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1 Introduction

Berge’s maximum theorem provides sufficient conditions for the continuity of a value function
and upper semi-continuity of a solution multifunction. This theorem plays an importantrole in
control theory, optimization, game theory, and mathematical economics. The major limitation
of the classic Berge’s maximum theorem is the assumption that the sets of available controls
at each state are compact. Feinberg and Kasyanov (2015) and Feinberg et al. (2013, 2014)
generalized Berge’s maximum theorem and related results to possibly noncompact sets of
actions and introduced the notions of K-inf-compact functions for metric spaces and KN-
inf-compact functions for Hausdorff topological spaces. These generalizations led to the
developments of general optimality conditions for Markov decision processes in Feinberg
et al. (2012), partially observable Markov decision processes in Feinberg et al. (2016), and
inventory control in Feinberg (2016) and Feinberg and Lewis (2017); see also Katehakis et al.
(2016) and Shi et al. (2013) for studies of relevant inventory control problems. The class of
K-inf-compact functions is broader than the class of inf-compact functions of two variables.
A function defined on a set of state-action pairs is called K-inf-compact on this set, if this
function is inf-compact, when the state variable is restricted to an arbitrary compact subset
of the state space; see Definition 1 for details.

This paper studies continuity properties of the value function and solution multifunctions,
when a minimax problem is considered for metric spaces instead of the optimization problem.
The results are applied to one-step zero-sum games of two players with possibly noncompact
action sets and unbounded payoffs. Section 2 presents results relevant to Berge’s maximum
theorem for noncompact action sets. Section 3 describes continuity properties of minimax. In
particular, Theorem 13 is the extension of Berge’s maximum theorem for metric spaces with
possibly noncompact action sets and unbounded costs to the minimax. Section 4 presents
results on preserving K-inf-compactness of a function, when action or state sets are extended
to the sets of probability measures on these sets. Section 5 deals with two-person zero-sum
games with possibly noncompact action sets and unbounded payoffs. The definitions and
preliminary facts for games are introduced in Sect. 5.1. In particular, the classes of safe and
unsafe strategies are introduced, and the lopsided value (the value in the asymmetric form)
is defined. Of course, in the case of bounded payoffs, all the strategies are safe. Theorem 18
of Sect. 5.2 states the existence of the lopsided value. Section 5.3 introduces sufficient con-
ditions for the existence of solutions for the game. These conditions imply that one of the
players players has a compact action set. This is consistent with the approach undertaken
in Jashkewicz and Nowak (2011), where the most general available results were obtained
for stochastic games with compact action sets and unbounded payoffs, and the optimality
conditions for one of the players were provided; see also survey (JasShkewicz and Nowak
2017). Section 5.4 describes continuity properties of the lopsided value, classic value, and
solution multifunctions for the game. Section 6 clarifies that pure strategies are sufficient
for games with perfect information, that is, the situation where the second player knows the
move of the first player. Therefore, the results of Sect. 3 describe the properties of solutions
for such games.

The rest of this introduction contains definitions and propositions useful for the under-
standing of the future material. Let R := R U {400} and S be a metric space. For a nonempty
set § C S, the notation f : § C S — R means that for each s € S the value f(s) € R is
defined. In general, the function f may be also defined outside of S. The notation f : S — R
means that the function f is defined on the entire space S. This notation is equivalent to the
notation f : S C S — R, which we do not write explicitly. For a function f : § ¢ S — R
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we sometimes consider its restriction f | 5 S ¢ S+ Rtothe set S C S. Throughout the
paper we denote by K(S) the family of all nonempty compact subsets of S and by S(S) the
Sfamily of all nonempty subsets of S.

We recall that, for a nonempty set S C S, a function f : § C S > R is called lower
semi-continuous at s € S, if for each sequence {s(”)}nzl,zw C S, that converges to s in S,
the inequality lim inf, o f(s")) > f(s) holds. A function f : § C S  Ris called upper
semi-continuous at s € S, if — f is lower semi-continuous at s € S. Consider the level sets

Dr(h8) :={seS: f(s) <A}, ArekR
The level sets Dy (4; S) satisfy the following properties used in this paper:

(a) if Ay > A, then Dy (X; §) C Dr(r1; S);
(b) if g, f are functions on § satisfying g(s) > f(s) for all s € §, then Dy(X; S) C
Ds(%; S).

A function f : § C S — R is called lower/upper semi-continuous, if f is lower/upper
semi-continuous at each s € S. A function f : S C S + R is called inf-compact on S,
if all the level sets {Df(A; S)}rer are compact in S. A function f : § C S R is called
sup-compact on S, if — f is inf-compact on S.

Each nonempty subset S of a metric space S can be considered as a metric space with the
same metric.

Remark 1 For each nonempty subset S C S the following equality holds:
K(S) ={C C S : CeK(®)}

Remark 2 Ttis well-known that a function f : S — R is lower semi-continuous if and only if
the set D s (A; S) is closed for every A € R; see e.g., Aubin (1998, p. 12, Proposition 1.4). For
afunction f : § C S R, let f be the function f : S > R, defined as f(s) := f(s), when
s €S, and f (s) := 400 otherwise. Then the function f : S > R is lower semi-continuous
if and only if for each A € R the set Dy (%; S) is closed in S.

Let X and Y be metric spaces. For a set-valued mapping @ : X > 2, let
Dom® = {x e X : &(x) # 0}.

A set-valued mapping @ : X > 2V is called strict if Dom @ = X, thatis, @ : X — S(Y)
or, equivalently, @ (x) # ¢ for each x € X. For Z C X define the graph of a set-valued
mapping @ : X > 2V, restricted to Z:

Grz(®)={(x,y) € ZxY : x e Dom®, y € &(x)}.

When Z = X, we use the standard notation Gr(®) for the graph of @ : X — 2Y instead of
Grx ().

Throughout this section assume that Dom @ # (). The following definition introduces the
notion of a K-inf-compact function defined on Gr(®) for @ : X > 2, while in Feinberg
et al. (2013) such functions are defined for @ : X — S(Y).

Definition 1 (cf. Feinberg et al. 2013, Definition 1.1) A function f : Gr(®) C X x Y — R

is called K-inf-compact on Gr(®), if for every C € K(Dom @) this function is inf-compact
on Gr¢ (D).
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Remark 3 Each nonempty set S C X x Y corresponds the set-valued mapping ¥s : X > 2V
such that Yg(x) = {y € Y : (x,y) € §} for each x € X. We note that Dom ¥y # ¢ and
Gr(¥s) = S. Therefore, when we write that the function f : § C X X Y R is K-inf-
compact on S, we mean that f is K-inf-compact on Gr(¥s).

The function f(x,y) = |x — y| is an example of a function f : R* > R, which is
K-inf-compact on R?, but it is not inf-compact on R?. The following example describes
another K-inf-compact function, which is not inf-compact.

Example 1 LetX =Y =R, ®(x) = Rand f(x, y) = x+y?, (x, y) € R%. The function f is
K-inf-compact on R2 because the sets D £ (A; CxR)are compactforall C € K(R)and2 € R.
The function f is not inf-compact on R? since the level set D (0; R?) ={(—y%, y) : y e R}
is not compact.

Definition 2 A function f : Gr(®) C X x Y + R is called K-sup-compact on Gr(®) if
the function — f is K-inf-compact on Gr(®).

Remark 4 According to Remark 1, a function f : Gr(®) C X x Y — R is K-inf-compact
/ K-sup-compact on Gr(®) if and only if f : Gr(®) C Dom & x Y ~ R is K-inf-compact
/ K-sup-compact on Gr(®), where Dom @ is considered as a metric space with the same
metric as on X.

The topological meaning of K-inf-compactness of a function on a graph of a strict set-
valued mapping @ : X — S(Y) is explained in Feinberg et al. (2013, Lemma 2.5); see also
Feinberg et al. (2015, Lemma 2) and (2014, p. 1041).

Lemma 1 (Feinbergetal. (2013, Lemma2.5) and Feinberg and Kasyanov (2015, Lemma 2))
Let @ : X +> S(Y) be a strict set-valued mapping. Then the function f : Gr(®) C Xx Y >

R is K-inf-compact on Gr(®) if and only if the following two assumptions hold:

(i) for each A € R the set D¢ (A; Gr(®)) is closed in X x Y;

(ii) if a sequence {x(”)}nzl,g,“_ with values in X converges and its limit x belongs to X, then
each sequence {y(”)}nzl,z,_._ withy™ € & (x™), n = 1,2, ..., satisfying the condition
that the sequence {f(x(”), y(”))}n:m“” is bounded above, has a limit point y € @ (x).

The following lemma provides necessary and sufficient conditions for K-inf-compactness
of a function f : Gr(®) C X x Y +— R for a possibly non-strict set-valued mapping
@ X2V,

Lemma 2 The function f : Gr(®) C X x Y — R is K-inf-compact on Gr(®) if and only
if the following two assumptions hold:

() f:Gr(®) C X xY > R is lower semi-continuous;

(i) ifasequence {x ) tn=1,2,... withvalues in Dom @ converges in X and its limit x belongs to
Dom @, then each sequence {y(”)}nzlyz,”_ with y(”) ed(xM,n=1,2,..., satisfying
the condition that the sequence { f (x 0N y(”))},,:1 2....isbounded above, has a limit point
y € d(x).

Proof According to Remark 4, the function f : Gr(®) € X x Y + R is K-inf-compact

on Gr(@®) if and only if the function f : Gr(®) C Dom® x Y +— Ris K-inf-compact

on Gr(®), where Dom @ is considered as a metric space with the same metric as on X.

Therefore, Lemma 1, being applied to X = Dom®, Y =Y, f = f, and ® = ¢|Dom¢,

implies that the function f : Gr(®) C X x Y Ris K-inf-compact on Gr(®) if and only

if the following two assumptions hold:
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(a) for each A € R the set D¢ (A; Gr(®)) is closed in Dom @ x Y;
(b) assumption (ii) of Lemma 2 holds.

The rest of the proof establishes that, under assumption (b), assumption (a) holds if and only
if assumption (i) of Lemma 2 holds.

Let us prove that assumptions (a) and (b) imply assumption (i) of Lemma 2. Consider
a sequence {(x™, y")},_1 5. C Gr(®) that converges to (x,y) € Gr(®). Then either
liminf,— o f(x™, y™) = 400 or there exists a subsequence {(x "%, y("k))}kzlﬁz,.__ -
{(x™, y™)},_1 5. such that, for each real A > liminf, .o f(x™, y™), the sequence
{(x () y(”k))}kzlyz,,,, is eventually in D¢ (A; Gr(®)). Since the set D¢ (A; Gr(®)) is closed
inDom @ x Y, we have (x, y) € Dy(; Gr(®)) for eachreal A > liminf,, Fx® y0)
and, therefore,

f(x,y) <liminf f(x™, y™),
n—oo

that is, assumption (i) of Lemma 2 holds.

Let assumption (b) and assumption (i) of Lemma 2 hold. Then (a) holds. Indeed, we fix
an arbitrary A € R and prove that the level set D (A; Gr(®)) is closed in Dom @ x Y.
Let {(x™, y("))}nzl,z,_“ C Dy (x; Gr(®)) be a sequence that converges and its limit (x, y)
belongs to Dom @ x Y. Assumption (b) implies that (x, y) € Gr(®). Moreover, since
f:G6r(@) CXxY > R is lower semi-continuous, this function is lower semi-continuous
at (x, y) € Gr(®). Therefore,

fry) <tliminf fx®, y™) <3,

that is, (x,y) € Dy(A; Gr(®)). Thus the set Ds(A; Gr(®)) is closed in Dom @ x Y for
arbitrary A € R. Assumption (a) holds. O

The following corollary establishes that assumption (i) in Lemma 1 can be substituted by
lower semi-continuity of f : Gr(®) C X x Y — R.

