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Abstract

We consider the task of learning a dynamical system from high-dimensional time-course

data. For instance, we might wish to estimate a gene regulatory network from gene expression

data measured at discrete time points. We model the dynamical system non-parametrically

as a system of additive ordinary differential equations. Most existing methods for parameter

estimation in ordinary differential equations estimate the derivatives from noisy observations.

This is known to be challenging and inefficient. We propose a novel approach that does not

involve derivative estimation. We show that the proposed method can consistently recover the

true network structure even in high dimensions, and we demonstrate empirical improvement

over competing approaches.

Keywords Additive model; Group lasso; High dimensionality; Ordinary differential equation;

Variable selection consistency
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1. INTRODUCTION

Ordinary differential equations (ODEs) have been widely used to model dynamical systems in

many fields, including chemical engineering (Biegler et al., 1986), genomics (Chou and Voit,

2009), neuroscience (Izhikevich, 2007), and infectious diseases (Wu, 2005). A system of ODEs

takes the form

X ′(t; θ) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
dX1(t;θ)

dt

...

dXp(t;θ)

dt

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
f1(X(t; θ), θ)

...

fp(X(t; θ), θ)

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ f(X(t; θ), θ); t ∈ [0, 1], (1)

where X(t; θ) = (X1(t; θ), . . . , Xp(t; θ))
T denotes a set of variables, and the form of the functions

f = (f1, . . . , fp)
T may be known or unknown. In (1), t indexes time. Typically, there is also an

initial condition of the formX(0; θ) = C, whereC is a p-vector. In practice, the system (1) is often

observed on discrete time points subject to measurement errors. Let Yi ∈ Rp be the measurement

of the system at time ti such that

Yi = X(ti; θ
∗) + ϵi, i = 1, . . . , n, (2)

where θ∗ denotes the true set of parameter values and the random p-vector ϵi represents indepen-

dent measurement errors. In what follows, for notational simplicity, we sometimes suppress the

dependence of X(t; θ) on θ, i.e., X(t) ≡ X(t; θ) in (1) and X∗(t) ≡ X(t; θ∗) in (2).

In the context of high-dimensional time-course data arising from biology, it can be of interest

to recover the structure of a system of ODEs — that is, to determine which features regulate each
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other. If fj in (1) is a function of Xk, then we say that Xk regulates Xj in the sense that Xk

controls the changes of Xj through its derivative X ′
j . For instance, biologists might want to infer

gene regulatory networks from noisy time-course gene expression data. In this case, the number of

variables p exceeds the number of time points n; we refer to this as the high-dimensional setting.

In high-dimensional statistics, sparsity-inducing penalties such as the lasso (Tibshirani, 1996)

and the group lasso (Yuan and Lin, 2006) have been well-studied. Such penalties have also been

extensively used to recover the structure of probabilistic graphical models (e.g., Yuan and Lin,

2007; Friedman et al., 2008; Meinshausen and Bühlmann, 2010; Voorman et al., 2014). However,

model selection in high-dimensional ODEs remains a relatively open problem, with the exception

of some notable recent work (Lu et al., 2011; Henderson and Michailidis, 2014; Wu et al., 2014).

In fact, the tasks of parameter estimation and model selection in ODEs from noisy data are very

challenging, even in the classical statistical setting where n > p (see e.g., Ramsay et al., 2007;

Brunel, 2008; Liang and Wu, 2008; Qi and Zhao, 2010; Xue et al., 2010; Gugushvili and Klaassen,

2012; Hall and Ma, 2014; Zhang et al., 2015). Moreover, the problem of high-dimensionality

is compounded if the form of the function f in (1) is unknown, leading to both statistical and

computational issues.

In this paper, we propose an efficient procedure for structure recovery of an ODE system of

the form (1) from noisy observations of the form (2), in the setting where the functional form of f

is unknown. In Section 2, we review existing methods. In Section 3, we propose a new structure

recovery procedure. In Section 4, we study the theoretical properties of our proposal. In Section 5,

we apply our procedure to simulated data. In Section 6, we apply it to in silico gene expression data

generated by GeneNetWeaver (Schaffter et al., 2011) and to calcium imaging data. We conclude

with a discussion in Section 7. Proofs and additional details are provided in the supplementary
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material.

2. LITERATURE REVIEW

In this section, we review existing statistical methods for parameter estimation and/or model selec-

tion in ODEs. Most of the methods reviewed in this section are proposed for the low-dimensional

setting. Even though they may not be directly applicable to the high-dimensional setting, they lay

the foundation for the development of model selection procedures in high-dimensional additive

ODEs.

2.1 Notation

Without loss of generality, assume that 0 = t1 < t2 < . . . < tn = 1. We let Yij indicate the

observation of the jth variable at the ith time point, ti. We use X (h) to denote a nonparametric

class of functions on [0, 1] indexed by some smoothing parameter(s) h. We use Z(·) to represent

an arbitrary function belonging to X (·). We use ∥ ·∥2 to denote the ℓ2-norm of a vector or a matrix,

and |||f ||| to denote the ℓ2-norm of a function f on the interval [0, 1], i.e. |||f |||2 ≡
∫ 1

0
f 2(t) dt. We

use an asterisk to denote true values—for instance, θ∗ denotes the true value of θ in (1). We use

Λmin(A) and Λmax(A) to denote the minimum and maximum eigenvalues of a square matrix A,

respectively.
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2.2 Methods that assume a known form of f

2.2.1 Gold standard approach

To begin, we suppose that the function f in (1) takes a known form. Benson (1979) and Biegler

et al. (1986) proposed to estimate the unknown parameter θ∗ in (2) by solving the problem

θ̂gold = argmin
θ

n∑
i=1

∥Yi −X(ti; θ)∥22 (3a)

subject to X ′(t; θ) = f(X(t; θ), θ), t ∈ [0, 1]. (3b)

Note that X(·; θ) in (3) is a fixed function given θ, although an analytic expression may not be

available. The resulting estimator θ̂gold has appealing theoretical properties: for instance, when the

measurement errors ϵi in (2) are Gaussian, then θ̂gold is the maximum likelihood estimator, and is

√
n-consistent. In this sense, (3) can thus be considered the gold standard approach. However,

solving (3) is often computationally challenging.

