
On the Reduction of Total-Cost and Average-Cost MDPs to Discounted MDPs

Eugene A. Feinberg ,1Jefferson Huang2

1Department of Applied Mathematics and Statistics Stony Brook University, Stony Brook, New York 11794-3600

2School of Operations Research and Information Engineering Cornell University, Ithaca, New York 14853-3801

Received 15 May 2015; revised 3 May 2017; accepted 6 May 2017
DOI 10.1002/nav.21743

Published online 00 00 2017 in Wiley Online Library (wileyonlinelibrary.com).

Abstract: This article provides conditions under which total-cost and average-cost Markov decision processes (MDPs) can be
reduced to discounted ones. Results are given for transient total-cost MDPs with transition rates whose values may be greater than
one, as well as for average-cost MDPs with transition probabilities satisfying the condition that there is a state such that the expected
time to reach it is uniformly bounded for all initial states and stationary policies. In particular, these reductions imply sufficient
conditions for the validity of optimality equations and the existence of stationary optimal policies for MDPs with undiscounted total
cost and average-cost criteria. When the state and action sets are finite, these reductions lead to linear programming formulations
and complexity estimates for MDPs under the aforementioned criteria. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 00:
000–000, 2017
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1. INTRODUCTION

This article deals with the reduction of undiscounted total-
cost and average-cost Markov decision processes (MDPs) to
discounted MDPs. For undiscounted total costs, we consider
a weighted-norm version of thetransientcase introduced by
Veinott [52] in the context of finite state and action sets and
by Pliska [38] in the context of Borel state and action spaces.
A feature of such MDPs is that nonnegative transitionrates,
which may not be transition probabilities, are considered.
One of the applications of such models is to the control of
branching processes; see for example, Rothblum and Veinott
[42] and Pliska [38]. Other references for branching processes
and other models with transition rates greater than one are
given in Section 2.1.AbsorbingMDPs, which were intro-
duced by Hordijk [32] and studied in the constrained setting
by Altman [2] and Feinberg and Rothblum [23], can also be
viewed as transient MDPs.
It is well-known that discounted MDPs can be reduced to

absorbing or transient MDPs (see e.g., [2, p. 137]). Theorem
6 in this article provides conditions under which the converse
is also true. In particular, the reduction comes from a version
of the similarity transformation considered by Veinott [52],
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which is attributed there to Alan Hoffman. This reduction
relates the value function and optimality equation of the
original transient model with those of the corresponding dis-
counted model. It implies the existence of stationary optimal
policies for transient models if certain natural conditions
hold. It also implies that the sets of optimal actions for these
two models coincide. In the case of finite state and action sets,
the reduction shows that complexity estimates for Howard’s
[34] policy iteration algorithm for discounted MDPs imply
corresponding estimates for transient MDPs. Ye [55] proved
that Howard’s policy iteration algorithm, which corresponds
to a block-pivoting simplex method, and the simplex method
with Dantzig’s rule compute optimal policies for discounted
MDPs with a fixed discount factor in strongly polynomial
time. The complexity estimates from [55] were improved in
Hansen et al. [26] and further improved in Scherrer [46]. Ye
[55] and Denardo [9] also obtained complexity estimates for
transient MDPs. In Section 3.3, Denardo’s [9] estimate for
Howard’s policy iteration algorithm, which corresponds to a
block-pivoting simplex method, is derived from Scherrer’s
[46] estimate by using the reduction of a transient MDP to
a discounted one. We remark that, unlike Howard’s policy
iteration algorithm, any member of a broad class of modified
policy iteration algorithms, which includes value iteration, is
not strongly polynomial for discounted MDPs with a fixed
discount factor [20, 21].

© 2017 Wiley Periodicals, Inc.

http://orcid.org/0000-0002-8263-0772


2 Naval Research Logistics, Vol. 00 (2017)

On the other hand, the discounted-cost criterion plays an
important role in the theory of average-cost MDPs. Many
results have been proved using the so-called “vanishing dis-
count factor” approach, where discounted total costs with
discount factor tending to one are used to obtain a station-
ary average-cost optimal policy via an optimality inequality
or equation; see for example, Sennott [47, Chapter 7], Schäl
[45], Hernández-Lerma and Lasserre [27, Chapter 5], and
Feinberg et al. [22].
A direct reduction of average-cost MDPs to discounted

ones, which yields sufficient conditions for the existence of
stationary average-cost optimal policies, was established by
Ross [39, 40] for MDPs with Borel state space, finite action
sets, bounded costs, and a state to which the process will
transition from any state under any action with probabil-
ity at leastα >0. This reduction and Ye’s [55] results
were used by Feinberg and Huang [19] to obtain iteration
bounds for average-cost policy iterations. Gubenko and Štat-
land [25] showed that a reduction is also possible for MDPs
with Borel state space, bounded costs, and compact action
sets, if a “minorization” condition, which generalizes Ross’s
[40] assumption, is satisfied; see also Dynkin and Yushkevich
[12, Chapter 7, §10].
More recently, Akian and Gaubert [1] used methods from

non-linear Perron–Frobenius theory to reduce a perfect-
information zero-sum stochastic game with finite state and
action sets, containing a state being recurrent under every
pair of stationary strategies, to a discounted game with state-
dependent discount factors. In this article, we provide a
slightly modified version of their transformation for the case
of MDPs with possibly infinite state and action spaces. This
reformulation makes the connection between their transfor-
mation and the work of Ross [39, 40] and Veinott and Hoff-
man [52] more apparent. In the context of MDPs with transi-
tion probabilities, this transformation yields a reduction of a
finite state and action average-cost problem with a state recur-
rent under every stationary policy to a discounted MDP. The
transformation also allows one to write the optimality equa-
tion, prove the existence of stationary optimal policies, and,
in the case of finite state and action sets, formulate an alter-
native linear program for such average-cost problems. This
program is based on the linear program formulation for the
discounted MDP, to which the original problem is reduced.
Therefore, an average-cost problem can be solved in strongly
polynomial time with complexity estimates similar to those
in Scherrer [46]. In addition, Howard’s policy iterations
for the obtained discounted MDPs coincide with Howard’s
policy iterations for the initial average-cost unichain MDP.
Therefore, Scherrer’s [46] results on discounted MDPs imply
that Howard’s policy iteration algorithm for the average-cost
problem computes an optimal policy in strongly polynomial
time with the complexity estimates similar to the estimates
in [46]. This also implies that, if there exists a state recurrent

under all stationary policies, the block-pivoting simplex
method for the linear programming problem for average-cost
MDPs, is also strongly polynomial with the same complexity
estimates.
Previously, Zadorojniy et al. [56] showed that, if every
state is recurrent under every stationary policy and an MDP
satisfies a coupling property introduced there, then both dis-
counted and average-cost optimal policies can be computed
in strongly polynomial time. This is proved in [56] by intro-
ducing an algorithm that, as was shown by Even and Zadoro-
jniy [14], is equivalent to applying the Gass–Saaty pivoting
rule to the appropriate LP formulation for an MDP. As is
shown in [56], the aforementioned coupling property holds
for discrete-time versions of M/M/1 queues.
The model and the optimality criteria considered in this
article are described in Section 2. In Section 3, we formulate
theHoffman-Veinott(HV) transformation [52], and give con-
ditions under which it leads to the reduction of the original
transient total-cost MDP to a discounted MDP with transi-
tion probabilities. Finally, in Section 4 we consider a version
of Akian and Gaubert’s [1] transformation for average-cost
MDPs and the associated reduction to discounted MDPs.
Most of the paper deals with countable-state MDPs. Sections
3.3 and 4.3 deal with finite-state problems, while Sections
3.4 and 4.4 study MDPs with Borel state spaces.

2.  MODEL DESCRIPTION

Consider a discrete-time MDP withstate spaceXand
action spaceA. Most of this article, except Sections 3.4 and
4.4, deals with countable-state MDPs. We start by introducing
a countable-state MDP. LetXbe countable andAbe a Borel
subset of a complete separable metric space. For eachx∈X,
theset of available actions A(x) is a nonempty Borel subset of
A. Theone-step costfunctionc(x, a) is (Borel-)measurable in
a∈A(x)for eachx∈X. Thetransition ratesq(y|x,a)≥0
are measurable ina∈A(x)for eachx,y∈Xand satisfy

sup

⎧
⎨

⎩
y∈X

q(y|x,a):x∈X,a∈A(x)

⎫
⎬

⎭
<∞.  (1)

2.1.  Remarks on Transition Rates Whose Sum May Be
Greater than One

The case where y∈Xq(y|x,a)is possibly greater than
one for some state-action pairs has been studied under vari-
ous names. In Rothblum and Veinott [42] and in Rothblum
and Whittle [43], such models are calledbranching Markov
decision chains. They have also been referred to asMarkov
population decision chainsin [13, 54]. As is explained in
Remark 1 below, such models can be viewed as Markov
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decision processes with transition probabilities and a state-
action-dependent discount factor that is possibly greater than
one. The case of a constant discount factor, which is possibly
greater than one is studied in Hinderer and Waldmann [31].
Such models are applicable in a diverse array of con-

texts. For example, Markov decision models with transition
rates with values possibly greater than one appear in multi-
armed bandit problems with risk-seeking utility functions;
see Denardo et al. [10, 11]. In addition, their relevance to
the control of multitype branching processes, which can be
used to model problems in infinite particle systems, market-
ing, and population genetics, is explained in Pliska [37, 38].
Other relevant application areas are described in Eaves and
Veinott [13].

