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Abstract: This article provides conditions under which total-cost and average-cost Markov decision processes (MDPs) can be
reduced to discounted ones. Results are given for transient total-cost MDPs with transition rates whose values may be greater than
one, as well as for average-cost MDPs with transition probabilities satisfying the condition that there is a state such that the expected
time to reach it is uniformly bounded for all initial states and stationary policies. In particular, these reductions imply sufficient
conditions for the validity of optimality equations and the existence of stationary optimal policies for MDPs with undiscounted total
cost and average-cost criteria. When the state and action sets are finite, these reductions lead to linear programming formulations

and complexity estimates for MDPs under the aforementioned criteria. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 00:

000-000, 2017
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1. INTRODUCTION

This article deals with the reduction of undiscounted total-
cost and average-cost Markov decision processes (MDPs) to
discounted MDPs. For undiscounted total costs, we consider
a weighted-norm version of the fransient case introduced by
Veinott [52] in the context of finite state and action sets and
by Pliska [38] in the context of Borel state and action spaces.
A feature of such MDPs is that nonnegative transition rates,
which may not be transition probabilities, are considered.
One of the applications of such models is to the control of
branching processes; see for example, Rothblum and Veinott
[42] and Pliska [38]. Otherreferences for branching processes
and other models with transition rates greater than one are
given in Section 2.1. Absorbing MDPs, which were intro-
duced by Hordijk [32] and studied in the constrained setting
by Altman [2] and Feinberg and Rothblum [23], can also be
viewed as transient MDPs.

It is well-known that discounted MDPs can be reduced to
absorbing or transient MDPs (see e.g., [2, p. 137]). Theorem
6 in this article provides conditions under which the converse
is also true. In particular, the reduction comes from a version
of the similarity transformation considered by Veinott [52],
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which is attributed there to Alan Hoffman. This reduction
relates the value function and optimality equation of the
original transient model with those of the corresponding dis-
counted model. It implies the existence of stationary optimal
policies for transient models if certain natural conditions
hold. It also implies that the sets of optimal actions for these
two models coincide. In the case of finite state and action sets,
the reduction shows that complexity estimates for Howard’s
[34] policy iteration algorithm for discounted MDPs imply
corresponding estimates for transient MDPs. Ye [55] proved
that Howard’s policy iteration algorithm, which corresponds
to a block-pivoting simplex method, and the simplex method
with Dantzig’s rule compute optimal policies for discounted
MDPs with a fixed discount factor in strongly polynomial
time. The complexity estimates from [55] were improved in
Hansen et al. [26] and further improved in Scherrer [46]. Ye
[55] and Denardo [9] also obtained complexity estimates for
transient MDPs. In Section 3.3, Denardo’s [9] estimate for
Howard’s policy iteration algorithm, which corresponds to a
block-pivoting simplex method, is derived from Scherrer’s
[46] estimate by using the reduction of a transient MDP to
a discounted one. We remark that, unlike Howard’s policy
iteration algorithm, any member of a broad class of modified
policy iteration algorithms, which includes value iteration, is
not strongly polynomial for discounted MDPs with a fixed
discount factor [20, 21].
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On the other hand, the discounted-cost criterion plays an
important role in the theory of average-cost MDPs. Many
results have been proved using the so-called “vanishing dis-
count factor” approach, where discounted total costs with
discount factor tending to one are used to obtain a station-
ary average-cost optimal policy via an optimality inequality
or equation; see for example, Sennott [47, Chapter 7], Schil
[45], Herndndez-Lerma and Lasserre [27, Chapter 5], and
Feinberg et al. [22].

A direct reduction of average-cost MDPs to discounted
ones, which yields sufficient conditions for the existence of
stationary average-cost optimal policies, was established by
Ross [39, 40] for MDPs with Borel state space, finite action
sets, bounded costs, and a state to which the process will
transition from any state under any action with probabil-
ity at least @ > 0. This reduction and Ye’s [55] results
were used by Feinberg and Huang [19] to obtain iteration
bounds for average-cost policy iterations. Gubenko and Stat-
land [25] showed that a reduction is also possible for MDPs
with Borel state space, bounded costs, and compact action
sets, if a “minorization™ condition, which generalizes Ross’s
[40] assumption, is satisfied; see also Dynkin and Yushkevich
[12, Chapter 7, §10].

More recently, Akian and Gaubert [1] used methods from
non-linear Perron—Frobenius theory to reduce a perfect-
information zero-sum stochastic game with finite state and
action sets, containing a state being recurrent under every
pair of stationary strategies, to a discounted game with state-
dependent discount factors. In this article, we provide a
slightly modified version of their transformation for the case
of MDPs with possibly infinite state and action spaces. This
reformulation makes the connection between their transfor-
mation and the work of Ross [39, 40] and Veinott and Hoff-
man [52] more apparent. In the context of MDPs with transi-
tion probabilities, this transformation yields a reduction of a
finite state and action average-cost problem with a state recur-
rent under every stationary policy to a discounted MDP. The
transformation also allows one to write the optimality equa-
tion, prove the existence of stationary optimal policies, and,
in the case of finite state and action sets, formulate an alter-
native linear program for such average-cost problems. This
program is based on the linear program formulation for the
discounted MDP, to which the original problem is reduced.
Therefore, an average-cost problem can be solved in strongly
polynomial time with complexity estimates similar to those
in Scherrer [46]. In addition, Howard’s policy iterations
for the obtained discounted MDPs coincide with Howard’s
policy iterations for the initial average-cost unichain MDP.
Therefore, Scherrer’s [46] results on discounted MDPs imply
that Howard’s policy iteration algorithm for the average-cost
problem computes an optimal policy in strongly polynomial
time with the complexity estimates similar to the estimates
in [46]. This also implies that, if there exists a state recurrent
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under all stationary policies, the block-pivoting simplex
method for the linear programming problem for average-cost
MDPs, is also strongly polynomial with the same complexity
estimates.

Previously, Zadorojniy et al. [56] showed that, if every
state is recurrent under every stationary policy and an MDP
satisfies a coupling property introduced there, then both dis-
counted and average-cost optimal policies can be computed
in strongly polynomial time. This is proved in [56] by intro-
ducing an algorithm that, as was shown by Even and Zadoro-
jniy [14], is equivalent to applying the Gass—Saaty pivoting
rule to the appropriate LP formulation for an MDP. As is
shown in [56], the aforementioned coupling property holds
for discrete-time versions of M/M/1 queues.

The model and the optimality criteria considered in this
article are described in Section 2. In Section 3, we formulate
the Hoffman-Veinott (HV) transformation [52], and give con-
ditions under which it leads to the reduction of the original
transient total-cost MDP to a discounted MDP with transi-
tion probabilities. Finally, in Section 4 we consider a version
of Akian and Gaubert’s [1] transformation for average-cost
MDPs and the associated reduction to discounted MDPs.
Most of the paper deals with countable-state MDPs. Sections
3.3 and 4.3 deal with finite-state problems, while Sections
3.4 and 4.4 study MDPs with Borel state spaces.

2. MODEL DESCRIPTION

Consider a discrete-time MDP with state space X and
action space A. Most of this article, except Sections 3.4 and
4.4, deals with countable-state MDPs. We start by introducing
a countable-state MDP. Let X be countable and A be a Borel
subset of a complete separable metric space. Foreach x € X,
the set of available actions A(x) is anonempty Borel subset of
A. The one-step cost function c(x, a) is (Borel-)measurable in
a € A(x) for each x € X. The transition rates q(y|x,a) > 0
are measurable in a € A(x) for each x, y € X and satisfy

sup Zq(yix,a) xeX,acAx)y <oco. (1)
yek

2.1. Remarks on Transition Rates Whose Sum May Be
Greater than One

The case where ), . g(y|x,a) is possibly greater than
one for some state-action pairs has been studied under vari-
ous names. In Rothblum and Veinott [42] and in Rothblum
and Whittle [43], such models are called branching Markov
decision chains. They have also been referred to as Markov
population decision chains in [13, 54]. As is explained in
Remark 1 below, such models can be viewed as Markov
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decision processes with transition probabilities and a state-
action-dependent discount factor that is possibly greater than
one. The case of a constant discount factor, which is possibly
greater than one is studied in Hinderer and Waldmann [31].

Such models are applicable in a diverse array of con-
texts. For example, Markov decision models with transition
rates with values possibly greater than one appear in multi-
armed bandit problems with risk-seeking utility functions;
see Denardo et al. [10, 11]. In addition, their relevance to
the control of multitype branching processes, which can be
used to model problems in infinite particle systems, market-
ing, and population genetics, is explained in Pliska [37, 38].
Other relevant application areas are described in Eaves and
Veinott [13].