2.2.2 Two-step collocation methods

In order to overcome the computational challenges associated with solving (3), collocation meth-

ods have been employed by a number of authors (Varah, 1982; Ellner et al., 2002; Ramsay et al.,

2007; Brunel, 2008; Cao and Zhao, 2008; Liang and Wu, 2008; Cao et al., 2011; Lu et al., 2011;

Gugushvili and Klaassen, 2012; Brunel et al., 2014; Hall and Ma, 2014; Henderson and Michai-

lidis, 2014; Wu et al., 2014; Dattner and Klaassen, 2015; Zhang et al., 2015).

The two-step collocation procedure first proposed by Varah (1982) involves fitting a smoothing

estimate X̂(·;h) to the observations Y1, . . . , Yn in (2) with a smoothing parameter h, and then
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plugging X̂(·;h) and its derivative with respect to t into (1) in order to estimate θ. This amounts

to solving the optimization problem

θ̂TS = argmin
θ

∫ 1

0

X̂ ′(t;h)− f
(
X̂(t;h), θ

)2

2
dt, (4a)

where

X̂(·;h) = argmin
Z(·)∈X (h)

n∑
i=1

∥Yi − Z(ti)∥22. (4b)

The two-step procedure (4) has a clear advantage over the gold standard approach (3) because the

former decouples the estimation of θ and X . However, this advantage comes at a cost: due to the

presence of X̂ ′ in (4a), the properties of the estimator θ̂TS in (4) rely heavily on the smoothing

estimates obtained in (4b), and
√
n-consistency has only been shown for certain values of the

smoothing parameter h that are hard to choose in practice (Brunel, 2008; Liang and Wu, 2008;

Gugushvili and Klaassen, 2012).

Dattner and Klaassen (2015) proposed an improvement to (4) for a special case of (1). To be

more specific, they assume that fj(X(t), θ) in (1) is a linear function of θ, which leads to

X ′(t) ≡

⎡⎢⎢⎢⎢⎢⎢⎣
dX1(t)

dt

...

dXp(t)

dt

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
gT
1 (X(t))θ

...

gT
p (X(t))θ

⎤⎥⎥⎥⎥⎥⎥⎦ ≡ g(X(t))θ; t ∈ [0, 1], (5)
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where g(X(t)) is a known function of X(t). Integrating both sides of (5) gives

X(t) =

{∫ t

0

g(X(u)) du

}
θ + C, (6)

where C ≡ X(0; θ). The unknown parameter θ∗ is estimated by solving

θ̂LM = argmin
θ

∫ 1

0

X̂(t;h)−
{∫ t

0

g
(
X̂(u;h)

)
du

}
θ − C

2

2

dt, (7a)

where

X̂(·;h) = argmin
Z(·)∈X (h)

n∑
i=1

∥Yi − Z(ti)∥22. (7b)

The optimization problem (7a) has an analytical solution, given the smoothing estimates from

(7b). Compared with the two-step procedure (4), this approach requires an estimate of the integral,∫ t

0
g
(
X̂(u;h)

)
du in (7a), rather than an estimate of the derivative, X̂ ′(t;h). This has profound

effects on the asymptotic behaviour of the estimator θ̂LM.
√
n-consistency of θ̂LM has been estab-

lished under mild conditions, and it has been found that the choice of smoothing parameter h is

less crucial than for other methods (Gugushvili and Klaassen, 2012).

Recently, Brunel et al. (2014) and Hall and Ma (2014) have considered alternatives to the loss

function in (4a). Let C1(0, 1) be the set of functions that are first-order differentiable on (0, 1) and

equal zero on the boundary points 0 and 1. Then (1) implies that, for any ϕ ∈ C1(0, 1),

∫ 1

0

f(X(t), θ)ϕ(t)dt+

∫ 1

0

X(t)ϕ′(t)dt = 0. (8)
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Equation (8) is referred to as the variational formulation of the ODE. A least squares loss based

on (8) takes the form

θ̂V = argmin
θ

1

L

L∑
l=1

∫ 1

0

f
(
X̂(t;h), θ

)
ϕl(t)dt+

∫ 1

0

X̂(t;h)ϕ′
l(t)dt

2

2

, (9)

where X̂(t;h) is defined in (4b) and {ϕl, l = 1, . . . , L} is a finite set of functions in C1(0, 1)

(Brunel et al., 2014). In Hall and Ma (2014), the loss function is the sum of the loss functions in

(4b) and (9), so that θ and the optimal bandwidth h are estimated simultaneously. It is immediately

clear that the derivative X ′(·; θ) is not needed in (9), which can lead to substantial improvement

compared to the two-step procedure in (4). A minor drawback of (9) is that the variational formu-

lation (8) is enforced on a finite set of functions {ϕl, l = 1, . . . , L} rather than on the whole class

C1(0, 1). Under suitable assumptions, the estimator θ̂V is
√
n-consistent (Brunel et al., 2014; Hall

and Ma, 2014).

