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Abstract

Recent X-ray observations of merger shocks in galaxy clusters have shown that the post-shock plasma is two-
temperature, with the protons being hotter than the electrons. In this work, the second of a series, we investigate the
efficiency of irreversible electron heating in perpendicular low Mach number shocks, by means of two-dimensional
particle-in-cell simulations. We consider values of plasma beta (the ratio of thermal and magnetic pressures) in the range
4 < B0 S 32, and sonic Mach number (the ratio of shock speed to pre-shock sound speed) in the range 2 < M, < 5, as
appropriate for galaxy cluster shocks. As shown in Paper I, magnetic field amplification—induced by shock
compression of the pre-shock field, or by strong proton cyclotron and mirror modes accompanying the relaxation of
proton temperature anisotropy—can drive the electron temperature anisotropy beyond the threshold of the electron
whistler instability. The growth of whistler waves breaks the electron adiabatic invariance, and allows for efficient
entropy production. We find that the post-shock electron temperature 7, exceeds the adiabatic expectation 73 ,q by an
amount (Lo — Tpp aq) /To0 = 0.044 M(M; — 1) (here, T, is the pre-shock temperature), which depends only weakly
on the plasma beta over the range 4 < 3,5 < 32 that we have explored, as well as on the proton-to-electron mass ratio
(the coefficient of ~0.044 is measured for our fiducial m1; /m, = 49, and we estimate that it will decrease to ~0.03 for
the realistic mass ratio). Our results have important implications for current and future observations of galaxy cluster
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shocks in the radio band (synchrotron emission and Sunyaev—Zel dovich effect) and at X-ray frequencies.
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1. Introduction

Cluster merger shocks—collisionless low Mach number shocks
(M, < 5, where M, is the ratio of shock speed to pre-shock sound
speed) generated by infalling subclusters—are routinely observed
in the radio and X-ray bands. X-ray measurements can quantify the
density and temperature jumps between the unshocked (upstream)
and the shocked (downstream) plasma (e.g., Markevitch et al.
2002; Finoguenov et al. 2010; Russell et al. 2010; Ogrean et al.
2013; Eckert et al. 2016; Akamatsu et al. 2017). The existence of
shock-accelerated electrons is revealed by radio observations of
synchrotron radiation (e.g., van Weeren et al. 2010; Lindner et al.
2014; Trasatti et al. 2015; Kale et al. 2017). Recently, the pressure
jump associated with a merger shock has been measured through
radio observations of the thermal Sunyaev—Zel’dovich (SZ) effect
(Planck Collaboration et al. 2013; Erer et al. 2015; Basu
et al. 2016).

Because all observational diagnostics are based on radiation
emitted by electrons, the proton properties (in particular, their
temperature) are basically unconstrained. One usually makes the
simplifying assumption that the electron temperature equals the
proton temperature (and so, the mean gas temperature). This
assumption is unlikely to hold in the vicinity of merger shocks,
because most of the pre-shock energy is carried by protons and
there is no obvious reason why protons should efficiently share the
thermal energy they gain in passing through the shock with
electrons.” While Coulomb collisions will eventually drive
electrons and protons to equal temperatures, the collisional
equilibration timescale (Spitzer 1962) for typical conditions in
the intracluster medium (ICM) is as long as 108-10° years. In fact,

3 Shocks in supernova remnants and the heliosphere are known to be two-

temperature, with protons hotter than electrons (e.g., Ghavamian et al. 2013).

X-ray observations by Russell et al. (2012) have shown that the
electron temperature just behind a merger shock in Abell 2146 is
lower than the mean gas temperature expected from the Rankine—
Hugoniot jump conditions, and thus lower than the proton
temperature. On the other hand, Markevitch (2006) found that the
temperatures across the shock in 1E 0657-56 (the so-called “Bullet
cluster”) are consistent with instant shock-heating of the electrons.

What is the mechanism responsible for electron heating at
collisionless shocks, and how does the heating efficiency
depend on the pre-shock conditions? This fundamental
question can be answered only through a detailed plasma
physics analysis because the fluid-type Rankine—Hugoniot
relations only predict the jump in the mean plasma temperature
across the shock, without specifying how the shock-generated
heat is distributed between the two species. While most of the
electron heating in low Mach number shocks is adiabatic, the
passage of electrons through the shock might also be
accompanied by entropy increase, i.e., by the production of
irreversible electron heating. In the absence of a first-principles
theory of electron heating in collisionless shocks, Vink et al.
(2015) employed a phenomenological parameter—which was
constrained by fitting the observations—in order to quantify the
efficiency of irreversible energy transfer from protons to
electrons.” In this paper, we adopt a different approach. We aim
at understanding, on a fundamental level, the role of electron
and proton plasma instabilities in particle heating at low Mach
number shocks, by means of fully kinetic simulations with the

* We caution that, in the model of Vink et al. (2015), the mean (electron
+proton) temperature jump does not agree with the expected Rankine—
Hugoniot conditions because the authors neglected the conservation of the
momentum flux through the shock, but still employed the Rankine—Hugoniot
density jump—which implicitly requires momentum conservation—in deriving
the post-shock electron-to-proton temperature ratio.
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particle-in-cell (PIC) method (Hockney & Eastwood 1981;
Birdsall & Langdon 1985).

So far, most PIC studies of electron heating in shocks have
focused on the regime of high sonic Mach number (M, 2 10,
where M, is the ratio of the upstream flow speed relative to the
shock to the upstream sound speed) and low plasma beta
(B0 S 1, where (3, is the ratio of thermal and magnetic
pressures) appropriate for supernova remnants (Matsukiyo &
Scholer 2003; Matsukiyo 2010; Dieckmann et al. 2012). In the
first paper of this series (Guo et al. 2017; hereafter, Paper I), we
investigated, by means of analytical theory and two-dimensional
(2D) PIC simulations, the physics of electron heating in low Mach
number perpendicular shocks; a regime previously unexplored. As
we summarize in Section 2, we found, in analogy to the so-called
“magnetic pumping” mechanism (Spitzer & Witten 1953; Berger
et al. 1958; Borovsky 1986), that two basic ingredients are needed
for electron irreversible heating: (i) the presence of a temperature
anisotropy, induced by field amplification coupled to adiabatic
invariance; and (ii) a mechanism to break the adiabatic invariance.
We found that the growth of whistler waves—triggered by the
electron temperature anisotropy induced by field amplification—
was responsible for the violation of adiabatic invariance and
efficient entropy production.

In Paper I, we validated our model for a shock with Mach
number M, = 3 and plasma beta 3,, = 16, which we took to be
representative of merger shocks in galaxy clusters. In this work,
we extend our investigation to a wide range of plasma beta
(4 < B0 $32) and sonic Mach number 2 < M, < 5). We
quantify how the efficiency of electron heating and the post-shock
electron-to-proton temperature ratio depend on M, and 3,4, by
means of a suite of 2D simulations. In fact, in Paper I (see
their Appendix A) we have shown that the electron heating
physics cannot be properly captured by 1D simulations. We focus
on perpendicular shocks (i.e., where the pre-shock field is
orthogonal to the shock direction of propagation). The choice of a
perpendicular magnetic field geometry is meant to minimize the
role of non-thermal electrons, which are self-consistently
accelerated in oblique configurations, as we have shown in Guo
et al. (2014a, 2014b). Because of the absence of shock-accelerated
electrons returning upstream, the shock can settle down to a
steady state on a shorter time, thus allowing us to focus on the
steady-state electron heating physics. However, we expect that
the results presented in this paper will also apply to quasi-
perpendicular configurations, as long as the non-thermal electrons
are energetically sub-dominant.