REMARK 1: Equivalently to considering transition rates
q(-|x,a), one can consider transition probabilities p(-|x,a)
and a discount function & : X x A — [0,00). In par-
ticular, given an MDP in the latter form, let g(-|x,a) =
a(x,a)p(-|x,a) for x € X, a € A(x); conversely, given
transition rates g(-|x.a), let a(x,a) = ¢(X|x,a) and
pClx,a) = q(|x,a)/q(X]|x,a) for x € X, a € A(x).
Expected total costs for arbitrary policies can be defined in a
standard way via the Ionescu Tulcea Theorem (seee.g., [3, pp.
140-141]) by interpreting o (x, a) as a state-action dependent
discount factor, and p as a transition probability. The exist-
ing literature on total-cost MDPs with transition rates having
values possibly greater than one deals only with Markov poli-
cies; see forexample [13, 37, 38, 43]. This remark overcomes
this limitation. However, for transient total-cost models this
remark and the reduction to a discounted MDP with transition
probabilities and a discount factor less than one (Section 3.2)
imply the optimality of stationary policies over all random-
ized history-dependent ones. Therefore, we mostly consider
only stationary policies in this article. We remark that, when
(1) holds, it is also possible to transform the original total-
cost problem to a discounted one with a constant discount
factor possibly greater than one; see [30, Remark 5].

2.2. Optimality Criteria

A stationary policy is a mapping ¢ : X — A satisfying
¢(x) € A(x) for each x € X; let F denote the set of all
such policies. It can be shown that it suffices to consider such
policies for the optimality criteria considered in this article;
see Remarks 4 and 15. Under ¢ < F, the decision-maker
always selects the action ¢ (x) when the current state is x. For
¢ € T, consider the matrix of one-step transition rates Qg
with elements g (y|x, ¢(x)), x,y € X. Also, given a weight
function W : X — [1,c00) and a matrix B with elements
B(x, y),x,y € X, let

|Blw := supW )" > 1B, )W ().
xe yeX

If Wix)=1 for all x € X, then ||Bllw = |B| =
SUp, ¢ 2 vex | B(x, y)|. If the function W is bounded from
above and below by a finite constant C, then

IBllw < ClIB]|- 2

In particular, if X is a finite set, then (2) holds with C =
maxex W(x).

For undiscounted total costs, which are considered in
Section 3, the following generalization of the transience con-
dition studied in Veinott [52] and Pliska [38] is assumed to
hold.

ASSUMPTION T:
(i) The MDP is transient, that is, there is a weight func-

tion V : X — [I,00) and a constant K > 1 that
satisfy

<K <oo forallgp €F. (3)
v

o0

n
>
n=0
(ii) There is a constant ¢ < oo satisfying

sup |e(x,a)| <=cV(x) forallx eX. (4)
acA(x)

(iii) For every x € X the mapping

ar> ) qUlx.a)V(y) <oo, acA®),
yeX

is continuous on A(x).

For V = 1, a number of conditions sufficient for or
equivalent to (3) are provided in Pliska [38]. If the state
and action sets are finite, then Assumption T is equivalent
to the assumption that there exists a constant K such that
Il Z:'":O Q;|[ < K < oo. For finite state and action sets,
Assumption T can be checked in strongly polynomial time
using the procedure described in [53, proof of Theorem 1],
where it is attributed to Eric Denardo; see also [9, Lemma 10].

For ¢ € T, let c43(x) := c(x,¢(x)) for x € X. Under
Assumption T, the fofal cost incurred under ¢ € F, when the
initial state is x € X, is

v?(x) == ) Qfes(x).

n=0

A policy ¢, is total-cost optimal if v¥ (x) = infycpv? (x) =:
v(x) forall x € X.

The following characterization of Assumption T will be
used to define the transformations described in Sections 3.1
and 4.1 for total-cost MDPs.

Naval Research Logistics DOI 10.1002/nav
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PROPOSITION 1: Assumption T(i) holds if and only if
there is a function u : X — [1, co) suchthat V(x) < u(x) <
KV (x) forall x € X and

p(x) = V) + Y qUlk.a)u(y), xeX, aecA®).
yeX

(&)

PROOF: Suppose there is a function  : X — [1, co) that
satisfies V(x) < u(x) < KV(x) for all x € X and (5).
Consider an arbitrary ¢ € F. According to (5),

px) = V) + Y q0lx,¢(x))u(y) forallx eX,
yeX

which, since u is nonnegative and majorized by KV, implies
thatfor N =1,2,...

N-1
KV() =) 0V + 0 u)
n=0
N—1
> Q4V(x) forallx € X.
n=0

Hence

N—1
K>V 'l ny for all X. (6
> V() Ngnwggq,, (@) forallx eX. (6)

Since ¢ € [ is arbitrary, it follows from (6) that Assumption
T holds.

Conversely, suppose Assumption T holds and consider the
operator I{ defined for functions u : X — [0, 00) by

Huley s | V) 1 ] ablnaibl | zeX.

yeX
Let ug := V,and forn = 1,2,... let u, = Uu,_,. Note
that the positivity of V implies V < u, < u,4; for all n.
Furthermore, letting g := lim,_, u,, Lebesgue’s monot-
one convergence theorem implies that p = U . Hence to
complete a proof, it suffices to show that u, < KV for all n.
Note that uyp = V < KV because K > 1. Next, suppose
u, < KV for some nonnegative integer n, and consider an
arbitrary € > 0. Let ¢ be a stationary policy satisfying

Vx) + Y a(lx, ¢ ()un(y)

yeX

>Uu,(x) —e(KV (@)™, xeX
Define g ;= u,. For N = 1,2,... let
N—1 .
in() =) Oy V) + Qfun(x), xeX. ()
i=0
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Since 0 < u, < KV, it follows that 0 < Q}u, < KQJ.V
for all N, which according to Assumption T implies that
leun — 0 as N — oo. Hence it follows from (7) and
Assumption T that

Jim iy() <) QyV() <KV(x) forallxeX.

i=0
(8)
Next, we claim that
N-1
Un(x) = tpp1(x) — e(KV(x))_' Z Q;G Vix)
i=0
forallx e X, N = 1. (9)

Observe that (8) and (9) together with Assumption T imply
KV(x) > u, (x) —e forallx e X.

Since € > 0 is arbitrary, this implies by induction that
u, < KV for all n, from which the Proposition follows.
To verify that (9) holds, first observe that for all x € X,

i1 (x) = V(x) + Qgettn(x) > Unn(x) — (K V(x))™
= up1(x) —€(KV(x) ™.

Next, suppose iy = uny1 —€(K vyt Z:\:}' Q;s V for some

N > 1. Then, since u,.; > up,, it follows that for x € X

un4+1(x) = V(x) + Qgeitn (x)
N-1

> V(x) + Qgettna (x) —e(KVE) ™' Y 04 Vx)

i=0

N
> V(@) + Qpeutn(x) — KV ()™ Y 04 V(x)

i=1

N
> U (x) — e(KVE) ™ =RV Y 04 V()
i=1
(N+1)-1 )
= tp1 (1) — €KV D Qg V(). O

i=0

LEMMA 2: Suppose statements (i) and (iii) of Assump-
tion T hold, and let p be the function described in the
statement of Proposition 1. Further, suppose that for every
x,y € X the mappings a > g(y|x,a) and a > g(X|x,a)
are continuous on A(x). Then for every x € X the mapping

ar ) qOlx.ap®), acAx),
yeX

is continuous on A(x).
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PROOF: Fix x € X, and let {a,} be any sequence in A(x)
converging to some a € A(x). Under the hypotheses of the
lemma, the sequence of measures {q(-|x,a,)} converges set-
wise to g(-|x, a); for a definition of setwise convergence of
measures, see for example [44, p. 269]. Since 0 < p(x) <
KV (x) for all x € X, and Zyexq(ﬂx,a)‘/(y) < 09, it fol-
lows from the dominated convergence theorem for setwise
converging measures (see e.g., [44, Proposition 18]) that

nliﬁgozg(ylx,an)n(y) = Zq(ylx,a),u.(y). O

yeX yek

REMARK 2:For ¢ € F and x € X, let t%(x) =
Y e Qje(x) and t(x) := sup,_r?(x). Then it follows
from [28, Proposition 9.6.4] that 7(x) < KV(x) for all
x € X. When the transition rates g are substochastic, that
is, Z)_Exq(ybc,a) < 1forallx € Xand a € A(x) (if
equality holds for all x and a, then g is called stochastic),
the quantity %(x) can be interpreted as the expected total
lifetime of the process under the policy ¢ when x is the initial
state.