REMARK 1: Equivalently to considering transition rates
q(·|x,a), one can consider transition probabilitiesp(·|x,a)
and a discount functionα:X×A →[0,∞). In par-
ticular, given an MDP in the latter form, letq(·|x,a):=
α(x,a)p(·|x,a)forx∈X,a∈A(x); conversely, given
transition ratesq(·|x,a), letα(x,a) := q(X|x,a)and
p(·|x,a):= q(·|x,a)/q(X|x,a)forx∈X,a∈A(x).
Expected total costs for arbitrary policies can be defined in a
standard way via the Ionescu Tulcea Theorem (see e.g., [3, pp.
140–141]) by interpretingα(x,a)as a state-action dependent
discount factor, andpasa transition probability. The exist-
ing literature on total-cost MDPs with transition rates having
values possibly greater than one deals only with Markov poli-
cies; see for example [13, 37, 38, 43]. This remark overcomes
this limitation. However, for transient total-cost models this
remark and the reduction to a discounted MDP with transition
probabilities and a discount factor less than one (Section 3.2)
imply the optimality of stationary policies over all random-
ized history-dependent ones. Therefore, we mostly consider
only stationary policies in this article. We remark that, when
(1) holds, it is also possible to transform the original total-
cost problem to a discounted one with a constant discount
factor possibly greater than one; see [30, Remark 5].

2.2.  Optimality Criteria

Astationary policyis a mappingφ:X→ Asatisfying
φ(x)∈A(x)for eachx∈X; letFdenote the set of all
such policies. It can be shown that it suffices to consider such
policies for the optimality criteria considered in this article;
see Remarks 4 and 15. Underφ∈F, the decision-maker
always selects the actionφ(x)when the current state isx.For
φ∈F, consider the matrix of one-step transition ratesQφ
with elementsq(y|x,φ(x)),x,y∈X. Also, given aweight
functionW :X→[1,∞)and a matrixBwith elements
B(x, y),x,y∈X, let

B W :=sup
x∈X

W(x)−1

y∈X

|B(x,y)|W(y).

IfW(x) = 1 for allx ∈ X, then B W = B :=
supx∈X y∈X|B(x,y)|. If the functionWis bounded from
above and below by a finite constantC, then

B W ≤CB. (2)

In particular, ifXis a finite set, then (2) holds withC=
maxx∈XW(x).
For undiscounted total costs, which are considered in
Section 3, the following generalization of the transience con-
dition studied in Veinott [52] and Pliska [38] is assumed to
hold.

ASSUMPTION T:

(i) The MDP is transient, that is, there is a weight func-
tionV:X→[1,∞)and a constantK ≥1 that
satisfy

∞

n=0

Qnφ
V

≤K <∞ for allφ∈F.  (3)

(ii) There is a constant̄c<∞satisfying

sup
a∈A(x)

|c(x,a)|≤ ̄cV (x) for allx∈X. (4)

(iii) For everyx∈Xthe mapping

a→
y∈X

q(y|x,a)V (y) <∞, a∈A(x),

is continuous onA(x).

ForV ≡ 1, a number of conditions sufficient for or
equivalent to (3) are provided in Pliska [38]. If the state
and action sets are finite, then Assumption T is equivalent
to the assumption that there exists a constantKsuch that

∞
n=0Q

n
φ ≤K < ∞. For finite state and action sets,

Assumption T can be checked in strongly polynomial time
using the procedure described in [53, proof of Theorem 1],
where it is attributed to Eric Denardo; see also [9, Lemma 10].
Forφ∈F, letcφ(x):=c(x,φ(x))forx∈X. Under
Assumption T, thetotal costincurred underφ∈F, when the
initial state isx∈X,is

vφ(x):=

∞

n=0

Qnφcφ(x).

A policyφ∗istotal-cost optimalifv
φ∗(x)=infφ∈Fv

φ(x)=:
v(x)for allx∈X.
The following characterization of Assumption T will be

used to define the transformations described in Sections 3.1
and 4.1 for total-cost MDPs.
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PROPOSITION 1: Assumption T(i) holds if and only if
there is a functionμ:X→[1,∞)such thatV(x)≤μ(x)≤
KV (x)for allx∈Xand

μ(x)≥V(x)+
y∈X

q(y|x,a)μ(y), x∈X,a∈A(x).

(5)

PROOF: Suppose there is a functionμ:X→[1,∞)that
satisfiesV(x)≤μ(x)≤KV (x)for allx∈Xand (5).
Consider an arbitraryφ∈F. According to (5),

μ(x)≥V(x)+
y∈X

q(y|x,φ(x))μ(y) for allx∈X,

which, sinceμis nonnegative and majorized byKV, implies
that forN=1, 2,...

KV (x)≥

N−1

n=0

QnφV(x)+Q
N
φμ(x)

≥

N−1

n=0

QnφV(x) for allx∈X.

Hence

K≥V(x)−1lim
N→∞

N−1

n=0

QnφV(x) for allx∈X.  (6)

Sinceφ∈Fis arbitrary, it follows from (6) that Assumption
T holds.
Conversely, suppose Assumption T holds and consider the

operatorUdefined for functionsu:X→[0,∞)by

Uu(x):=sup
A(x)

⎡

⎣V(x)+
y∈X

q(y|x,a)u(y)

⎤

⎦, x∈X.

Letu0:=V, and forn=1, 2,...letun=Uun−1. Note
that the positivity ofVimpliesV≤un≤un+1for alln.
Furthermore, lettingμ:=limn→∞un, Lebesgue’s monot-
one convergence theorem implies thatμ=Uμ. Hence to
complete a proof, it suffices to show thatun≤KVfor alln.
Note thatu0=V≤KVbecauseK≥1. Next, suppose

un≤KVfor some nonnegative integern, and consider an
arbitrary >0. Letφbe a stationary policy satisfying

V(x)+
y∈X

q(y|x,φ(x))un(y)

≥Uun(x)− (KV (x))
−1, x∈X.

Defineũ0:=un.ForN=1, 2,...let

ũN(x):=

N−1

i=0

QiφV(x)+Q
N
φun(x), x∈X.  (7)

Since 0≤un≤KV, it follows that 0≤Q
N
φun≤KQ

N
φV

for allN, which according to Assumption T implies that
QNφun→ 0asN → ∞. Hence it follows from (7) and
Assumption T that

lim
N→∞

ũN(x)≤

∞

i=0

QiφV(x)≤KV (x) for allx∈X.

(8)

Next, we claim that

ũN(x)≥un+1(x)− (KV (x))
−1
N−1

i=0

QiφV(x)

for allx∈X,N≥1. (9)

Observe that (8) and (9) together with Assumption T imply

KV (x)≥un+1(x)− for allx∈X.

Since > 0 is arbitrary, this implies by induction that
un≤KV for alln, from which the Proposition follows.
To verify that (9) holds, first observe that for allx∈X,

ũ1(x)=V(x)+Qφun(x)≥Uun(x)− (KV (x))
−1

=un+1(x)− (KV (x))
−1.

Next, supposeũN≥un+1− (KV )
−1 N−1

i=0Q
i
φVfor some

N≥1. Then, sinceun+1≥un, it follows that forx∈X

ũN+1(x)=V(x)+QφũN(x)

≥V(x)+Qφun+1(x)− (KV (x))
−1
N−1

i=0

Qi+1φ V(x)

≥V(x)+Qφun(x)− (KV (x))
−1

N

i=1

QiφV(x)

≥Uun(x)− (KV (x))
−1− (KV (x))−1

N

i=1

QiφV(x)

=un+1(x)− (KV (x))
−1
(N+1)−1

i=0

QiφV(x).

LEMMA 2: Suppose statements (i) and (iii) of Assump-
tion T hold, and letμbe the function described in the
statement of Proposition 1. Further, suppose that for every
x,y∈Xthe mappingsa→ q(y|x,a)anda→ q(X|x,a)
are continuous onA(x). Then for everyx∈Xthe mapping

a→
y∈X

q(y|x,a)μ(y), a∈A(x),

is continuous onA(x).

Naval Research Logistics DOI 10.1002/nav
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PROOF: Fixx∈X, and let{an}be any sequence inA(x)
converging to somea∈A(x). Under the hypotheses of the
lemma, the sequence of measures{q(·|x,an)}converges set-
wise toq(·|x,a); for a definition of setwise convergence of
measures, see for example [44, p. 269]. Since 0≤μ(x)≤
KV (x)for allx∈X, and y∈Xq(y|x,a)V (y) <∞, it fol-
lows from the dominated convergence theorem for setwise
converging measures (see e.g., [44, Proposition 18]) that

lim
n→∞

y∈X

q(y|x,an)μ(y)=
y∈X

q(y|x,a)μ(y).

REMARK 2: Forφ ∈ Fandx∈ X, letτφ(x):=
∞
n=0Q

n
φe(x)andτ(x):= supφ∈Fτ

φ(x). Then it follows
from [28, Proposition 9.6.4] thatτ(x)≤ KV (x)for all
x∈X. When the transition ratesqare substochastic, that
is, y∈Xq(y|x,a)≤1 for allx∈Xanda∈A(x)(if
equality holds for allxanda, thenqis calledstochastic),
the quantityτφ(x)can be interpreted as the expected total
lifetime of the process under the policyφwhenxis the initial
state.