We find that the dependence on M; of the electron
irreversible heating efficiency can be cast in a simple form:
the post-shock electron temperature 7,, exceeds the adiabatic
expectation T35 ,q by an amount that scales with Mach number
as (Lp — Tpna0)/Too = 0.044 M(M; — 1), where T, is the pre-
shock temperature. This depends only weakly on plasma beta
(in the regime 4 < (,0 < 32 explored in this work) and on the
proton-to-electron mass ratio (which we vary from 49 to 200).

The rest of the paper is organized as follows. In Section 2, we
summarize the results of Paper I, where we found that the field
amplification required for efficient entropy production can be
induced either by shock compression of the upstream field, or by
growth of proton cyclotron and mirror modes accompanying the
relaxation of proton temperature anisotropy. With periodic box
experiments meant to reproduce these two scenarios, Section 3
(Section 4, respectively) investigates the dependence of the
electron heating efficiency on Mach number and plasma beta, in a

Guo, Sironi, & Narayan

controlled setup where only the first mechanism (the second,
respectively) is allowed to operate. Readers primarily interested in
the implications of our study for shocks can skip Sections 3 and 4
and proceed directly to Section 5, where we explore how the
degree of electron irreversible heating depends on M and (3, in
full shock simulations (where the two processes discussed above
generally co-exist). We present our key findings in Section 6 and
conclude with a summary in Section 7.

2. The Physics of Electron Heating

In this section, we summarize the main results of Paper I (see
the schematic description in Figure 1). As electrons pass through
the shock, they experience a density compression, which results in
adiabatic heating. In addition, irreversible processes operate,
further increasing the electron temperature. In Paper I, we found
that efficient entropy production relies on the presence of two
basic ingredients: (i) a temperature anisotropy; and (ii) a
mechanism to break adiabatic invariance. The change in electron
entropy can then be written in two equivalent forms as:’

T T -
ds, = | Lam| [ {1 = 2o | Z e
2 (n/B)* 1, | I,

ds, = —[dln(n’i)] ’ lT@’i — 1] — dew’@, ()
B L L)
where n is the electron density, B the large-scale magnetic field
strength (by “large-scale,” we mean the magnetic field on scales
much larger than the electron Larmor radius and at frequencies
much lower than the electron gyration frequency), and 7; | and
T, , are the electron temperature parallel and perpendicular to the
local magnetic field, respectively. The term de,, , on the right hand
side of Equations (1) and (2) represents the total energy per
patticle transferred to waves, including magnetic, electric, and
bulk kinetic contributions.®
Note that the CGL double adiabatic theory of Chew et al.
(1956) predicts that, for adiabatic perturbations, 7, , o< B and
Lo (n /B)2, which follow from the conservation of the first and
second adiabatic invariants. The first square bracket on the right-
hand side of Equations (1) and (2) explicitly shows that a
mechanism to break the adiabatic invariance is needed for entropy
production. In most cases, it is the temperature anisotropy (see the
second square bracket on the right-hand side of Equations (1) and
(2)) that provides the free energy for generating the waves
responsible for breaking the adiabatic invariance.

2.1. Our Reference Shock

In Paper I, we validated the heating model summarized
above by performing PIC simulations with the electromagnetic
PIC code TRISTAN-MP (Buneman 1993; Spitkovsky 2005)
for a representative shock with sonic Mach number M = 3 and
plasma beta 3, = 16. The Mach number

—_ 3
Cs 1/2FkBZE)/mi ( )

5 Our analysis applies equally to electrons and protons, even though below we

focus only on electron entropy.

6 Ifthe equations above were to be applied to protons, the corresponding term
should include not only the energy residing in proton-driven waves, but also
the energy lost by performing work on the electron plasma (see Paper I).
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Figure 1. Schematic summary of the mechanism of irreversible heating of protons and electrons as described in Paper 1.

is defined as the ratio between the upstream flow velocity
Vi in the shock frame and the upstream sound speed
¢s = J2T'kgTy/m;. Here, Ty is the upstream temperature (the
same for both species, so T,o = Ty = Tp), kg is the Boltzmann
constant, I' = 5/3 is the adiabatic index for an isotropic non-
relativistic gas, and m; is the proton mass. The upstream
magnetic field strength is parameterized by the plasma beta

_ 8mnokp(Tio + T.o)  167nokgly
B B;

Bpo , “)
where n;0 = n,0 = no is the number density of the incoming
protons and electrons. Alternatively, one could quantify the
magnetic field strength via the Alfvénic Mach number
My = M \(I'Bp0/2.

In Paper I, we considered a reference perpendicular shock
with M; =3 and (3,, = 16 and showed that Equations (1)
and (2) were in excellent agreement with the measured increase
in electron entropy per particle (or specific entropy) across the
shock, which can be computed directly from the electron
distribution function f, (p) as

__fd3pJ;1nJ;

=t =
Jd% s,

In the reference shock, we found that efficient electron entropy
production occurs at two major sites: at the shock ramp, where
density compression coupled to flux freezing leads to field
amplification (we call this scenario “case A”); and farther
downstream, where long-wavelength magnetic waves (more
specifically, proton cyclotron and mirror modes) accompanying
the relaxation of the temperature anisotropy of post-shock protons
can also contribute to magnetic field growth (we call this scenario
“case B”). At both locations, field amplification coupled to
adiabatic invariance drives the electrons to a large degree of
temperature anisotropy, exceeding the threshold of the electron
whistler instability. The resulting electron whistler waves—whose
presence is one of the common denominators at the two sites
mentioned above—cause efficient pitch angle scattering, which
leads to violation of the electron adiabatic invariance and allows
for entropy increase.

In Paper I, we studied cases A and B in detail by employing
controlled periodic box experiments meant to reproduce the shock

)

conditions at the two major sites of entropy production. In
particular, the shock physics in the ramp (case A) can be
replicated in a periodic box where the PIC equations are modified
to allow for a continuous large-scale compression, as in Sironi &
Narayan (2015), Sironi (2015). While we studied this scenario
only for our reference case with M, = 3 and 3,, = 16 in Paper I,
we extensively explore a range of Mach numbers and plasma
betas in Section 3 of the present paper. In Paper I, we also
investigated the physics of electron heating via anisotropy-driven
proton waves (case B) by means of a periodic box initialized with
anisotropic protons, with a degree of anisotropy inspired by our
reference case with M, = 3 and 3,, = 16. In Section 4, we extend
the same analysis to a wide range of flow conditions.

The advantage of the periodic domains is twofold: (i) they
allow for more direct control of the relevant physics; and (ii) due
to less demanding computational requirements, they permit our
investigation to be extended up to the realistic mass ratio. In
Paper I, we were able to ascertain that the electron entropy
increase has only a weak dependence on mass ratio (less than a
~30% drop, as we increase the mass ratio from m; /m, = 49 up
to m; /m, = 1600).

3. Electron Heating by Shock Compression
of the Upstream Field

In this section, we focus on case A, i.e., we investigate the
efficiency of electron heating (and its dependence on the flow
conditions) when the field amplification that induces the
electron anisotropy—which in turn leads to electron whistler
waves, and then to entropy increase—is due exclusively to the
large-scale density compression occurring in the shock ramp.