For average costs, which are dealt with in Section 4,
Assumption HT on hitting times formulated below is assumed
to hold. To state it, for z € X and ¢ < F consider the matrix
Q¢ with elements

Q {x y) - Q(y|1:¢(x)), ifx EX, y #z,
A | fxeX, y=z
ASSUMPTION HT:

(i) There is a state £ € X and a constant K* satisfying

> 0

n=>0

<K*<oo forall¢ eF. (10)

(ii) The one-step cost function c is bounded.

REMARK 3: Observe that Assumptions T and HT are
related. If an MDP satisfies Assumption HT then, if state £
and all transition rates to it are removed, the truncated MDP is
transient with V' = 1. In particular, when the transition rates
are substochastic or the sets X and A(£) are finite, Assump-
tion HT for the initial MDP and Assumption T with V = 1
for the MDP with the state £ removed are equivalent. For the
substochastic case, K* < K+1, where X is the constant from
Assumption T for the truncated MDP. This is true because the
truncated MDP does not contain the state £, whereas K * is an
upper bound on the mean recurrence time for all the states of
the original MDP, including the state £, under any stationary

policy.

When g is substochastic, Assumption HT means that when
the initial state is x, the expected hitting time to state £ under
any stationary policy is bounded above by K *. When the state
and action sets are finite, Assumption HT is equivalent to state
£ being recurrent under all stationary policies. According to
Feinberg and Yang [24], Assumption HT can be checked
in strongly polynomial time. We remark that any MDP sat-
isfying Assumption HT is unichain, and that in general the
problem of checking whether an MDP is unichain is NP-hard
[50]. In addition, Assumption HT is related to many other
recurrence conditions that have been used to study average-
cost MDPs; see for example, the surveys by Federgruen et al.
[15], Thomas [49], and Herndndez-Lerma et al. [29].

For the initial state x € X, the average cost incurred under
¢ cFis

N—1
1

¢ ¥ n

w¥(x) ;= limsu E ca(x).

A policy ¢, is average-cost optimal if w#(x) =
infgerw? (x) =: w(x) forall x € X.

According to Rothblum [41], a stationary policy ¢ is called
normalized if 3 ;- , B" Q; converges for all 8 € (0,1). If
Assumption T holds or the transition rates g are substochas-
tic, then any stationary policy is normalized. Given 8 € [0, 1)
and an initial state x € X, the B-discounted cost incurred
under a normalized policy ¢ € F is

vh(x) =) B"Qhcs(x).

n=0

A policy ¢, is B-optimal if v}’ (x) = infyepv (x) =: vp(x)
forall x € X.

In this article, transformations to discounted MDPs with
stochastic transition rates are considered. Discounted MDPs
with nonstochastic transition rates are mentioned only
in Remark 9, where complexity estimates for discounted
MDPs with transition rates satisfying Assumption T are
provided.

3. UNDISCOUNTED TOTAL COSTS

The transformation of the original transient MDP to a
discounted one, which we call the Hoffiman-Veinott (HV)
transformation, is given in Section 3.1. Under the hypothe-
ses of Theorem 6 in Section 3.2, a stationary optimal policy
exists for the transformed discounted MDP, and the sets of
optimal policies for the transformed and original MDPs coin-
cide. The finite state and action case is considered in Section
3.3. The Borel-state case is treated in Section 3.4.

Naval Research Logistics DOI 10.1002/nav
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3.1. HYV Transformation

Let Assumption T hold. By Proposition 1, there is a non-
negative function p on X that satisfies V < p < KV and
(5). Objects associated with the discounted MDP will be indi-
cated by a tilde. The state space is X :=Xu {x},wherex ¢ X
is a cost-free absorbing state. Letting a denote the only action
available at state ¥, the action space is A := A U {a} and for
x € X the set of available actions is unchanged if x € X,
namely

e {A:(x), ifx € X,

{a}, ifx=x.

Define the one-step costs ¢ as

80r.0) = p@x)'e(x,a), ifxeX acA@),
o, if (x,a) = (%, a).

To complete the definition of the discounted MDP, choose a

discount factor
5 K—1 {
E ? ]
K

and let

1

T 0% an ),
o .é_ulljx} Z_\«‘EX g(ylx,a)u(y),
].fy:j., X € X, ac A(I),

p(ylx,a) =

1 ify=x=Xx,a=a.

(11)

Note that p( |x,a) is a probability distribution on X for
eachx € Xanda € A(x) Also, since A(x) is a single-
ton the sets of policies for these two models coincide. Let
v (x) denote the B-discounted cost incurred under the pol-

1cy ¢ when the 1mnal state of this MDP is x € X, and let
vﬁ (zx) = 1nf¢e]pv (x) forx € X.

3.1.1. Relation to Veinott’s positive similarity
transformation

Veinott’s [52] positive similarity transformation is defined
for transient MDPs with finite state and action sets as follows.
Given a diagonal matrix B with positive diagonal entries, let

ép:=Bcy and Py:=BQ4B~', ¢¢cF.
According to Veinott [52], properties that are invariant under

this transformation include the transience of a policy, the opti-
mality of a policy, and the geometric convergence of value

Naval Research Logistics DOI 10.1002/nav

ifx,yeX, acA(x),

iteration to the unique fixed point of the optimality operator.
Further, letting x be the unique vector satisfying

nix) = r?arﬂl + Qsp(x)], xeX, (12)

and letting ,u,(x)_] be the nonzero entry on the x-th row of B,
it follows from [52, Lemma 3] that if the spectral radii of the
matrices Q4 are all less than one, then the row sums of the
matrices P, are all less than one; Veinott attributes this result
to Alan Hoffman. The first line of (11) is an implementation
of Veinott’s similarity transformation that is applicable to all
policies. Transformations of the form ,u,(x)_'q(yix, a)u(y)
have also been used in the literature to reduce MDPs with
unbounded one-step costs to MDPs with bounded one-step
costs; see for example [51, p. 101].

3.2. Results

Given ¢ € F, the following proposition relates the
total costs incurred in the original undiscounted MDP with
those incurred in the discounted MDP defined by the HV
transformation.

PROPOSITION 3: Suppose statements (i) and (ii) of
Assumption T hold. Then the one-step cost function ¢ is
bounded and v?(x) = _u.(x)vqb(x) foreach ¢ € Fand x € X.

PROOF: Consider the matrix 13¢, with elements f’¢ (x,y) ==
p(ylx,¢(x)), x,y € X. Then

ﬁ:‘;(x) = z_:nﬁ"ﬁge¢(x), xeX (13)

Since the state x is cost-free and absorbing, it follows from
the definitions of P, and ¢, that

px)"' Qhey(x) forallx e X, n>0.
14

B"P}iy(x) =

Observe that, since p majorizes V, according to (4) the map-
ping x > u(x}_1c¢ (x) is bounded. Hence, combining (13)
and (14), forx e X

750 = p(x)” Z_jo Qyep(x) = p(x) ™ v ().

Proposition 1 and Assumption T(ii) imply that |c(x,a)| <
cforallx e Xanda € A(x). O

The optimality results in this section and Section 4.2 rely
on the following compactness-continuity conditions.
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Compactness Conditions (cf. [17, p. 181]).

(i) A(x) is compact for each x € X;
(ii) c(x, a) is lower semicontinuous in a € A(x) for each
x € X;
(iii) the transition rates q(y|x,a) are continuous in a €
A(x) foreachx,y € X;
(iv) thetransition rates q(X|x,a) := Z_‘,Ex q(y|x,a)are
continuous in a € A(x) for each x € X

Observe that, if the state set is finite, then assumption (iii) of
the Compactness Conditions implies assumption (iv). Also,
if the transition rates are stochastic, that is, g(X|x,a) = 1
forall x € X and @ € A(x), then assumption (iv) of the
Compactness Conditions always holds.

LEMMA 4: Suppose Assumption T and the Compact-
ness Conditions hold. Then the discounted MDP defined
by the HV transformation also satisfies the Compactness
Conditions.

PROOF: Assumptions (i—ii) of the Compactness Condi-
tions imply that the sets A(x) are compact and ¢ is bounded
and is lower semicontinuous in a. In addition, assumption
(iii) of the Compactness Conditions and Lemma 2 imply
that p(y|x,a) is continuous in a € A(x) for all x,y € X,
and assumption (iv) implies that p(x|x,a) is continuous in
a € A(x) for all x € X. Since p is also stochastic, it follows
that the Compactness Conditions hold for the transformed
MDP. O

The main result (Theorem 6) of this section relies on the
following proposition. To state it, for 8 € [0, 1) define

AE(x) = Ia € A(x) |vg(x) = c(x,a)

+ﬁZq(yix,a)uﬁ(y>], xeX. (1)

yeik

PROPOSITION 5 (cf. [17, pp. 181, 184]): Ifan MDP with
transition probabilities g and bounded one-step costs ¢ satis-
fies the Compactness Conditions, then for any discount factor

B e[0,1):

(i) the value function vg is the unique bounded function
satisfying the optimality equation

vp(x) = min | e(x,a) +B Y a0l () |

yeik

xeX; (16)

(ii) there is a stationary S-optimal policy;
(iii) a policy ¢ < I is B-optimal if and only if ¢(x) €
AE(’x) for all x € X.