Corollary 1 Let @ : X +— S(Y) be a strict set-valued mapping and f : Gr(®) C X x
Y + R be a function satisfying assumption (ii) of Lemma 1. Then for each » € R the set
Dy (r; Gr(P)) is closed in X x Y if and only if the function f : Gr(®) C X X Y > R is
lower semi-continuous.

Proof This corollary follows directly from Lemmas 1 and 2. O

A set-valued mapping F : X > 2Y is upper semi-continuous at x € Dom F if, for each
neighborhood G of the set F'(x), there is a neighborhood of x, say U (x), such that F(x*) C G
for all x* € U(x) N Dom F; a set-valued mapping F : X +— 2V is lower semi-continuous
at x € Dom F if, for each open set G with F(x) NG # @, there is a neighborhood of x,
say U(x), such that if x* € U(x) N Dom F, then F(x*) NG # ¥ [see e.g., Berge (1963,
p- 109) or Zgurovsky et al. (2011, Chapter 1, p. 7)]. We note that a set-valued mapping
F : X > 2Y is lower semi-continuous at x € Dom F if and only if, for each sequence
{x(")}n=1,2,_,4 C Dom F converging to x and for each y € F(x), there exists a sequence
{y(")}nzlqz,_“ such that y® e F(x™) and y is a limit point of {y(")}nzl,z,_“. A set-valued
mapping is called upper / lower semi-continuous, if it is upper/lower semi-continuous at all
x € Dom F.

The following sufficient conditions for K-inf-compactness were introduced in Feinberg
etal. (2013, Lemma 2.1) for @ : X — S(Y).
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Lemma 3 Let @ : X — 2Y be a set-valued mapping and f : Gr(®) C X x Y + R be a
function. Then the following statements hold:

@) if f : Gr(®) C X x Y — R is inf-compact on Gr(®), then the function f is K-inf-
compact on Gr(®);

®) if f:Gr(®) € XxY — R is lower semi-continuous and ® : X — 2Y is upper
semi-continuous and compact-valued at each x € Dom @, then the function f is K-inf-
compact on Gr(®).

Proof Inview of Remark 1, Feinberg etal. (2013, Lemma2.1), being applied to X := Dom @,
Y:=A u:=f and d:= o implies all the statements of the lemma. O

Definition 3 (cf. Feinberg et al. 2014, Definition 2.3) A set-valued mapping F : X > 2V is
K-upper semi-compact if for each C € K(Dom F) the set Gr¢ (F) is compact.

The following lemma provides the necessary and sufficient conditions for K-upper semi-
compactness of a possibly non-strict set-valued mapping @ : X — 2. For @ : X > S(Y),
this statement follows from Feinberg et al. (2014, Theorem 2.5).

Lemma 4 A set-valued mapping ® = X +— 2Y is K-upper semi-compact if and only if it is
upper semi-continuous and compact-valued at each x € Dom @.

Proof In view of Remark 1, Feinberg et al. (2014, Theorem 2.5), being applied to X :=
Dom®,Y:=A, u:= f,and ¥ := <P}X, implies the statement of the lemma. O

2 Continuity properties of minima

Let X, Y be metric spaces, @ : X > 2Y be a set-valued mapping with Dom & # , and
f :Gr(®@) C X x Y — R be a function. Define the value function

ff(x) = inf f(x,y), x € Dom @, (1)
Ve (x)

and the solution multifunction
*(x):={ye®): f*(x) = f(x,y)}, x€Doma. )

According to Berge’s theorem (Berge 1963, Theorem 2, p. 116), under assumptions of
Lemma 3(b), the function f* is lower semi-continuous if the set-valued mapping @ : X > 2V
is strict. For metric spaces X and Y, the following theorem generalizes Berge’s theorems from
Feinberg et al. (2014, Theorems 2.1(ii) and 3.4) and (2013, Theorem 3.1) to a possibly non-
strict set-valued mapping @ : X +— 2.

Theorem 1 If a function f : Gr(®) C X x Y — R is K-inf-compact on Gr(®), then the
value function f* : Dom ® C X > R defined in (1) is lower semi-continuous. Moreover;
the infimum in (1) can be replaced with the minimum and the nonempty sets {®*(x)}xeDom @
defined in (2) satisfy the following properties:

(a) the graph Gr(®*) is a Borel subset of X x Y,
) if f*(x) = +o0, then @*(x) = @ (x), and, if f*(x) < 400, then ®*(x) is compact;
x € Dom @.
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Proof According to Remark 1, Feinberg et al. (2014, Theorems 2.1(ii) and 3.4), being applied
toX := Dom®, Y := A, u := f,and ® := @ . implies that the value function f* :
Dom @ C X — R is lower semi-continuous. Moreover, Feinberg et al. (2013, Theorem 3.1),
being applied to X :=Dom @, Y := A, u := f, and ® := <P|X, implies that the infimum in
(1) can be replaced with the minimum and the nonempty sets {®*(x)}xepom ¢ defined in (2)
satisfy properties (a) and (b). ]

The following theorem describes sufficient conditions for upper semi-continuity of the
value function f* defined in (1). A more general result is presented in Feinberg and Kasyanov
(2015, Theorem 4), which can be generalized to a possibly nonstrict set-valued mapping @.
However, for the purposes of this paper we need only the following theorem for metric spaces.

Theorem 2 (Hu and Papageorgiou 1997, Proposition 3.1, p. 82) If a set-valued mapping
D X+ S(Y) is lower semi-continuous and a function f : Gr(®) C X X Y > R
is upper semi-continuous, then the value function f* : X — R defined in (1) is upper
semi-continuous.

The following theorem describes sufficient conditions for K-upper semi-compactness of
the solution multifunction @* defined in (2); see also Lemma 4.

Theorem 3 (Feinberg and Kasyanov 2015, Theorem 5 and Feinberg et al. 2014, p. 1045)
Let @ : X — S(Y), a function f : Gr(®) C X x Y R be K-inf-compact on Gr(®),
and the value function f* : X — R U {—o0} defined in (1) be continuous. Then the infimum
in (1) can be replaced with the minimum and the solution multifunction ®* : X — S(Y)
defined in (2) is K-upper semi-compact.

3 Continuity properties of minimax

This section describes continuity properties of minimax and solution multifunctions. These
results are applied in Sect. 5.4, where continuity properties of the lopsided value, classic value,
and solution multifunctions for the two-person zero-sum games with possibly noncompact
action sets and unbounded payoffs are described. For metric spaces the presented results
can be viewed as extensions of Berge’s maximum theorem for noncompact image sets and
relevant statements for optimization problems from Feinberg et al. (2014, 2013) to minimax
settings.

The minimax problem introduced and studied in this section models robust optimization
problems and two-person zero-sum one-step games with perfect information. In such games,
players make decisions sequentially, and these games are called sometimes turn-based. Unlike
the case of games with simultaneous moves studied in Sect. 5, pure policies are sufficient for
games with perfect information, and this is formally explained in Sect. 6.

Let X, A and B be metric spaces, ®» : X > S(&) and @5 : Gr(Pp) C X X A+ S(B) be
set-valued mappings, and £ : Gr(®g) C X x A x B — R be a function. Define the worst-loss
function

f'(x,a):= sup £(x,a,b), (x,a) € Gr(da), 3)
bedg(x,a)
the minimax or upper value function

vj(x) = inf sup f(x,a,b), x €X, “4)
a€®a(X) pedy(x,a)
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and the solution multifunctions

Pr(x) i=fae da(x) : V() = sup  f(x,a,b)}, xex; ®)
bedg(x,a)
Pi(x,a) == {be Pp(x,a) : sup £(x,a,b*) = £(x,a,b)}, (x,a) € Gr(Pa). (6)
b*edy(x,a)

We note that the following equalities hold:

V()= inf ff(x,a), Pi(x)={a€ Pplx) : vVI(x) = ff(x, @)}, xeX;
aedp(x) (7)
Pi(x,a) = {be (x.a) : fi(x,a) = £(x,a.b)}. (x,a) € Gr(Pa).

The rest of this section establishes sufficient conditions for:

(i) continuity properties of the worst-loss function £* (Theorems 4, 5, 6, 7, and 13),
(ii) continuity properties of the minimax function v* (Theorems 8, 9, 10, and 13),
(iii) continuity properties of the solution multifunctions ®% and ®} (Theorems 11, 12, and
13),
when the image sets {®a(x)}rex and {Pg(x, a)}(x,a)eGr(o,) Can be noncompact.
To state the main results of this section, we introduce the set-valued mapping ®5<F :
X x B > 2% uniquely defined by its graph,

Gr(®57") ;= {(x,b,a) e X x Bx A : (x,a,b) € Gr(dp)}, (8)
that is,
PE7P(x, b) = {a € Palx) : b € Pp(x,a)},
(x, b) € Dom 4B We also introduce the function £28 : Gr(®2<P) C (XxB)xA > R,
£2B(x,b,a) := £(x,a,b), (x,a,b) € Gr(ds). )
According to (8), the following equalities hold:
Dom ®5°® = projy, s Gr(Pg) = {(x,h) € X x B : a0
(x,a, b) € Gr(dp) for some a € A},

where projy, s Gr(®g) is a projection of Gr($g) on X x B.

Remark 5 According to Lemma 2, the function £2< : Gr(®2°®) C (X x B) x A > R
defined in (9), where @58 is defined in (8), is K-inf-compact on Gr(®%5<®) if and only if
the following two conditions hold:

() the function £ : Gr(®dg) C X x A x B — R is lower semi-continuous;

(i) if a sequence {x,b»™},_; 5 with values in Dom ®4<® converges and its limit
(x, b) belongs to Dom ®£°B, then each sequence {a(”)}nzl,z,m with (x, a™ p™) ¢
Gr(®g), n = 1,2,..., satisfying the condition that the sequence {f(x(”), a®,
b™)},—1 2.... is bounded above, has a limit point a € ®35(x, b).

The following theorem establishes sufficient conditions for lower semi-continuity of the
worst-loss function £2 : Gr(®a) C X x A — R defined in (3), when the image sets
{®Pa(x)}rex and {Ps(X, @)} (x,a)cGr(d,) are possibly noncompact.

Theorem 4 (Lower semi-continuity of the worst-loss function) Let @5 : Gr(®,) C XX A —
S(B) be a lower semi-continuous set-valued mapping and the function £ : Gr(®g) C XX AX
B> R be lower semi-continuous. Then the worst-loss function £* : Gr(®4) C Xx Ar> R
defined in (3) is lower semi-continuous.
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Proof Theorem 2, applied to X := Gr(®a), Y :=B, & := &g, and f := —£, implies that
the function £4 : Gr(®a) C X x A > R is lower semi-continuous. ]

To state sufficient conditions for the K-inf-compactness of the worst-loss function (see
Theorem 5), we need to introduce the A-lower semi-continuity assumption for a set-valued
mapping Pg : Gr(P,) C X x A — S(B), which implies its lower semi-continuity.

Definition 4 A set-valued mapping &5 : Gr(®Pp) C X x A +— S(B) is called A-lower
semi-continuous, if the following condition holds:

if a sequence {x(”)},,zl,zw with values in X converges and its limit x belongs to X,
a™ € dp(x™) foreachn = 1,2, ..., and b € dp(x, a) for some a € dx(x), then
there is a sequence {b(")}nzl,z,_“, with 5™ € dg(x™, a™) foreachn = 1,2, ...,
such that b is a limit point of the sequence {b(”)}nzl,zw.