3.1. Simulation Setup

The simulation setup parallels the one employed in Section 5
of Paper I, which we summarize here for completeness. We set
up a suite of compressing box experiments, using the method
introduced in Sironi & Narayan (2015) and Sironi (2015),
which redefined the unit length of the axes such that a particle
subject only to compression stays at fixed coordinates in the
primed system. Next, compression with rate g is accounted for
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by the diagonal matrix

]
o A+qgyt 00

L=§= 0 1o} (©)
0 01

which has been tailored for compression along the x axis,
perpendicular to the uniform ordered magnetic field By
initialized along the y direction (in analogy to the shock setup
that we will discuss in Section 5). Maxwell’s equations in the
primed coordinate system automatically account for flux
freezing (i.e., the field grows in time as By(l + ¢ ), in the
same way as the density # = ny(1 4 ¢ 1)), and the form of the
Lorentz force in the primed system guarantees the conservation
of the first and second adiabatic invariants.

Becase we have shown, in Paper I, that the wavevector of the
whistler mode is nearly aligned with the field direction (i.e.,
along ¥), we employ 1D simulations with the computational
box oriented along y. However, all three components of
electromagnetic fields and particle velocities are tracked. In 1D
simulations, we can employ a large number of particles per cell
(we use 1600 particles per species per cell) so we have
adequate statistics for the calculation of the electron specific
entropy from the phase space distribution function, as in
Equation (5).

As a result of the large-scale compression encoded in
Equation (6), both electrons and protons will develop a
temperature anisotropy, and we should witness the develop-
ment of both electron and proton anisotropy-driven modes.
However, as was the case in Paper I, our goal is to isolate the
role of the large-scale field amplification (as expected in the
shock ramp) in generating electron irreversible heating,
regardless of the presence of proton-driven modes (which will
be the focus of Section 4). For this reason, in our compressing
box runs, we artificially inhibit the update of the proton
momentum (this effectively corresponds to the case of
infinitely massive protons). A similar strategy, but in the case
of field amplification driven by shear rather than compression,
has been employed by Riquelme et al. (2017).

The compression rate g (which we cast in units of
Qe = eBy/m;c, i.e., the proton Larmor frequency in the initial
field By) is measured directly from our shock simulations
described in Section 5. In fact, we can quantify the profile of
electron density as a function of the co-moving time of the
electron fluid

. dx’
=/ Vee 00) @

where V. is the electron fluid velocity in the shock frame, and
the integral goes from the upstream to the downstream region.’
Figure 2 shows the electron density profile as a function of
for a suite of shock simulations with 3,, = 16 and varying
Mach number (solid lines, as indicated in the legend), which
will be discussed in Section 5. The faster rise seen for higher
values of M is driven by the fact that the density jump across
the shock monotonically increases with Mach number, for
two reasons. First, the density jump from upstream to
downstream as derived from the Rankine—Hugoniot relations

7 As described in Section 5, the shock propagates along +£ in our

simulations.
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is a monotonically increasing function of M;. Second, the
density overshoot in the shock ramp also increases with M
(Leroy 1983; see also Figure 7 in Section 5). Because the
thickness of the shock is nearly independent of Mach number
(and always on the order of the proton Larmor radius), a larger
density jump for higher M| corresponds, in Figure 2, to a faster
compression rate. In fact, if we model the density compression
as a linear function of time (dashed lines in Figure 2), the
resulting compression rate g steadily increases with M. The
values of g adopted in the periodic simulations discussed in this
section are given in Table 1, in units of the proton Larmor
frequency (2 (all the runs presented in this section employ a
reduced mass ratio m; /m, = 49). We wish to emphasize that
the value of the shock Mach number enters the compressing
box experiments presented here only via the compression rate g
(i.e., M, should be meant as the Mach number of the shock
simulation that corresponds to a given choice of g for the
compressing box).

We summarize our physical and numerical parameters in
Table 1 (the run names have the suffix “c” to indicate that we
employ compressing boxes). The first four runs explore the
dependence on Mach number (or equivalently, compression
rate) for fixed (,, = 16, whereas the last four simulations
investigate the dependence on (3, for a fixed compression rate
q = 2.5, as appropriate for a shock with M; = 3. In all the
runs, we initialize a population of isotropic electrons with
temperature T,y = 102m,c*/kg. We resolve the electron skin
depth

¢ | mc?

®)

tWpe 4relng

with 10 cells, so the Debye length is marginally resolved. The
box extent along the y direction is fixed at 86 ¢/w,. for
Bpo < 16, which is sufficient to capture several wavelengths of
the electron whistler instability. For §,0 = 32 and 64, we

increase the box length roughly as o<,/B,0, because the
wavelength of whistler waves increases with plasma beta (see
Appendix B, where we study the linear dispersion properties of
the whistler instability).

3.2. Dependence on M,

Figure 3 compares the results of compressing box simulations
(runs Ms2c¢, Ms 3¢, Ms4c, and Ms5c in Table 1) with the same
Bpo = 16 and different compression rates g (or equivalently,
different Mach numbers of the corresponding shock simula-
tions). We present the evolution of the whistler wave energy
(panel (a)), the electron temperature anisotropy (panel (b)), the
rate —d In(7, , /B) of breaking adiabatic invariance (panel (c)),
and the electron entropy increase (panel (d)) when varying the
compression rate from ¢/Q; = 1.5 up to 4.0 (from blue to red,
see the legend in the first panel). For mass ratio m; /m, = 49, the
compression rate in units of the electron gyration frequency
Qee = (mi/me)Qci is Q/ch = OOZ(Q/QQ) < 1 ie, compres-
sion occurs slowly as compared to the electron gyration time (so
our choice of m; /m, = 49 fulfills the requirement g/, < 1
expected for the realistic mass ratio).

As a result of the large-scale compression, the electron
perpendicular and parallel temperatures are expected to scale as
I,y o Box (1 +gt)and T | o (n/B)*x const, according to
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Figure 2. Density compression experienced by electrons (solid lines) as they
propagate from upstream to downstream, as a function of the electron
comoving time, from our suite of shock simulations (see Section 5) with fixed
Bpo = 16 and varying M; (as indicated in the legend). Dotted lines show the
linear approximation #,/n. = (1 + gt) (with values of ¢ indicated in the
legend) employed in the compressing box experiments.

Table 1
Parameters for the Compressing Box Experiments Described in Section 3
run name M, q Bpo ke Too/m,c? Ly [c/wpe]
Ms2c 2 15 16 1072 86
Ms3c/betalbe 3 25 16 1072 86
Msdc 4 35 16 1072 86
Ms5c 5 4 16 1072 86
betadc 3 25 4 1072 86
betasSc 3 25 8 1072 86
beta32c 3 25 32 1072 130
beta6dc 3 25 64 1072 173

Note. The compression rate ¢ is in units of the proton larmor frequency €, for
mass ratio nz; /m, = 49.

the double adiabatic theory. In fact, the electron anisotropy at
early times grows as Te,L/Te,H — 1 = gt (Figure 3(b)), and thus,
at a faster rate for higher g (or equivalently, in higher M,
shocks).

