s ′

αnk

for k ≥ k(x). Therefore, 0 ∈ Aαnk
(y), k ≥ k(x), for all

y ≥ x. Corollary 4.4(ii) implies that the action 0 ∈ A∗
ũ
(y)

for all y > x, where ũ is defined in (4.5) for the sequence
of discount factors

{
αnk

, k ≥ 1
}
. Since x ∈ R is arbitrary,

0 ∈ A∗
ũ
(y) for all y ∈ R. This means that the policy ψ , that

never orders inventory, is optimal for average costs per unit
time. However,

wψ(x) ≥ Eh(x − Sn) ≥ h(x − nED).

Letting n → ∞ on the right hand side yields wψ(x) = +∞
for all x ∈ R. In view of Assumption G that holds for the
inventory control problem, wψ(x) < +∞ for some x ∈ R.
Thus the sequence

{
s ′
αn

, n ≥ 1
}

is bounded.
Second, we prove that the sequence

{
S ′

αn
, n ≥ 1

}
is also

bounded. Let x ∈ R be a lower bound for
{
s ′
αn

, n ≥ 1
}

.
Thus, a(n) := (S ′

αn
− x) ∈ Aαn

(x). In view of Theorem 4.5,
the sequence

{
a(n), n ≥ 1

}
is bounded. This implies that the

sequence
{
S ′

αn
, n ≥ 1

}
is bounded as well.

Consider a subsequence αnk
↑ 1 such that (s ′

αnk
, S ′

αnk
) →

(s ′, S ′) as k → ∞. Corollary 4.4(ii) implies that 0 ∈ A∗
ũ
(x),

if x > s ′, and S ′ − x ∈ A∗
ũ
(x), if x < s ′, where the func-

tion ũ is defined in (4.5) for the sequence of discount factors{
αnk

, k ≥ 1
}
. The last step is to prove that 0 ∈ A∗

ũ
(s ′). To do

this, consider a subsequence
{
α∗

n, n ≥ 1
}

such that α∗
n → 1

of the sequence
{
αnk

, k ≥ 1
}

and a sequence
{
x(n), n ≥ 1

}
with x(n) → s ′ such that ũ(s ′) = lim

n→∞uα∗
n
(x(n)).

First, consider the case when there is a sequence �k →
∞ such that x(�k) ≥ s ′

α∗
�k

for all k = 1, 2, . . . . In this

case, 0 ∈ Aα∗
�k
(x(�k)), and Corollary 4.4(ii) implies that

0 ∈ A∗
ũ∗(s

′), where the function ũ∗ is defined in (4.5) for
the sequence of discount factors

{
α∗

nk

}
k=1,2,...

. Observe that
ũ∗(s ′) = ũ(s ′) and ũ∗(x) ≥ ũ(x) for all x ∈ R. This implies
A∗

ũ∗(s
′) ⊆ A∗

ũ
(s ′). Thus 0 ∈ A∗

ũ
(s ′).

Second, consider the complimentary case, when there
exists a number N such that x(n) < s ′

α∗
n

for n ≥ N . Let

n ≥ N . In view of Statement 2(b) of Lemma 6.7, Gα∗
n
(x(n)) ≥

Gα∗
n
(s ′

α∗
n
). Therefore,

uα∗
n
(x(n)) = vα∗

n
(x(n)) − mα∗

n
= K + Gα∗

n
(S ′

α∗
n
) − c̄x(n) − mα∗

n

≥ Gα∗
n
(s ′

α∗
n
) − c̄x(n) − mα∗

n

≥ vα∗
n
(s ′

α∗
n
) + c̄s ′

α∗
n
− c̄x(n) − mα∗

n

= uα∗
n
(s ′

α∗
n
) + c̄(s ′

α∗
n
− x(n)),

where the first and the last equalities follow from the defin-
ition of the functions uα , the second equality follows from
(6.19) and from the optimality of the (s ′

α∗
n
, S ′

α∗
n
) policies for

discount factors α∗
n, the first inequality follows from State-

ment 2(c) of Lemma 6.7, and the last inequality follows from
(6.19). Since s ′

α∗
n

→ s ′ and x(n) → s ′,

ũ(s ′) = lim
n→∞uα∗

n
(x(n)) = lim

n→∞uα∗
n
(s ′

α∗
n
).