The properties of A-lower semi-continuous functions are described in “Appendix”. In
particular, this assumption is stronger than lower semi-continuity. According to Lemma 7, this
assumption holds a for lower semi-continuous multifunction &g : Gr(®,) C X XA+ S(B)
in the following two cases: (i) the multifunction ®, : X — S(2) is upper semi-continuous
and compact-valued at each x € X, and (ii) the sets ®g(x, a) do not depend on a € ®a(x)
for all x € X, as this takes place for games with players making simultaneous decisions.

The following theorem establishes sufficient conditions for K-inf-compactness of the
worst-loss function £2 : Gr(®a) C X x A — R defined in (3), when the image sets
{®Pa(x)}rex and {Pg(x, a)}(x,a)cGr(d,) can be noncompact. We remark that we currently
do not know whether the assumption, that the set-valued mapping £4<F : Gr(®4°F) C
(XX B) XA +> R is A-lower semi-continuous, can be relaxed in Theorems 5, 8, 10, 11, and
13 to the assumption that this set-valued mapping is lower semi-continuous.

Theorem 5 (K-inf-compactness of the worst-loss function) Let &5 : Gr(dx) C X x
A > S(B) be an A-lower semi-continuous set-valued mapping and the function f3<B :
Gr(®5°%) C (X x B) X A — R defined in (9), where ®2°B s defined in (8), be K-inf-
compact on Gr(CDg"’B). Then the worst-loss function f£:Gr(Py) C Xx A R defined in
(3) is K-inf-compact on Gr(® ).

Proof Since the function £2<2 : Gr(®2°®) C (X x B) x A > R defined in (9), where
®2E is defined in (8), is K-inf-compact on Gr(®%®), we have that properties (i) and (ii)
from Remark 5 hold.

To prove that the function £ 1is K-inf-compact on Gr(®y), we fix arbitrary C € K(X),
A eR,and {(x™,a™)},—12... C Gre(da) such that

1™ g™y <), (11)

foreachn =1, 2, ..., and establish that the sequence {(x ) a("))}”:],g,,__ has a limit point
(x,a) € Gre(d,) satisfying £ff(x,a) < A.

According to Theorem 4, it is sufficient to prove that the sequence {(x (N a(”))},,:m, . C
Grc (®a) satisfying inequality (11) has a limit point (x, a) € Grc(®a). Indeed, since C €
K(x), without loss of generality we may assume that the sequence {x"},_ .. converges
in X and its limit x belongs to C. To prove that the sequence {a™Y,— 1,2,... has a limit point
a € ®p(x), we fix an arbitrary b € ®g(x, a*) for some a* € @, (x) and note that there exists
a sequence {b(")}n=1,2,.,. with b™ € dg(x™, a™) n =1,2,..., that converges and its
limit equals to b because the set-valued mapping &5 : Gr(P,) C X x A+ S(B) is A-lower
semi-continuous. Then, according to (3) and (11), the sequence {£(x™, a™, b(”))}nzl,z,”_
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is bounded above by A. Therefore, property (ii) from Remark 5 implies that the sequence
{a(")}nzlﬁz,“_ has a limit point a € ®5(x). Therefore, the sequence {(x™), a("))}nzl,z,“_ has
a limit point (x, a) € Gre(Pa). m]

The following theorem establishes sufficient conditions for upper semi-continuity of
the worst-loss function £ : Gr(®a) C X x A + R defined in (3) and basic proper-
ties for the solution multifunction ®% defined in (6), when the image sets {®a(x)}rex and
{®Pe(x, a)}(x,a)eGr(o,) can be noncompact.

Theorem 6 (Upper semi-continuity of the worst-loss function) If a function £ : Gr($g) C
(Xx A) x B> R is K-sup-compact on Gr(®g), then the worst-loss function £* : Gr(®,) C
X x A R defined in (3) is upper semi-continuous. Moreover, the supremum in (3) can be
replaced with the maximum and the nonempty sets {®%5(x, a)}(x,a)eGr(0,) defined in (6) [see
also the last equality in (7)] satisfy the following properties:

(a) the graph Gr(®3}) is a Borel subset of X x A X B;
(b) if £*(x,a) = —o0, then ®%(x, a) = ®p(x, a), and, if f*(x,a) > —oo, then *%(x, a)
is compact.

Proof Since the function £ : Gr(®g) C (X X A) X B — Ris K-sup-compact on Gr(Pg),
we have that Theorem 1, being appliedto X = X x A, Y =B, ® = &, and f = —1,
implies all the statements of Theorem 6. O

The following theorem describes sufficient conditions for continuity of the worst-loss
function £* : Gr(®,) C X x A — R defined in (3), when the image sets {®a(x)}rex and
{®5(x, @)}(x,a)eGr(o,) can be noncompact.

Theorem 7 (Continuity of the worst-loss function) Let 5 : Gr(®a) C X X A +— S(B) be
a lower semi-continuous set-valued mapping, £ : Gr(®g) C (X x A) X B> R be a K-sup-
compact function on Gr(®g), and the function £*<F : Gr(®4<F) C (X x B) x A > R
defined in (9), where ®5°5 is defined in (8), be K-inf-compact on Gr(®5E). Then the
worst-loss function A:Gr(b) c Xxx AR defined in (3) is continuous.

Proof Theorem 4 implies that the worst-loss function £ Gr(®a) C X x A R is
lower semi-continuous. Theorem 6 implies that £* : Gr(®a) C X x A+ R is upper
semi-continuous. Therefore, £1 : Gr(®,) C X x A > R is continuous. O

The following theorem describes sufficient conditions for lower semi-continuity of the
minimax function v? defined in (4) and basic properties for the solution multifunction 3
defined in (5), when the image sets {®x(x)}rex and {Pg(x, @)} (x,a)eGr(®,) can be noncom-
pact.

Theorem 8 (Lower semi-continuity of minimax) Let ®5 : Gr(®,) C X X A +> S(B) be
an A-lower semi-continuous set-valued mapping and the function £2<8 : Gr(®4°F) C
(XxB)xAmr R defined in (9), where ®5°8 is defined in (8), be K-inf-compact on
Gr(®4 ). Then the minimax function v : X > R defined in (4) is lower semi-continuous.
Moreover, the infimum in (4) can be replaced with the minimum and the nonempty sets
{®% (x)}xex defined in (5) satisfy the following properties:

(a) the graph Gr(®%) is a Borel subset of X X A;
(b) if vF(x) = 400, then ®%(x) = D a(x), and, if V(x) < +o0, then d% (x) is compact.
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Proof Theorem 5 implies that the worst-loss function £% : Gr(®,) C X x A — R defined in
(3) is K-inf-compact on Gr(®y). Therefore, Theorem 1, being applied to X := X, Y := A,
D =Py, and f = £F, implies all the statements of Theorem 8. O

The following theorem describes sufficient conditions for upper semi-continuity of the
minimax function v* defined in (4) and basic properties for the solution multifunction ®;;
defined in (6), when the image sets {®x(x)}rex and {Pg(x, @)} (x,a)eGr(®,) can be noncom-
pact.

Theorem 9 (Upper semi-continuity of minimax) Let &5 : X +— S(A) be a lower semi-
continuous set-valued mapping and £ : Gr(®g) C (X x A) X B> R be a K-sup-compact
function on Gr(®g). Then the minimax function v : X > R defined in (4) is upper semi-
continuous. Moreover, the supremums in (3) and (4) can be replaced with the maximums
and the nonempty sets {®5(x, @)} (x,a)eGr(d,) defined in (6) [see also the last equality in (7)]
satisfy properties (a) and (b) of Theorem 6.

Proof Theorem 6 implies that the worst-loss function £* : Gr(®,) C X x A — R defined
in (3) is upper semi-continuous on Gr(®,), the supremums in (3) and (4) can be replaced
with the maximums, and the nonempty sets {®} (x, @)}(x.a)eGr(®,) defined in (6) [see also
the last equality in (7)] satisfy properties (a) and (b) of Theorem 6. The upper semi-continuity
of the minimax function v* : X + R follows from Theorem 2, being applied to X := X,
Y := A, @ := &p, and f := £, because a set-valued mapping ®» : X > S(A) is lower
semi-continuous and the function £* : Gr(®,) C X x A > R is upper semi-continuous. 0

The following theorem describes sufficient conditions for continuity of the minimax func-
tion v? defined in (4), when the image sets {®a(x)}rex and {®Pg(x, a)}(x,a)eGr(®,) can be
noncompact.

Theorem 10 (Continuity of minimax) Let @, : X — S(A) be a lower semi-continuous set-
valued mapping, ®p : Gr(®,) C X X A+ S(B) be an A-lower semi-continuous set-valued
mapping, £ : Gr(®g) C (X x A) x B+ R be a K-sup-compact function on Gr(®g), and
the function £2<8 : Gr(®4°F) C (X x B) x A +> R defined in (9), where ®48 is defined
in (8), be K-inf-compact on Gr(®3F). Then the minimax function vt : X+ R defined in
(4) is continuous.

Proof Theorem 8 implies that the function vl : X > Ris lower semi-continuous. Theorem 9
implies that the function vE 1 X > Ris upper semi-continuous. Thus, the function v* : X —
R is continuous. O

The following theorem describes sufficient conditions for K-upper semi-compactness
of the solution multifunction ®} defined in (5), when the image sets {®a(x)}rex and
{®5(x, @)} (x.a)eGr(e,) Can be noncompact.

Theorem 11 (Continuity properties for solution multifunction ®%) Let vl X > RU{—00}
defined in (4) be a continuous function, @5 : Gr(®,) C X X A+> S(B) be an A-lower semi-
continuous set-valued mapping, and the function £*<5 : Gr(®4°F) C (X x B) x A+> R
defined in (9), where @55 is defined in (8), be K-inf-compact on Gr(®5"B). Then the
infimum in (4) can be replaced with the minimum and the solution multifunction ®3 : X —
S(A) defined in (5) is upper semi-continuous and compact-valued.

Proof Theorem 5 implies that the worst-loss function £% : Gr(®») C X x A > R defined in
(3) is K-inf-compact on Gr(®,). Since vl X > R U {—00} defined in (4) is a continuous
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function, we have that Theorem 3, being applied to X := X, Y := A, @ := &,, and
f := £%, implies that the infimum in (4) can be replaced with the minimum and the solution
multifunction @} : X > S(a) defined in (5) is upper semi-continuous and compact-valued.

]

The following theorem provides sufficient conditions for K-upper semi-compactness
of the solution multifunction ®} defined in (6), when the image sets {®Pa(x)}rex and
{®5(x, @)} (x.a)eGr(e,) can be noncompact.

Theorem 12 (Continuity properties of the solution multifunction ®%) Let £* : Gr(da) C
X X A+> RU {400} defined in (3) be a continuous function on Gr(® ) and £ : Gr(dpg) C
(XxA) X B+ Rbea K-sup-compact function on Gr(®g). Then the supremums in (3)
and (4) can be replaced with the maximums and the solution multifunction ®% : Gr(®a) C
X X A > S(B) defined in (6) is upper semi-continuous and compact-valued.

Proof According to Remark 1, the statements of the theorem follow from Theorem 3, being
applied to X := Gr(®,), Y :=B, @ := g, and f := —£. O

For metric spaces the following theorem can be viewed as an extension of Berge’s max-
imum theorem for noncompact image sets from Feinberg et al. (2014, Theorem 1.4) to the
minimax formulation.