For average costs, which are dealt with in Section 4,
Assumption HT on hitting times formulated below is assumed
to hold. To state it, forz∈Xandφ∈Fconsider the matrix

zQφwith elements

zQφ(x,y):=
q(y|x,φ(x)), ifx∈X,y=z,

0, ifx∈X,y=z.

ASSUMPTION HT:

(i) There is a state ∈Xand a constantK∗satisfying

∞

n=0

Qnφ ≤K
∗<∞ for allφ∈F.  (10)

(ii) The one-step cost functioncis bounded.

REMARK 3: Observe that Assumptions T and HT are
related. If an MDP satisfies Assumption HT then, if state
and all transition rates to it are removed, the truncated MDP is
transient withV≡1. In particular, when the transition rates
are substochastic or the setsXandA()are finite, Assump-
tion HT for the initial MDP and Assumption T withV≡1
for the MDP with the stateremoved are equivalent. For the
substochastic case,K∗≤K+1, whereKis the constant from
Assumption T for the truncated MDP. This is true because the
truncated MDP does not contain the state, whereasK∗is an
upper bound on the mean recurrence time for all the states of
the original MDP, including the state, under any stationary
policy.

Whenqis substochastic, Assumption HT means that when
the initial state isx, the expected hitting time to stateunder
any stationary policy is bounded above byK∗. When the state
and action sets are finite, Assumption HT is equivalent to state
being recurrent under all stationary policies. According to
Feinberg and Yang [24], Assumption HT can be checked
in strongly polynomial time. We remark that any MDP sat-
isfying Assumption HT is unichain, and that in general the
problem of checking whether an MDP is unichain is NP-hard
[50]. In addition, Assumption HT is related to many other
recurrence conditions that have been used to study average-
cost MDPs; see for example, the surveys by Federgruen et al.
[15], Thomas [49], and Hernández-Lerma et al. [29].
For the initial statex∈X, theaverage costincurred under
φ∈Fis

wφ(x):=lim sup
N→∞

1

N

N−1

n=0

Qnφcφ(x).

A policy φ∗ isaverage-cost optimal ifw
φ∗(x) =

infφ∈Fw
φ(x)=:w(x)for allx∈X.

According to Rothblum [41], a stationary policyφis called
normalizedif ∞

n=0β
nQnφconverges for allβ∈(0, 1).If

Assumption T holds or the transition ratesqare substochas-
tic, then any stationary policy is normalized. Givenβ∈[0, 1)
and an initial statex∈X, theβ-discounted costincurred
under a normalized policyφ∈Fis

v
φ
β(x):=

∞

n=0

βnQnφcφ(x).

A policyφ∗isβ-optimalifv
φ∗
β(x)=infφ∈Fv

φ
β(x)=:vβ(x)

for allx∈X.
In this article, transformations to discounted MDPs with

stochastic transition rates are considered. Discounted MDPs
with nonstochastic transition rates are mentioned only
in Remark 9, where complexity estimates for discounted
MDPs with transition rates satisfying Assumption T are
provided.

3.  UNDISCOUNTED TOTAL COSTS

The transformation of the original transient MDP to a
discounted one, which we call theHoffman-Veinott(HV)
transformation, is given in Section 3.1. Under the hypothe-
ses of Theorem 6 in Section 3.2, a stationary optimal policy
exists for the transformed discounted MDP, and the sets of
optimal policies for the transformed and original MDPs coin-
cide. The finite state and action case is considered in Section
3.3. The Borel-state case is treated in Section 3.4.

Naval Research Logistics DOI 10.1002/nav
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3.1.  HV Transformation

Let Assumption T hold. By Proposition 1, there is a non-
negative functionμonXthat satisfiesV≤μ≤KVand
(5). Objects associated with the discounted MDP will be indi-
cated by a tilde. The state space is̃X:=X∪{̃x}, wherẽx/∈X
is a cost-free absorbing state. Letting̃adenote the only action
available at statẽx, the action space is̃A:=A∪{̃a}and for
x∈X̃the set of available actions is unchanged ifx∈X,
namely

Ã(x):=
A(x), ifx∈X,

{̃a}, ifx=̃x.

Define the one-step costsc̃as

c̃(x,a):=
μ(x)−1c(x,a), ifx∈X,a∈A(x),

0, if(x,a)=(̃x,̃a).

To complete the definition of the discounted MDP, choose a
discount factor

β̃∈
K−1

K
,1,

and let

p̃(y|x,a):=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
β̃μ(x)
q(y|x,a)μ(y), ifx,y∈X,a∈A(x),

1− 1
β̃μ(x) y∈Xq(y|x,a)μ(y),

ify=̃x,x∈X,a∈A(x),

1 ify=x=̃x,a=̃a.

(11)

Note thatp̃(·|x,a)is a probability distribution onX̃for
eachx∈X̃anda∈Ã(x). Also, sinceÃ(x̃)is a single-
ton, the sets of policies for these two models coincide. Let
ṽ
φ

β̃
(x)denote theβ̃-discounted cost incurred under the pol-

icyφwhen the initial state of this MDP isx∈X̃, and let
ṽ̃β(x)=infφ∈Fṽ

φ

β̃
(x)forx∈X̃.

3.1.1.  Relation to Veinott’s positive similarity
transformation

Veinott’s [52] positive similarity transformation is defined
for transient MDPs with finite state and action sets as follows.
Given a diagonal matrixBwith positive diagonal entries, let

c̃φ:=Bcφ and P̃φ:=BQφB
−1, φ∈F.

According to Veinott [52], properties that are invariant under
this transformation include the transience of a policy, the opti-
mality of a policy, and the geometric convergence of value

iteration to the unique fixed point of the optimality operator.
Further, lettingμbe the unique vector satisfying

μ(x)=max
φ∈F

[1+Qφμ(x)], x∈X,  (12)

and lettingμ(x)−1be the nonzero entry on thex-th row ofB,
it follows from [52, Lemma 3] that if the spectral radii of the
matricesQφare all less than one, then the row sums of the

matricesP̃φare all less than one; Veinott attributes this result
to Alan Hoffman. The first line of (11) is an implementation
of Veinott’s similarity transformation that is applicable to all
policies. Transformations of the formμ(x)−1q(y|x,a)μ(y)
have also been used in the literature to reduce MDPs with
unbounded one-step costs to MDPs with bounded one-step
costs; see for example [51, p. 101].

3.2.  Results

Givenφ ∈ F, the following proposition relates the
total costs incurred in the original undiscounted MDP with
those incurred in the discounted MDP defined by the HV
transformation.

PROPOSITION 3: Suppose statements (i) and (ii) of
Assumption T hold. Then the one-step cost functionc̃is
bounded andvφ(x)=μ(x)̃v

φ

β̃
(x)for eachφ∈Fandx∈X.

PROOF: Consider the matrixP̃φwith elementsP̃φ(x,y):=
p̃(y|x,φ(x)),x,y∈X. Then

ṽ
φ

β̃
(x)=

∞

n=0

β̃nP̃nφc̃φ(x), x∈X̃.  (13)

Since the statex̃is cost-free and absorbing, it follows from
the definitions ofP̃φand̃cφthat

β̃nP̃nφc̃φ(x)=μ(x)
−1Qnφcφ(x) for allx∈X,n≥0.

(14)

Observe that, sinceμmajorizesV, according to (4) the map-
pingx→ μ(x)−1cφ(x)is bounded. Hence, combining (13)
and (14), forx∈X

ṽ
φ

β̃
(x)=μ(x)−1

∞

n=0

Qnφcφ(x)=μ(x)
−1vφ(x).

Proposition 1 and Assumption T(ii) imply that|̃c(x,a)|≤
c̄for allx∈Xanda∈A(x).

The optimality results in this section and Section 4.2 rely
on the following compactness-continuity conditions.
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Compactness Conditions (cf. [17, p. 181]).

(i)A(x) is compact for eachx∈X;
(ii)c(x, a) is lower semicontinuous ina∈A(x)for each
x∈X;

(iii)the transition ratesq(y|x,a)are continuous ina∈
A(x)for eachx,y∈X;

(iv)the transition ratesq(X|x,a):= y∈Xq(y|x,a)are
continuous ina∈A(x)for eachx∈X

Observe that, if the state set is finite, then assumption (iii) of
the Compactness Conditions implies assumption (iv). Also,
if the transition rates are stochastic, that is,q(X|x,a)=1
for allx∈Xanda∈A(x), then assumption (iv) of the
Compactness Conditions always holds.

LEMMA 4: Suppose Assumption T and the Compact-
ness Conditions hold. Then the discounted MDP defined
by the HV transformation also satisfies the Compactness
Conditions.

PROOF: Assumptions (i–ii) of the Compactness Condi-
tions imply that the setsÃ(x)are compact and̃cis bounded
and is lower semicontinuous ina. In addition, assumption
(iii) of the Compactness Conditions and Lemma 2 imply
thatp̃(y|x,a)is continuous ina∈A(x)for allx,y∈X,
and assumption (iv) implies thatp̃(̃x|x,a)is continuous in
a∈A(x)for allx∈X. Sincẽpis also stochastic, it follows
that the Compactness Conditions hold for the transformed
MDP.