The increasing temperature anisotropy leads to the expo-
nential growth of the electron whistler instability. When the
energy in whistler waves reaches a fraction ~1072 of the
compressed background field energy (Figure 3(a)), the waves
are sufficiently strong to scatter the electrons in pitch angle,
breaking their adiabatic invariance and decreasing the electron
anisotropy. In fact, the peak in panel (c), i.e., the time when the
electron adiabatic invariance is most violently broken, always
corresponds to the time when the electron anisotropy in panel
(b) shows the sharpest decrease. This occurs earlier for higher g
(if time is measured in Q;', as in Figure 3), because electrons
are driven sooner to large levels of anisotropy. As a result of
efficient pitch angle scattering, the electron anisotropy is
reduced to the marginal stability threshold of the electron
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Figure 3. Dependence on M, or equivalently compression rate g, of various
space-averaged quantities in compressing box experiments Ms2c, Ms3c,
Msdc, and Ms5c, at fixed By0. As a function of time in units of Q;il, we plot:
(a) energy in magnetic field fluctuations, normalized to the energy of the
compressed field; (b) electron temperature anisotropy (solid lines) and
threshold condition for the electron whistler instability (dotted lines with the
same color coding as the solid lines); (c) rate of violation of adiabatic
invariance —d In(Z, | /B); (d) electron entropy change, measured from the
electron distribution function as in Equation (5) (solid lines) and predicted from
our heating model of Equation (1) (thin dashed lines). The vertical dotted black
line in panel (d) marks the approximate end of the compression phase in the
shock ramp.
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whistler instability (Gary 2005)
1. | ~ 0.21

- 0.6
L, Bel

)

(dotted lines in Figure 3(b), with the same color coding as in
the legend of panel (a)), which is nearly the same for all the
runs, as they start with the same (3,0 and maintain a similar
value of 3, . Here, 3, | is the electron plasma beta measured
with the parallel temperature 7, .

Near the end of the exponential growth of whistler waves,
the electron entropy shows a rapid increase (panel (d)). Here,
the electron anisotropy is still large, and at the same time,
whistler waves are sufficiently powerful to provide effective
pitch-angle scattering. In other words, both terms in the square
brackets of either Equation (1) or (2) are large. The resulting
entropy increase is a monotonic function of g, for the following
reason. First, larger values of g allow the electrons to reach
higher levels of peak anisotropy (Figure 3(b)). This can be
understood from the competition between the large-scale
compression rate (which increases the electron anisotropy)
and the growth rate of whistler waves (which try to reduce the
anisotropy via pitch angle scattering). Because the whistler
growth rate depends on how much the anisotropy exceeds the
whistler threshold in Equation (9), a higher anisotropy is
needed for larger ¢ (in fact, Figure 3 shows that the whistler
growth rate is higher for larger g). Second, because whistler
waves are sourced by the free energy in electron anistropy,
the wave energy at saturation will be larger for higher ¢
(Figure 3(a)). Third, stronger whistler waves will be more
efficient in breaking the electron adiabatic invariance
(Figure 3(c)). The combination of these effects explains the
monotonic trend in electron entropy observed in Figure 3(d)
near the end of the exponential growth of whistler waves (i.e.,
at the time of sharp increase in the curves of panel (d)).

After the exponential growth, electron whistler waves enter a
secular phase where the wave energy (normalized to the
compressed background field energy) stays almost constant in
time. At this point, the whistler wave energy is also nearly
independent of g (panel (a)), and the same will hold for the rate
of violation of electron adiabatic invariance (panel (c)). The
electron anisotropy settles around the threshold of marginal
stability (compare the solid and dotted lines in panel (b) at late
times), which is independent of g at fixed 3, . It follows that
the rate of increase of electron entropy during the secular phase
will be the same regardless of ¢, as is confirmed by panel (d)
(see slow growth at late times, at a rate independent of g). We
remark that the overall increase of electron entropy, as
measured directly from our simulations using Equation (5), is
in excellent agreement with our heating model of Equation (1)
(compare solid and thin dashed lines in panel (d), respectively).

From Figure 3(d), we can infer how the entropy increase in
the shock ramp should scale with Mach number, if field
amplification is induced by shock-compression of the upstream
field (case A). Because the compression in the shock ramp lasts
about one proton gyration time, we compare the entropy curves
at Q.f ~ 1, as indicated by the vertical dotted black line in
panel (d). We then find that the efficiency of electron heating in
the shock ramp is expected to be larger at higher M|
(corresponding to faster compressions in Figure 3), at fixed
Bpo- We will confirm this trend in our shock simulations
presented in Section 5. However, we anticipate that, in shocks
with high Mach number, proton-driven waves already appear
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near the shock ramp. In this case, large-scale field compression
and proton-driven waves (as discussed in Section 4) co-exist
and co-contribute to efficient electron entropy production in the
shock transition region.

3.3. Dependence on By

In this subsection, we study the dependence of the electron
heating efficiency on plasma beta 3,0, by means of compres-
sing box experiments (as appropriate for case A). We fix the
compression rate at ¢ = 2.5 {2, as appropriate for a shock with
M, = 3, and vary the initial plasma beta 3,0 from 4 to 64 (runs
betadc, beta8c, betaléc, beta32c, beta64dc).

Figure 4 compares the results of our runs. Initially, the electron
temperature anisotropy increases as T, | /7] — 1 = gf, regardless
of 3,0 (panel (b)). Eventually, this leads to the development of the
whistler instability, whose exponential growth needs to balance
the large-scale compression (so its growth rate is nearly
independent of 3,, as confirmed by panel (a)). As we discuss in
Appendix B, a given growth rate of the whistler mode requires a
lower degree of electron anisotropy for higher plasma beta, which
explains the trend in peak anisotropy of Figure 4(b). In tum, a
lower level of peak anisotropy corresponds to a smaller amount of
free energy available to be converted into whistler waves, whose
amplitude is indeed weaker at higher (3,, (see the inset in
Figure 4(a), where we normalize the whistler wave pressure with
respect to the electron parallel pressure nkg 7, ). Weaker whistler
wave activity at higher 3, explains why the breaking of electron
adiabatic invariance is less violent at higher beta (panel (c)).
Because both the electron anisotropy and the violation of adiabatic
invariance are weaker for larger (3,0, the resulting entropy increase
near the end of the exponential phase of whistler growth is smaller
for a higher plasma beta, as shown in Figure 4(d) (solid lines;
compare the values attained during the early phase of rapid
growth).

In the secular phase of the electron whistler instability, when
efficient pitch angle scattering has brought the anisotropy down
to the threshold of marginal stability (dotted lines in
Figure 4(b), with the same color coding as the solid lines),
the electron entropy keeps increasing, yet at a slower rate. In
the secular phase, the trend discussed above still holds (i.e.,
weaker entropy production at higher plasma beta), primarily
because the degree of electron anisotropy stays smaller at
higher 3, (panel (b)), due to the monotonic dependence on 53,
of the threshold of marginal stability; see Equation (9). As we
have emphasized in the previous subsection, the increase of
electron entropy in both exponential and secular phases, as
measured directly from our simulations (Equation (5)), is in
excellent agreement with our heating model of Equation (1)
(compare solid and thin dashed lines in panel (d), respectively).