Theorem 13 (Continuity of the worst-loss function £* and the minimax function v* and
upper semi-continuity of the solution multifunctions ®% and ®3) Let ®5 : X — S(A) be a
lower semi-continuous set-valued mapping, @5 : Gr(d,) C X x A+ S(B) be an A-lower
semi-continuous set-valued mapping, £ : Gr(®g) C (X x A) X B+ R be a K-sup-compact
function on Gr(®g), and the function £2<8 : Gr(®4°F) C (X x B) x A > R defined
in (9), where ®5°% is defined in (8), be K-inf-compact on Gr(®5°P). Then the worst-loss
function £ : Gr(®a) C X X A+ R defined in (3) is continuous and the minimax function
v* 1 X > R defined in (4) is continuous. Moreover, the following two properties hold:

(a) the infimum in (4) can be replaced with the minimum, and the solution multifunction
D% X+ S(A) defined in (5) is upper semi-continuous and compact-valued;

(b) the supremums in (3) and (4) can be replaced with the maximums, and the solution
multifunction % : Gr(®a) C X X A — S(B) defined in (6) is upper semi-continuous
and compact-valued.

Proof Theorem 7 implies that the worst-loss function £ 1. Gr(®a) C X x A Rdefined in
(3) is continuous on Gr(®,). Continuity of the minimax function vl X > R defined in (4)
follows from Theorem 10. Theorems 11 and 12 imply statements (a) and (b) respectively. O

4 Preserving properties of K-inf-compact functions

In Sect. 3 we considered problems in which players select actions deterministically. In other
words, players play pure strategies. The previous section describes the continuity proper-
ties for objective functions and solution multifunctions for such problems with possibly
unbounded payoffs, and noncompact action sets. In general, it is known that, if the second
player knows the decision of the first players, pure strategies are sufficient. In Sect. 6 we show
that pure strategies are indeed sufficient for the problem studied in the previous section. How-
ever, if players make decisions simultaneously, pure strategies usually are not sufficient, and
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the players should choose randomized strategies, which are probability distributions on the
sets of actions. The remarkable fact is that the property of K-inf-compactness is preserved
when randomized strategies are used instead of pure ones. This section describes such results.
Most of them were derived in Feinberg et al. (2016) for studying partially observable Markov
decision processes.

Let S be a metric space. An integral fS f(s)u(ds) of a measurable R-valued function
f on S over the measure u € P(S) is well-defined if either fS f(s)u(ds) > —oo or
Js fT(s)u(ds) < +o0, where fors € S

f7() =min{f(5),0}, fF(s) =max{f(s),0}.

If the integral is well-defined, then

éfmmww=émewn+éfmmwn

Let B(S) be a Borel o-field on S, that is, the o-field generated by all open sets of the
metric space S. For a nonempty Borel subset S C S, denote by B(S) the o-field whose
elements are intersections of S with elements of B(S). Observe that S is a metric space with
the same metric as on S, and B(S) is its Borel o -field. For a metric space S, let P(S) be the set
of probability measures on (S, B(S)) and P/$(S) denote the set of all probability measures
whose supports are finite subsets of S. A sequence of probability measures {u(”)}nzlyz,”_
from P(S) converges weakly to v € P(S) if for each bounded continuous function f on S

/f(s)u(")(ds)ﬁ/f(s)u(ds) as n — 00.
S S

Note that the set P/ (S) is dense in a separable metric space P(S) with respect to the weak con-
vergence topology for probability measures, when S is a separable metric space; Parthasarathy
(1967, Chapter II, Theorem 6.3).

Let X, Y be nonempty Borel subsets of respective Polish spaces (complete separable
metric spaces). The following lemma, three theorems, and a corollary describe preserving
properties for lower semi-continuous, inf-compact, and K-inf-compact functions.

Lemma S (Feinbergetal. 2016, Lemma6.1) Ifa function f : XxY + RU{+o00} is bounded
from below and lower semi-continuous, then the function f : X x P(Y) +— R U {400},

f@ﬂ%=/f@dk@ﬁ,X€XZ€MW, (12)
Y
is bounded from below by the same constant as f and lower semi-continuous.

Theorem 14 (Feinberg et al. 2016, Theorem 6;1) If f: XxY > RU ({400} is an inf-
compact function on X x Y, then the function f : X x P(Y) +— R U {400} defined in (12)
is inf-compact on X x P(Y).

Corollary 2 If f : X x Y > R U {+o00} is a K-inf-compact function on X x Y, then the
function f : X x P(Y) > R U {400} defined in (12) is K-inf-compact on X x P(Y).

Proof According to Definition 1, the function f : XX P(Y) = RU{+00} defined in (12) is
K-inf-compact on X x P(Y) if and only if for every C € K(X) this function is inf-compact
on C x P(Y).

Let us prove that the function f : X x P(Y) = R U {+00} defined in (12) is inf-compact
on C x P(Y) for each C € K(X). For this purpose we fix an arbitrary C € K(X) and
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note that the function f|c :C xY +— RU {+o0} is inf-compact on C x Y because this

function is K-inf-compact on X x Y. Theorem 14 implies that the function f defined in (12)
is inf-compact on C x P(Y). Therefore, this function is K-inf-compact on X x P(Y) since
C € K(X) is arbitrary. O

Theorem 15 (Feinberg et al. 2016, Theorem 3.3) If the function f : X x Y > R U {+o00}
is bounded from below and K-inf-compact on X x Y, then the function f : P(X) x Y >
R U {+o0},

[z y) = /Xf(x, yz(dx), ze€PX), ye,
is bounded from below by the same constant as f and K-inf-compact on P(X) x Y.

Theorem 16 If the function f : X x Y + R U {+o0} is bounded from below and K-inf-
compact on X x Y, then the function [ : P(X) x P(Y) —» R U {+o0},

FE& 2= / / a0 @@y, FeP®), M ePW), (13
xJy
is bounded from below by the same constant as f and K-inf-compact on P(X) x P(Y).

Proof Lemma 5, being applied to f : X x Y +— R U {400}, implies that the function
f : X x P(Y) — R U {400} defined in (12) is bounded from below by the same constant as
f. Then, Lemma 5, being applied to f X x P(Y) — R U {400}, implies that the function
f : P(X) x P(Y) +— R U {400} is bounded from below by the same constant as f.
Theorem 15, being applied to f : X x Y +— R U {400}, implies that the function
f :PX) x Y > R U {+o0} defined in (13) is K-inf-compact on P(X) x Y. Therefore,
Corollary 2, being applied to f : P(X) x Y +— R U {400}, implies that the function
f : P(X) x P(Y) — R U {400} is K-inf-compact on P(X) x P(Y). O

S Two-person zero-sum games with simultaneous moves

In this section we provide sufficient conditions for continuity of the lopsided value functions,
upper semi-continuity of solution multifunctions, and compactness of solution sets for zero-
sum stochastic games with possibly uncountable and noncompact action sets and unbounded
payoft functions.

5.1 Preliminaries

Definition 5 A two-person zero-sum game is a triplet {A, B, ¢}, where

(1) A is the space of actions for Player I, which is a nonempty Borel subset of a Polish

space;

(i) B is the space of actions for Player II, which is a nonempty Borel subset of a Polish
space;

(iii) the payoff to Player I, —oco < c(a, b) < 400, for choosing actions a € A and b € B,
is a measurable function on A x B;

(iv) for each b € B the function a > c(a, b) is bounded from below on A;

(v) for each a € A the function b +> c(a, b) is bounded from above on B.
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Remark 6 1f a triplet {A, B, ¢} is a two-person zero-sum game as defined above, then the
triplet {B, A, —c2oB) where ¢A“B(b, a) = c(a,b) foreacha € A and b € B, is also a
two-person zero-sum game satisfying conditions in Definition 5.

The game is played as follows:

o the decision-makers (Players I and II) choose simultaneously respective actions a € A
and b € B;

o the result (a, b) is announced to both of them;

e Player I pays Player II the amount c(a, b).

Strategies (sometimes called mixed strategies) for Players I and Il are probability measures
7® € P(A) and 78 € P(B). Moreover, a strategy 72 (7B) is called pure, if the probability
measure 72(-) (wB(-)) is concentrated at a point. Note that P(A) is the set of strategies for
Player I, and P(B) is the set of strategies for Player II.

Remark 7 Assumptions (iv) and (v) for the game {A, B, c} are natural because without them
the expected payoffs may be undefined even if one of the players chooses a pure strategy.

Let us set

& (nh, 7P) :=//c+(a,b)ﬂm(db)nA(da),
AJB

& (nh, 7P) :://c*(a,b)nﬁ(db)n‘*(da),
AJB

for each (JTA, JTIB) € P(A) x P(B). Then the expected payoff to Player 11
é( A nB) = éEB(JTA, n[B) + ée(nA, JTIB),

is well-defined if either ¢® (7%, 7®) < +o00 or ¢9(n#, 78) > —oo; (74, 7) € P(A) x
P(B). Of course, when the function ¢ is unbounded both below as well as above, the quantity
é( A JT]B) can be undefined for some (nA, JZ'B) € P(A) x P(B). We denote

PS,(B) := (7 e P(B) : (™, 7P) is well-defined}, 7% € P(A);
PSo(A) == {r" e P(A) : é(x", 7P) is well-defined}, 7" € P(B).

Further, if a measure 74 € P(A) is concentrated at a point @ € A, then we will write
é(a, ) instead of &(n®, %) for each 7% € P(B). Similarly, if a measure 7% € P(B) is
concentrated at a point » € B, then we will write &(r®, b) instead of é(nA, nB) for each
ah e P(A).

Remark 8 Assumption (iv) for the game {A, B, ¢} implies that é° (r®,b) > —oo for each
78 € P(A) and b € B. Therefore, P/*(B) C ]P’;jA (B) for each 7® € P(A) and, since /S (B)

is dense in P(B), then ﬂnAE]P(A)]P’fTA\ (B) is dense in P(B).

Remark 9 Assumption (v) for the game {A, B, ¢} implies that ¢®(a, 78) < 400 for each
a € Aand 7® € P(B). Thus, P/*(A) C IP;jE(A) for each 7® € P(B) and, since P/5(A) is

dense in P(A), then N & pp PS5 (A) is dense in P(A).
The set of all strategies for each player is partitioned into the sets of safe strategies PS (A)

and PS(B) (strategies, for which the expected payoff is well-defined for all strategies played
by another player) and unsafe strategies PU (A) and PV (B):
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PS(a) = {* e PA) : PEL(B) = P(B)]
PU(a) = [t e P(a) : PS,(B) £ PB)];
PS(B) = {7° ¢ PB) : PSa(a) = P(A)],
PV (B) = [rr € P(B) : PS4(A) ;HP’(A)}.

Remark 10 Wenote that P(A) = PS(A)UPY (A), P(B) = PS(B)UPY (B), PS(A)NPY (A) =
@, and PS(B) NPY (B) = ¥. Moreover, P/* (A) C PS(A) (see assumption (iv) in Definition 5
of the game {A, B, ¢} and Remark 8) and P/ (B) c PS(B) (see assumption (v) in Definition 5
and Remark 9). Therefore, PS(A) is dense in P(A) and PS(B) is dense in P(B).

Remark 11 Observe that PS(A) = P(A) if and only if é(w#, 7®) is well-defined for all
pairs (nA, nB) € P(A) x P(B). Therefore, the following five claims are equivalent: (i)
PS(A) = P(A), (i) PY(A) = ¢, (i) PSB) = PB), (iv) PYB) = 0, (v) é(z*, 7B) is

well-defined for all pairs (NA, nB) € P(A) x P(B).
Let us introduce the following notations:

F(hy = supé(rh, b), PE(A) == [n;} e PA) : &by < a] ,
beB (14)
&) = inf éa, 7). P} (B) := {n}? ePB) : &P > ,3] ,

for each 72 € P(A), n® € P(B), o, B € R. Remarks 8 and 9 imply respectively that
M) > —oo forall 72 € P(A) and & (nB) < +oo for all 7P € P(B).