PROOF: The Compactness Conditions imply that, if X is
endowed with the discrete topology, then the transition prob-
abilities g are weakly continuous in (x, @) where x € X and
a € A(x). This implies that the MDP satisfies Assumption
(W *) in [22]. The validity of (16) and statements (ii), (iii)
follows from [22, Theorem 2]. The uniqueness claim in (i)
follows from the contraction mapping principle; see Denardo
[8] for details. O

To state Theorem 6, let

v(x) = c(x,a)

A*(x) = Ia e A(x)

+ Zq(ylx,a)v(y)], xeX, (7

yek

where v is the value function of the original undiscounted
total cost MDP.

THEOREM 6: Suppose the original undiscounted total-
cost MDP satisfies Assumption T and the Compactness
Conditions. Then:

(i) the value function v = ,ufrg is the unique function
satisfying the optimality equation

v(x) = min c(x,a)+yezxq(ylx,a)v<y) :

xecX, (18)
and such that

lvlly == supV (@) ~'fo(x)| <003  (19)
1eX
(ii) there is a stationary total-cost optimal policy;
(iii) a policy ¢ < F is total-cost optimal if and only if
¢(x) € A*(x) forall x € X, and

A*(x) = Ia € A(x) | 95(x) = é(x,a)

+B8Y ﬁ(ylx,a)ﬁg(y)], xeX;
yeX
(20)

in other words, the sets of optimal actions for the
original transient MDP and for the transformed dis-
counted MDP with transition probabilities p coin-
cide.
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PROOF: By Lemma 4, the transformed discounted MDP
satisfies the Compactness Conditions. Hence statements
(i—iii) of Proposition 5 hold for the transformed MDP.

Straightforward calculations show that the function v =
,uﬁg satisfies the optimality equation (18) if and only if the
function v := v satisfies the optimality equation (19) for
the B-discounted MDP defined by the HV transformation. In
view of Proposition 1, ||v]ly < oo if and only if the func-
tion vz is bounded. Lemma 4 and Propositions 3, 5 imply
statement (i).

According to Proposition 5(i), there is a ¢, € F that
is ﬁ-optima] for the transformed MDP. By Proposition 3,
vt = ,uﬁ?“ = ,uf.rg = v, SO ¢, is total-cost optimal for the
original MDP. Therefore (ii) holds.

It follows from the definitions of f&, A, ¢, B', and p that
(20) holds. Suppose ¢ < F is total-cost optimal for the origi-
nal MDP. Then v# = v, so since v? = ¢, + Qyv? it follows
that¢ (x) € A*(x) forall x € X. Conversely,if¢(x) € A*(x)
forall x € X, then according to Proposition 5(iii) and (37) the
policy ¢ is fv-optimal for the transformed MDP. By Propo-
sition 3, this means ¢ is total-cost optimal for the original
MDP. Hence (iii) holds. 15

COROLLARY 7: Suppose Assumption T and the Com-
pactness Conditions hold. If an algorithm computes an opti-
mal policy for the discounted MDP defined by the HV
transformation, then this policy is optimal for the original
undiscounted total-cost MDP.

REMARK 4: The HV transformation also applies to arbi-
trary policies if the total costs are defined using the equivalent
formulation in terms of transition probabilities and state-
dependent discount factors; see Remark 1. Since stationary
policies are optimal within the class of all policies for dis-
counted MDPs with transition probabilities satisfying the
Compactness Conditions [17, p. 184], the stationary total-
cost optimal policies referred to in Theorem 6 are optimal
over nonstationary policies as well.

3.3. Finite State and Action Sets

In this section, we assume that both X and A are finite.
Recall from the paragraph after the statement of Assumption
T that, when the state and action sets are finite, Assumption
T is equivalent to the existence of a constant K such that

Y Qlex) <K forallpeF,xeX, (21
n=0

where e denotes the function on X that is identically equal
to one. Therefore, in this section we assume without loss of
generality that (21) holds.
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Corollary 7 implies that an optimal policy for the origi-
nal transient MDP can be computed by solving the following
linear program (LP):

minimize Z Z €(x,a)Zxa

xeX acA(x)
such that Z Zxa— B Z Z P(x|y,@)zya =1,
acA(x) yeX acA(y)
xeX,
Za>0, xeX acA). (22)

According to Scherrer [46, Theorem 3], the LP (22) can be
solved using

(m —n) [1 iﬁ.log 1 _51 = 0((m —n)KlogK) (23)

iterations of the block-pivoting simplex method correspond-
ing to Howard’s policy iteration algorithm. Alternatively, if
the simplex method with Dantzig’s rule is applied to the LP
(22), then according to [46, Theorem 4] at most

2
n(m —n) (1 + — log

- l_g)z()(n(m—n)KlogK)

24

iterations are needed to compute an optimal solution.
Let 2y 4 i= Zya/pu(x) for x € X and a € A(x). The LP
(22) for this discounted MDP can be written as

minimize Z Z cix; a)Zx,a

xeX acA(x)

such that Z T Z Z q(x|y,a)zys = p(x)7",
aeA(x) yeX acA(y)
x e X,
Z:a >0, xeX aeAQ). (25)

This is true because of the following arguments that hold all
x € Xandforalla € A(x) : (i) the objective functions for the
LPs (22) and (25) are equal because ﬁ(x) = A(x),c(x,a) =
p(x)é(x,a),A(X) = {x}, and &(x,a) = O, (ii) for x, the
equality constraints are equivalent in these LPs because
p(x|%.a) = 0.9(ylx,a) = Bp(ylx,a), where y € X, and
the inequality constraints are equivalent because p(x) > 0,
(iii) the equality and inequality constraints for X can be
excluded from the LP (22) because the former implies that
Zg,a = (1 = .ﬁ) 1(1 + y8 Z}'EX ZaEA(}'} ﬁ(iiy’a)EYﬂ) >0
and, in view of (i) and (ii), the variable Z; ; does not appear
anywhere else in the LP (22).

Since a policy for this discounted MDP is optimal if and
only if it is optimal for the original discounted MDP defined
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by the HV transformation, Corollary 7 implies that an opti-
mal policy for the original transient MDP can be computed
by solving the LP (25). Since any optimal policy derived from
the LP (25) is still optimal if the right-hand sides of the equal-
ity constraints are replaced by arbitrary positive numbers (see
e.g., [33, Corollary 3, Remark 6]), it follows that an optimal
policy for the original transient MDP can be computed by
solving the LP

minimize Y )" e(x,a)zr4

xeX acA(x)
such that Z T —Z Z q(x|y,a)zy. =1,
acA(x) yeX acA(y)
xeX,
Zxa >0, xeX aecA®X). (26)

This provides an alternative derivation of the LP (26) for tran-
sient MDPs provided in Denardo [9], where it is shown that
the LP (26) can be solved using at most (m — n)k* itera-
tions of the block-pivoting simplex method corresponding to
Howard’s policy iteration algorithm, where k* is the small-
est integer k that satisfies 1 > K (1 — (l,z‘K))'t [9. Theorem
2]. This implies that the required number of iterations is
O((m — n)K log K), which matches the estimate (23) for
the LP (22) obtained using [46, Theorem 3]. If K =1, then
£ = 0 and the problem can be solved by simply select-
ing, for each x € X, an action minimizing c(x, a) over
a € A(x). Denardo [9] also showed that the LP (26) can
be solved using at most (m — n)j* iterations of the simplex
method with Dantzig’s rule, where j* is the smallest integer
J that satisfies 1 > (et)(1 — (l,z‘e'r))j and t is the function
defined in Remark 2. This implies that the simplex method
with Dantzig’s rule requires at most

O((m —n)(et)log(er)) 27)
iterations to solve the LP (26).

REMARK 5: Applying the simplex method with Dantzig’s
rule to (22) can be viewed as applying a certain pivoting rule to
the LP (26). In particular, given a non-optimal basic feasible
solution to (26) corresponding to the non-optimal stationary
policy ¢, the variable z,, that enters the basis under this
pivoting rule is the one minimizing

&,a)+B Y pOIx.a) () — i)

yeX

c(x,a) +)_qlx,a)v? () —v?(x)

yek

e
(28)

where the expression in the square brackets on the right-hand
side of (28) is precisely the reduced cost, for the variable
Zx.a, associated with the basis corresponding to ¢. It follows
from (24) that this pivoting rule for the LP (26) considered
in Denardo [9] is strongly polynomial when K is fixed. This
algorithm is not the same as applying Dantzig’s rule to the
LP (26), however; see Remark 8 below.