In summary, when field amplification is due to compression
alone (case A), the efficiency of electron entropy production
decreases monotonically with increasing plasma beta. In
particular, this holds after one proton gyration time (see the
vertical dotted black line in panel (d)), which we have taken to
be the characteristic compression time in the shock ramp.
However, as we shall see in the next section, the dependence on
Bpo is opposite when field amplification is provided by proton-
driven waves. As a result of the two opposite trends, in our
shock simulations of Section 5, where both compression and
proton-driven waves contribute to field amplification, the
dependence on (3, is rather weak in the range of plasma beta
that we explore.
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Figure 4. Dependence on (p9 of various space-averaged quantities in
compressing box experiments betadc, beta8c, betalbe, beta32c,
and beta6dc, at fixed M, = 3. As a function of time in units of Q;il, we plot:
(a) energy in magnetic field fluctuations, normalized to the energy of the
compressed field—in the inset, we also plot the pressure in magnetic field
fluctuations normalized by the electron parallel pressure; (b) electron
temperature anisotropy (solid lines) and threshold condition for the electron
whistler instability (dotted lines with the same color coding as the solid lines);
(¢) rate of violation of adiabatic invariance —d In(Z;, | /B); (d) electron entropy
change, measured from the electron distribution function as in Equation (5)
(solid lines) and predicted from our heating model of Equation (1) (thin dashed
lines). The vertical dotted black line in panel (d) marks the approximate end of
the compression phase in the shock ramp.
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4. Electron Heating by Proton-driven Waves

In this section, we focus on case B, i.e., we investigate the
efficiency of electron irreversible heating (and its dependence
on the flow conditions) when field amplification is due
exclusively to proton-scale waves induced by the relaxation
of proton temperature anisotropy. To study this effect, we
employ periodic boxes (not compressing, so with g=0),
where the degree of proton anisotropy is prescribed to mimic
the conditions expected in the shock downstream. Because both
the proton cyclotron instability, which dominates over the
mirror mode in our runs (see Section 5), and the electron
whistler instability have the fastest growing wavevector aligned
with the background field, we employ 1D simulation domains
aligned with the y-direction of the field.

4.1. Simulation Setup

We now describe how the initial conditions of our 1D
periodic box experiments are set up to be representative of the
downstream region of a shock with Mach number M, and
plasma beta 3,,. We need to prescribe the initial proton
temperatures perpendicular and parallel to the magnetic field
(Ziobox, 1. and Tigpox,|)), the initial electron temperature (Zonox; as
we justify below, we consider isotropic electrons), and the
initial electron plasma beta (G,0p0x). We employ the subscript
“box” to distinguish them from the initial conditions of our
shock simulations. In principle, these parameters can be set by
measuring directly the flow conditions behind our simulated
shocks. However, we show below that they can be simply
prescribed using the Rankine—Hugoniot jump conditions. This
has the advantage of showing explicitly the expected depend-
ence on the shock Mach number M, and plasma beta 3,0.

Because the pre-shock flow moves along the x-direction,
while the pre-shock magnetic field is oriented along y (see
Section 5), the post-shock protons will be promptly gyrotropic
in the plane xz perpendicular to the pre-shock field, but
generally anisotropic with respect to the y-direction parallel to
the field. In the absence of instabilities that mediate efficient
isotropization, the motions perpendicular and parallel to the
field are effectively decoupled, and the post-shock protons
behave as a plasma with two degrees of freedom (ergo, with
adiabatic index I' = 2). This is demonstrated by the 2D out-of-
plane and 1D shock simulations shown in Appendix A of
Paper 1. The density and temperature jumps across a shock with
adiabatic index I' = 2 (as appropriate for the region just behind
the shock) are

36,0M?
TRET=2 = - T (10)
2 4+ ﬁpO(2 -t M )
2 4 — 4 rpyre
At psy = Mf(z = ] 3 REEN o, (113
RE,T=2 PO

where Afgpr—, is, more precisely, the jump in the perpend-
icular temperature for the overall fluid (the parallel one stays
unchanged).

We then assume that the electron temperature jump in the
perpendicular direction follows from the adiabatic law (in
Section 5, we quantify the efficiency of electron irreversible
heating; still, for the parameter regime we explore, most
of the electron temperature increase comes from adiabatic
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Figure 5. Dependence on M of various quantities in periodic box experiments with
anisotropic protons (runs Ms2nc, Ms3nc, Msdnc, Ms5nc), at fixed 8,0 = 16.
As a function of time in units of Q', we plot: (a) energy in magnetic field
fluctuations, normalized to the energy of the initial field in the box By pox; (b) proton
temperature anisotropy; (c) magnetic pressure in electron-scale fluctuations,
normalized to the electron parallel pressure; (d) electron temperature anisotropy
(solid lines for the box-averaged values, shaded regions for the 50-90 percentiles)
and threshold of the electron whistler instability (dotted lines with the same color
coding as the solid lines); (e) rate of violation of the electron adiabatic invariance
—d In(1,,1 /B); (f) electron entropy change, measured from the electron distribution
function as in Equation (5) (solid lines) and predicted from our heating model of
Equation (1) (thin dashed lines). The time axis of the M; = 2 run (blue dashed
lines) is reduced by a factor of two for better comparison. To isolate whistler-like
waves in panel (c), we have applied a high-pass filter that retains frequencies higher
than 0.064 Q.. and wavelengths shorter than 25 ¢/wpe.

compression). Coupling electron adiabatic invariance with flux
freezing, this implies that the post-shock electron temperature
18 rrpy r=2 Tp. From Equation (11), which prescribes the jump in
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perpendicular temperature for the overall (electron + proton)
fluid, we find that the post-shock proton temperature in the
direction perpendicular to the field, which we take as the initial
condition Tigex, | in our periodic boxes, will be

Tiobox, . = To(2 Afrg,r=2 — 7RE,T=2)- (12)
The parallel proton and electron temperatures are the same as in
the pre-shock region; in particular,

EObox,H =T (13)

With regard to the initialization of electrons, we assume that
the electron anisotropy is rapidly erased due to the rapid
development of electron-scale instabilities, as it indeed occurs
in the shock ramp.® If this happens without any energy
exchange with the protons, the isotropic electron temperature is
2rrur=2 + 1

— 5

Finally, the initial electron plasma beta can be computed from
flux freezing as

Toobox = T (14)

2rrur=2+ 1 Gpo

(15)
3rrar—2 2

ﬁeObox =
The physical and numerical parameters used for the periodic
box experiments of this section are summarized in Table 2 (the
run names have the suffix “nc” to indicate that the boxes are not
compressing). We indicate the Mach number M, and plasma beta
By of the corresponding shock simulations, the initialization
values of kg Tiovox, /%, Tiovox, 1/ Tiovox,|» Teobox /Tiobox,|» and
B.obox employed in the periodic boxes, the number of computa-
tional particles per cell (NVypc), and the box length L, along the
y-direction of the background large-scale field, in units of the
proton skin depth ¢ / wpi = /i /m, c / wpe. We employ a
reduced mass ratio m;/m, = 49. From Table 2, it is apparent
that the Mach number M| has a pronounced effect on the initial
proton anisotropy. In fact, in the limit of M; > 1, we have
rRar—2 o< MY and Afggr_s oc MZ, so that Tiopes, 1 /Tobox,| X
M? from Equations (12) and (13).

4.2. Dependence on M

In this subsection, we compare the periodic box simulations
Ms2nc, Ms3nc, Ms4dnc, Msb5ng, that correspond to shocks
with fixed 8,0 = 16 but different M, ranging from 2 to 5. Our
results are shown in Figure 5. The case corresponding to
M; = 2 is plotted with a dashed line to emphasize that its time
axis has been reduced by a factor of two, to facilitate
comparison with the other cases.