2.2.3 The generalized profiling method

Another collocation-based method is the generalized profiling method of Ramsay et al. (2007). In-

stead of the smoothing estimate X̂(·;h) in (4b), the generalized profiling method uses a smoothing

estimate X̌(·;h, θ) that minimizes the weighted sum of a data-fitting loss and a model-fitting loss

for any given θ. In greater detail,

θ̂GP
λ = argmin

θ

n∑
i=1

Yi − X̌(ti;h, θ)
2

2
, (10a)
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where

X̌(·;h, θ) = argmin
Z(·)∈X (h)

1

n

n∑
i=1

∥Yi − Z(ti)∥22 + λ

∫ 1

0

∥Z ′(t)− f(Z(t), θ)∥22 dt. (10b)

In Ramsay et al. (2007), the authors solve (10a) iteratively for a non-decreasing sequence of λ’s

in (10b).
√
n-consistency of the limiting estimator was later established by Qi and Zhao (2010).

Zhang et al. (2015) proposed a model selection procedure by applying an ad hoc lasso procedure

(Wang and Leng, 2007) to the estimates from (10).

2.3 Methods that do not assume the form of f

A few authors have recently considered modeling large-scale dynamical systems from biology

using ODEs (Henderson and Michailidis, 2014; Wu et al., 2014), under the assumption that the

right-hand side of (1) is additive,

X ′
j(t) = θj0 +

p∑
k=1

fjk(Xk(t)), θj0 ∈ R. (11)

Henderson and Michailidis (2014) and Wu et al. (2014) approximate the unknown fjk with a

truncated basis expansion. Consider a finite basis, ψ(x) = (ψ1(x), . . . , ψM(x))T, such that

fjk(ak) = ψ(ak)
Tθjk + δjk(ak), θjk ∈ RM , (12)
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where δjk(ak) denotes the residual. Using (12), a system of additive ODEs of the form (11) can be

written as

X ′
j(t) = θj0 +

p∑
k=1

ψ(Xk(t))
Tθjk +

p∑
k=1

δjk(Xk(t)), j = 1, . . . , p. (13)

Henderson and Michailidis (2014) and Wu et al. (2014) consider the problem of estimating and

selecting the non-zero elements θjk in (13). Roughly speaking, they propose to solve optimization

problems of the form

θ̂NP
j = argmin

θj0∈R,θjk∈RM

∫ 1

0

X̂ ′
j(t;h)− θj0 −

p∑
k=1

ψ
(
X̂k(t;h)

)T
θjk


2

2

dt

+ λn

p∑
k=1

[∫ 1

0

{ψ
(
X̂k(t;h)

)T
θjk}2 dt

]1/2
,

(14a)

for j = 1, . . . , p, where

X̂(·;h) = argmin
Z(·)∈X (h)

n∑
i=1

∥Yi − Z(ti)∥22. (14b)

In (14a), a standardized group lasso penalty forces all elements in θjk to be either zero or non-zero

when λn is large, thereby providing variable selection.

The proposals of Henderson and Michailidis (2014) and Wu et al. (2014) are slightly more

involved than (14): an extra ℓ2-penalty is applied to the θjk’s in (14a) in Henderson and Michailidis

(2014), whereas in Wu et al. (2014) (14a) is followed by tuning parameter selection using Bayesian

information criterion (BIC), an adaptive group lasso regression, and a regular lasso. We refer the

reader to Henderson and Michailidis (2014) and Wu et al. (2014) for further details.
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3. PROPOSED APPROACH

We consider the problem of model selection in high-dimensional ODEs. As in Henderson and

Michailidis (2014) and Wu et al. (2014), we assume an additive ODE model (11). We use a finite

basis ψ(·) to approximate the additive components fjk as in (12), leading to an ODE system that

is linear in the unknown parameters (13). Following the example of Dattner and Klaassen (2015),

we exploit this linearity by integrating both sides of (13), which yields

Xj(t) = Xj(0) + θj0t+

p∑
k=1

Ψk(t)
Tθjk +

p∑
k=1

∫ t

0
δjk(Xk(u)) du, (15)

where Ψk(t) denotes the integrated basis such that

Ψk(t) = (Ψk1(t), . . . ,ΨkM(t))T =

∫ t

0

ψ(Xk(u)) du, k = 1, . . . , p, (16)

and Ψ0(t) = t. Our method, called Graph Reconstruction via Additive Differential Equations

(GRADE), then solves the following problem for j = 1, . . . , p:

θ̂j = argmin
Cj0∈R,θj0∈R, θj1,...,θjp∈RM

1

2n

n∑
i=1

{
Yij − Cj0 − θj0Ψ̂0(ti)−

p∑
k=1

θTjkΨ̂k(ti)

}2

+ λn,j

p∑
k=1

[
1

n

n∑
i=1

{
θTjkΨ̂k(ti)

}2

]1/2

,

(17a)

where

X̂(·;h) = argmin
Z(·)∈X (h)

n∑
i=1

∥Yi − Z(ti)∥22, (17b)

and

Ψ̂0(t) = t; Ψ̂k(t) =

∫ t

0

ψ(X̂k(u;h)) du, k = 1, . . . , p. (17c)

In (17a), λn,j is a non-negative sparsity-inducing tuning parameter. We may sometimes use λn,j ≡

λn for j = 1, . . . , p for simplicity. If the true function f ∗
jk in (11) is non-zero, we say that the kth
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variable X∗
k is a true regulator of X∗

j . We let Sj ≡ {k : ∥f ∗
jk∥2 ̸= 0, k = 1, . . . , p} denote the

set of true regulators. We let the estimated index set of regulators be Ŝj ≡ {k :
θ̂jk2

̸= 0, k =

1, . . . , p}. We then reconstruct the network using Ŝj, j = 1, . . . , p.

Both (17a) and (17b) can be implemented efficiently using existing software (e.g., Loader,

2013; Meier, 2014). In our theoretical analysis in Section 4, we use local polynomial regression

to obtain the smoothing estimate in (17b). We use generalized cross-validation (GCV) on the loss

(17b) to select the smoothing tuning parameter h. We use BIC to select the number of bases M for

ψ and Ψ̂ in (17c), and the sparsity tuning parameter λn in (17a).