Theorem 17 Let {A, B, ¢} be a two-person zero-sum game introduced in Definition 5 and
(]TA, JTB) € P(A) x P(B). Then the following two equalities hold:

Aty = sup é(nA,nP), (15)
nEePs, B)

&P = inf é(nh, P, (16)
ThePS (M)

where ¢ and &° are defined in (14).

Proof Tt is sufficient to establish equality (15) for each 7# € P(A). Indeed, equality (15),
being applied to the game {B, A, —c*< B} where the function ¢*<® is defined in Remark 6,
implies equality (16).
Let us prove that equality (15) holds for each 7% € P(A). Fix an arbitrary 78 e P(A).
According to Remark 8, the expected payoff ¢(r, b) to Player II is well-defined for each
b € B. Then the inequality

sup et n?) > sup e, by = F ()
nPePiA(B) beB

holds because each pure strategy for Player II can be interpreted as the mixed strategy
concentrated in a point. Now let us prove that

Erhy < sup é(nA,nP).
nPePs, B)
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If sup, g ¢(r™, b) = +00, then the inequality

sup et rr}?) < sup e, b) (17)
nEePs, @) beB

obviously holds. Let supy,p ¢(7*, b) < 400. Inequality (17) holds if and only if

e, 72 < supé(, b) (18)
beB

for each nf € IP’}ST , (B). The rest of the proof establishes inequality (18).
Let us fix an arbitrary 7> € ]P’;jA (B). Since either ¢° (74, 7B) > —oc0 or ¢® (7?, 7B <
400, we have that the Fubini—Tonelli theorem implies

et 7By = / e, byn2(db),
B
which implies (18). Inequality (17) is proved. O

Remark 12 According to (14) and assumptions (iv) and (v) in Definition 5 of the game
{A, B, c} (see also Remarks 8 and 9 and Theorem 17), the inequality

&®) < Fhy (19)
holds forall7® € P(A) and forall 7® € PS(B). Indeed, for 78 € PS(B) andfor z# € P(A),

F#®) = inf 5(7(,‘}, %) < é(nh, nB) < sup &(xh, 71,]?) =y,
rhAeP(A) nPeIP’SA(]B)
b

Since it is not clear whether inequality (19) holds for 78 € PU(B), the following definition
introduces the lopsided value (the value in the asymmetric form).

Definition 6 If the equality

sup F@#@®) = inf ) =v) (20)
7BePS (B) TAeP(A)

holds, then we say that v is the lopsided value of the game {A, B, c}.

Remark 13 The lopsided value coincides with the classical definition of the value if PS (B) =
P(B). In this case, (20) becomes

sup By = inf Fh). 1)
7BeP(B) aheP(A)

For example, if ¢ is bounded either from below or from above on A x B, then PS (B) = P(B).
If (21) holds, we shall omit the term “lopsided.”

Remark 14 Infsup equality (20) is asymmetric. The main obstacle for writing it in the sym-
metric form (21) is that it is not clear why inequality (19) holds for all Tt e P(A) and
7B ¢ P(B). Equality (20) can be linked to general forms of infsup equalities, which are
asymmetric; see Proposition I.1.9 in Mertens et al. (2015). This is the reason why we use the
term lopsided value.
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In addition to the sets IP’E[ (A) and IP’Z (B) defined in (14), let us introduce
PE,(h) = |7t e Ph) : Eh) <a), weR
P ,®) = 7% cP®) : (") > B}, peR

Lemma 6 Let {A, B, ¢} be a two-person zero-sum game introduced in Definition 5. Then
the following statements hold:

(a) the function ¢* is convex on P(A);
(b) the function ¢° is concave on P(B);
(c) the sets IP’g (A), Pia (A), IP’Z (B), and Piﬁ (B) are convex for all a, g € R;

Proof Let us prove statement (a). Indeed, let rr{*, nf € P(A) and @ € (0, 1). If either
én(nf*) = +oo or éu(nf) = 400, then éﬁ(omf* +(1 —oc)n'f) < aft (nf&) +(1 —a)é:(n'f).

Otherwise, nﬁ, nf € IP’:< Loo(A) and

alt () + (1 — )éf (s = asup é@d, b) + (1 — a) sup é(s*, b)
beB beB

> sup é(amit 4+ (1 — a)ns, b) = & (ant® + (1 — a)msd).
beB

(22)

Since nfx, nﬁ& € P(A) and o € (0, 1) are arbitrary, then (22) implies that the worst-loss
function &% is convex on P(A). Statement (a) is proved.

Statement (b) follows from statement (a) applied to {B, A, —c*<®} where ACBp, ) =
c(a, b) foreach a € A and b € B. Statement (c) follows from statements (a) and (b). m]

5.2 The existence of a lopsided value

The following Theorem 18 provides sufficient conditions for the existence of a lopsided value
for a two-person zero-sum game with possibly noncompact action sets and unbounded payoffs
and describes the property of the solution set for one of the player under these conditions.
For well-defined payoff functions, the proof of the existence of the value is usually based
on Sion’s theorem (Mertens et al. 2015, Theorem I.1.1) that requires that at least one of the
decision sets is compact. In our situation, both decision sets may not be compact. In addition,
the payoff function ¢ may be unbounded above and below, and therefore the payoff function
¢ may be undefined for some pairs of mixed strategies. Because of these reasons, our proof
of the existence of the lopsided value does not use Sion’s theorem. In general, a game on the
unit square with bounded measurable payoffs may not have a value; see Yanovskaya (1974,
p- 527), and the references to counterexamples by Ville, by Wald, and by Sion and by Wolfe
cited there. Therefore, some conditions on continuity of payoff functions are needed, and
Theorem 18 requires mild assumptions (i) and (ii).

Theorem 18 Let a two-person zero-sum game {A, B, ¢} introduced in Definition 5 satisfy
the following assumptions:

(i) for each b € B the function a — c(a, b) is lower semi-continuous;
(i) there exists bg € B such that the function a — c(a, byg) is inf-compact on A.

Then the game {A, B, c} has a lopsided value v, that is, equality (20) holds, and

sup AP = sup  EP).
7BePS (B) 7BeP/s (B)
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Moreover; the set IP’E (A) is a nonempty convex compact subset of P(A).

Let IF(S) be the family of all finite subsets of a set S. The proof of Theorem 18 uses the
following theorem.

Theorem 19 (Aubin and Ekeland 1984, Theorem 6.2.2) Let A and B be nonempty convex
subsets of vector spaces and f : A x B +— R be a function such that a — f(a, b) is convex
foreachb € B and b +— f(a, b) is concave for each a € A. Then

sup inf f(a,b) = sup inf max f(a,b). (23)
beB acA FE]F(B) acA beF

Proof of Theorem 18 Observe that the following statements hold:

(i1) the sets P* (A) and P/5 (B) are nonempty and convex;

<-+00
(i2) the function ¢ : P(A) x P/*(B) — R U {+o0} is well-defined and affine in each
variable;
(i3) the function &(-, 7®) : P(A) > R U {+o0} is lower semi-continuous for each

7B e P/5(B);
(i4) the function ¢( -, bg) : P(A) > R U {+o0} is inf-compact on P(A);
(i5) the function ¢(-, -) takes finite values on Pi Loo(A) X P/3(B).

Let us prove statements (i1)—(is).

(i1) According to Remark 9, () < +ooforsome 72 € P(A). Thus the set ]P’n<+OO (A)
is not empty. Lemma 6(c) implies that the set ]P’ﬁ< 1 oo(A) is convex. The set P/5(B) is not
empty since the set of pure strategies for Player II is not empty and each pure strategy for
Player II belongs to P/*(B). The set P/* (B) is convex because a convex combination of
two probability measures on B with finite supports is a probability measure on B with a
finite support. Statement (i) is proved.

(i) Let 7% € P(A) and 7® € P/$(B). The definition of P/ (B) implies the existence
of M =1,2,..., (B™}=12...m C [0, 1], and {p"™},,—1 2. .y C B such that gV +
BP 4+ ... 4+ M — 1 and 78(B) = BOILD e By + BOIHLP € By + --- +
BMIHM ¢ BY for each B € B(B), where I{b € B} = 1 whenever b € B and
I{b € B} = 0 otherwise. Since the function a + c(a, b) is bounded from below on A
foreach b € B,

M
& (nh, 7B) :/ (Z ﬁ(’")c_(a,b('”))> 74 (da)
A m=1
N (24)
(m) 5 - (m) _
> Y A" inf ¢ (a,b™) > oo,

m=1

which implies that é(#, 7®) is well-defined forall 7* € P(A) and forall 7% € P/ (B).
This function is affine in each variable on P(A) x P/5(B) because of the basic properties
of the Lebesgue integral. Statement (i2) is proved.

(i3) Let us fix an arbitrary 7B e P/5(B).

As shown in the proof of (ip), there exist M = 1,2, ..., {ﬁ(m)}m=1,2,__“M c [0, 1],
and {b"™},—12. .y C B such that BV + P 4+ ... + M = | and 7®(B) =
BB e BY + BP1(bP e B} + --- + BMIBM ¢ B} for each B € B(B).
Since E(rrA, rrB) = BWeA, bWy 4 Pe®, 6Dy 4. 4 BMe( A bM) for each
78 e P(A), it is sufficient to prove that the function é(-, b) : P(A) > R U {400} is
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lower semi-continuous for each b € B because a convex combination of a finite number
of bounded below lower semi-continuous functions is lower semi-continuous. Lemma 5,
being applied to S; = {b}, So = A, and f(s1,s2) = c(s2,51), (51,5) € S; x Sy,
implies that the function ¢( -, b) : P(A) > RU {400} is lower semi-continuous for each
b € B. Statement (i3) is proved.

(i4) Assumption (i) and Theorem 14, being applied to S| = {b}, Sp = A, and f (51, 52) =
c(s2,51), (s1,52) € S x Sy, imply that the function ¢( -, bg) : P(A) > R U {400} is
inf-compact on P(A). Statement (i4) is proved.

(is) Let 7 € PX (A) and 7B € P/*(B). Note that

é(nt, 7B < &) < +oo, (25)

for all 74 € P%._ (A) and for all 7 € P/*(B), where the first inequality follows from
(15) and Remark 8. The second one follows from 7 € ]P’ﬁ< Too(A).

Inequalities (24) and (25) imply that the function ¢(-, -) takes finite values on ]P’:< Loo(A) X
P/5(B). Statement (i5) is proved.
Let us prove equality (20). In view of inequality (19), it is sufficient to prove that
inf &t < sup EP). (26)
TheP(A) 7BePS (B)
We denote the left-hand side of inequality (26) by v¥ and the right-hand side of inequality
(26) by v". Since P/*(B) c PS(B) (see Remark 10),

sup éb(rrB) <. 27
aBeP/s(B)

Since P/*(B) c PS(B), formulae (14) and (16) imply that for each 7B € P/5 (B)

& () = inf é(a, 7®) = inf 6(71A, %), (28)
acA TheP(A)

where the second equality follows from ]P’jsT]B (A) = P(A) since 7® € PS(B). In view of
assumption (v) from Definition 5, each pure strategy of Player [ belongs to Pi LooA) CP(A).
Therefore, (28) implies
@B = inf  ¢(nt, 7B, (29)
ThePt ()

<+00

for each 7® € P/*(B). Inequality (27) and equality (29) imply
sup inf é(nA, JTB) <. (30)
aBePfs(B) nAeIPiwo (A)

In view of properties (i1), (i2), and (is), Theorem 19, with A = ]P)n<+oo (A), B = P/5(B),
and f = ¢, implies
sup inf  ¢&( A N]B) = sup inf max é(nA,n]B). 31)
nBePfs(B) mhePL  (A) FeF(Pfs(B)) whePl,  (8) T5€F

Let Fo(P/$(B)) denote the family of all finite subsets of P/5(B) containing the pure strat-
egy of Player Il concentrated at the point by € B, whose existence is stated in assumption (ii).
Since P~ +oo(A) C P(A) and Fo(P/ (B)) C F(P/*(B)),
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v = sup inf  max é(nA, JT]B) <  sup inf max é(nA, nB).
FeFo(P/s (B)) T €P(A) 7PeF FeF(P/s(B)) mheP ,  (A) T°€F
(32)

Formulae (30)—(32) imply v* < v”. Thus, if
vt < v, (33)

then inequality (26) holds. Recall that inequality (26) implies equality (20).