The main result (Theorem 6) of this section relies on the
following proposition. To state it, forβ∈[0, 1)define

A∗β(x):= a∈A(x) vβ(x)=c(x,a)

+β
y∈X

q(y|x,a)vβ(y), x∈X.  (15)

PROPOSITION 5 (cf. [17, pp. 181, 184]): If an MDP with
transition probabilitiesqand bounded one-step costscsatis-
fies the Compactness Conditions, then for any discount factor
β∈[0, 1):

(i) the value functionvβis the unique bounded function
satisfying the optimality equation

vβ(x)=min
A(x)

⎡

⎣c(x,a)+β
y∈X

q(y|x,a)vβ(y)

⎤

⎦,

x∈X; (16)

(ii) there is a stationaryβ-optimal policy;
(iii) a policyφ∈Fisβ-optimal if and only ifφ(x)∈
A∗β(x)for allx∈X.

PROOF: The Compactness Conditions imply that, ifXis
endowed with the discrete topology, then the transition prob-
abilitiesqare weakly continuous in (x, a) wherex∈Xand
a∈A(x). This implies that the MDP satisfies Assumption
(W∗) in [22]. The validity of (16) and statements (ii), (iii)
follows from [22, Theorem 2]. The uniqueness claim in (i)
follows from the contraction mapping principle; see Denardo
[8] for details.

To state Theorem 6, let

A∗(x):= a∈A(x) v(x)=c(x,a)

+
y∈X

q(y|x,a)v(y), x∈X,  (17)

wherevis the value function of the original undiscounted
total cost MDP.

THEOREM 6: Suppose the original undiscounted total-
cost MDP satisfies Assumption T and the Compactness
Conditions. Then:

(i) the value functionv=μ̃ṽβis the unique function
satisfying the optimality equation

v(x)=min
A(x)

⎡

⎣c(x,a)+
y∈X

q(y|x,a)v(y)

⎤

⎦,

x∈X, (18)

and such that

vV:=sup
x∈X

V(x)−1|v(x)|<∞;  (19)

(ii) there is a stationary total-cost optimal policy;
(iii) a policyφ∈Fis total-cost optimal if and only if

φ(x)∈A∗(x)for allx∈X, and

A∗(x)= a∈A(x)|̃ṽβ(x)=̃c(x,a)

+β̃

y∈̃X

p̃(y|x,a)̃ṽβ(y), x∈X;

(20)

in other words, the sets of optimal actions for the
original transient MDP and for the transformed dis-
counted MDP with transition probabilitiesp̃coin-
cide.
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PROOF: By Lemma 4, the transformed discounted MDP
satisfies the Compactness Conditions. Hence statements
(i–iii) of Proposition 5 hold for the transformed MDP.
Straightforward calculations show that the functionv=
μ̃ṽβsatisfies the optimality equation (18) if and only if the
functionvβ:=̃ṽβsatisfies the optimality equation (19) for

thẽβ-discounted MDP defined by the HV transformation. In
view of Proposition 1, vV <∞ if and only if the func-
tioñṽβis bounded. Lemma 4 and Propositions 3, 5 imply
statement (i).
According to Proposition 5(i), there is aφ∗ ∈Fthat

isβ̃-optimal for the transformed MDP. By Proposition 3,
vφ∗=μ̃v

φ∗
β̃
=μ̃ṽβ=v,soφ∗is total-cost optimal for the

original MDP. Therefore (ii) holds.
It follows from the definitions ofX̃,Ã,̃c,β̃, and̃pthat
(20) holds. Supposeφ∈Fis total-cost optimal for the origi-
nal MDP. Thenvφ=v, so sincevφ=cφ+Qφv

φit follows
thatφ(x)∈A∗(x)for allx∈X. Conversely, ifφ(x)∈A∗(x)
for allx∈X, then according to Proposition 5(iii) and (37) the
policyφis̃β-optimal for the transformed MDP. By Propo-
sition 3, this meansφis total-cost optimal for the original
MDP. Hence (iii) holds.

COROLLARY 7: Suppose Assumption T and the Com-
pactness Conditions hold. If an algorithm computes an opti-
mal policy for the discounted MDP defined by the HV
transformation, then this policy is optimal for the original
undiscounted total-cost MDP.

REMARK 4: The HV transformation also applies to arbi-
trary policies if the total costs are defined using the equivalent
formulation in terms of transition probabilities and state-
dependent discount factors; see Remark 1. Since stationary
policies are optimal within the class of all policies for dis-
counted MDPs with transition probabilities satisfying the
Compactness Conditions [17, p. 184], the stationary total-
cost optimal policies referred to in Theorem 6 are optimal
over nonstationary policies as well.

3.3.  Finite State and Action Sets

In this section, we assume that bothXandAare finite.
Recall from the paragraph after the statement of Assumption
T that, when the state and action sets are finite, Assumption
T is equivalent to the existence of a constantKsuch that

∞

n=0

Qnφe(x)≤K for allφ∈F,x∈X,  (21)

whereedenotes the function onXthat is identically equal
to one. Therefore, in this section we assume without loss of
generality that (21) holds.

Corollary 7 implies that an optimal policy for the origi-
nal transient MDP can be computed by solving the following
linear program (LP):

minimize

x∈̃Xa∈Ã(x)

c̃(x,a)̃zx,a

such that

a∈Ã(x)

z̃x,a−β̃

y∈̃Xa∈Ã(y)

p̃(x|y,a)̃zy,a=1,

x∈X̃,

z̃x,a≥0, x∈X̃,a∈Ã(x).  (22)

According to Scherrer [46, Theorem 3], the LP (22) can be
solved using

(m−n)
1

1−β̃
log

1

1−β̃
=O((m−n)KlogK) (23)

iterations of the block-pivoting simplex method correspond-
ing to Howard’s policy iteration algorithm. Alternatively, if
the simplex method with Dantzig’s rule is applied to the LP
(22), then according to [46, Theorem 4] at most

n(m−n) 1+
2

1−β̃
log

1

1−β̃
=O(n(m−n)KlogK)

(24)

iterations are needed to compute an optimal solution.
Letzx,a:=̃zx,a/μ(x)forx∈Xanda∈A(x). The LP

(22) for this discounted MDP can be written as

minimize
x∈Xa∈A(x)

c(x,a)zx,a

such that
a∈A(x)

zx,a−
y∈Xa∈A(y)

q(x|y,a)zy,a=μ(x)
−1,

x∈X,

zx,a≥0, x∈X,a∈A(x). (25)

This is true because of the following arguments that hold all
x∈Xand for alla∈A(x): (i) the objective functions for the
LPs (22) and (25) are equal becauseÃ(x)=A(x),c(x,a)=
μ(x)̃c(x,a),̃A(x̃)= {̃x}, and̃c(̃x,̃a)= 0, (ii) forx, the
equality constraints are equivalent in these LPs because
p̃(x|̃x,̃a)=0,q(y|x,a)=β̃p̃(y|x,a), wherey∈X, and
the inequality constraints are equivalent becauseμ(x) >0,
(iii) the equality and inequality constraints forx̃can be
excluded from the LP (22) because the former implies that

z̃̃x,̃a=(1−β̃)
−1
(1+β̃ y∈X a∈A(y)p̃(̃x|y,a)̃zy,a) >0

and, in view of (i) and (ii), the variablẽz̃x,̃adoes not appear
anywhere else in the LP (22).
Since a policy for this discounted MDP is optimal if and
only if it is optimal for the original discounted MDP defined
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by the HV transformation, Corollary 7 implies that an opti-
mal policy for the original transient MDP can be computed
by solving the LP (25). Since any optimal policy derived from
the LP (25) is still optimal if the right-hand sides of the equal-
ity constraints are replaced by arbitrary positive numbers (see
e.g., [33, Corollary 3, Remark 6]), it follows that an optimal
policy for the original transient MDP can be computed by
solving the LP

minimize
x∈Xa∈A(x)

c(x,a)zx,a

such that
a∈A(x)

zx,a−
y∈Xa∈A(y)

q(x|y,a)zy,a=1,

x∈X,

zx,a≥0, x∈X,a∈A(x).  (26)

This provides an alternative derivation of the LP (26) for tran-
sient MDPs provided in Denardo [9], where it is shown that
the LP (26) can be solved using at most(m−n)k∗itera-
tions of the block-pivoting simplex method corresponding to
Howard’s policy iteration algorithm, wherek∗is the small-
est integerkthat satisfies 1> K(1−(1/K))k[9, Theorem
2]. This implies that the required number of iterations is
O((m−n)KlogK), which matches the estimate (23) for
the LP (22) obtained using [46, Theorem 3]. IfK= 1, then
β̃= 0 and the problem can be solved by simply select-
ing, for eachx∈X, an action minimizingc(x, a) over
a∈A(x). Denardo [9] also showed that the LP (26) can
be solved using at most(m−n)j∗iterations of the simplex
method with Dantzig’s rule, wherej∗is the smallest integer
jthat satisfies 1>(eτ)(1−(1/eτ ))jandτis the function
defined in Remark 2. This implies that the simplex method
with Dantzig’s rule requires at most

O((m−n)(eτ )log(eτ )) (27)

iterations to solve the LP (26).