In some studies, time-course data is collected from multiple samples, or experiments. Let

R denote the total number of experiments, and Y (r) the observations in the rth experiment. We

assume that the same ODE system (13) applies across all experiments with the same true parameter

θ∗jk. We allow a different set of initial values for each experiment. Assume that each experiment

consists of measurements on the same set of time points. This leads us to modify (17) as follows:

θ̂j = argmin
C

(r)
j0 ∈R,θj0∈R, θj1,...,θjp∈RM

1

2Rn

R∑
r=1

n∑
i=1

{
Y

(r)
ij − C

(r)
j0 − θj0Ψ̂0(ti)−

p∑
k=1

θT

jkΨ̂
(r)
k (ti)

}2

+ λn

p∑
k=1

[
1

Rn

R∑
r=1

n∑
i=1

{
θT

jkΨ̂
(r)
k (ti)

}2

]1/2

,

(18)

where

X̂(r)(·;h) = argmin
Z(·)∈X (h)

n∑
i=1

∥Y (r)
i − Z(ti)∥22, r = 1, . . . , R,

Ψ̂0(t) = t; Ψ̂
(r)
k (t) =

∫ t

0

ψ
(
X̂

(r)
k (u;h)

)
du, k = 1, . . . , p.

In Sections 4, 5.1, and 5.2, we will assume that only one experiment is available, so that our

proposal takes the form (17). In Sections 5.3 and 6, we will apply our proposal to data from

multiple experiments using (18).
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Remark 1. To facilitate the comparison of GRADE (17) with other methods, we introduce an

intermediate variable,

X̃j(t;h, θ) ≡ Cj0 + θj0t+

p∑
k=1

θT

jkΨ̂k(t), (19)

following from (15). Plugging (19) into the loss function in (17a) yields
∑n

i=1

{
Yij−X̃j(ti;h, θ)

}2.

In the gold standard (3), the ODE system (1) is strictly satisfied due to the constraint in (3b). In the

two-step procedure (4a) and (14a), the smoothing estimate X̂(·;h) does not satisfy (1). GRADE

stands in between: the initial estimate X̂(·;h) in (17b) is solely based on the observations, while

the intermediate estimate X̃(·;h, θ) is calculated by plugging X̂(·;h) into the additive ODE (13).

4. THEORETICAL PROPERTIES

In this section, we establish variable selection consistency of the GRADE estimator (17). Technical

proofs of the statements in this section are available in Section

The proposed method (17) differs from the standard sparse additive model (Ravikumar et al.,

2009) in that the regressors Ψ̂k(t) in (17c) are estimated from smoothing estimates X̂(·;h) (17b)

instead of the true trajectories X∗ in (2). We use local polynomial regression to compute X̂(·;h)

in (17b) (see e.g., Equation 1.67 of Tsybakov, 2009 for details on parameterization). To establish

variable selection consistency, it is necessary to obtain a bound for the difference between X̂(·;h)

andX∗. This is addressed in Theorem 1. Using the bound in Theorem 1, we then establish variable

selection consistency of the estimator in (17) for high-dimensional ODEs in Theorem 2.

In this study, we assume that the measurement errors in (2) are normally distributed. General-

izations to bounded or sub-Gaussian errors are straightforward.

Assumption 1. The measurement errors in (2) are independent, and ϵij ∼ N(0, σ2), i = 1, . . . , n, j =

14



1, . . . , p.

We also require the true trajectories X∗
j in (2) to be smooth.

Assumption 2. Assume that the solutions X∗
j , 1 ≤ j ≤ p, belong to a Hölder class Σ(β1, L1),

where β1 ≥ 3.

In addition, we need some regularity assumptions to hold for the smoothing estimation (17b).

These assumptions are common and not crucial to this study, and are hence deferred to Section

Theorem 1. Suppose that Assumptions 1–2 and

For the methods outlined in (14) (Henderson and Michailidis, 2014; Wu et al., 2014), variable

selection consistency depends on the convergence of
⏐⏐⏐⏐⏐⏐⏐⏐⏐X̂ ′ − (X∗)′

⏐⏐⏐⏐⏐⏐⏐⏐⏐ and
⏐⏐⏐⏐⏐⏐⏐⏐⏐X̂ −X∗

⏐⏐⏐⏐⏐⏐⏐⏐⏐. In contrast,

our method depends only on the convergence rate of
⏐⏐⏐⏐⏐⏐⏐⏐⏐X̂ −X∗

⏐⏐⏐⏐⏐⏐⏐⏐⏐. It is known that the convergence

of
⏐⏐⏐⏐⏐⏐⏐⏐⏐X̂ ′ − (X∗)′

⏐⏐⏐⏐⏐⏐⏐⏐⏐ is slower than that of
⏐⏐⏐⏐⏐⏐⏐⏐⏐X̂ −X∗

⏐⏐⏐⏐⏐⏐⏐⏐⏐, see e.g. Gugushvili and Klaassen (2012). As

a result, the rate of convergence of θ̂jk from (14) is slower than that of our proposed method (17).

In order to establish the main result, we need the following additional assumptions. Recall the

definition of Ψj(t) from (16); for convenience, we suppress the dependence of Ψ(t) on t in what

follows.