As we have discussed above (see also Table 2), runs with
larger M, are initialized with a stronger degree of proton
anisotropy (see the curves in panel (b) at the initial time). In
response to the greater amount of free energy stored in proton
temperature anisotropy, runs with larger M, develop stronger
proton cyclotron waves (panel (a)). In addition, because the
growth rate of the proton cyclotron instability is higher for
larger temperature anisotropies, at fixed plasma beta (see the
linear dispersion properties of the proton cyclotron instability
in Appendix C), the proton cyclotron wave energy grows faster

Despite the fact that we now assume isotropic electrons, the ansatz of a
" = 2 gas that we employed to calculate the jump conditions will still hold
because the post-shock pressure is mostly contributed by protons (see
Section 5).
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Table 2
Parameters for the Anisotropic Protons Box Experiments Described in Section 4
Run Name M, Bpo kg Tigpos, | /mic? Tiobox, 1/ Tiobox, | Tzobox /Tiovox, | Boobox Nope Ly [cfwpi]
Ms2nc 2 16 2 x 107* 2.88 1.64 6.69 10* 30.9
Ms3nc/betalénc 3 16 2 x 107 6.87 1.95 643 10* 309
Ms4nc 4 16 2 x 107* 12.86 2.10 6.34 10* 30.9
Ms5nc 5 16 2 x 107 20.74 2.18 6.30 10* 309
beta8nc 3 8 2 x107* 6.69 1.93 322 10* 30.9
beta32nc 3 32 2 x 107 6.96 1.96 12.85 10* 309
beta64nc 3 64 2 x 107* 7.00 1.96 25.69 2 x 10* 463

Note. We employ a fixed mass ratio m;/m, = 49 and resolve the electron skin depth with seven cells, which is sufficient to capture the electron debye length.

at higher M| (panel (a)). Because pitch angle scattering by the
proton cyclotron modes is responsible for relaxing the
temperature anisotropy, this explains why the proton aniso-
tropy in Figure 5(b) drops faster for higher M, despite starting
from higher initial values.

The growth of proton cyclotron waves provides a source of
field amplification that can perform work on the electrons.
However, this does not automatically lead to irreversible
electron heating. In fact, Figure 5 shows that, for M; = 2 the
energy in proton cyclotron modes is so small (dashed blue line
in panel (a)) that the electron temperature anisotropy (dashed
blue line in panel (d)) never exceeds the threshold of the
electron whistler instability (indicated in Figure 5(d) by the
corresponding dotted blue line). In fact, in this case, no whistler
waves are observed to grow (no blue line appears in
Figure 5(c), where we plot the magnetic pressure associated
with whistler waves in units of the electron parallel pressure).
In the absence of whistler waves, the electron evolution stays
adiabatic (dashed blue line in panel (e)), and no electron
entropy is generated (dashed blue line in panel (f)).

For higher M,, the proton waves are sufficiently strong to
drive the electron anisotropy beyond the whistler threshold
(compare solid and dotted lines of the same color in
Figure 5(d)). Because whistler waves provide the pitch-angle
scattering required to break adiabatic invariance, this leads to
electron entropy production (Figure 5(f)). As shown in
Figure 5(f), the increase in electron entropy is a monotonic
function of M. As we now discuss, this is related to the fact
that the same trend holds separately for the two terms in square
brackets of Equation (1) (or equivalently, Equation (2)).

In fact, the degree of violation of electron adiabatic
invariance is larger for higher M, (Figure 5(e)), because
whistler waves are more powerful (Figure 5((:)).9 The trend in
electron anisotropy (Figure 5(d)) is less clear, with the green,
orange, and red curves showing comparable peak values.
Unlike in the compressing box experiments of the previous
section, where the degree of electron anisotropy was roughly
uniform throughout the simulation domain, here proton-driven
modes introduce large spatial variations in the electron
properties (in analogy to Figure 11 of Paper I). It is then
useful to complement the information on the box-averaged
anisotropy (solid lines in Figure 5(d)) with shaded regions
indicating the 50-90 percentiles of electron temperature
anisotropy. This reveals that spatial variations in electron
anisotropy are stronger at higher M, (or equivalently, the
distance between the solid curve and the upper boundary of the

° In order to obtain the magnetic energy 6B2 /8w in whistler-like fluctuations,

we have applied a high-pass filter in frequency and wavenumber, as described
in Paper L.

corresponding shaded region increases with M), where proton
modes are also more powerful. In addition, runs with larger M,
present localized regions with systematically higher peak
anisotropies (the peak of the shaded red region is higher than
the orange one, which in turn is higher than the green one). On
the one hand, this justifies the fact that the strength of whistler
waves, which are seeded by electron anisotropy, increases with
M;. On the other hand, when coupled with the dependence on
M, of the violation of adiabatic invariance (Figure 5(e)), it fully
justifies why runs with higher M lead to more efficient electron
entropy production.

For low M, most of the entropy increase occurs near the end
of the exponential phase of the proton cyclotron instability; by
contrast, at high M, a steady growth in electron entropy is
observed during the secular stage. Here, the strong cyclotron
modes can occasionally excite local patches of electron
anisotropy that exceed the whistler threshold (e.g., see the
peak in the red shaded region at Qf ~ 10.5 in Figure 5(d)).
The resulting whistler activity (see the corresponding peaks in
the curves of panels (c) and (e)) can further increase the
electron entropy.

Finally, we point out that, as we have also discussed in the
case of compressing box simulations, the increase of electron
entropy, as measured directly from our simulations
(Equation (5)), is in excellent agreement with our heating
model of Equation (1) (compare solid and thin dashed lines in
panel (f), respectively).

4.3. Dependence on 3,

In this subsection, we compare the periodic box simulations
beta8nc, betalénc, beta32nc, betaé4nc, that corre-
spond to shocks with fixed M, = 3 but different 3, ranging
from 8 to 64. Our results are shown in Figure 6.

At fixed M, the initial proton temperature anisotropy is
nearly independent of 3, (see Figure 6(b) at early times). From
the dispersion properties of the proton cyclotron mode (see
Appendix C), the growth at fixed proton anisotropy is faster at
higher plasma beta, in agreement with the exponential phase in
Figure 6(a) and with the drop in proton anisotropy in
Figure 6(b). At fixed proton anisotropy, the free energy
available to be converted into proton waves will be larger with
increasing (3,0, just because the proton thermal content is
higher. In fact, when normalized to the magnetic energy of the
large-scale field By 0%, the magnetic energy of proton cyclotron
waves at saturation is larger for higher plasma beta, as shown in
Figure 6(a).

In all the cases that we investigate, the growth of proton
cyclotron waves drives the electron anisotropy above the
whistler threshold (Figure 6(d), compare solid and dotted
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lines). At higher 3,0, the electron whistler instability starts
earlier (Figure 6(c)), due to the combination of two effects: the
proton waves grow faster, and the whistler threshold is lower,
and thus easier to exceed.