REMARK 6: To compare the estimates (24) and (27) for
the simplex method with Dantzig’s rule for LPs (22) and (26)
respectively, consider the functions f(n, K) := nKlogK
and g(et) := et log(et). Using these notations, the estimate
(24) is

O((m —n) f(n, K)), (29)
and the estimate (27) is
O((m —n)g(en)). (30)

If X is fixed, then the estimate (29) is better than the estimate
(30). This is because, when KX fixed, f(n, K) = O(n) while
nK > et > n — 1+ K implies that g(et) = O(nlogn). In
addition, if r = K, then the estimate (29) is also better than
(30) because g(et) = nK lognK > nKlogK = f(n,K).
On the other hand, for some particular values of n, K, and it
is possible that f(n, K) > g(et). For example, consider the
MDP with n = 10 states and 1 action per state, where for states
1 through 9 the process stops after one transition, and for state
10 the process stops with probability 1/5 and continues with
probability 4/5. Then K =5 and et = 9 + 5 = 14, which
implies f(n,K) = 10-5 -log(5) > 14 - log(14) = g(et).

REMARK 7: Consider Howard’s policy iteration algo-
rithm for the discounted MDP defined by the HV transfor-
mation, which according to [35, p. 68] is equivalent to a
block-pivoting simplex method for the LP (22). Given¢ € F
and recalling that x is a cost-free absorbing state, an improved
policy ¢ € F is constructed (when possible) as follows. For
each x € X, ¢ (x) is taken to be any action belonging to

arg min | &(x,a) + B pOIx.a)T50) [ BD

aeA(x) ye X

It follows from the definitions of ¢ and p and Proposition 3
that for each x € X, the set (31) is equal to

arg min | ¢(x,a) + Z Q(J’|I,G)U¢ o |- (32)

asA(x) veX

Under Howard’s policy iteration algorithm for the original
transient MDP, which according to the arguments in [35,

Naval Research Logistics DOI 10.1002/nav



10 Naval Research Logistics, Vol. 00 (2017)

p- 68] and [33, pp. 55-56] is equivalent to a block-pivoting
simplex method for the LP (26), given ¢ € F an improved
policy ¢™ is constructed (when possible) by taking, for each
x € X, ¢+ (x) to be any action belonging to (32). Since for
each x € X the sets (31) and (32) are equal, it follows that
there is a one-to-one correspondence between sequences of
policies generated by Howard’s policy iteration algorithm for
the discounted MDP defined by the HV transformation, and
sequences of policies generated by Howard’s policy iteration
algorithm for the original transient MDP. Using Scherrer’s
[46, Theorem 3] O (mK log K) iteration bound for Howard’s
policy iteration algorithm for discounted MDPs, we therefore
obtain the bound derived by Denardo [9, Theorem 2] for the
original transient MDP.

REMARK 8: According to Remark 7, starting with the
same basic variables, the sequences of basic variables for
implementations of block-pivoting simplex methods for the
LPs (22) and (26) coincide. This is not true for the simplex
method with Dantzig’s rule, however. To confirm this, con-
sider the following transient MDP. The set of states is X =
{1,2}, and the sets of available actions are A(1) = A(2) =
{a, b}. The transition rates are g(1]|1,a) = 2/3, q(2|1,a) =
1/6, q(111,b) = qQ2[1.b) = 1/3, q(112,a) = 2/3,
q(2[2,a) = 1/6, g(1|2,b) = 1/12, and g(2]|2,b) = 5/6.
The one-step costs are c(1,a) = —0.91, ¢(1,b) = —0.56,
¢(2,a) = —0.19,and ¢(2, b) = —0.8. One can verify that the
function p defined by (1) = 8 and p(2) = 10 satisfies (5)
with V = 1. The total-cost LP given by (26) is

minimize = 0.91Z]‘a = 0.562].5, =— 0-1922,,-3 = 0.82'2,!,
such that lZI a T EZI b — 222,;; == lZZb =1
e E A 3 1272
1 1 5 1
= EZ]p — EZI,b -+ gZZ_,a + gZz,b =1
Zl,as 210> 22.a: 226 = 0, (33)

and, letting K =10, the LP (22) for the discounted MDP
defined by the HV transformation with discount factor g =
(K—-1)/K =9/10is

minimize — 0.11375z,, — 0.07Z; — 0.019z5, — 0.08Z3

1 2 8 1
such that =z —Z1p— —Zog— —Zop =1
3Z1,a -+ 3ZI.b lsz:z,a lszz.b
Se S 8a Lo
patle T b T s T gty =
Z1,as 2105 2245226 = 0, (34)

where, according to the remarks following (25), the variable
Zz a has been removed. For both LPs, suppose the initial basic
feasible solution for the simplex method with Dantzig’s rule is
the one defined by the stationary policy ¢ with ¢ (1) = b and
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¢ (2) = a; namely, for both LPs the basic variables are those
corresponding to the state-action pairs (1, b) and (2, a). Con-
sider the first iterations of the simplex method with Dantzig’s
rule for the LPs (33) and (34). For the LP (33), the basic vari-
able z,, is the unique variable to leave the basis, while for
the LP (34) the basic variable Z;; is the unique variable to
leave the basis.

REMARK 9: If (21) holds, it holds with the same upper
bound X if the transition rates g are replaced with the transi-
tion rates Bq, where B < (0, 1]. Hence the results in Denardo
[9, Theorems 1, 2] and the estimates (23), (24) above imply
that the number of arithmetic operations needed to compute
an optimal policy for a discounted MDP satisfying Assump-
tion T can be bounded by a polynomial in m that does not
depend on the discount factor # € (0, 1]. In particular, these
bounds hold for all discount factors 8 € (0, 1]. If 8 = 0, the
discounted problem becomes a one-step problem, which is
equivalent to a problem with K = 1; this case was discussed
in the paragraph preceding Remark 6.

REMARK 10: For x € X, let 7(x) = supys Y .0y 0
e(x). Then K; := max,xt (x) is the smallest constant K sat-
isfying (21). The natural question is how to compute K. One
method to compute K, consists in the following. First, com-
pute an optimal policy ¢, for a transient MDP that is identical
to the original MDP except that all one-step costs are equal
to —1. Then, compute the value function v% of this optimal
policy, and set K; = max,x v® (x). As discussed in the para-
graph following (26), the policy ¢, can be computed using
O((m — n)K.log K;) iterations of Howard’s policy itera-
tion algorithm. Further, the function v#+ can be computed by
solving a system of n linear equations using Gaussian elimi-
nation in O (n°) arithmetic operations; for other methods see
for example [5, 48].

3.4. Extension to Uncountable State Spaces

In this section, we assume that the state space X is a Borel
subset of a complete separable metric space, and that the
transition rates are defined by a Borel-measurable transition
kernel g on X given Gr(A) = {(x,a) :x € X, a € A(x)},
which we assume to be a Borel subset of X x A. That is,
g(-|x,a) is a finite measure for every (x,a) € Gr(A), and
g(B|-) is a Borel-measurable function on Gr(A) for every
Borel subset B of X. In addition, the one-step cost function
c : Gr(A) — R is Borel-measurable.

The set of stationary policies I is identified with the set
of all Borel-measurable functions ¢ : X — A satisfying
¢(x) € A(x) for all x € X. To formulate a version of
Assumption T in this setting, for ¢ € [ define the operator



Feinberg and Huang: Reduction of Total-Cost and Average-Cost MDPs 11

Qg for Borel-measurable functions u : X — R by

Qpu(x) i= fx uqdylr o), xeX,  (35)

and given a Borel-measurable weight function W : X — R
and a Borel-measurable transition kernel B(-|-) on X given
X, let

1Bllw = supW ()" f W (y)B(dy|x).
xeX X

ASSUMPTION T":

(i) There is a Borel-measurable weight function V :
X — [1,00) and a constant K > 1 that satisfy

oo

> %

n=0

<K <oo forallgp €¢F. (36)
v

(ii) Moreover, there is a constant ¢ < oo satisfying

sup |e(x,a)| <=cV(x) forallx e X,
acA(x)

and for every x € X the mapping
ar> f V(»q(ylx,a) < oo, acA),
yeX

is continuous on A(x).

To obtain a reduction to a discounted MDP, we consider the
following setwise-continuity and compactness conditions:

ASSUMPTION S:

(a) Statements (i) and (ii) of the Compactness Condi-
tions hold.