Assumption 3. For j = 1, . . . , p, (X∗
j )

′ is an additive function of X∗
k , k = 1, . . . , p. In other

words, (
X∗

j

)′
(t) = θ∗j0 +

p∑
k=1

f ∗
jk

(
X∗

k(t)
)
, θ∗j0 ∈ R, j = 1, . . . , p, (20)

where
∫ 1

0
f ∗
jk

(
X∗

k(t)
)
dt = 0 for all j, k. Furthermore, the functions f ∗

jk (1 ≤ j, k ≤ p) belong to a

Sobolev class W (β2, L2) on a finite interval with β2 ≥ 3.
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Assumption 4. The eigenvalues of
∫ 1

0
ΨS0

j
ΨT

S0
j
dt are bounded from above by Cmax and bounded

from below by a positive number Cmin, and for k /∈ S0
j , the eigenvalues of

∫ 1

0
ΨkΨ

T
k dt are bounded

from below by Cmin. In other words,

0 < Cmin ≤ Λmin

(∫ 1

0

ΨS0
j
ΨT

S0
j
dt

)
≤ Λmax

(∫ 1

0

ΨS0
j
ΨT

S0
j
dt

)
≤ Cmax, (21)

and

Cmin ≤ Λmin

(∫ 1

0

ΨkΨ
T

k dt

)
, for k /∈ S0

j . (22)

Assumption 5. Assume that

max
k/∈S0

j


(∫ 1

0

ΨkΨ
T

S0
j
dt

)(∫ 1

0

ΨS0
j
ΨT

S0
j
dt

)−1

2

≤ ξ. (23)

The first part of Assumption 4 ensures identifiability among the sj + 1 elements in the set

{t,X∗
Sj
}, and the second part ensures that Ψk is non-degenerate for k /∈ S0

j . Assumption 5 restricts

the association between the elements in the set {t,X∗
Sj
} and the elements in the set X∗

Sc
j
. Note that

in order for the parameters in an additive model such as (13) to be identifiable, there must be no

concurvity among the variables (Buja et al., 1989). This is guaranteed by Assumptions 4 and 5,

which appear often in the literature of lasso regression (Meinshausen and Bühlmann, 2006; Zhao

and Yu, 2006; Ravikumar et al., 2009; Wainwright, 2009; Lee et al., 2013). We refer the readers

to Miao et al. (2011) for a detailed discussion of the identifiability of the parameters in an ODE

model.

The next assumption characterizes the relationships between the quantities in Assumptions 4

and 5 and the sparsity tuning parameter λn in (17a). Similar assumptions have been made in
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lasso-type regression (Meinshausen and Bühlmann, 2006; Zhao and Yu, 2006; Ravikumar et al.,

2009; Wainwright, 2009; Lee et al., 2013).

Assumption 6. Assume that

fmin > λn
4
√
2sCmax

Cmin

and ξ <
1

4

√
Cmin

sCmax

,

where fmin ≡ mink∈Sj

{∫ 1

0

[
f ∗
jk(X

∗
k(t))

]2
dt
}1/2

is the minimum regulatory effect.

Furthermore, we impose some regularity conditions on the bases ψ(·); these are deferred to

Assumption

We arrive at the following theorem.

Theorem 2. Suppose that Assumptions 1–6 and

Because the regressors Ψ̂ are estimated, establishing variable selection consistency requires

extra attention. To prove Theorem 2, we must first establish variable selection consistency of group

lasso regression with errors in variables. This generalizes the recent work on errors in variables

for lasso regression (Loh and Wainwright, 2012). Theorem 2 ensures that the proposed method is

able to recover the true graph exactly, given sufficiently dense observations in a finite time interval

if the graph is sparse. The number of variables in the system can grow exponentially fast with

respect to n, which means that the result holds for the “large p, small n” scenario.

Theorem 2 does not provide us with practical guidance for selecting the bandwidth hn for the

local polynomial regression estimator X̂j . The next result mirrors Theorem 2 for the bandwidths

selected by cross-validation or GCV, which converge to hn ∝ n−1/(2β1+1) asymptotically (see Xia

and Li, 2002; Tsybakov, 2009 for details).
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Proposition 1. Suppose that Assumptions 1–6 and

We note that selecting the values of M and λn that yield the rate specified in Proposition 1 is

challenging in practice. The rate of convergence of the sparsity tuning parameter λn is slower in

Proposition 1 compared to Theorem 2. This results in an increase in the minimum regulatory effect

fmin because of the relation between fmin and λn in Assumption 6.

5. NUMERICAL EXPERIMENTS

We study the empirical performance of our proposal in three different scenarios in the following

subsections. In what follows, given a set of initial conditions and a system of ODEs, numer-

ical solutions of the ODEs are obtained using the Euler method with step size 0.001. Obser-

vations are drawn from the solutions at an evenly-spaced time grid {iT/n; i = 1, . . . , n} with

independent N(0, 1) measurement errors, unless specified otherwise. To facilitate the comparison

of GRADE with other methods, we fit the smoothing estimates X̂ in (17b) using smoothing splines

with bandwidth chosen by GCV. We use cubic splines with two internal knots as the basis func-

tions in (17c) in Sections 5.1 and 5.3. Linear basis functions are used in Section 5.2. The integral

Ψ̂k(t) =
∫ t

0
ψ
(
X̂k(u;h)

)
du in (17c) is calculated numerically with step size 0.01.

5.1 Variable selection in additive ODEs

In this simulation, we compare GRADE with NeRDS (Henderson and Michailidis, 2014) and SA-

ODE (Wu et al., 2014) described in (14). We consider the following system of additive ODEs, for
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k = 1, . . . , 5:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X ′

2k−1(t) = θ2k−1,0 + ψ(X2k−1(t))
Tθ2k−1,2k−1 + ψ(X2k(t))

Tθ2k−1,2k

X ′
2k(t) = θ2k,0 + ψ(X2k−1(t))

Tθ2k,2k−1 + ψ(X2k(t))
Tθ2k,2k

, t ∈ [0, 20], (24)

where ψ(x) = (x, x2, x3)T is the cubic monomial basis. The parameters and initial conditions are

chosen so that the solution trajectories are identifiable under an additive model (Buja et al., 1989).