REMARK 5: Applying the simplex method with Dantzig’s
rule to (22) can be viewed as applying a certain pivoting rule to
the LP (26). In particular, given a non-optimal basic feasible
solution to (26) corresponding to the non-optimal stationary
policyφ, the variablezx,athat enters the basis under this
pivoting rule is the one minimizing

c̃(x,a)+β̃
y∈X

p̃(y|x,a)̃v
φ

β̃
(y)−v

φ

β̃
(x)

=
1

μ(x)

⎡

⎣c(x,a)+
y∈X

q(y|x,a)vφ(y)−vφ(x)

⎤

⎦,

(28)

where the expression in the square brackets on the right-hand
side of (28) is precisely the reduced cost, for the variable
zx,a, associated with the basis corresponding toφ. It follows
from (24) that this pivoting rule for the LP (26) considered
in Denardo [9] is strongly polynomial whenKis fixed. This
algorithm is not the same as applying Dantzig’s rule to the
LP (26), however; see Remark 8 below.

REMARK 6: To compare the estimates (24) and (27) for
the simplex method with Dantzig’s rule for LPs (22) and (26)
respectively, consider the functionsf(n,K):=nKlogK
andg(eτ):=eτlog(eτ ). Using these notations, the estimate
(24) is

O((m−n)f (n,K)), (29)

and the estimate (27) is

O((m−n)g(eτ )). (30)

IfKis fixed, then the estimate (29) is better than the estimate
(30). This is because, whenKfixed,f(n,K)=O(n)while
nK≥eτ≥n−1+Kimplies thatg(eτ)=O(nlogn).In
addition, ifτ≡K, then the estimate (29) is also better than
(30) becauseg(eτ)=nKlognK≥nKlogK=f(n,K).
On the other hand, for some particular values ofn, K, andτit
is possible thatf(n,K)>g(eτ). For example, consider the
MDP withn= 10 states and 1 action per state, where for states
1 through 9 the process stops after one transition, and for state
10 the process stops with probability 1/5 and continues with
probability 4/5. ThenK= 5 andeτ=9+5=14,which
impliesf(n,K)≥10·5·log(5)>14·log(14)=g(eτ).

REMARK 7: Consider Howard’s policy iteration algo-
rithm for the discounted MDP defined by the HV transfor-
mation, which according to [35, p. 68] is equivalent to a
block-pivoting simplex method for the LP (22). Givenφ∈F
and recalling that̃xis a cost-free absorbing state, an improved
policyφ+∈Fis constructed (when possible) as follows. For
eachx∈X,φ+(x)is taken to be any action belonging to

arg min
a∈A(x)

⎡

⎣̃c(x,a)+β̃
y∈X

p̃(y|x,a)̃v
φ

β̃
(y)

⎤

⎦.  (31)

It follows from the definitions of̃candp̃and Proposition 3
that for eachx∈X, the set (31) is equal to

arg min
a∈A(x)

⎡

⎣c(x,a)+
y∈X

q(y|x,a)vφ(y)

⎤

⎦.  (32)

Under Howard’s policy iteration algorithm for the original
transient MDP, which according to the arguments in [35,
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p. 68] and [33, pp. 55–56] is equivalent to a block-pivoting
simplex method for the LP (26), givenφ∈Fan improved
policyφ+is constructed (when possible) by taking, for each
x∈X,φ+(x)to be any action belonging to (32). Since for
eachx∈Xthe sets (31) and (32) are equal, it follows that
there is a one-to-one correspondence between sequences of
policies generated by Howard’s policy iteration algorithm for
the discounted MDP defined by the HV transformation, and
sequences of policies generated by Howard’s policy iteration
algorithm for the original transient MDP. Using Scherrer’s
[46, Theorem 3]O(mKlogK)iteration bound for Howard’s
policy iteration algorithm for discounted MDPs, we therefore
obtain the bound derived by Denardo [9, Theorem 2] for the
original transient MDP.

REMARK 8: According to Remark 7, starting with the
same basic variables, the sequences of basic variables for
implementations of block-pivoting simplex methods for the
LPs (22) and (26) coincide. This is not true for the simplex
method with Dantzig’s rule, however. To confirm this, con-
sider the following transient MDP. The set of states isX=
{1, 2}, and the sets of available actions areA(1)=A(2)=
{a,b}. The transition rates areq(1|1,a)=2/3,q(2|1,a)=
1/6,q(1|1,b) = q(2|1,b) = 1/3,q(1|2,a) = 2/3,
q(2|2,a)=1/6,q(1|2,b)=1/12, andq(2|2,b)=5/6.
Theone-step costs arec(1,a)= −0.91,c(1,b)= −0.56,
c(2,a)=−0.19, andc(2,b)=−0.8. One can verify that the
functionμdefined byμ(1)=8 andμ(2)=10 satisfies (5)
withV≡1. The total-cost LP given by (26) is

minimize −0.91z1,a−0.56z1,b−0.19z2,a−0.8z2,b

such that
1

3
z1,a+

2

3
z1,b−

2

3
z2,a−

1

12
z2,b=1

−
1

6
z1,a−

1

3
z1,b+

5

6
z2,a+

1

6
z2,b=1

z1,a,z1,b,z2,a,z2,b≥0, (33)

and, lettingK= 10, the LP (22) for the discounted MDP
defined by the HV transformation with discount factorβ̃=
(K−1)/K=9/10 is

minimize −0.11375̃z1,a−0.07̃z1,b−0.019̃z2,a−0.08̃z2,b

such that
1

3
z̃1,a+

2

3
z̃1,b−

8

15
z̃2,a−

1

15
z̃2,b=1

−
5

24
z̃1,a−

5

12
z̃1,b+

5

6
z̃2,a+

1

6
z̃2,b=1

z̃1,a,̃z1,b,̃z2,a,̃z2,b≥0, (34)

where, according to the remarks following (25), the variable
z̃̃x,̃ahas been removed. For both LPs, suppose the initial basic
feasible solution for the simplex method with Dantzig’s rule is
the one defined by the stationary policyφwithφ(1)=band

φ(2)=a; namely, for both LPs the basic variables are those
corresponding to the state-action pairs(1,b)and(2,a). Con-
sider the first iterations of the simplex method with Dantzig’s
rule for the LPs (33) and (34). For the LP (33), the basic vari-
ablez2,ais the unique variable to leave the basis, while for
the LP (34) the basic variablẽz1,bis the unique variable to
leave the basis.

REMARK 9: If (21) holds, it holds with the same upper
boundKif the transition ratesqare replaced with the transi-
tion ratesβq, whereβ∈(0, 1]. Hence the results in Denardo
[9, Theorems 1, 2] and the estimates (23), (24) above imply
that the number of arithmetic operations needed to compute
an optimal policy for a discounted MDP satisfying Assump-
tion T can be bounded by a polynomial inmthat does not
depend on the discount factorβ∈(0, 1]. In particular, these
bounds hold for all discount factorsβ∈(0, 1].Ifβ=0, the
discounted problem becomes a one-step problem, which is
equivalent to a problem withK=1; this case was discussed
in the paragraph preceding Remark 6.

REMARK 10: Forx∈X, letτ(x):=supφ∈F
∞
n=0Q

n
φ

e(x). ThenKτ:=maxx∈Xτ(x)is the smallest constantKsat-
isfying (21). The natural question is how to computeKτ. One
method to computeKτconsists in the following. First, com-
pute an optimal policyφ∗for a transient MDP that is identical
to the original MDP except that all one-step costs are equal
to –1. Then, compute the value functionvφ∗of this optimal
policy, and setKτ=maxx∈Xv

φ∗(x). As discussed in the para-
graph following (26), the policyφ∗can be computed using
O((m−n)KτlogKτ)iterations of Howard’s policy itera-
tion algorithm. Further, the functionvφ∗can be computed by
solving a system ofnlinear equations using Gaussian elimi-
nation inO(n3)arithmetic operations; for other methods see
for example [5, 48].

3.4.  Extension to Uncountable State Spaces

In this section, we assume that the state spaceXis a Borel
subset of a complete separable metric space, and that the
transition rates are defined by a Borel-measurable transition
kernelqonXgiven Gr(A):={(x,a):x∈X,a∈A(x)},
which we assume to be a Borel subset ofX×A. That is,
q(·|x,a)is a finite measure for every(x,a)∈Gr(A), and
q(B|·)is a Borel-measurable function on Gr(A)for every
Borel subsetBofX. In addition, the one-step cost function
c:Gr(A)→ Ris Borel-measurable.
The set of stationary policiesFis identified with the set
of all Borel-measurable functionsφ:X→ Asatisfying
φ(x)∈A(x)for allx∈X. To formulate a version of
Assumption T in this setting, forφ∈Fdefine the operator
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Qφfor Borel-measurable functionsu:X→ Rby

Qφu(x):=
X

u(y)q(dy|x,φ(x)), x∈X,  (35)

and given a Borel-measurable weight functionW :X→ R
and a Borel-measurable transition kernelB(·|·)onXgiven
X, let

B W :=sup
x∈X

W(x)−1

X

W(y)B(dy|x).

ASSUMPTION T:

(i) There is a Borel-measurable weight functionV :
X→[1,∞)and a constantK≥1 that satisfy

∞

n=0

Qnφ
V

≤K <∞ for allφ∈F.  (36)

(ii) Moreover, there is a constant̄c<∞satisfying

sup
a∈A(x)

|c(x,a)|≤ ̄cV (x) for allx∈X,

and for everyx∈Xthe mapping

a→
y∈X

V(y)q(y|x,a) <∞, a∈A(x),

is continuous onA(x).

To obtain a reduction to a discounted MDP, we consider the
following setwise-continuity and compactness conditions:

ASSUMPTION S:

(a) Statements (i) and (ii) of the Compactness Condi-
tions hold.