Let us prove (33). Statements (i3) and (i4) imply that the function max, s,y ¢(-, 78) is
inf-compact on P(A) for each F € Fy (P/$(B)). Therefore, for each F € Fo(P/*(B)) there
exists n;‘@ € P(A) such that

T = argminga py, max ¢(z, 7).
nBeF
The definition of v* given in (32) implies that n,‘? € NyeepDe(. 78 (V") for each F €

Fo(Pf5(B)). Thus, for each F € Fo(P/5 (B)),
NeBer Dy 280" # 0. (34)

Statement (i3) and Remark 2 imply that the set D, B)(U*) is closed for each 78 ¢

o(-,m
P/5(B). Statement (i4) implies that the set Dg(. p,)(v*) is compact. As follows from (34),
the collection {Dé(, ,ﬂa)(v*) N Dec. by (W) iBeprs @) Of closed subsets of the compact set
Dg(. by (V™) satisfies the finite intersection property. Therefore, this collection has a nonempty
intersection, that is, there exists 72 € P(A) such that 72 € N_&_pss @ De(. 2B (V"); see

e.g., Reed and Simon (1980, p. 98). Thus é(nf, 7B) < v*forall 7B € P/ (B), and therefore

sup 6(nf, JTB) < ¥ (35)
7B ePfs(B)
We note that
6ﬁ(nf) = supé(nf, b) < sup @( f,nE), (36)
beB xBeP/s(B)

where the equality is the first definition in (14) and the inequality holds because each pure
strategy of Player II belongs to P/ (B).

Inequalities (35), (36) and the definition of v# imply inequality (33), which implies inequal-
ity (26). Thus, equality (20) holds.

Let us prove that the set ]P)?, (A) is a nonempty convex compact subset of P(A). The
nonemptyness of the set ]P)E (A) follows from (35) and (36) because v* = vf = v, where v is
introduced in Definition 6.

As follows from the definition of ]P)?, (A) in (14),

PE(A) = NpeDy(. 1) (V). (37)

According to properties (i2)—(is), the set Dp(. ;) (v) is a convex compact subset of P(A) and
the set Dy =) (v) is a convex closed subset of P(A) for each 7 € P/*(B). In particular,
the set Dy(. p)(v) is a convex closed subset of P(A) for each b € B. Therefore, formula (37)
implies that [P’B (A) is a nonempty convex compact subset of P(A).

To finish the proof we note that equalities (29) and (31) and inequalities (32) and (33)
imply

inf @M< sup E@P.
TheP(A) 7BePfs(B)
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Therefore, the equality

sup &Py = sup  EP).
7BePS (B) 7BeP/s(B)

follows from (20) and (27). O

Corollary 3 If a two-person zero-sum game {A, B, c} introduced in Definition 5 satisfies
assumptions (1) and (ii) from Theorem 18, then

sup @) = inf &t
7BeA(B) TheP(A)

for each A(B) C P(B) such that P/S(B) c A(B) C PS(B).
Proof The corollary follows from Theorem 18 and from P/*(B) ¢ A(B) c PS(B). O

Corollary 4 Let a two-person zero-sum game {A, B, ¢} introduced in Definition 5 satisfy
conditions (i) and (ii) of Theorem 18. Then
inf @) = min ).
mheP(h) nheP(A)

Proof The corollary follows from (20) because the set ]P’g (A) in Theorem 18 is nonempty. O

Corollary 5 Let a two-person zero-sum game {A, B, ¢} introduced in Definition 5 satisfy
conditions (i) and (ii) of Theorem 18 and c( -, b) be inf-compact for each b € B. Then

. N A B . A A B
min sup c\m, T = sup mimn clm ,7T ).
TheP(A) 7BePfs (B) ( ) aBePfs(B) TheP(A) ( ) (38)

Proof Observe that

min sup 6(ﬂA,ﬂB): inf sup é(rrA,rrB)
7hAeP(A) 7B PSS (B) TheP(A) TBePfs (B)
= sup inf E(nA,nB),
7B ePfs (B) TAeP(A)

where the first equality follows from Corollary 4, Remark 10, and (15). The second equality
follows from Corollary 3, applied to A(B) = P/¥(B). It remains to prove that, for each
B e P/ (B),
inf ¢(n®, 7®) = min &(xh, 7). (39)
TheP(A) ( ) TheP(A) ( )

To prove (39) observe that the function Tt (@™, b) on P(A) is inf-compact for each

b € B. This follows from Theorem 14, applied to X := {b}, Y := A, and f (b, a) := c(a, D),
a € A, because, for each b € B, the function c( -, b) is inf-compact. Equality (39) follows
from inf-compactness of the function 7t é(n’A, n'B) on P(A) for each 7® € P/5(B),
which, in its turn, follows from inf-compactness of the function A 6(71A, b) on P(A)
for each b € B because the convex combination of inf-compact functions é(nA, nB) =
Y beB 7B(b)é(z®, b), where B is a finite subset of B such that 72(B) = 1, is an inf-
compact function.

The following Corollary 6 to Theorem 18 is Proposition 1.1.9 from Mertens et al. (2015)
for two-person zero-sum games {A, B, ¢} introduced in Definition 5. Note that the space A is a
compact topological space, B is any set, and, foreach b € B, c( -, b) is lower semi-continuous
in Mertens et al. (2015, Proposition 1.1.9).
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Corollary 6 (cp. Mertens et al. 2015, Proposition 1.1.9) Let {A, B, ¢} be a two-person zero-
sum game introduced in Definition 5, A be compact, and, for each b € B, c(-, b) be lower
semi-continuous. Then (38) holds.

Proof Since A is compact and, for each b € B, ¢(-, b) is lower semi-continuous, for each
b € B, c(-, b) is inf-compact. Therefore, (38) follows from Corollary 5. ]

The following Proposition 1 is Theorem 6.2.7 from Aubin and Ekeland (1984) for two-
person zero-sum games {A, B, c} introduced in Definition 5. Note that the space A is a
topological space, the space B is not endowed with a topology, and ¢ is not measurable in
Aubin and Ekeland (1984, Theorem 6.2.7).

Proposition 1 (cp. Aubin and Ekeland 1984, Theorem 6.2.7) Let a two-person zero-sum
game {A, B, ¢} introduced in Definition 5 satisfy conditions (i) and (ii) of Theorem 18.
Suppose the spaces A and B are convex subsets of vector spaces, the function a — c(a, b)
is convex for each b € B, and the function b — c(a, b) is concave for each a € A. Then

inf supc(a, b) = sup inf c(a, b) = (40)
aeh pep beB a€A

Moreover; there exists a* € A such that ¢*(a*) = V

Remark 15 (i) The assumptions of Theorem 18 are more general than the assumptions of
Proposition 1 because neither convexity nor concavity of the function c is assumed in The-
orem 18. (ii) Under the assumptions of Proposition 1, the value V equals the lopsided value
defined in (20). This observation follows from the equality stated in Theorem 18 and from
the equalities

sup inf c(a,b) = sup &(xP) = Jinf Sty = inf supc(a, b),  (41)
beB acA xBeP/fs (B) rheP(A) ach pep

which follow from Proposition 1 and

supinf c(a,b) < sup @B = inf &F@H) < inf supc(a, b),  (42)

beB aeA JTBEIP’fS(B) ﬂAEP(A) N beB
where the inequalities in (42) hold because each actions a € A and b € B for Players [ and II
can be interpreted as the strategies 8, € P(A) and &1y € P(B) concentrated in points a and b
respectively, and the equality in (42) follows from Theorem 18. (iii) Under the assumptions of
Theorem 18, there exists a* € A such that ¢*(a*) = inf,ea Suppcp c(a, b). This is true since
the function é¥(a) = sup,cp c(a, b) is inf-compact on A because this function the supremum
of lower semi-continuous functions a — c(a, b) and at least one of them, a — c(a, by), is
inf-compact.

Remark 16 Theorem 18 allows the function ¢ to take the values from R U {+oc} unlike
the payoff function in Aubin and Ekeland (1984, Theorem 6.2.7), that takes only finite
values. This is the reason why Theorem 18 does not follow from Aubin and Ekeland (1984,
Theorem 6.2.7) and properties (i1)—(i4) stated in the proof of Theorem 18.

Remark 17 Fan’s minimax theorem (Fan 1963, Theorem 2) states equality (40) for a convex—
concave-like function ¢, when A is a compact subset of a Hausdorff space, B is arbitrary,
and the functions a +— c(a, b) are lower semi-continuous for all b € B. By using this
theorem, Perchet and Vigeral (2015) provided (40) for a convex—concave function ¢ without
the assumption that A is compact, but with additional assumptions including that A is finite-
dimensional and bounded.
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The following example describes a two-person zero-sum game with noncompact action
sets and unbounded payoffs satisfying the assumptions of Theorem 18.

Example 2 Let A = B = R, c(a,b) = a®> — b?, (a,b) € R>. Then the game {A, B, c}
satisfies the conditions of Theorem 18 and v = 0.

Example 2 admits the following interpretation in the form of a simple game of timing [see
Yanovskaya (1974, Section 6)] with noncompact decision sets. Two teams work on a project
consisting of two independent tasks, each performed by one of the teams. The project should
be completed on a target date. The project is completed when both tasks are completed, and
they should be completed simultaneously. The penalty, in the amount of ¢2 paid to another
team for completing its task by 7 units of time later or earlier than the target date, creates
incentives to the teams to complete their tasks exactly on time. Of course, there are other
payoff functions including |¢| that provide incentives to achieve the same goal.

If

sup @) < sup PP, (43)
7BePU (B) 7B ePS (B)

as this takes place in Example 2, then the existence of the lopsided value v defined in (20)
implies that the equality

sup FE® = inf &t (44)
7BeP(B) 7heP(A)

holds. In particular, (43) and (44) hold if &*(7®) = —oo for all 7 € PV. The following
example demonstrates that it is possible that under the condition, that the function (b, a) —
c(a, b) is K-inf-compact on B x A, which is a stronger condition than the assumptions of
Theorem 18, it is possible that & (@®) > —oo for some 7P € PV (B).

Example 3 The function (b, a) — c(a, b) is K-inf-compact on B x A, the function (a, b)
c(a, b) is K-sup-compact on A x B, and there exists 78 € PV (B) such that & (7 B) > —o0.

Let us set A =B :={1,2,...}, c(a, b) := 6°4°1{b < a} — 6°471{a < b}, 7B({b}) :=
12b ,b=1,2,... . We consider the discrete metrics on A and B.

The functlon (b, a) — c(a, b) is K-inf-compact on B x A because c(a, b) — 400, as
a — oo, foreachb = 1,2, ... . Here we note thata set K C B is compact if and only if K is
finite. The function (a, b) — c(a, b) is K-sup-compact on A x B because c(a, b) — —o0,
asb — oo, foreacha=1,2,....