In addition, the stronger proton waves generated for higher
Bpo will have the chance to perform more work on the
electrons. In particular, at higher 3,,, we expect that electrons
will be driven further into the unstable region of the electron
whistler mode (i.e., beyond the marginal stability threshold,
which is itself a function of plasma beta, see Equation (9)). This
is suggested by the general trend seen in Figure 6(d), where,
e.g., the orange solid curve (for 3,0 = 32) lies at Qg f ~ 5,
significantly above the corresponding marginal stability thresh-
old (indicated by the dotted orange line), whereas the solid blue
line (for 8,0 = 8) at (it ~ 11 is only marginally above the
corresponding threshold (dotted blue curve). In turn, a higher
level of electron anisotropy (with respect to the baseline
provided by the marginal stability threshold) results in stronger
whistler wave activity (Figure 6(c)), and in more violent
breaking of electron adiabatic invariance (Figure 6(e)). It
follows that the electron entropy increase will be more
pronounced for higher 3,, as confirmed by Figure 6(f).

We conclude this section with two comments. First, once
again, our heating model is in good agreement with the
measured entropy increase (compare thin dashed and solid lines
in Figure 6(f)). Second, in the compressing box experiments of
the previous section (meant to mimic field amplification by
shock compression of the upstream field), higher values of
plasma beta resulted in a weaker increase in electron entropy,
but the opposite trend is observed here, where field amplifica-
tion is due to proton cyclotron waves. In the shock simulations
presented in the next section, where the two processes will
co-exist, we should expect a weak dependence on plasma beta,
as indeed we will find for the parameter regime we explore.

5. Electron Heating in Shocks

In the previous two sections, we have investigated the
efficiency of electron irreversible heating when the magnetic
field amplification that induces electron anisotropy—which in
turn sources the growth of whistler waves and eventually
results in entropy production—is due to two separate mechan-
isms: in Section 3, we have discussed case A, where field
amplification is due to a large-scale density compression; in
Section 4, we have focused on case B, where proton waves
accompanying the relaxation of proton anisotropy can increase
the magnetic field strength. In shocks, the two mechanisms co-
exist, as we have already discussed in Paper I for our reference
case with M, =3 and B, = 16. We now explore the
dependence of irreversible electron heating in perpendicular
shocks on Mach number and plasma beta. In Section 6, we
summarize the key findings from the shock simulations and
provide an empirical fit to our results, which can be used in
comparison with the observations.

5.1. Simulation Setup

We perform shock simulations using the 3D electromagnetic
PIC code TRISTAN-MP (Buneman 1993; Spitkovsky 2005).
Our setup parallels closely what we have employed in Paper 1.
We use a 2D simulation box in the x—y plane, with periodic
boundary conditions in the y-direction, but all three compo-
nents of particle velocities and electromagnetic fields are
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Figure 6. Dependence on G0 of various quantities in periodic box experiments
with anisotropic protons (runs beta8nc, betalénc, beta3Znc,
beta6dnc), at fixed My = 3. As a function of time in units of Q;il, we
plot: (a) energy in magnetic field fluctuations, normalized to the energy of the
initial field in the box By pox: (b) proton temperature anisotropy; (c) magnetic
pressure in electron-scale fluctuations, normalized to the electron parallel
pressure; (d) electron temperature anisotropy (solid lines for the box-averaged
values, shaded regions for the 50-90 percentiles) and threshold of the electron
whistler instability (dotted lines with the same color coding as the solid lines);
(e) rate of violation of the electron adiabatic invariance —d In(7; 1 /B); (f)
electron entropy change, measured from the electron distribution function as in
Equation (5) (solid lines) and predicted from our heating model of Equation (1)
(thin dashed lines). To isolate whistler-like waves in panel (c), we have applied
a high-pass filter: for run beta8nc (respectively, betalénc, beta32nc,
beta64nc) we retain frequencies higher than 0.063 €. (respectively, 0.063,
0.039, 0.039), and wavelengths shorter than 20 ¢ /wy. (respectively, 25, 35, 35).
These choices are motivated by the fact that the fastest growing mode of the
electron whistler instability has lower frequencies and longer wavelengths for
higher plasma beta.
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Table 3
Parameters for the Shock Simulations Presented in Section 5
Run Name M, M meas Bpo m; [m, Nppe Ly [cfwpil
Ms2beta4d 2 2.13 4 49 32 21.6
Ms2beta8 2 2.11 8 49 32 21.6
Ms2betal6 2 2.16 16 49 32 21.6
Ms2beta32 2 2.11 32 49 32 21.6
Ms3beta4d 3 3.04 4 49 32 21.6
Ms3betal 3 3.03 8 49 32 21.6
Ms3betal6 3 2.98 16 49 32 21.6
Ms3beta32 3 2.95 32 49 32 21.6
Msdbeta4d 4 4.06 4 49 32 21.6
Msdbeta8 4 3.92 8 49 32 21.6
Msdbetal6 4 3.94 16 49 32 21.6
Msdbeta32 4 3.94 32 49 32 21.6
MsSbeta4d 5 491 4 49 32 21.6
MsSbeta8 5 4.92 8 49 32 21.6
MsSbetal6 5 4.92 16 49 32 21.6
MsSbeta32 5 4.94 32 49 32 21.6
mi200Ms2 2 2.16 16 200 48 21.4
mi200Ms3 3 2.98 16 200 64 21.4
mi200Ms4 4 3.94 16 200 48 21.4
mi200Ms5 5 4.92 16 200 48 21.4

Note. All the runs are initialized with Tjo = T,0 = Tp = 10~ 2m,c?/kg and
¢fwpe = 10 cells.

tracked. The shock is set up by reflecting an upstream electron-
proton plasma moving along the —% direction off a conducting
wall at the leftmost boundary of the computational box (x = 0).
The interplay between the reflected stream and the incoming
plasma causes a shock to form, which propagates along +%. In
the simulation frame, the downstream plasma is at rest. The
pre-shock magnetic field is initialized along the ¥ direction
perpendicular to the shock direction of propagation (i.e., we
focus on the case of a “perpendicular” shock). Our 2D setup—
with the magnetic field lying in the simulation plane—allows
us to capture the physics of both electron (whistler) and proton
(mirror and proton cyclotron) anisotropy-driven instabilities
that are crucial for electron heating. In Paper I (see
their Appendix A), we have shown that the electron heating
physics cannot be properly captured by 1D simulations or by
2D simulations initialized with the field along Z, ie.,
orthogonal to the simulation plane.

We vary the shock Mach number AM; (defined in
Equation (3)) and the pre-shock plasma beta 3, (defined in
Equation (4)) as listed in Table 3, where we summarize the
physical and numerical parameters of our shock simulations.
The values of M, and 3,, cover the regime of pre-shock
conditions expected in galaxy cluster shocks.

We point out that, in setting up our simulations, we do not
have direct control over the upstream velocity in the shock
frame V; (which enters the definition of M), but only on the
upstream velocity in the downstream frame V. In other words,
we have no direct way of prescribing M;. In order to obtain a
given “target” Mach number M,, we iteratively solve the
Rankine—Hugoniot jump conditions and select the value of V,
that corresponds to the chosen M;. In the parameter regime
covered by our simulations, because the protons in the
immediate post-shock region retain a significant degree of
anisotropy, we solve the Rankine—-Hugoniot relations under the
assumption of a 2D adiabatic index I' = 2. It follows that the
actual value of Mach number measured a posteriori in our

11

Guo, Sironi, & Narayan

simulations (M yeas in Table 3) may differ from the Mach
number M, targeted a priori. In practice, Table 3 shows that the
two values differ by, at most, a few percent.