(b) For everyx∈X, if the sequence{an}inA(x) con-
verges toa∈A(x), then for every Borel subsetBof
Xthe sequence{q(B|x,an)}converges toq(B|x,a)

PROPOSITION 8: Suppose Assumption S holds. Then
Assumption T (i) holds if and only if there is a Borel-
measurable functionμ:X→[1,∞)satisfyingV(x)≤
μ(x)≤KV (x)and

μ(x)≥V(x)+
X

μ(y)q(dy|x,a), (x,a)∈Gr(A).

PROOF: This follows from the proof of Proposition 1, with
all sums replaced with integrals, and by applying the Brown
and Purves [4, Corollary 1] theorem on Borel-measurable
selection.

In this setting, the analogue of Lemma 2 holds as well.

LEMMA 9: Suppose Assumption S and statements (i) and
(iii) of Thold, and letμbe the Borel-measurable function
described in the statement of Proposition 8. Then for every
x∈Xthe mapping

a→
X

μ(y)q(dy|x,a), a∈A(x),

is continuous onA(x).

PROOF: This follows from the proof of Lemma 2, where
all sums are replaced with integrals.

3.4.1.  HV Transformation

LetB(X)denote the Borelσ-algebra ofX. The definition of
the HV transformation in the setting of a possibly uncountable
state space is identical to the definition presented in Section
3.1, except that the cost-free absorbing statex̃is taken to be
isolated from the original state spaceX, and the transition
probability kernelp̃is defined by

p̃(B|x,a):=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
β̃μ(x) Bμ(y)q(dy|x,a),

ifB∈B(X),(x,a)∈Gr(A),

1− 1
β̃μ(x) Xμ(y)q(dy|x,a),

ifB={̃x},(x,a)∈Gr(A),

1,  ifB={̃x},(x,a)=(̃x,̃a).

3.4.2.  Results

PROPOSITION 10: Suppose Assumptions S and Thold.
Thenvφ(x)=μ(x)̃v

φ

β̃
(x)for eachφ∈Fandx∈X.

PROOF: This follows from the proof of Proposition 3 by
defining forφ∈Fthe operatorP̃φapplied to integrable
Borel-measurable functionsu:X→ R,

P̃φu(x):=
X̃

u(y)̃p(dy|x,φ(x)), x∈X.

LEMMA 11: Suppose Assumptions S and Thold. Then
the discounted MDP defined by the HV transformation also
satisfies Assumption S.

PROOF: This follows from the proof of Lemma 4, Lemma
9, and the fact that the added cost-free absorbing statex̃is
isolated fromX.

The special case of Theorem 12 below forV≡1was
proved by Pliska [38, Theorem 1.3]. To state Theorem 12,
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forβ∈(0, 1)andx∈X, define the setsA∗β(x)andA
∗(x)

by replacing the sums in (15) and (17), respectively, with
integrals.

THEOREM 12: Suppose the original undiscounted total-
cost MDP satisfies Assumptions S and T. Then:

(i) the value functionv= μ̃ṽβis the unique Borel-
measurable function satisfying the optimality equa-
tion

v(x)=min
A(x)

c(x,a)+
X

v(y)q(dy|x,a),

x∈X,

and such that

sup
x∈X

V(x)−1|v(x)|<∞;

(ii) there is a stationary total-cost optimal policy;
(iii) a policyφ∈Fis total-cost optimal if and only if

φ(x)∈A∗(x)for allx∈X, and

A∗(x)= a∈A(x) ṽ̃β(x)=̃c(x,a)

+β̃
X

ṽ̃β(y)̃p(dy|x,a), x∈X;

(37)

in other words, the sets of optimal actions for the
original transient MDP and for the transformed dis-
counted MDP with transition probabilitiesp̃coin-
cide.

PROOF: This follows from the proof of Theorem 6, where
instead of [22] one can use [45, Proposition 2.1].

4.  AVERAGE COSTS PER UNIT TIME

In Section 4.1, we provide a slight modification of the
transformation introduced by Akian and Gaubert [1]. Since
it can be viewed as an extension of the HV transforma-
tion described in Section 3.1, we refer to the transformation
given in Section 4.1 as theHV-AGtransformation. Like the
HV transformation, the HV-AG transformation produces a
discounted MDP with transition probabilities. According to
Theorem 16 in Section 4.2, for an average-cost MDP with
transition probabilitiesqsatisfying Assumption HT and the
Compactness Conditions given in Section 3.2, the HV-AG
transformation reduces the original problem to a discounted
one. The finite state and action case is considered in Section
4.3. The Borel-state case is treated in Section 4.4.

4.1.  HV-AG Transformation

Suppose Assumption HT holds. According to Proposition
1, there is a functionμ:X→[1,∞)that satisfiesμ≤K∗

and

μ(x)≥1+
y∈X\{}

q(y|x,a)μ(y), x∈X,a∈A(x).

(38)

Objects associated with the discounted MDP will be indi-
cated by a horizontal bar. The state space isX:=X∪{̄x},
wherex̄/∈Xis a cost-free absorbing state. Lettinḡadenote
the only action available at statex̄, the action space is
A:=A∪{̄a}and forx∈Xthe set of available actions
is unchanged ifx∈X, namely

Ā(x):=
A(x), ifx∈X,

{̄a}, ifx=̄x.

Define the one-step costsc̄by

c̄(x,a):=
μ(x)−1c(x,a), ifx∈X,a∈A(x),

0, if(x,a)=(̄x,̄a).

To complete the definition of the discounted MDP, choose a
discount factor

β∈
K∗−1

K∗
,1,

and let

p̄(y|x,a):=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
βμ(x)
q(y|x,a)μ(y),

y∈X\{},x∈X,a∈A(x),
1

βμ(x)
[μ(x)−1− y∈X\{}q(y|x,a)μ(y)],

y= ,x∈X,a∈A(x)

1− 1
βμ(x)
[μ(x)−1],

y=̄x,x∈X,a∈A(x)

1, y=̄x,(x,a)=(̄x,̄a).

Sinceμsatisfies (5),p̄(·|x,a)is a probability distribution
onXfor eachx∈Xanda∈Ā(x). In addition, the defini-
tion of̄Aimplies that the sets of policies for the transformed
MDP and the original MDP coincide. Letv̄

φ

β
(x)denote the

β-discounted cost incurred when the initial state of the trans-
formed MDP isx∈Xand the policyφis used, and let
v̄β(x):=infφ∈Fv̄β(x)forx∈X.

REMARK 11: While the HV-AG transformation applies
to transition rates in general, the major results in Section 4.2
pertain to the case when these rates are probabilities.
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REMARK 12: Akian and Gaubert [1] prove their results
by transforming a perfect-information mean-payoff stochas-
tic game into a discounted game with state-dependent dis-
count factors. The version of their transformation presented
above uses techniques from [18] to directly obtain a problem
with a single discount factor.

REMARK 13: Ross [39, 40] considered MDPs with tran-
sition probabilitiesqsatisfying the special case of Assump-
tion HT where there is a constantαsuch that

q(|x,a)≥α>0 for allx∈X,a∈A(x),

and introduced a transformation of the transition probabili-
ties that can be used to reduce the average-cost MDP to a
discounted one. In fact, Ross’s [39, 40] transformation can
be viewed as a special case of the HV-AG transformation.
Namely, takingμ≡K=1/α, the resulting transition prob-
abilities are the same in both cases and the one-step costs
differ by a factor ofα.

REMARK 14: The HV-AG transformation does not apply
to the version of Assumption HT with the norm · being
replaced with ·V, whenVis unbounded. In particular,

p̄(̄x|x,a)≥0 implies thatμ(x)≤(1−β)
−1
.

4.2.  Results

The proofs of Proposition 14 and Theorem 16 below rely
on the following lemma.

LEMMA 13: If a bounded functionf:X→ Rsatisfies
f(̄x)=0, then for allx∈Xanda∈A(x)

c̄(x,a)+β

y∈X

p̄(y|x,a)f (y)

=
1

μ(x)
c(x,a)+

y∈X

q(y|x,a)μ(y)[f(y)−f ()]

+[μ(x)−1]f (). (39)

PROOF: According to the definition ofc̄,β, andp̄in
Section 4.1, forx∈Xanda∈A(x)

c̄(x,a)+β

y∈X

p̄(y|x,a)f (y)

=
c(x,a)

μ(x)
+
1

μ(x)
y∈X\{}

q(y|x,a)μ(y)f (y)

+
1

μ(x)

⎡

⎣μ(x)−1−
X\{}

q(y|x,a)μ(y)

⎤

⎦f ()

=
1

μ(x)
c(x,a)+

y∈X

q(y|x,a)μ(y)[f(y)−f ()]

+[μ(x)−1]f ().

Givenφ∈F, the following proposition relates the average
costs incurred in the original MDP with the discounted costs
incurred in the MDP constructed using the HV-AG transfor-
mation. Recall thatqisstochasticif y∈Xq(y|x,a)=1 for
allx∈Xanda∈A(x).

PROPOSITION 14: Suppose Assumption HT holds. Let
φ∈Fbe a stationary policy andhφ(x):=μ(x)[̄v

φ

β
(x)−

v̄
φ

β
()]forx∈X. Then

v̄
φ

β
()+hφ(x)=c(x,φ(x))+

y∈X

q(y|x,φ(x))hφ(y),

x∈X. (40)

In addition, if the transition ratesqare stochastic, then
wφ≡̄v

φ

β
().