Moreover, since 0 ∈ Aα∗
n
(s ′

α∗
n
) for all n = 1, 2, . . . , Theorem

4.3(ii) implies that 0 ∈ A∗
ũ
(s ′). Thus, the (s ′, S ′) policy is

average-cost optimal.
Now let D = 0 almost surely. As explained in the paragraph

preceding Proposition 6.3, the (0, 0) policy φ is average-cost
optimal. Let us prove that

lim
α↑1

sα = lim
α↑1

Sα = 0. (6.28)

Let α ∈ (0, 1). Consider an arbitrary policy σ . Since vσ (x) ≥
h(x)

1−α
= vφ

α (x), when x ≥ 0, then vα(x) = h(x)

1−α
for all x ≥ 0.

This formula and (6.22) imply Gα(x) = c̄x + h(x)/(1 − α)

for x ≥ 0. Thus, the function Gα(x) is increasing, when
x ∈ [0, ∞). This implies Sα ≤ 0. Since sα ≤ Sα , then
s∗ = liminfα↑1sα ≤ 0. To complete the proof of (6.28),
we need to show that s∗ = 0. Indeed, let us assume that
s∗ < 0. Fix an arbitrary x ∈ (s∗, 0). Then there exists a
sequence αn ↑ 0 such that sαn

→ s∗ as n → ∞ and sαn
< x,

n = 1, 2, . . . . The (sαn
, Sαn

) policy φn is optimal for the dis-
count factor αn, and this policy does not order at the state x,
n = 1, 2, . . . . Therefore vφn

αn
(x) = h(x)/(1−αn) → +∞ as

n → ∞. However, vφ
αn

(x) = K − c̄x. This implies that the
(sαn

, Sαn
) policy φn cannot be optimal for a discount factor

αn > (K − c̄x)/(K − c̄x − h(x)). �

For N = 1, 2, . . . , we shall write GN ,α instead of GN ,F,α if
F(x) = 0 for all x ∈ R.

LEMMA 6.11: Suppose there exist z, y ∈ R such that z < y
and

h(y) − h(z)

y − z
< −c̄. (6.29)
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Then Gα(x) → +∞andGN ,α(x) → +∞ as |x| → ∞ for
all α ∈ [0, 1) and for all N ≥ 0, and these functions are
K-convex.

PROOF: Observe that the assumption in Lemma 6.11 is
equivalent to the existence of z, y ∈ R such that z < y and

E[h(y − D) − h(z − D)]
y − z

< −c̄. (6.30)

Indeed, since h is convex, h(y−d)−h(z−d) ≤ h(y)−h(z),
and (6.29) implies (6.30). Also, (6.30) implies that for some
d ≥ 0 inequality (6.29) holds for y := y − d and z := z − d.

According to (6.21), GN ,α(x) → ∞ as x → ∞ for all
N = 0, 1, . . . . We show that the result continues to hold when
x → −∞. Suppose z < y satisfy (6.30). Inequality (6.30) can
be rewritten as

c̄y + Eh(y − D) < c̄z + Eh(z − D).

Thus, G0,α(z) > G0,α(y). Since G0,α is convex, then
G0,α(x) → ∞ as x → −∞. According to (6.21),

GN ,α(x) = G0,α(x) + αEvN ,α(x − D) ≥ G0,α(x),

N = 1, 2, . . . ,

Gα(x) = Gα(x) + αEvα(x − D) ≥ G0,α(x),

whereG0,α(x) → +∞asx → −∞. �

THEOREM 6.12: Under the condition stated in Lemma
6.11, the following statements hold for each discount factor
α ∈ [0, 1):

(i) For t = 0, 1, . . . consider real numbersSt ,α satisfying
(6.25) and st ,α defined in (6.26) with g(x) = Gt ,α(x),
x ∈ R. Then for every N = 1, 2, . . . the (st , St )
policy with st = sN−t−1,α and St = SN−t−1,α ,
t = 0, 1, . . . , N − 1, is optimal for the N-horizon
problem with the zero terminal values.