‘We notice that foreachb =1, 2, ...

oo oo

11 1

~O By _ b _ _
Pla,°) =— E 64"12h——11~4a E 2—}7——11-2‘1,

b=a+1 b=a+1

- -1

11 1 33
@ By _ b o -
(a,m”) = E 6“4 =116 Eﬁ %= 5 24,
Therefore, ¢(a, 7B) = %6“ — %2“ foreacha = 1,2, ... . Since ¢(a, %) — 400, as

a — 0o, then & (7®) = inf ey é(a, 7B) > —o0.
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Let us set nA({a}) = zi,,, a=1,2,... . Since t® € PP(A) and
1
ée(nA,nB) = — Z 11 -2“27 = —0o0,
a=1,2,...
11 33 1
D B — 760 _ 72[1 —
c(rr,rr) a:; <2 ) )2a —+00,

then 78 € PV (B).
5.3 The existence of a solution

This subsection provides the definition of a solution of a two-person zero-sum game with
possibly non-compact actions and unbounded payoff. Theorem 20 establishes sufficient con-
ditions for the existence of solutions for such games.

Definition 7 The pair of mixed strategies (rrA, rrB) e PS(A) x PS(B) for Players I and II
is called a solution (saddle point, equilibria) of the game {A, B, c}, if

et mly < é(nh 7)< e, 1) (45)
for each nf € P(A) and niB e P(B).
Remark 18 Let the solution (TL’A, TL’B) € PS(A) x PS(B) of the game {A, B, ¢} exist. Then

the number

vi= (B = &Fh) (46)

is the lopsided value of this game. Indeed, inequalities (45) imply that
Fty < @B 47)
According to Remark 12 and Definition 6, (nA, rrB) € PS(A) x PS(B) is a solution of the
game {A, B, ¢} if and only if inequality (47) holds. Indeed, if (7#, 7%) € PS(A) x PS(B) is
the solution of the game {A, B, c}, then inequalities (45) imply (47). Vice versa, if inequality
(47) holds, then, since ]P’JST 1, (B) =P(@B)and ]P’JST]B (A) = P(A), Theorem 17 implies inequalities
(45), that is, (JTA, JTIB) ePs (A) x P (B) is the solution of the game {A, B, c¢}. We remark
also that inequality (47) holds if and only if Tt e ]P’ﬁ (A) and 7B € IF",’) (B) because of (46)
and the definitions of IP’E (A) and IP’Z (B). Furthermore, according to Remark 13, in the case

of PS(B) = P(B), which takes place in Theorems 20, 22 and Corollary 7, the lopsided value
is equal to the value in the classic sense.

The following theorem provides sufficient conditions for the existence of a solution.

Theorem 20 Let a two-person zero-sum game {A, B, ¢} introduced in Definition 5 satisfy
the following assumptions:

(a) the function (b, a) — c(a, b) is K-inf-compact on B x A,
(b) the function (a, b) — c(a, b) is K-sup-compact on A x B;
(c) the function (a, b) — c(a, b) is bounded from below.

Then the following statements hold:

(1) the game {A, B, ¢} has a solution (nA, JTIB) € P%(A) X IP?) B);
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(ii) the sets IP’,% (A) and IP’Z (B) are nonempty convex compact subsets of P(A) and P(B)
respectively;

(iii) a pair of strategies (nA, n'B) € P(A) x P(B) is a solution of the game {A, B, ¢} if and
only if v € PE(A) and 7B € P)(B).

Proof Assumptions (b) and Theorem 18 imply that the game {A, B, c} has the lopsided value
and P’ (A) is a nonempty convex compact subset of P(A). In view of Remark 11, assumption
(c) implies that PS(B) = P(B) and equality (21) holds. In view of Remark 13, this game
has the value. Assumption (b) and Theorem 18, being applied to the game {B, A, —choBy,
where ¢®<B(b,a) := c(a,b) foreacha € A and b € B, imply that the set IP’E, (B) is a
nonempty convex compact subset of P(B). Thus, statement (ii) is proved. Statements (i) and
(iii) follow from Remark 18. m]

Remark 19 Assumptions (b) and (c) of Theorem 20 imply that the space of actions B for
Player II is compact.

Remark 20 As the proof of Theorem 20 shows, assumptions (a) and (b) of Theorem 20 can
be relaxed. Assumption (a) can be relaxed to the pair of assumptions (i, ii) from Theorem 18.
Assumption (b) can be relaxed to the pair of assumptions symmetric to assumptions (i) and
(ii) from Theorem 18: for each a € A the function b — c(a, b) is upper semi-continuous,
and there exists ag € A such that the function b — c(ag, b) is inf-compact on B.

5.4 Continuity properties of equilibria

In this section we define and study families of games with action sets and payoff functions
depending on a parameter. Let X, A and B be Borel subsets of Polish spaces, Kx € B(Xx A),
where B(X x A) = BX) ® B(A), Kp € B(X x B), where B(X x B) = B(X) ® B(B). Itis
assumed that for each x € X the sets K and Kp satisfy the following two conditions:

Ax):={ae A : (x,a) e Kpn} #0 and B(x):={beB: (x,b) € Kp} # 0.
Let
K:={(x,a,b) e XxAxB:xeX, aeAkx), be B(x)}.

Remark 21 We note that Gr(A) = K, Gr(B) = Kp, and K = Gr(A x B), where (A x
B)(x) :={(a,b) : a € A(x), b € B(x)}, x € X. We note also that = Gr(B), where
B(x,a) := B(x), (x,a) € Ku. If we set A(x,b) := A(x), (x,b) € Kg, then Gr(A) =
{(x,b,a) : (x,a,b) e K}and K = {(x,a,b) : (x,b,a) € Gr(A)}.

Consider the family of two-person zero-sum games
{{A(x), B(x),c(x, -, )} : x € X}

satisfying for each x € X all the assumptions from Definition 5. Define the function cAoB

Gr(A) C X xB) x A R,
AB(x,b,a) == c(x,a,b), (x,a,b) €K. (48)
Let us consider the following assumptions.
Assumption (A1) The~function A Gr(A) ¢ (X x B) x A > R defined in (48) is
K-inf-compact on Gr(A).
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Assumption (A2) The function ¢ : £ C (X x A) x B — R is K-sup-compact on K.
Assumption (A3) A : X+ S(A) is a lower semi-continuous set-valued mapping.
Assumption (A4) B : X — S(B) is a lower semi-continuous set-valued mapping.

Remark 22 According to Lemma 2 and Remarks 5, 21, Assumption (A1) holds if and only
if the following two conditions hold:

(1) the mapping ¢ : £ C X x A x B — R is lower semi-continuous;

(ii) if asequence {x ) pm) }n=1,2,... with values in Kp converges and its limit (x, b) belongs
to Kp, then each sequence {a(")},,=1,2,__. with (x®,a®™ pWy e K, n = 1,2,...,
satisfying the condition that the sequence {c(x ) g b(”))}nzlyzw_ is bounded above,
has a limit point a € A(x).

Remark 23 According to Lemma 2 and Remark 21, Assumption (A2) holds if and only if
the following two conditions hold:

(1) the mapping ¢ : K C X x A x B — R is upper semi-continuous;

(>ii) ifasequence {x ) qmy 1.2,... with values in K 5 converges and its limit (x, a) belongs
to K4, then each sequence {b(")}”:],zw with (x®,a® p™y € K, n = 1,2,...,
satisfying the condition that the sequence {c(x®, a®, b("))},,zl_z,_“ is bounded from
below, has a limit point b € B(x).

Remark 24 Assumptions (A1) and (A2) imply that the payoff to Player II, ¢(x, a, b) for
choosing actions a € A(x) and b € B(x) in a state x € X, is continuous.

Remark 25 If the function ¢ takes values in R instead of R in Assumptions (A1) and (A2),
then Remarks 22 and 23 are also applicable to such functions. However, we consider only
real-valued payoff functions c in this paper.

Let{{A(x), B(x), c(x, -, -)} : x € X} be the family of two-person zero-sum games, that
is, each of these games satisfies assumptions in Definition 5. Further let ¢E(x) and é°(x) be
defined in (14) and v(x) denote the lopsided value of the game {A(x), B(x), c(x, -, -)} if it
exists, x € X (in Theorem 22 v(x) is the value).

The following theorem provides sufficient conditions for the lower semi-continuity of the
lopsided value for a family of two-person zero-sum games with possibly noncompact action
sets and unbounded payoffs.

Theorem 21 Let the family of two-person zero-sum games {{A(x), B(x),c(x, -, -)} : x €
X} satisfy Assumptions (A1) and (A4). Then the following statements hold:

(i) for each x € X the following equality holds:

sup F,7® = inf F, ) (= vx)). (49)
7BePS(B(x)) TAeP(A(x))
Moreover, v : X +— R is a lower semi-continuous function;
(i1) the sets {IP’tI )(A(x)) 1 x € X} satisfy the following properties:

v(x

(a) foreach x € X the set Pi(x) (A(x)) is a nonempty convex compact subset of P(A);

(b) the graph Gr(P; (A())) = {(x.7%) : x € X,7* € P} (A(x))} is a Borel
subset of X x P(A);
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(c) there exists a measurable mapping ¢* : X — P(A) such that ¢*(x) € Pi(x)(A(x))
for each x € X.

Proof Assumption (A1) and Corollary 2, being applied to X := X x B (that is, the state
space is X x B), Y 1= A, f = cA<B on Gr(A) and f := 400 on the complement of
Gr(A), imply that the mapping ACB - Gr(P(A(-, ) € (X x B) x P(A) — R, where

ACB(x b ) = / c(x,a, byr™da), (x,b) € Kg, n® € P(A(x, b)) = P(A(x)),
A(x)

is K-inf-compact on Gr (]P’(A( -, -))). Identity (49) follows from Theorem 18. The remaining
statements follow from Theorem 8§, being applied to X := X, A :=P(A), B:= B, ®5(-) :=
P(A(-)), ®s(x, %) := Bx), x € X, and f(x, 7% b) := é(x, 7™ b), (x,7% b) €
{(x, T, b) e XxPA) xB : (x,b) € Kg, Tt e P(A(x))}, from Lemma 7, and from
Feinberg et al. (2013, Theorem 3.3). ]

The following example describes a family of two-person zero-sum games satisfying
Assumptions (Al) and (A4). Payoff functions are unbounded and decision sets are non-
compact for the games in this family.

Example4 Let X = A =B =R, Kp = Kg = R%, K = R3, ¢(x,a,b) = px(x) +
op(a)+op(b), (x,a, b) € K, where ¢x, ¢a, ¢B : R — R are continuous functions such that
op(a) — +ooas|a|l — o0o. Then cis a continuous function on R3 and it satisfies Assumption
(A1). Indeed, let a sequence {x("), b(”)}nzl,z,,__ with values in R2 converges and its limit
(x, b) belongs to R2, a sequence {a(”)}nzlgzw with (x® g® pMy e R3 n =1,2,...,
satisfy the condition that the sequence {c(x®, a®, b(”))}nzl,z,__, is bounded above. Then
the sequence {goA(a("))}nzl,zy_._ is bounded above and, since ga(a) — +o00 as |a] — oo,
then the sequence {a(")}nzl,g,,__ has a limit point @ € A(x) = R. Therefore, Assumption
(A1) holds. Assumption (A4) holds, because the multi-valued mapping @ : R — S(R),
D(s) =R, s € R, is lower semi-continuous on R.

The following theorem and its corollary describes sufficient conditions for continuity of
the value function and upper semi-continuity of the solution multifunctions for a family of
two-person zero-sum games with possibly noncompact action sets and unbounded payoffs.