PROOF: Since the statex̄in the discounted MDP defined
by the HV-AG transformation is cost-free and absorbing, (40)
follows from the fact that

v̄
φ

β
(x)=̄c(x,φ(x))+β

y∈X

p̄(y|x,φ(x))̄v
φ

β
(y), x∈X,

and Lemma 13. Iterating (40) gives

Nv̄
φ

β
()+hφ(x)=

N−1

n=0

Qnφcφ(x)+Q
N
φh
φ(x),

x∈X,N=1, 2,....  (41)

Sincecis bounded, the functionhφis bounded as well. The
equalitywφ≡̄v

φ

β
()then follows by dividing both sides of

(41) byNand lettingN→ ∞.

LEMMA 15: Suppose Assumption HT and the Compact-
ness Conditions hold. Then the discounted MDP defined by
the HV-AG transformation also satisfies the Compactness
Conditions.

PROOF: Assumptions (i–ii) of the Compactness Condi-
tions imply that the setsĀ(x)are compact and̄cis bounded
and is lower semicontinuous ina. Assumption (iii) of the
Compactness Conditions and Lemma 2 imply thatp̄(y|x,a)
is continuous ina∈A(x)for allx∈Xandy∈X\{}.
Assumption (iii), for state , and assumption (iv) of the Com-
pactness Conditions imply thatp̄(|x,a)is continuous in
a∈A(x)for allx∈X.

Naval Research Logistics DOI 10.1002/nav



14 Naval Research Logistics, Vol. 00 (2017)

Forx∈X, and a constantwand functionh:X→ Rsat-
isfying the average-cost optimality equation (43) given in the
statement of Theorem 16 below, consider the sets of actions

A∗av(x):= a∈A(x)|w+h(x)=c(x,a)

+
y∈X

q(y|x,a)h(y), x∈X.  (42)

Theorem 16 also follows from Federgruen and Tijms [16,
Theorems 2.1, 2.2], where other recurrence conditions are
considered as well.

THEOREM 16: Suppose the original MDP with transition
probabilitiesqsatisfies Assumption HT and the Compactness
Conditions. Then:

(i) the constantw= v̄β()and the functionh(x)=
μ(x)[̄vβ(x)−̄vβ()],x∈X, satisfy the optimality
equation

w+h(x)=min
A(x)

⎡

⎣c(x,a)+
y∈X

q(y|x,a)h(y)

⎤

⎦,

x∈X, (43)

and̄vβ()is the optimal average cost for each initial
state.

(ii) there is aφ∈Fsatisfyingφ(x)∈A∗av(x)for all
x∈X, where

A∗av(x)= a∈A(x)|̄vβ(x)=̄c(x,a)

+β

y∈X

p̄(y|x,a)̄vβ(y), x∈X,

(44)

and any such policy is average-cost optimal.

PROOF: Lemma 15 implies that statements (i–iii) of
Proposition 5 hold for the transformed MDP. In particular,
there is a stationaryβ-optimal policyφfor the transformed
MDP, which satisfiesφ(x)∈A∗

β
(x)for allx∈X.

The validity of (43) follows from applying Lemma 13 to
the optimality equation for theβ-discounted MDP defined by
the HV-AG transformation. Further, Proposition 14 implies
that the optimal average cost for each state is̄vβ(), so (i)
holds.
Lemma 13 implies that (44) holds, from which the exis-
tence of aφ∈Fsatisfyingφ(x)∈A∗av(x)for allx∈X
follows. Moreover, since the functionhis bounded,

lim
N→∞

1

N
Eφxh(xN)=0 for allx∈X.

It therefore follows from for example [27, Theorem 5.2.4]
that anyφ∈Fsatisfyingφ(x)∈A∗av(x)for allx∈Xis
average-cost optimal.

COROLLARY 17: Suppose Assumption HT and the
Compactness Conditions hold. If an algorithm computes an
optimal policy for the discounted MDP defined by the HV-
AG transformation, then this policy is optimal for the original
average-cost MDP.

REMARK 15: The average-cost optimal policy referred to
in Theorem 16 is in fact optimal over all randomized history-
dependent policies; see for example, Hernández-Lerma and
Lasserre [27, Theorem 5.2.4].

REMARK 16: Stationary average-cost optimal policies
exist under much more general conditions than the ones
considered in Theorem 16. In particular, the Compactness
Conditions and Assumption HT imply Conditions (S) and
(B) in Schäl [45], as well as Assumptions (W∗) and (B) in
Feinberg et al. [22].

REMARK 17: Under the hypotheses of Theorem 16, the
average-cost optimality equation (43) has a unique bounded
solution up to an additive constant; see [6, Lemma 3.3]. This is
because Assumption HT is a special case of the more general
weighted geometric ergodicity condition considered in [6];
see [7] for relationships between this condition and various
other ergodicity and recurrence assumptions.

4.3.  Finite State and Action Sets

In this section, we assume that bothXandAare finite.
Recall from the paragraph after Remark 3 that, when the
state and action sets are finite, Assumption HT is equivalent
to the existence of a constantK∗such that

∞

n=0

Qnφe(x)≤K
∗ for allφ∈F,x∈X,  (45)

whereedenotes the function onXthat is identically equal
to one. Therefore, in this section we assume without loss of
generality that (45) holds.
For a finite state and action MDP with transition probabil-
itiesqthat satisfy Assumption HT, Corollary 17 implies that
a stationary average-cost optimal policy can be computed by
solving the LP

minimize

x∈Xa∈Ā(x)

c̄(x,a)̄zx,a

such that

a∈Ā(x)

z̄x,a−β

y∈Xa∈Ā(y)

p̄(x|y,a)̄zy,a=1,

x∈X,

z̄x,a≥0, x∈X,a∈Ā(x).  (46)
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Recall thatm= x∈X|A(x)|andn=|X|.IfK
∗>1, it

follows from Scherrer [46, Theorem 3] that the LP (46) can
be solved using

(m−n)
1

1−β
log

1

1−β
=O((m−n)K∗logK∗)

iterations of the block-pivoting simplex method correspond-
ing to Howard’s policy iteration algorithm. In addition, it
follows from Scherrer [46, Theorem 4] that the LP (46) can
alternatively be solved using

n(m−n) 1+
2

1−β
log

1

1−β

=O(n(m−n)K∗logK∗) (47)

iterations of the simplex method with Dantzig’s rule. Observe
thatK∗=1 means that the state is absorbing under each
stationary policy, and a stationary policyφis average-cost
optimal if and only ifc(,φ())=min{c(,a):a∈A()}.

REMARK 18: According to [1, Proposition 12], there is
a one-to-one correspondence between sequences of policies
generated by Howard’s policy iteration algorithm for the dis-
counted MDP defined by the HV-AG transformation, and
sequences of policies generated by Howard’s policy itera-
tion algorithm for the original unichain average-cost MDP.
In particular, under Howard’s policy iteration algorithm for
the discounted MDP, an improved policyφ+is constructed
(when possible) by taking, for eachx∈X,φ+(x)to be any
action belonging to

argmin
a∈A(x)

⎡

⎣̄c(x,a)+β
y∈X

p̄(y|x,a)̄v
φ

β
(y)

⎤

⎦.  (48)

Under Howard’s policy iteration algorithm for unichain
average-cost MDPs, givenφ∈Fan improved policyφ+

is constructed by first obtaining a constantgand a function
hthat satisfy the system of equations

g+h(x)=c(x,φ(x))+
y∈X

q(y|x,φ(x))h(y), x∈X,

(49)

and then, for everyx∈X, takingφ+(x)to be any action
belonging to

argmin
a∈A(x)

⎡

⎣c(x,a)+
y∈X

q(y|x,a)h(y)

⎤

⎦.  (50)

Lethφ(x):=μ(x) v̄
φ

β
(x)−̄v

φ

β
()forx∈X. According

to Proposition 14, the constant̄v
φ

β
()and the functionhφsat-

isfy (49). Further, the definitions of̄candp̄and Lemma 13

imply that for eachx∈Xthe set (50) is equal to the set (48).
This implies that Howard’s policy iteration algorithm for the
discounted MDP defined in Section 4.1 is equivalent to a
particular version of Howard’s policy iteration algorithm for
the original unichain average-cost MDP. Since both of these
policy iteration algorithms correspond to block-pivoting sim-
plex methods (see [35, pp. 68, 122], it follows from Scherrer
[46, Theorem 3] that, when there is a state that is recurrent
under all stationary policies, the well-known LP for unichain
average-cost MDPs, see for example [[35], LP 4.6.7],

minimize
x∈Xa∈A(x)

c(x,a)zx,a

a∈A(x)

zx,a−
y∈Xa∈A(y)

q(x|y,a)zy,a=0,

x∈X,

y∈Xa∈A(y)

zy,a=1, x∈X,

zx,a≥0, x∈X,a∈A(x),  (51)

can be solved usingO((m−n)K∗logK∗)iterations of a
block-pivoting simplex method.