(ii) Consider real numbers Sα satisfying (6.25) and sα

defined in (6.26) for g(x) := Gα(x), x ∈ R. Then
the (sα , Sα) policy is optimal for the infinite-horizon
problem with the discount factor α. Furthermore, a
sequence of pairs

{
(st ,α , St ,α)

}
t=0,1,... considered in

statement (i) is bounded, and, if (s∗
α , S∗

α) is a limit
point of this sequence, then the (s∗

α , S∗
α) policy is

optimal for the infinite-horizon problem with the
discount factor α.

PROOF: Observe that G0,α(x) = c̄x + Eh(x − D). This
function is convex and, in view of Lemma 6.11, G0,α(x) →
∞ as |x| → ∞. The rest of the proof coincides with the proof
of Theorem 6.10 with the functions Gt ,v0

α ,α replaced with the
functions Gt ,α . �

By using the results of this section, Feinberg and Liang
[18–20] obtained additional results for the inventory control
problem. Feinberg and Liang [19] described the structure of
optimal policies for all values of the discount factor α ≥ 0
for finite-horizon problems and for all values of α ∈ [0, 1) for
infinite-horizon problems. In particular, the smallest possible
values of the discount factor α∗ mentioned in Theorem 6.10
are computed in Ref. 19. Though the general theory of MDPs
implies that the value functions vt ,α(x), Gt ,α(x), vα(x), and
Gα(x) are lower semi-continuous in x, it is proved in Ref. 19
that these functions are continuous. In particular, these conti-
nuity properties imply that, for total discounted cost criteria
with finite and infinite horizons, the decisions to order up to
the level S (St ) are also optimal at the states s (st ). Feinberg
and Liang [18] proved that for the inventory control problem
the average-cost optimality inequality in (6.20) holds in the
stronger form of the optimality equation, the convergences
uα(·) → u(·) and Gα(·) → H(·) take place, as α ↑ 1, and the
functions u(x) and G(x) are K-convex and continuous. There-
fore, average-cost optimal (s, S) policies can be derived from
the optimality equation, and the decision to place an order up
to the level S at the state s is also optimal for the average-cost
criterion. Feinberg and Liang [20] strengthened some of the
results from Ref. 18 and extended them to the models with
costs satisfying quasiconvexity conditions.

REMARK 6.13: This remark comments on the assump-
tions α ∈ [0, 1), K ≥ 0, and c > 0. All the results of this
article stated for the finite horizon hold with the same proofs
for arbitrary α ≥ 0; see Feinberg and Liang [19] for detail.
If K = 0, then it is well-known that it is possible to set s = S
and st = St for the corresponding optimal (s, S) policies, see
e.g., Heyman and Sobel [23, Proposition 3–1], and such poli-
cies are called base stock or S-policies. Indeed, this follows
from Lemma 6.8 and (6.18), (6.19) for discounted problems,
and then from Theorem 6.10(iii) for problems with average
costs per unit time. If c = 0, then Assumption W* holds. In
particular, the function c(x, a) = K1a>0 +Eh(x +a −D) is
K-inf-compact as a sum of a lower-semicontinuous function
and a K-inf-compact function; see Theorem 5.3(1). All the
results formulated in the article for a fixed discount factor
α ∈ [0, 1) remain correct for c̄ = 0. Furthermore, inequal-
ity (6.29) holds and therefore the conclusions of Theorem
6.12 hold. However, the function c is not inf-compact when
c̄ = 0. For example, c(−a, a) = K + Eh(−D) � +∞ as
a → +∞. The proof of Assumption B in Proposition 6.3 is
based on Theorem 4.2, which uses the assumption that the
function c is inf-compact. So, for the long-term average-cost
criterion, the results of this article do not cover the case c̄ = 0.

REMARK 6.14: For the inventory control problem, we
have considered an MDP with X = R and A(x) = R

+ for

Naval Research Logistics DOI 10.1002/nav



18 Naval Research Logistics, Vol. 00 (2017)

each x ∈ X. However, if the demand takes only integer val-
ues, for many problems it is natural to consider X = Z and
A(x) = Z

+, where Z is the set of integers and Z
+ is the set

of non-negative integers. Therefore, if the demand is integer,
we have two MDPs for the inventory control problems: an
MDP with X = R and an MDP with X = Z. All of the
results of this article also hold for the second representation,
when the state space is integer, with a minor modification that
the action sets are integer as well. In fact the case X = Z is
slightly easier because every function is continuous on it and
therefore it is lower semi-continuous.
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