Theorem 22 (Continuity of equilibria) Let a family of two-person zero-sum games
{{A(x), B(x),c(x, -, )} : x € X} satisfy Assumptions (A1)—(A4) and B be compact.
Then the following statements hold:
(i) for each x € X the game {A(x), B(x),c(x, -, -)} has a solution (ﬂA,TL’E) €
Pi(x)(A(x)) X IP’Z(X)(B(x)). Moreover, v : X — R is a continuous function;

(i) the sets {IF’i(x) (A(x)) : x € X} satisfy the following properties:

(a) foreach x € X the set IP’% @) (A(x)) is a nonempty convex compact subset of P(A);
(b) the multifunction IP’?)(_)(A( ) X = K(P(A)) is upper semi-continuous;

(iii) the sets {IP’?) (B(x)) : x € X} satisfy the following properties:

(a) for each x € X the set ]P’z(x) (B(x)) is a nonempty convex compact subset of P(B);
(b) the multifunction IP’Z(.)(B( ) : X > K(P(B)) is upper semi-continuous.
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Proof In view of Theorem 20 and Remark 19, Theorem 21, being applied to {{A(x), B(x),
cx,,)) : x € X} and {({B(x), Ax), —c2*Bx, -, )} : x € X}, where
cA°B(x.b,a) = c(x,a,b) foreach x € X, a € A(x) and b € B(x), implies all the
statements of the theorem. O

Corollary 7 Let afamily of two-person zero-sum games {{A(x), B(x), c¢(x, -, <)} : x € X}
satisfy assumptions of Theorem 22. Then there exist measurable mappings ¢ X > P(A)
and qu : X +— P(B) such that ¢>A(x) S ]P’i(x)(A(x)) and de(x) € ]P’z(x)(B(x)) for all
x € X. Moreover, for each x € X a pair of strategies (T2 (x), 7B (x)) € P(A(x)) x P(B(x))
is a solution of the game {A(x), B(x), c(x, -, -)} if and only ifﬂA(x) € ]P’i(x)(A(x)) and

7B (x) € P, (B()).

Proof All statements directly follow from statements (ii) and (iii) of Theorem 22. m}

6 Notes on one-step two-person zero-sum stochastic games with perfect
information

This section shows that for the sequential one-step game studied in Sect. 3, it is sufficient for
the both players to use only pure strategies.

Let X, A, and B be Borel subsets of Polish spaces, @5 : X — S(A) and &g : Gr(Py) C
X x A — S(B) be set-valued mappings and f : Gr(®p) C X x A x B — R be a
function. A one-step two-person zero-sum stochastic game with perfect information is a
tuple {X, A, B, @, &g, f} satisfying the following assumptions:

(1) Xis the state space;

(i) A is the action space of the Player I;

(iii) B is the action space of the Player II;

(iv) Gr(®y) € B(X x A), where B(X x A) = B(X) ® B(A), is the constrained set for the
Player I. 1t is assumed the existence of a measurable mapping ¢ : X — A such that
¢ (x) € @p(x) for each x € X. A nonempty Borel subset @4 (x) of A represents the
set of admissible actions of the Player I in the state x € X

v) Gr(®@p) € BX x A x B), where B(X x A x B) = B(X) ® B(A) ® B(B), is the
constrained set for the Player II. It is assumed the existence of a measurable mapping
¢B : Xx A — Bsuchthat¢p(x, a) € Pp(x, a)foreach (x, a) € Gr(®,). A nonempty
Borel subset @ (x, a) of B represents the set of admissible actions of the Player II in
the state x € X when Player I choose an action a € @ (x);

(vi) the stage cost for Player I, —oo < f(x, a, b) < 400, for choosing actions a € @4 (x)
and b € &p(x, a) in a state x € X, is a Borel function on Gr(®p).

The decision process proceeds as follows:

the current state x € X is observed by each player;
Player I choose an action a € @4 (x);

the result a is announced to Player II;

Player II choose an action b € ®p(x, a);

the result b is announced to Player I;

Player I pays Player II the amount f(x, a, b).

For a one-step two-person zero-sum stochastic game with perfect information {X, A, B,
@y, P, f1, let £ be the worst-loss function (for Player I) defined in (3), v* be the minimax

@ Springer



Ann Oper Res

function defined in (4), and @} and &g be the solution multifunctions defined in (5) and
(6) respectively. If for each (x, a) € Gr(®,) the function b — f(x, a, b) is bounded from
above, then, according to Theorem 17, the following equalities hold:

sup / fxa.byr®db)y = sup f(x,a,b) = fi(x,a), (50)
7B eP(Pp(x.a)) Y PB(x.a) bedp(x,a)

foreach (x, a) € Gr(®,). Moreover, if foreach x € X the functiona — f*(x, a) is bounded
from below, then, according to Theorem 17, the following equalities additionally hold:

inf / Fix,a)n™(da) = inf  fE(x,a) = vF(x), (51)
TAEP(Dp(x)) J by (x) acdy(x)

for each x € X. Therefore, all theorems and corollary from Sect. 3 hold for stochastic one-

step two-person zero-sum stochastic game with perfect information {X, A, B, @4, @, f}

when each player possibly choose mixed strategies. According to equalities (50) and (51),

the optimas for each player attain on the sets of respective pure strategies.

Acknowledgements The authors thank William D. Sudderth for his valuable comments on von Neumann’s
and Sion’s minimax theorems. The authors thank referees for their insightful suggestions.

Appendix: Properties of A-lower semi-continuous multifunctions

This appendix describes some properties of A-lower semi-continuous multifunctions. Def-
inition 4 and the definition of lower semi-continuous multifunctions imply that an A-lower
semi-continuous multifunction is lower semi-continuous. The following example demon-
strates that a lower semi-continuous multifunction may not be A-lower semi-continuous.

Example 5 LetX = A =[0,1], B =R, ®5(x) = {x} U {%} for x € (0, 1], ®»(0) = {0},
and Py (x, a) = {a} for all (x, a) € Gr(P,). Since each set P (x, a) is a singleton, where
(x,a) € Gr(®,), and the graph of the multifunction ®g is closed, the multifunction &g is

lower semi-continuous. Let us consider the sequence {x,},=1,2,.. = {%}n:m’”_ converging
tox =0.Then b := 0 € ®5(0,0) and a™ =n € dp(x™), n = 1,2, ... . However, the
sequence {by },=1,2,... = {n}y=1,2,... does not have a limit point. Thus, the multifunction ®5

is not A-lower semi-continuous.
Let us provide sufficient conditions for A-lower semi-continuity.

Lemma 7 Let &g : Gr(®a) C X x A +— S(B) be a lower semi-continuous set-valued
mapping. Then the following statements hold:

(@) if ®a : X +— S(A) is upper semi-continuous and compact-valued at each x € X, then
O : Gr(dPy) C X x Ar> S(B) is A-lower semi-continuous;

(b) if ©p(x,a) does not depend on a € Dx(x) for each x € X, that is, ®g(x, a,) =
Dp(x, a*) for each (x, ay), (x,a*) € Gr(Py), then g : Gr(d) C X X A+ S(B) is
A-lower semi-continuous.

Remark 26 Let ® : X — S(B), where @ (x) can be interpreted as the set of actions for Player
II, when this set does not depend on the actions of Player I, as this takes place for games with
simultaneous moves. Then we can define the sets

Op(x,a) := d(x), (x,a) € Gr(dy). (52)
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The definition of a lower semi-continuous multifunction implies that, if the multifunction
d : X — S(B) is lower semi-continuous, then the multifunction ®p : Gr(d,) C X x
A — S(B) is lower semi-continuous too. Lemma 7 implies that the lower semi-continuity
of &g : Gr(Pp) C X x A +— S(B) is equivalent to its A-lower semi-continuity in the
following two cases: (a) for two-person zero-sum games with perfect information, when the
decision sets {®a(x)}rex for the first player are compact and the dependence of ®(x) by
the state variable x is upper semi-continuous, and (b) for two-person zero-sum games with
simultaneous moves.

Proof of Lemma 7 (a) Let {x (”)}n:I,Z,... be a sequence with values in X that converges and
its limit x belongs to X. Let also a™ e p(x™), foreachn = 1,2,..., and b € dp(x, a)
for some a € P, (x). Let us prove that b is a limit point for a sequence {b(”)}nzl,z,_“ with
b™ e dg(x™, a™) foreachn = 1,2, ... . Indeed, Lemma 4, being applied to X := X,
Y := A, and @ := ®,, implies that the sequence {a(”)}nzlﬁz,”_ has a limit point a € ®a(x).
Therefore, b is a limit point of a sequence {b(")}nzl,z,_,, with ™ € &g (x™, a™) for each
n=1,2,...,since &g : Gr(Pp) C X X A > S(B) is a lower semi-continuous set-valued
mapping.

(b) Since &5 : Gr(dn) C X x A+ S(B) is a lower semi-continuous set-valued mapping
and ®(x, a) does not depend on a € Pp(x) for each x € X, the following statement
holds: if a sequence {x(")}nzlﬁz,u_ with values in X converges and its limit x belongs to

X, a® € dp(x™) for eachn = 1,2,..., and b € ®g(x,a) for some a € Pa(x),
then b is a limit point of a sequence {b(")}n:]gw with 6™ e ®g(x™, a™) for each
n=1,2,...,thatis, &g : Gr(dp) C X X A — S(B) is A-lower semi-continuous set-valued
mapping. O

The following two statements, which are not used in this paper, provide additional proper-
ties of A-lower semi-continuous set-valued mappings for the case, when B is a vector space.
Let B be a vector space and ®p, Vg : Gr($,) C X X A — S(B) be set-valued mappings.
Let us define for each (x, a) € Gr(dy)

Dg(x,a) + Ve(x,a) :={bp + by : by € Pg(x,a), by € Yg(x,a)}.

Lemma 8 Let B be a vector space and O, Vg : Gr(dz) C X X A +— S(B) be A-lower
semi-continuous set-valued mappings. Then the set-valued mapping ®g + Vg : Gr(d,) C
X X A+ S(B) is A-lower semi-continuous.

Proof of Lemma 8 Let {x™Y,= 1,2,... be a sequence with values in X that converges and its
limit x belongs to X. Assume that a™ e CDA(x(")) foreachn =1,2,...,and b € ®p(x, a)
for some a € ®,(x). Let us prove that b is a limit point of a sequence {b(”)},,:],zw with
b e dg(x™,a™), n =1,2,.... Indeed, since P5(x, a) = Ps(x,a) + Ys(x, a), there
exist by € Pg(x, a) and by € Wg(x, a) such that b = by + b;. The A-lower semi-continuity
of &g : Gr(®Pp) C X X A +— SB)and Vg : Gr(Pp) C X X A +— S(B) imply that
bi, i = 0,1, is a limit point of a sequence {b\"},=1 2, with b € ®g(x™, a™) and
bé") € Wy (x™, a™) Therefore, b = by + by is a limit point of a sequence {b(”)}nzlﬁzw with

b® = b + b € dx(x™, a™) + Wy(x™,a™), n = 1,2,... . Thus, the set-valued
mapping ®% + ®L : Gr(da) C X x A +> S(B) is A-lower semi-continuous. O

Corollary 8 Let B be a vector space, ® : X +— S(B) be a lower semi-continuous set-
valued mapping, ®, : X +— K(A) be an upper semi-continuous set-valued mapping, and
WUp : Gr(®y) C X X A+ S(B) be a lower semi-continuous set-valued mapping. Let us
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consider the set-valued mapping ®p : Gr(P,) C X X A+ S(B) defined in (52). Then the
set-valued mapping @5 + Vg : Gr(d,) C X X A > S(B) is A-lower semi-continuous.

Proof According to Lemma 7, the set-valued mappings ®g, WUy : Gr(®a) C X x A+ S(B)
are A-lower semi-continuous. Therefore, Lemma 8 implies that their sum is A-lower semi-
continuous. ]
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