REMARK 19: Forx∈X, letτ(x):=supφ∈F
∞
n=0Q

n
φ

e(x). ThenK :=maxx∈Xτ(x)is the smallest constantK
∗

satisfying (45). The iteration estimate for Howard’s policy
iteration algorithm for average-cost MDPs satisfying (45)
that follows from Akian and Gaubert [1, Corollary 15] is
O((m−n)KlogK). One method to computeK consists of
the following. First, compute an optimal policyφ∗for a tran-
sient MDP that is identical to the original MDP, except that
stateis removed and all one-step costs are equal to –1. Then,
compute the value functionvφ∗of this optimal policy, set

vφ∗():=max
a∈A(x)

⎡

⎣1+
y=

q(y|,a)vφ∗(y)

⎤

⎦,

and setK =maxx∈Xv
φ∗(x). According to Denardo [9, The-

orem 2], the policyφ∗can be computed usingO((m−
n)KlogK)iterations of Howard’s policy iteration algo-
rithm. Further, the functionvφ∗can be computed by solving
a system ofn– 1 linear equations, using Gaussian elimina-
tion inO(n3)arithmetic operations; for other methods see
for example [5, 48].

REMARK 20: Applying the simplex method with Dantzig’s
rule to the LP (46) can be viewed as applying a certain
pivoting rule to the LP (51). In particular, forφ∈Flet
hφ(x):=μ(x)[̄v

φ

β
(x)−̄v

φ

β
()]forx∈X. Given a non-

optimal basic feasible solution to (51) corresponding to the
non-optimal stationary policyφ, it follows from Lemma 13
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and Proposition 14 that the variablezx,athat enters the basis
under this pivoting rule is the one minimizing

c̄(x,a)+β
y∈X

p̄(y|x,a)̄v
φ

β
(y)−̄v

φ

β
(x)

=
1

μ(x)

⎡

⎣c(x,a)+
y∈X

q(y|x,a)hφ(y)−wφ−hφ(x)

⎤

⎦,

(52)

and the variable that leaves the basis iszxφ(x). According to
(47), this pivoting rule for the LP (51), that is typically used
to solve unichain average-cost MDPs, is strongly polynomial
whenK∗is fixed. This algorithm is not the same as applying
Dantzig’s rule to the LP (51), however; see Remark 21.

REMARK 21: Since an MDP satisfying Assumption HT
is unichain, an optimal policy under the average-cost crite-
rion can be computed by solving the LP (51); see for example
[35, LP 4.6.7]. As follows from Remark 18, under Assump-
tion HT, starting with the same basic variables, the sequences
of basic variables for implementations of block-pivoting sim-
plex methods for the LPs (46) and (51) coincide. However,
this is not true for the simplex method with Dantzig’s rule.
To confirm this, let us consider the following example. The
set of states isX={1, 2}and the sets of available actions
areA(1)=A(2)={a,b}. The transition probabilities form
stochastic vectors given byp(1|1,a)=1/2,p(1|1,b)=0,
p(1|2,a)=1/3, andp(1|2,b)=1/2. The one-step costs
arec(1,a)=c(1,b)=1 andc(2,a)=c(2,b)=2. Let-
ting =1, one can verify that the functionμdefined by
μ(1)=10 andμ(2)=3 satisfies (38) withV≡1. The
average-cost LP given by the LP (51) is

minimize z1,a+z1,b+2z2,a+2z2,b

such that
1

2
z1,a+z1,b−

1

3
z2,a−

1

2
z2,b=0

−
1

2
z1,a−z1,b+

1

3
z2,a+

1

2
z2,b=0

z1,a+z1,b+z2,a+z2,b=1

z1,a,z1,b,z2,a,z2,b≥0, (53)

and the LP (46) for the discounted MDP defined by the
HV-AG transformation is

minimize
1

10
z1,a+

1

10
z1,b+

1

3
z2,a+

1

3
z2,b

such that
1

4
z1,a+

2

5
z1,b−

1

6
z2,b=1

−
3

20
z1,a−

3

10
z1,b+

1

3
z2,a+

1

2
z2,b=1

z1,a,z1,b,z2,a,z2,b≥0. (54)

For both LPs, suppose the initial basic feasible solution for
the simplex method with Dantzig’s rule is the one defined
by the stationary policyφwhereφ(1)=bandφ(2)=a;
namely, the basic variables arez1,bandz2,a. Consider the first
iteration of this simplex method. For the LP (53), the basic
variablez1,bis the unique variable to leave the basis, while
for the LP (54) the basic variablez2,ais the unique variable
to leave the basis.

REMARK 22: Consider an LP withnconstraints andm
variables, where the positive elements of every basic feasible
solution are bounded below byδand bounded above byγ.
By generalizing the analysis in Ye [55] for discounted MDPs,
it is proved in Kitahara and Mizuno [36, Theorem 3] that the
simplex method with Dantzig’s rule requires at most

O nm
γ

δ
log
γ

δ

iterations to return an optimal solution. For the LP (46),

δ= 1 andγ=(1−β̃)
−1
=K∗satisfy the hypotheses of

this result. Therefore, it follows from [36, Theorem 3] that
an average-cost optimal policy can be computed in strongly
polynomial time whenK∗is fixed, by applying the simplex
method with Dantzig’s rule to the LP (46). However, [36,
Theorem 3] does not imply an analogous statement for the
LP (51) for unichain average-cost MDPs. This is because,
for such MDPs, every basic feasible solution of (51) is the
vector of state-action frequencies under some stationary pol-
icy [35, Remark 4.7.4]. Even for MDPs satisfying Assump-
tion HT with a fixedK∗, these frequencies can decrease
exponentially with the number of states. To verify this, for
n=2, 3,...consider an MDP with state setX:={1,...,n},
a single action 0 available at every state, transition proba-
bilitiesp(1|1, 0)=p(n|i,0)=p(i|i+1, 0):=1/2 for
i=1,...,n−1, and arbitrary real-valued one-step costs.
Observe that forn=1, 2,..., this MDP satisfies Assump-
tion HT with =nandK∗=2. In addition, the unique
feasible solution to (51) for this MDP is

z1,0=
1

2

n−1

, zi,0=
1

2

n−i+1

,  fori=2,...,n.

Thus, there is noδ>0 such thatz1,0≥δfor alln=2, 3,....

4.4.  Extension to Uncountable State Spaces

Forφ∈F, letQφbe defined for an integrable Borel-
measurableu:X→ Ras

Qφu(x):=
X\{}

u(y)q(dy|x,φ(x)), x∈X.
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The version of Assumption HT that we consider when the
state space is possibly uncountable is as follows:

ASSUMPTION HT:

(i) There is a state ∈Xand a constantK∗satisfying

∞

n=0

Qnφ ≤K
∗<∞ for allφ∈F.  (55)

(ii) The one-step cost functioncis bounded.

4.4.1.  HV-AG Transformation

Suppose Assumption HTholds. According to Proposition
8, there is a Borel-measurable functionμ:X→[1,∞)that
satisfiesμ≤K∗and

μ(x)≥1+
X\{}

μ(y)q(dy|x,a), (x,a)∈Gr(A).

(56)

Here the HV-AG transformation is defined exactly as
described in Section 4.1, except that the cost-free absorb-
ing statēxis taken to be isolated fromX, and the transition
probabilitiesp̄are defined by

p̄(B|x,a):=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
βμ(x) Bμ(y)q(dy|x,a),

B∈B(X\{}),(x,a)∈Gr(A),
1

βμ(x)
[μ(x)−1− X\{}μ(y)q(dy|x,a)],

B={},(x,a)∈Gr(A),

1− 1
βμ(x)
[μ(x)−1],

B={̄x},(x,a)∈Gr(A),

1, B={̄x},(x,a)=(̄x,̄a).

4.4.2.  Results

LEMMA 18: If a bounded Borel functionf:X→ R
satisfiesf(̄x)=0, then for anyx∈Xanda∈A(x)

c̄(x,a)+β
X

f(y)̄p(dy|x,a)

=
1

μ(x)
c(x,a)+

X

μ(y)[f(y)−f ()]q(dy|x,a)

+[μ(x)−1]f (). (57)

PROOF: This follows from the proof of Lemma 13, with
all sums replaced with integrals.

PROPOSITION 19: Suppose Assumption HTholds. Let
φ∈Fbe a stationary policy andhφ(x):=μ(x)[̄v

φ

β
(x)−

v̄
φ

β
()]forx∈X. Then

v̄
φ

β
()+hφ(x)=c(x,φ(x))+

X

hφ(y)q(dy|x,φ(x)),

x∈X. (58)

In addition, if the transition rates q are stochastic, then
wφ≡̄v

φ

β
().

PROOF: This follows from the proof of Proposition 14,
where sums are replaced with integrals in the appropriate
places.

LEMMA 20: Suppose Assumptions S and HThold. Then
the discounted MDP defined by the HV-AG transformation
also satisfies Assumption S.

PROOF: This follows from Lemma 9 and the proof of
Lemma 15.

To state the main result in this section, forx∈Xdefine
A∗av(x)by replacing the sum in (42) with an integral.

THEOREM 21: Suppose the original MDP with transition
probabilitiesqsatisfies Assumptions S and HT. Then:

(i) the constantw= v̄β()and the functionh(x)=
μ(x)[̄vβ(x)−̄vβ()],x∈X, satisfy the optimality
equation

w+h(x)=min
A(x)

c(x,a)+
X

h(y)q(dy|x,a),

x∈X, (59)

and̄vβ()is the optimal average cost for each initial
state.

(ii) there is aφ∈Fsatisfyingφ(x)∈A∗av(x)for all
x∈X, where

A∗av(x)= a∈A(x)|̄vβ(x)=̄c(x,a)

+β
X

v̄β(y)̄p(dy|x,a), x∈X,

(60)

and any such policy is average-cost optimal.

PROOF: This follows from the proof of Theorem 16,
where sums are replaced with integrals in the appropriate
places.
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