(b) For every x € X, if the sequence {a,} in A(x) con-
verges to a € A(x), then for every Borel subset B of
X the sequence {g(B|x,a,)} converges to g(B|x,a)

PROPOSITION 8: Suppose Assumption S holds. Then
Assumption T ’ (i) holds if and only if there is a Borel-
measurable function p : X — [1,00) satisfying V(x) <
pn(x) < KV(x) and

n(x) = V(x) + f n(y)g(dylx,a), (x,a) e Gr(A).
X

PROOF: This follows from the proof of Proposition 1, with
all sums replaced with integrals, and by applying the Brown
and Purves [4, Corollary 1] theorem on Borel-measurable
selection. O

In this setting, the analogue of Lemma 2 holds as well.

LEMMA 9: Suppose Assumption S and statements (i) and
(iii) of T’ hold, and let x be the Borel-measurable function
described in the statement of Proposition 8. Then for every
x € X the mapping

ar fx,u(y)q(dylx,a), a € A(x),

is continuous on A(x).

PROQOF: This follows from the proof of Lemma 2, where
all sums are replaced with integrals. O

3.4.1. HV Transformation

Let B(X) denote the Borel o -algebra of X. The definition of
the HV transformation in the setting of a possibly uncountable
state space is identical to the definition presented in Section
3.1, except that the cost-free absorbing state x is taken to be
isolated from the original state space X, and the transition
probability kernel p is defined by

Jrii,uLl(x) fB r(y)q(dy|x,a),
if B € B(X), (x,a) € Gr(A),
L= g;(x) Jxr(a@ylx,a),
if B = {x}, (x,a) € Gr(A),

1, if B ={#}, (x,a) = (&,a).

p(B|x,a) :=

3.4.2. Results

PROPOSITION 10: Suppose Assumptions S and T’ hold.
Then v? (x) = ;L(x)ﬁg(x) for each ¢ € F and x € X.

PROQOF: This follows from the proof of Proposition 3 by
defining for ¢ € F the operator P, applied to integrable
Borel-measurable functions u : X — R,

T L () pdylx.6(), xeX. O

LEMMA 11: Suppose Assumptions S and T" hold. Then
the discounted MDP defined by the HV transformation also
satisfies Assumption S.

PROQOF: This follows from the proof of Lemma 4, Lemma
9, and the fact that the added cost-free absorbing state x is
isolated from X. O

The special case of Theorem 12 below for V = 1 was
proved by Pliska [38, Theorem 1.3]. To state Theorem 12,
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for B € (0,1) and x € X, define the sets Ag(x) and A*(x)
by replacing the sums in (15) and (17), respectively, with
integrals.

THEOREM 12: Suppose the original undiscounted total-
cost MDP satisfies Assumptions S and T'. Then:

(i) the value function v = ,uf,vﬁ is the unique Borel-
measurable function satisfying the optimality equa-
tion

v(x)zmin[c(x,aH f u(y)q(dy|x,a)],
X

Afx}

x e X,
and such that

supV (x) v (x)| < oo;
xeX

(ii) there is a stationary total-cost optimal policy;
(iii) a policy ¢ < F is total-cost optimal if and only if
¢(x) € A*(x) forall x € X, and

ﬁg(x) =c(x,a)

A*(x) = [a e A(x)

+5Lﬁg(y)ﬁ(dylx,a)], xeX;
(37)

in other words, the sets of optimal actions for the
original transient MDP and for the transformed dis-
counted MDP with transition probabilities p coin-
cide.

PROOF: This follows from the proof of Theorem 6, where
instead of [22] one can use [45, Proposition 2.1]. O

4. AVERAGE COSTS PER UNIT TIME

In Section 4.1, we provide a slight modification of the
transformation introduced by Akian and Gaubert [1]. Since
it can be viewed as an extension of the HV transforma-
tion described in Section 3.1, we refer to the transformation
given in Section 4.1 as the HV-AG transformation. Like the
HV transformation, the HV-AG transformation produces a
discounted MDP with transition probabilities. According to
Theorem 16 in Section 4.2, for an average-cost MDP with
transition probabilities g satisfying Assumption HT and the
Compactness Conditions given in Section 3.2, the HV-AG
transformation reduces the original problem to a discounted
one. The finite state and action case is considered in Section
4.3. The Borel-state case is treated in Section 4.4.
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4.1. HV-AG Transformation

Suppose Assumption HT holds. According to Proposition
1, there is a function p : X — [1, co) that satisfies up < K*
and

p(x) =1+ E glylx,a)u(y), xeX aeAx).
yeX\[£}
(38)

Objects associated with the discounted MDP will be indi-
cated by a horizontal bar. The state space is X = XU {x},
where x ¢ X is a cost-free absorbing state. Letting @ denote
the only action available at state x, the action space is
A := AU {a) and for x € X the set of available actions
is unchanged if x € X, namely

Ax), ifxeX,

{a, ifx=rx.

A(x) = {

Define the one-step costs ¢ by

ux)le(x,a), ifxeX, acAk),

ElRa) = [0, E.a) =155

To complete the definition of the discounted MDP, choose a

discount factor
= K*—1
ﬁ e [ K* * 1) *

and let
T a1 @R),
yeX\{£}, xeX acAk),
Eul(x) [p(x) —1~— ZyeX\{E} qg(ylx,a)u(y)l,
p(ylx,a) = y=£xecX, acAlx)

1
l:— m[#(x) =1,
y=x,xecX, acAl)

1, y==x, (x,a)=(x,a).

Since p satisfies (5), p(-|x,a) is a probability distribution
on X for each x € X and a € A(x). In addition, the defini-
tion of A implies that the sets of policies for the transformed
MDP and the original MDP coincide. Let ﬁ%(x) denote the

B-discounted cost incurred when the initial state of the trans-
formed MDP is x € X and the policy ¢ is used, and let
vz(x) := infyrz(x) forx € X.

REMARK 11: While the HV-AG transformation applies
to transition rates in general, the major results in Section 4.2
pertain to the case when these rates are probabilities.
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REMARK 12: Akian and Gaubert [1] prove their results
by transforming a perfect-information mean-payoff stochas-
tic game into a discounted game with state-dependent dis-
count factors. The version of their transformation presented
above uses techniques from [18] to directly obtain a problem
with a single discount factor.

REMARK 13: Ross [39, 40] considered MDPs with tran-
sition probabilities g satisfying the special case of Assump-
tion HT where there is a constant « such that

gllx,a) >a >0 forallx €¢X, a € A(x),

and introduced a transformation of the transition probabili-
ties that can be used to reduce the average-cost MDP to a
discounted one. In fact, Ross’s [39, 40] transformation can
be viewed as a special case of the HV-AG transformation.
Namely, taking p = K = 1/a, the resulting transition prob-
abilities are the same in both cases and the one-step costs
differ by a factor of o.

REMARK 14: The HV-AG transformation does not apply
to the version of Assumption HT with the norm || - || being
replaced with || - ||y, when V is unbounded. In particular,

p(E|x,a) > 0 implies that p(x) < (1 —B) .

4.2. Results

The proofs of Proposition 14 and Theorem 16 below rely
on the following lemma.

LEMMA 13: If a bounded function f : X — R satisfies
f(x)=0,thenforallx € Xanda € A(x)

éx,a)+B Y pOlx,a) f(y)

yei
1
= ) [C(I=ﬂ) +)§q(ylx,a)u(y)[f(y) — f(®]
+ [pu(x) — 1]f(2)]. (39)

PROOF: According to the definition of c, B, and p in
Section4.1, forx ¢ X and a € A(x)

éx,a)+BY pUIx,a) f(y)
yei
c(x,a) 1

= +T) q(ylx,a)n(y) f(y)
® ) yexvig

1
e L > aUlx.au®) | £

E\(e}

[c(x,a) +Y a0l ap»f ) — f(O]

- pu(x) =

+ [u(x) — 1]f(f)]- a

Given ¢ ¢ F, the following proposition relates the average
costs incurred in the original MDP with the discounted costs
incurred in the MDP constructed using the HV-AG transfor-
mation. Recall that g is stochastic if Zvex‘I(ﬂxﬂ) = 1for
allx e Xand a € A(x).

PROPOSITION 14: Suppose Assumption HT holds. Let
¢ < F be a stationary policy and h¢’(x) = ,u.(x)[ﬁ%(x) —

ﬁg(f)] for x € X. Then

WO +h(x) = c(x, $() + ) qOlx, DA (),

yeX
pAl =1 @ (40)
In addition, if the transition rates q are stochastic, then

¢ — 52
w _vﬁ(f).