Detailed specification of (24) can be found in Section

After generating data according to (24) and introducing noise, we apply GRADE, NeRDS, and

SA-ODE to recover the directed graph encoded in (24). Both NeRDS and SA-ODE are implemented

using code provided by the authors. NeRDS and SA-ODE use smoothing splines to estimate X̂ and

X̂ ′ in (14b), and cubic splines with two internal knots as the basis ψ in (14a). As mentioned briefly

in Section 2, NeRDS applies an additional smoothing penalty which amounts to an ℓ2 penalty on

θjk in (14a), controlled by a parameter selected using GCV (Henderson and Michailidis, 2014).

We apply GRADE using the same smoothing estimates and basis functions as NeRDS and SA-

ODE. To facilitate a direct comparison to NeRDS, we apply GRADE both with and without an

additional ℓ2-type penalty on the θjk’s in (17a). We apply all methods for a range of values of the

sparsity-inducing tuning parameter (e.g., λn in (17a)), in order to yield a recovery curve of varying

sparsity.

We summarize the simulation results in Figure 1, where the numbers of true edges selected are

displayed against the total numbers of selected edges over a range of sparsity tuning parameters.

We see that GRADE outperforms the other two methods, which corroborates our theoretical find-

ings in Section 4 that our proposed method is more efficient than methods such as NeRDS and

SA-ODE which involve derivative estimation (see e.g., comments below Theorem 1).
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Figure 1: Performance of network recovery methods on the system of additive ODEs in (24), av-
eraged over 400 simulations. The four curves represent SA-ODE ( ), NeRDS ( ), and GRADE
without ( ) and with ( ) the additional smoothing penalty in (17a) used by NeRDS. Each point
on the curves corresponds to average performance for a given sparsity tuning parameter λn in (14a)
or (17a). The symbols indicate the sparsity tuning parameter λn selected using BIC (SA-ODE, ,
and GRADE, and ) or GCV (NeRDS, ).

5.2 Variable selection in linear ODEs

In this simulation, we compare GRADE to two recent proposals by Brunel et al. (2014) and Hall

and Ma (2014). Recall from Section 2.2.2 that Brunel et al. (2014) and Hall and Ma (2014) are

proposed to estimate a few unknown parameters in an ODE system of known form. Hence, we

consider a simple linear ODE system, for k = 1, . . . , 4,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ′

2k−1(t) = 2kπX2k(t)

X ′
2k(t) = −2kπX2k−1(t)

, t ∈ [0, 1]. (25)
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For each k = 1, . . . , 4, we set the initial condition to be (X2k−1(0), X2k(0)) = (sin(yk), cos(yk))

where yk ∼ N(0, 1). The solutions to (25) take the form of sine and cosine functions of frequencies

ranging from 2π to 8π. The graph corresponding to (25) is sparse, with only eight directed edges

out of 64 possible edges. We fit the model

X ′(t) = ΘX(t) + C, (26)

where Θ is an unknown 8 × 8 matrix and C is an 8-vector. We apply the method in Brunel et al.

(2014) using the code provided by the authors. We implement the method in Hall and Ma (2014)

in R based on the authors’ code in Fortran. Because the loss function in Hall and Ma (2014)

is not convex, we use five sets of random initial values and report the best performance. Since

both Brunel et al. (2014) and Hall and Ma (2014) yield dense estimates for Θ in (26), in order

to examine how well these methods recover the true graph, we threshold the estimates at a range

of values in order to obtain a variable selection path. We apply GRADE using the linear basis

function ψ(x) = x.

Results are shown in Figure 2. We can see that GRADE outperforms the methods in Brunel

et al. (2014) and Hall and Ma (2014). This is likely due to the fact that GRADE exploits the sparsity

of the true graph with a sparsity-inducing penalty. In principle, Brunel et al. (2014) and Hall and

Ma (2014) could be generalized in order to include penalties on the parameters. We leave this to

future research.
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Figure 2: Network recovery on the system of linear ODEs (25), averaged over 200 simulated data
sets. The three curves represent GRADE ( ), Hall and Ma (2014) ( ), Brunel et al. (2014) ( ).

5.3 Robustness of GRADE to the additivity assumption

The GRADE method assumes that the true underlying model is additive (Assumption 3). However,

in many systems, the additivity assumption is violated; for instance, multiplicative effects may be

present in gene regulatory networks (Ma et al., 2009). In this subsection, we investigate the per-

formance of GRADE in a setting where the true model is non-additive. We consider the following

system of ODEs, for k = 1, . . . , 5,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X ′

2k−1(t) = f2k−1 (X2k−1(t), X2k(t)) ≡ 2X2k−1(t)− vX2k−1(t)X2k(t)

X ′
2k(t) = f2k (X2k−1(t), X2k(t)) ≡ vX2k−1(t)X2k(t)− 2X2k(t)

, t ∈ [0, 5], (27)

where v is a positive constant. For each k = 1, . . . , 5, the pair of equations (27) is a special case

of the Lotka-Volterra equations (Volterra, 1928), which represent the dynamics between predators
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(X2k) and prey (X2k−1). The parameter v defines the interaction between the two populations. For

v ̸= 0, bothX ′
2k−1 andX ′

2k are non-additive functions ofX2k−1 andX2k. We define two types of di-

rected edges, where E1 ≡ {(Xj, Xj), j = 1, . . . , 10} and E2 ≡ {(X2k−1, X2k), (X2k, X2k−1), k =

1, . . . , 5} represent the self-edges and non-self-edges, respectively. Figure 3(a) contains an illus-

tration of the graph and edge types for each pair of equations. In what follows, we investigate how

well GRADE recovers these two types of edges as we change the parameter v, i.e., as the additivity

assumption is violated.