PROOF: Since the state x in the discounted MDP defined
by the HV-AG transformation is cost-free and absorbing, (40)
follows from the fact that

W) = E0r,.p@) +B Y pOIx.$NIFG). x e X,

yeX

and Lemma 13. Iterating (40) gives

N—1
N&(@) + h?(x) = 2 Qlics(x) + QN h? (x),
zcX, N=1,2.... (41)

Since ¢ is bounded, the function A? is bounded as well. The
equality w? = ﬂ%(ﬁ) then follows by dividing both sides of
(41) by N and letting N — oo. O

LEMMA 15: Suppose Assumption HT and the Compact-
ness Conditions hold. Then the discounted MDP defined by
the HV-AG transformation also satisfies the Compactness
Conditions.

PROOF: Assumptions (i—ii) of the Compactness Condi-
tions imply that the sets A(x) are compact and ¢ is bounded
and is lower semicontinuous in a. Assumption (iii) of the
Compactness Conditions and Lemma 2 imply that p(y|x,a)
is continuous ina € A(x) forall x €¢ Xand y € X\ {£}.
Assumption (iii), for state £, and assumption (iv) of the Com-
pactness Conditions imply that p(£|x,a) is continuous in
ac A(x) forall x € X. [l
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For x € X, and a constant w and function & : X — R sat-
isfying the average-cost optimality equation (43) given in the
statement of Theorem 16 below, consider the sets of actions

A (x) == Ia cAX)|w+h(x) =c(x,a)

+ qux,a)h(y)}, xeX. (4

yeX

Theorem 16 also follows from Federgruen and Tijms [16,
Theorems 2.1, 2.2], where other recurrence conditions are
considered as well.

THEOREM 16: Suppose the original MDP with transition
probabilities g satisfies Assumption HT and the Compactness
Conditions. Then:

(i) the constant w = ﬁF(E) and the function h(x) =
p(x)[vg(x) — vg(0)], x € X, satisfy the optimality
equation

w+ h(x) =min | c(x,a) + ) _q(lx.a)h() |,
Aix) yex

xeX, (43)

and vg(¢) is the optimal average cost for each initial
state.

(ii) there is a ¢ € [ satisfying ¢(x) € A (x) for all
x € X, where

AL () = {a € A(x) | vg(x) = c(x,a)

+BY_ plylx.a)vg(y) ] FeX,
}'Ei
(44)

and any such policy is average-cost optimal.

PROOF: Lemma 15 implies that statements (i—iii) of
Proposition 5 hold for the transformed MDP. In particular,
there is a stationary B-optimal policy ¢ for the transformed
MDP, which satisfies ¢(x) € A%(x) forall x e X.

The validity of (43) follows from applying Lemma 13 to
the optimality equation for the B-discounted MDP defined by
the HV-AG transformation. Further, Proposition 14 implies
that the optimal average cost for each state is EF(E}, so0 (i)
holds.

Lemma 13 implies that (44) holds, from which the exis-
tence of a ¢ € F satisfying ¢(x) € A%, (x) forallx € X
follows. Moreover, since the function £ is bounded,

1
im —f¢ =
h}lm Efh(xy) =0 forallx € X.
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It therefore follows from for example [27, Theorem 5.2.4]
that any ¢ € IF satisfying ¢(x) € A} (x) forall x € X is
average-cost optimal. O

COROLLARY 17: Suppose Assumption HT and the
Compactness Conditions hold. If an algorithm computes an
optimal policy for the discounted MDP defined by the HV-
AG transformation, then this policy is optimal for the original
average-cost MDP.

REMARK 15: The average-cost optimal policy referred to
in Theorem 16 is in fact optimal over all randomized history-
dependent policies; see for example, Herndndez-Lerma and
Lasserre [27, Theorem 5.2.4].

REMARK 16: Stationary average-cost optimal policies
exist under much more general conditions than the ones
considered in Theorem 16. In particular, the Compactness
Conditions and Assumption HT imply Conditions (S) and
(B) in Schil [45], as well as Assumptions (W*) and (B) in
Feinberg et al. [22].

REMARK 17: Under the hypotheses of Theorem 16, the
average-cost optimality equation (43) has a unique bounded
solution up to an additive constant; see [6, Lemma 3.3]. This is
because Assumption HT is a special case of the more general
weighted geometric ergodicity condition considered in [6];
see [7] for relationships between this condition and various
other ergodicity and recurrence assumptions.

4.3. Finite State and Action Sets

In this section, we assume that both X and A are finite.
Recall from the paragraph after Remark 3 that, when the
state and action sets are finite, Assumption HT is equivalent
to the existence of a constant K™ such that

oo
D eQhe(x) <K* forallpeF, xeX, (49)
n=0

where e denotes the function on X that is identically equal
to one. Therefore, in this section we assume without loss of
generality that (45) holds.

For a finite state and action MDP with transition probabil-
ities q that satisfy Assumption HT, Corollary 17 implies that
a stationary average-cost optimal policy can be computed by

solving the LP
minimize Y Y &(x,a)Zxa
xeX acA(x)
such that Z Zxa — FZ Z p(x|y,a)zya =1,
acA(x) yeﬁaeﬁ(y}
xeX,
Zxa>0, xeX acA®). (46)
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Recall that m = ) . |A(x)| and n = [X]|. If K* > 1, it
follows from Scherrer [46, Theorem 3] that the LP (46) can
be solved using

(m—n)[ 1_Iog _I = O((m —n)K*log K™)

1-8 "1—8
iterations of the block-pivoting simplex method correspond-
ing to Howard’s policy iteration algorithm. In addition, it
follows from Scherrer [46, Theorem 4] that the LP (46) can
alternatively be solved using

( )(1+ 2 op ™ )
nim—n — e
™ e

= O(n(m —n)K*log K*) A7)

iterations of the simplex method with Dantzig’s rule. Observe
that K* = 1 means that the state £ is absorbing under each
stationary policy, and a stationary policy ¢ is average-cost
optimal if and only if e(£, ¢ (£)) = min {c(£,a) : a € A(£)}.

REMARK 18: According to [1, Proposition 12], there is
a one-to-one correspondence between sequences of policies
generated by Howard’s policy iteration algorithm for the dis-
counted MDP defined by the HV-AG transformation, and
sequences of policies generated by Howard’s policy itera-
tion algorithm for the original unichain average-cost MDP.
In particular, under Howard’s policy iteration algorithm for
the discounted MDP, an improved policy ¢ is constructed
(when possible) by taking, for each x € X, ¢*(x) to be any
action belonging to

argmin | &(x,a) +B ) pyIx.a)ig») | . (48)

acAlx) veX

Under Howard’s policy iteration algorithm for unichain
average-cost MDPs, given ¢ < T an improved policy ¢™
is constructed by first obtaining a constant g and a function
h that satisfy the system of equations

g+h@)=c@x,¢(x)+ ) qOlx.¢GDh(), xeX,

yeX

(49)

and then, for every x € X, taking ¢t (x) to be any action
belonging to

argmin | c(x,a) + Y _q(lx.@)h(y) |.  (50)

aeA(x) veX

Let h?(x) := p(x) [ag(x) — ﬂ%(f)] for x € X. According

to Proposition 14, the constant ﬁg(ﬂ ) and the function h? sat-
isfy (49). Further, the definitions of ¢ and p and Lemma 13

imply that for each x € X the set (50) is equal to the set (48).
This implies that Howard’s policy iteration algorithm for the
discounted MDP defined in Section 4.1 is equivalent to a
particular version of Howard’s policy iteration algorithm for
the original unichain average-cost MDP. Since both of these
policy iteration algorithms correspond to block-pivoting sim-
plex methods (see [35, pp. 68, 122], it follows from Scherrer
[46, Theorem 3] that, when there is a state that is recurrent
under all stationary policies, the well-known LP for unichain
average-cost MDPs, see for example [[35], LP 4.6.7],

minimize Y Y c(x,a)zxa

xeX acA(x)
Z Zxa — Z Z Q(xb’!a)Zy,,a =0,
acsA(x) veX acA(y)
x e X,
> Y ma=l xeX,
yeX acA(y)
%a20, xeX aeA®), (5D

can be solved using O((m — n)K*log K*) iterations of a
block-pivoting simplex method.

REMARK 19: For x € X, let 7(x) := Supyep 3, e 0}
e(x). Then K; := max,xt¢(x) is the smallest constant K*
satisfying (45). The iteration estimate for Howard’s policy
iteration algorithm for average-cost MDPs satisfying (45)
that follows from Akian and Gaubert [1, Corollary 15] is
O((m—n)K;log K;). One method to compute K; consists of
the following. First, compute an optimal policy ¢, for a tran-
sient MDP that is identical to the original MDP, except that
state £ is removed and all one-step costs are equal to—1. Then,
compute the value function v%+ of this optimal policy, set

v (0) ;= max | 14 ) g€, ap* () |,

Al
aeA(x) }'5&8

and set K, = max, xv% (x). According to Denardo [9, The-
orem 2], the policy ¢, can be computed using O((m —
n)K;log K;) iterations of Howard’s policy iteration algo-
rithm. Further, the function v#+ can be computed by solving
a system of n — 1 linear equations, using Gaussian elimina-
tion in O(n’) arithmetic operations; for other methods see
for example [5, 48].