Since measurement error is not essential to the current discussion, we generate data according

to (27) without adding noise. To ensure that the trajectories are identifiable, we generate R = 2

sets of random initial values drawn from N10(0, 2I10), where I10 is a 10 × 10 identity matrix. In

order to quantify the amount of signal in an edge that GRADE can detect, we introduce the quantity

Dj,k(v) = E

[
R

∫ T

0

{
∂fj
∂Xk

(t;X(0))

}2

dt

]
, (28)

where the expectation is taken with respect to the random initial values X(0) and R is the number

of initial values. The measure Dj,k in (28) is a loose analogy to
{∫ 1

0

[
f ∗
jk(X

∗
k(t))

]2
dt
}1/2

used

in Assumption 6. Note that if no edge is present from Xk to Xj , then ∂fj/∂Xk ≡ 0 and hence

Dj,k(v) = 0. One immediately notes that, as R increases, the regulatory effect for a true edge

increases proportionally to R, while the regulatory effect of a non-edge remains zero. For the

self-edges in E1 and the non-self-edges in E2, we can define D(1)(v) and D(2)(v) as

D(1)(v) = min
k=1,...,10

Dk,k(v), and D(2)(v) = min
k=1,...,5

{D2k−1,2k(v), D2k,2k−1(v)}, (29)
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where we use the minimum because variable selection is limited by the minimum regulatory effect

(see Assumption 6). With a slight abuse of definition, we refer to (29) as the minimum regulatory

effects in a non-additive model.

We apply GRADE using the formulation in (18). The sparsity parameter λ is chosen so that

there are 20 directed edges in the estimated network. We record the number of estimated edges

that are in E1 and E2. The edge recovery performance is shown in Figure 3(b). In Figure 3(c), we

display the minimum regulatory effects defined in (29). Edge recovery and minimum regulatory

effects show a similar trend as a function of r in (27). This suggests that (29), and thus (28),

is a reasonable measure of the additive components of the regulatory effect of the edges. The

slight deviation between the trends reflects the fact that the measure defined in (28) is not a direct

counterpart of
{∫ 1

0

[
f ∗
jk(X

∗
k(t))

]2
dt
}1/2

in a non-additive model. The edge recovery improves

when a larger value of R is used, though these results are omitted due to space constraints. Our

results indicate that GRADE can recover the true graph even when the additivity assumption is

violated, provided that the regulatory effects (28) for the true edges are sufficiently large.

6. APPLICATIONS

6.1 Application to in silico gene expression data

GeneNetWeaver (GNW) provides an in silico benchmark for assessing the performance of network

recovery methods (Schaffter et al., 2011), and was used in the third DREAM challenge (Marbach

et al., 2009). GNW is based upon real gene regulatory networks of yeast and E. coli. It extracts

sub-networks from the yeast or E. coli gene regulatory networks, and assigns a system of ODEs

to the extracted network. This system of ODEs is non-additive, and includes unobserved variables
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Figure 3: (a): The graph encoded by a pair of Lotka-Volterra equations as given in (27). Self-
edges ( ) and non-self-edges ( ) are shown. (b): Self-edge ( ) and non-self-edge ( ) recovery
of GRADE, averaged over 200 simulated data sets. (c): Minimum signals defined in (29), for
self-edges, D(1)(·) ( ), and non-self-edges, D(2)(·) ( ).

(Marbach et al., 2010). Therefore, the assumptions of GRADE are violated in the GNW data.

To mimic real-world laboratory experiments, GNW provides several data generation mecha-

nisms. In this study, we consider data from the perturbation experiments. The perturbation exper-

iments are similar to the data generating mechanisms used in Section 5.3, where initial conditions

of the ODE system are perturbed in order to emulate the diversity of trajectories from multiple

independent experiments.

We investigate ten networks from GNW that have been previously studied in Henderson and

Michailidis (2014), of which five have 10 nodes and five have 100 nodes. For each network, GNW

provides one set of noiseless gene expression data consisting of R perturbation experiments where

the trajectories are measured at n = 21 evenly-spaced time points in [0, 1]. Here R = 10 for

the five 10-node networks and R = 100 for the five 100-node networks. As in Henderson and

Michailidis (2014), we add independent N
(
0, 0.0252

)
measurement errors to the data at each

timepoint.
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We apply NeRDS as described in Henderson and Michailidis (2014). We apply GRADE us-

ing the formulation (18) to handle observations from multiple experiments, with the smooth-

ing estimates X̂ in (17b) fit using smoothing splines with bandwidth chosen by GCV, and us-

ing cubic splines with two internal knots as the basis functions in (17c). The integral Ψ̂k(t) =∫ t

0
ψ
(
X̂k(u;h)

)
du in (17c) is calculated numerically with step size 0.01. Finally, we apply an

additional ℓ2-type penalty to the θjk’s in (18) in order to match the setup of NeRDS. The tuning

parameter for this penalty is set to be 0.1.

Results are shown in Table 1. Recall that the data generating mechanism violates crucial

assumptions for both NeRDS and GRADE. We see in Table 1 that NeRDS outperforms GRADE

in one network, while GRADE outperforms NeRDS in the other nine networks. This suggests that

GRADE is a competitive exploratory tool for reconstructing gene regulatory networks.