REMARK 20: Applying the simplex method with Dantzig’s
rule to the LP (46) can be viewed as applying a certain
pivoting rule to the LP (51). In particular, for ¢ € F let
h? (x) = ,u,(x)[t_)%(x) E :Tr%(f)] for x € X. Given a non-
optimal basic feasible solution to (51) corresponding to the
non-optimal stationary policy ¢, it follows from Lemma 13
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and Proposition 14 that the variable z, , that enters the basis
under this pivoting rule is the one minimizing

c(x.a)+B ) p(ylx.a)ig(y) — ig(x)

yeX

~% c(x,a)+§q(y|x,a)h¢(y)—w¢—h*’(x) :

(52)

and the variable that leaves the basis is z,4(;). According to
(47), this pivoting rule for the LP (51), that is typically used
to solve unichain average-cost MDPs, is strongly polynomial
when K* is fixed. This algorithm is not the same as applying
Dantzig’s rule to the LP (51), however; see Remark 21.

REMARK 21: Since an MDP satisfying Assumption HT
is unichain, an optimal policy under the average-cost crite-
rion can be computed by solving the LP (51); see for example
[35, LP 4.6.7]. As follows from Remark 18, under Assump-
tion HT, starting with the same basic variables, the sequences
of basic variables for implementations of block-pivoting sim-
plex methods for the LPs (46) and (51) coincide. However,
this is not true for the simplex method with Dantzig’s rule.
To confirm this, let us consider the following example. The
set of states is X = {1,2} and the sets of available actions
are A(1) = A(2) = {a, b}. The transition probabilities form
stochastic vectors given by p(1]1,a) = 1/2, p(1|1,b) =0,
p(1]2,a) = 1/3, and p(1|2,b) = 1/2. The one-step costs
are c¢(l,a) = c¢(1,b) = 1 and ¢(2,a) = c(2,b) = 2. Let-
ting £ = 1, one can verify that the function p defined by
(1) = 10 and u(2) = 3 satisfies (38) with V = 1. The
average-cost LP given by the LP (51) is

minimize 214 + 216 + 2224 + 2225

1 1

1
— - = —) 0
2Zm + Z1p 3zz,a zzz‘b

1 1 1
S A i 5, =0
2Zm Z1p + 3Z2.a + 222.b
Zatp+2at22p=1

Z1a» 21 ks 220,224 = 0, (53)

such that

and the LP (46) for the discounted MDP defined by the
HV-AG transformation is

S 1 1 1
minimize —2ziq+ —21p + =220 + =225

10 10 3 3
h that ! + 2 ! 1
such that — —Zip — —22p =
7éla T 52s — 222p
3 3 5 1 3 1 i
2OZI'.Q lOZl,b 322,(1 ZZZ‘b =i
214,21 ps 220, 22p = 0. (54)
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For both LPs, suppose the initial basic feasible solution for
the simplex method with Dantzig’s rule is the one defined
by the stationary policy ¢ where ¢(1) = b and ¢(2) = a;
namely, the basic variables are z; 5 and z, ;. Consider the first
iteration of this simplex method. For the LP (53), the basic
variable z; is the unique variable to leave the basis, while
for the LP (54) the basic variable z;, is the unique variable
to leave the basis.

REMARK 22: Consider an LP with n constraints and m
variables, where the positive elements of every basic feasible
solution are bounded below by § and bounded above by y.
By generalizing the analysis in Ye [55] for discounted MDPs,
it is proved in Kitahara and Mizuno [36, Theorem 3] that the
simplex method with Dantzig’s rule requires at most

o (JnmZ log l)
8 8

iterations to return an optimal solution. For the LP (46),
d=land y = (1 — ,5)_] = K* satisfy the hypotheses of
this result. Therefore, it follows from [36, Theorem 3] that
an average-cost optimal policy can be computed in strongly
polynomial time when K* is fixed, by applying the simplex
method with Dantzig’s rule to the LP (46). However, [36,
Theorem 3] does not imply an analogous statement for the
LP (51) for unichain average-cost MDPs. This is because,
for such MDPs, every basic feasible solution of (51) is the
vector of state-action frequencies under some stationary pol-
icy [35, Remark 4.7.4]. Even for MDPs satisfying Assump-
tion HT with a fixed K*, these frequencies can decrease
exponentially with the number of states. To verify this, for
n = 2,3,... consideran MDP with state set X := {1,...,n},
a single action 0 available at every state, transition proba-
bilities p(1|1,0) = p(nli,0) = p(ili + 1,0) := 1/2 for
i = 1,...,n — 1, and arbitrary real-valued one-step costs.
Observe that for n = 1,2,..., this MDP satisfies Assump-
tion HT with £ = n and K* = 2. In addition, the unique
feasible solution to (51) for this MDP is

1 n—1 1 n—i+1
21,0:(5) 5 Zi‘o:(i) v HOEE =2t

Thus, thereisnod > Osuchthatz; g > foralln =2,3,....

4.4. Extension to Uncountable State Spaces

For ¢ € T, let Q4 be defined for an integrable Borel-
measurable u : X — R as

e Qgu(x) ::f u(y)gldylx,¢(x)), xeX

A\
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The version of Assumption HT that we consider when the
state space is possibly uncountable is as follows:

ASSUMPTION HT":

(i) There is a state £ € X and a constant K* satisfying

oo

D0

n=0

<K*<oo forall¢p e F. (55)

(ii) The one-step cost function c is bounded.

4.4.1. HV-AG Transformation

Suppose Assumption HT* holds. According to Proposition
8, there is a Borel-measurable function & : X — [1, c0) that
satisfies u < K* and

(x,a) € Gr(A).

=14 f EOYG@sTa),

X\(¢)
(36)

Here the HV-AG transformation is defined exactly as
described in Section 4.1, except that the cost-free absorb-
ing state x is taken to be isolated from X, and the transition
probabilities p are defined by

e Js OVa(@y1x. @),

B € B(X\ {£}), (x,a) € Gr(A),

F,ul(x) [)u*(x} == fx\{g} !L(J’)Q(dﬂx,ﬂ)],
B = {t}, (x,a) € Gr(A),

1 - i) — 11,
B = {x}, (x,a) € Gr(A),

1, B={x}, (x,a) = (x,a).

p(Blx,a) :=

4.4.2. Results

LEMMA 18: If a bounded Borel function f : X->R
satisfies f(x) =0, then forany x € X anda € A(x)

c(x,a)+ B [E f(»)p(dylx,a)
_ 1
- px)

[C(x,a)+j};ﬂ(y)[f(y)—f(f)]q(dylx,a)
+[p(x) —11f (f)]- (57)

PROOQF: This follows from the proof of Lemma 13, with
all sums replaced with integrals. O

PROPOSITION 19: Suppose Assumption HT ' holds. Let
¢ < F be a stationary policy and h?(x) = ,u.(x)[ﬁ%(x) —

ﬁ%(f)] for x € X. Then

B0+ 1) = e p () + [ H Iyl d ),
b 4

xeX. (58)

In addition, if the transition rates q are stochastic, then
w? = ﬁ%(f).

PROOF: This follows from the proof of Proposition 14,
where sums are replaced with integrals in the appropriate
places.

LEMMA 20: Suppose Assumptions S and HT ' hold. Then
the discounted MDP defined by the HV-AG transformation
also satisfies Assumption S.

PROOF: This follows from Lemma 9 and the proof of
Lemma 15. O

To state the main result in this section, for x € X define
A}, (x) by replacing the sum in (42) with an integral.

THEOREM 21: Suppose the original MDP with transition
probabilities g satisfies Assumptions S and HT". Then:

(i) the constant w = EF(L’) and the function h(x) =
u@)[vgx) — vg0)], x € X, satisfy the optimality
equation

) =i [c(x,a) e f h(y)q(dylx,a)],
X

Afx)

x eX, (59)

and vg(¢) is the optimal average cost for each initial
state.

(ii) there is a ¢ € T satisfying ¢p(x) € A} (x) for all
x € X, where

Ay(x) = [a € A(x) | vg(x) = c(x,a)
+B Lﬁg(y)ﬁ(JYII,ﬂ)], xeX,
X
(60)
and any such policy is average-cost optimal.

PROOF: This follows from the proof of Theorem 16,
where sums are replaced with integrals in the appropriate
places. O
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