Table 1: Area Under ROC Curves for NeRDS and GRADE

p = 10 p = 100
NeRDS GRADE NeRDS GRADE

Ecoli1 0.450 (0.438, 0.462) 0.545 (0.534, 0.557) 0.624 (0.622, 0.627) 0.670 (0.667, 0.673)
Ecoli2 0.512 (0.502, 0.523) 0.643 (0.634, 0.653) 0.637 (0.635, 0.640) 0.653 (0.650, 0.656)
Yeast1 0.486 (0.476, 0.495) 0.679 (0.666, 0.691) 0.610 (0.607, 0.612) 0.636 (0.635, 0.638)
Yeast2 0.525 (0.518, 0.532) 0.607 (0.600, 0.613) 0.568 (0.566, 0.569) 0.584 (0.582, 0.585)
Yeast3 0.467 (0.460, 0.474) 0.576 (0.566, 0.587) 0.617 (0.616, 0.619) 0.567 (0.566, 0.568)
The average area under the curves and 90% confidence intervals, over 100 simulated data sets.
Networks and data generating mechanisms are described in Section 6.1. Boldface indicates the

method with larger AUC.

6.2 Application to calcium imaging recordings

In this section, we consider the task of learning regulatory relationships among populations of neu-

rons. We investigate the calcium imaging recording data from the Allen Brain Observatory project
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conducted by the Allen Institute for Brain Science1. Here, we investigate one of the experiments

in the project. In this experiment, calcium fluorescence levels (a surrogate for neuronal activity)

are recorded at 30 Hz on a region of the primary visual cortex while the subject mouse is shown

forty visual stimuli. The forty visual stimuli are combinations of eight spatial orientations and five

temporal frequencies. Each stimulus lasts for two seconds and is repeated 15 times. The recorded

videos are processed by the Allen Institute to identify individual neurons. In this particular experi-

ment, there are 575 neurons. Each neuron’s activity is defined as the average calcium fluorescence

level of the pixels that it covers in the video.

It is known that the activities of individual neurons are noisy and sometimes misleading (Cun-

ningham and Byron, 2014). As an alternative, neuronal populations can be studied (see e.g., Part

Three of Gerstner et al., 2014). We define 25 neuronal populations by dividing the recording region

into a 5× 5 grid, where each population contains roughly 20 neurons. We use GRADE to capture

the functional connectivity among the 25 neuronal populations. Note that functional connectivity is

distinct from physical connectivity. Functional connectivity involves the relationships among neu-

ronal populations that can be observed through neuron activities and may change across stimuli,

whereas physical connectivity consists of synaptic interactions.

We estimate the functional connectivity corresponding to three different but related stimuli,

consisting of frequencies of 1 Hz, 2 Hz, and 4 Hz, each at a spatial orientation of 90◦. For each

stimulus, we have calcium fluorescence levels of the p = 25 neuronal populations for each of

R = 15 repetitions. Since each repetition spans two seconds and the calcium fluorescence is

recorded at 30 Hz, there are 60 timepoints per repetition. We apply GRADE using the formulation

1Website: c⃝2016 Allen Institute for Brain Science. Allen Brain Observatory [Internet]. Available from:
http://observatory.brain-map.org.
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in (18) in order to reconstruct the functional connectivity under each of the three stimuli. We use

smoothing splines with bandwidth h selected with GCV in order to estimate X̂ in (17b), and use

cubic splines with 4 internal knots as the basis functions ψ(·) in (17c). The sparsity parameter

λj,n for each nodewise regression in (18) is selected using BIC for each j = 1, . . . , 25. For ease

of visualization, we prefer a sparse network, and so we fit GRADE using tuning parameter values

α(λ1,n, . . . , λp,n), where the scalar α is selected so that each of the estimated networks contains

approximately 25 edges.

Estimated functional connectivities are shown in Figure 4. We see that, in all three networks,

the 24th neuronal population regulates many other neuronal populations, indicating that this re-

gion may contain neurons that are sensitive to this spatial orientation. Furthermore, we see that

the adjacent connectivity networks in Figure 4 are somewhat similar to each other, whereas the

networks at 1 Hz and 4 Hz have few similarities. This agrees with the observation in neuroscience

that neurons in the mouse primary visual cortex are responsive to a somewhat narrow range of

temporal frequencies near their peak frequencies (see, e.g., Gao et al., 2010).

7. DISCUSSION

In this paper, we propose a new approach, GRADE, for estimating a system of high-dimensional

additive ODEs. GRADE involves estimation of an integral rather than a derivative. We show that

estimating the integral is superior to estimating the derivatives both theoretically and empirically.

We leave an extension of our work to non-additive ODEs to future research.

In this paper, we have not addressed the issue of experimental design. Given a finite set of

resources, one may choose to design an experiment to measure n observations on a very dense time

grid, or on a coarse time grid. Alternatively, one might choose to measure n/R observations for
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Figure 4: Estimated functional connectivities among neuronal populations from the calcium imag-
ing data described in Section 6.2. Each node is positioned near the center of the neuronal popula-
tion it represents, with jitter added for ease of display. The three Figures/Figure4-BW/dashededge-F4-BW.jpgedges are shared between the
estimated networks at 1 Hz and 2 Hz; the two Figures/Figure4-BW/dottededge-F4-BW.jpgedges are shared between estimated networks at
2 Hz and 4 Hz; the single Figures/Figure4-BW/longdashededge-F4-BW.jpgedge is shared between the estimated networks at 1 Hz and 4 Hz. For
reference, given two Erdös-Rènyi graphs consisting of 25 nodes and 25 edges, the probability of
having three or more shared edges is 0.07, and the probability of having two or more shared edges
is 0.26.

R distinct experiments from a single ODE system (1), each with a different initial condition. This

presents a trade-off that is especially interesting in the context of ODEs: using a dense time grid

improves the quality of the smoothing estimates X̂ , as seen in Sections 5.1 and 5.2, while running

multiple experiments enhance the identifiability of the true structure, as seen in Section 5.3. We

leave a more detailed treatment of these issues to future work.

8. SUPPLEMENTARY MATERIALS

Supplementary Material: The supplementary material contains proofs and details on data gen-

eration used in the main paper. (pdf file)
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