The pre-shock patticles are injected at a “moving injector,”
which recedes from the wall in the +£ direction at the speed of
light (as the injector recedes from the wall, the simulation box
also expands with time). For further numerical optimization,
we allow the moving injector to periodically jump backward
(i.e., in the — X direction), so that its distance ahead of the shock
is always on the order of a few proton Larmor radii (see
Paper I for details). The pre-shock particles are initialized as a
drifting Maxwell-Jiittner distribution with a temperature
Ty = Ty = T) = 10 2m,c?/ky.'° We resolve the electron skin
depth ¢/wpe (defined in Equation (8)) with 10 computational
cells, so that the electron Debye length is appropriately
captured. We use a time resolution of df = 0.045 w;el. The
number of particles per cell Ny, (including both species) is
given in Table 3. Convergence checks, with regard to spatial
resolution and number of partticles per cell, have been
performed in Paper 1.

The shock structure is controlled by the proton Larmor
radius

Vo [m; ¢ C
= — > .
Wpe

i (16)

VAN Me Wpe

where the Alfvén speed is vy = By / JAmm;ng. Similarly, the
evolution of the shock occurs on a timescale given by the
proton Larmor gyration period Q;il =mniVy L w;,el. The
need to resolve the electron scales, and at the same time to
capture the shock evolution for many Q;l, is an enormous
computational challenge for the realistic mass ratio
m;/m, = 1836. Thus, we adopt a reduced mass ratio
m; /m, = 49 for most of our runs, but we have tested that a
higher mass ratio yields identical results (in Appendix A, we
explore the dependence on Mach number of a few simulations
with m; /m, = 200). In Paper I, we have argued that, for our
reference shock with M, = 3 and 3,, = 16, the efficiency of
electron irreversible heating is nearly insensitive to the mass
ratio, up to m;/m, = 1600. For m; /m, = 49, we choose the
transverse size of the box L, to be ~150 ¢/wpe ~ 21 ¢/uwy;,
which is sufficient to capture the growth of proton instabilities
in the downstream.

5.2. Dependence on M,

In this subsection, we compare the results of shock
simulations with fixed 8,0 = 16 and varying Mach number
from M;=2 up to 5 (runs Ms2betalé, Ms3betalg,
Msd4betal6, and Ms5betalé in Table 3). We employ a
reduced mass ratio of m;/m. =49, but we show in
Appendix A that identical results are obtained for a higher
value of the mass ratio, m; /m, = 200.

Figure 7 shows the y-averaged profiles of various quantities
in the shock at time Q).;f = 22, as a function of the x-coordinate
relative to the shock location x4, in units of the proton Larmor

10 Because we fix the thermal energy in units of the electron rest mass energy,
it follows that different values of plasma beta are obtained by varying the ratio
wpe [Qe- In a few representative cases, we have verified that the two choices
(i.e., varying wpe/Qe at fixed kgTy/mc? or varying kgTp/m.c at fixed
wpe [Qce) yield identical results, as long as the shock Mach number and the
plasma beta are the same, and the electrons stay non-relativistic.



THE ASTROPHYSICAL JOURNAL, 858:95 (22pp), 2018 May 10

radius r;; defined in Equation (16). Panel (a) shows the profiles
of density (thick lines, see the legend in panel (d)) and
magnetic field strength (thin lines with the same color coding as
the thick lines). In agreement with the Rankine—Hugoniot
relations, the density jump is larger for higher M;. As a result of
flux freezing alone, one would expect the magnetic field to be
By = (n/ny) By, i.e., its spatial profile should be identical to the
density profile. The fact that the field strength |B| in Figure 7(a)
exceeds the expectation from flux freezing is to be attributed to
magnetic fluctuations. Because the deviation is more pro-
nouced at high M;, whereas thin and thick lines overlap at low
M, we expect from panel (a) that the strength of magnetic field
fluctuations should increase with Mach number.

This is confirmed in Figure 8, where we present the 2D plots of
6B, /By for the same simulations as in Figure 7. It is apparent that
the strength of long-wavelength fluctuations steadily increases
with Mach number (i.e., from top to bottom). Such waves—a
combination of proton cyclotron modes and mirror modes—
accompany the relaxation of the proton temperature anisotropy.
As we have discussed in Section 4.1, protons are expected to be
highly anisotropic in the immediate post-shock region, with a
degree of anisotropy that scales as T; | / I o M?. The fact that
shocks with higher M lead to stronger proton anisotropy has two
consequences: (i) the larger amount of free energy in proton
anisotropy can generate stronger proton waves, as is observed in
Figures 8 and 7(a); (ii)) as predicted by linear theory (see
Appendix C), the waves grow faster for higher levels of
anisotropy (ergo, higher M,). In fact, Figure 8 shows that the
peak of wave activity is located right at the shock for high Mach
numbers (M; =4 and 5), and it shifts farther and farther
downstream for lower and lower Mach numbers (it lies at
x — Xgn) /i~ —2.5 for M, = 3 and at (x — Xxgq) /11 5 —10
for M; = 2), due to the slower and slower wave growth.

For M, = 2 and 3, the wave pattern in the shock ramp is
dominated by short-wavelength electron whistler waves, rather
than by the long-wavelength proton waves appearing for
M, = 4 and 5. In fact, the peak at x ~ xg, in the green and blue
lines of Figure 7(b) reflects the energy in whistler modes. For
high Mach numbers, proton-driven modes are so strong that
they dominate the wave energy right at the shock (orange and
red curves in Figure 7(b)), hiding the presence of whistler
waves in Figures 8(c), (d). Still, electron whistler modes remain
active in the shock ramp (their pattern appears more clearly at
higher mass ratios, where proton and electron scales are better
separated, see Appendix A). There, they mediate efficient
entropy production, as we discuss below.

As we have just described, the downstream proton waves are
sourced by the proton anisotropy induced at the shock, which is
expected to be stronger at higher M. This trend is confirmed in
the peak anisotropy of Figure 7(d) (compare the curves at
X ~ Xgn), with the exception of the red curve of M; = 5. Here,
anisotropy-driven proton instabilities are so violent that the
proton anisotropy is not even allowed to reach its expected
peak. Due to pitch angle scattering by the proton cyclotron and
mirror modes, the proton anisotropy is reduced below the
marginal stability condition
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Figure 7. Dependence on M of various y-averaged quantities, from our shock
simulations Ms2betalé, Ms3betalé, Msdbetal6, and Msbbetalt, at
f =122 Qc’il (the legend is in panel (d)). The x-coordinate (aligned with the
shock direction of propagation) is measured relative to the shock location xg,,
in units of the proton Larmor radius ryi. From top to bottom, we plot:
(a) number density (thick lines) and magnetic field strength (thin lines);
(b) energy in magnetic fluctuations, normalized to the energy of the frozen-in
field; (c) mean proton temperature; (d) proton temperature anisotropy (with
dotted lines representing the marginal stability threshold in Equation (17));
(e) mean electron temperature; (f) electron temperature anisotropy; (g) excess
of electron temperature beyond the adiabatic prediction for an isotropic gas;
(h) change in electron entropy. The efficiency of electron irreversible heating
increases monotonically with M.
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Figure 8. Dependence on M, of the 2D structure of magnetic field fluctuations
6B, /By in the shock simulations Ms2betal6, Ms3betal6, Msdbetals,
and Msbbetal6 att = 22 Q5. The x-coordinate is measured relative to the
shock location xg; both x and y coordinates are normalized to the proton
Larmor radius r1;. Notice that the x and y extents of the box are different for
different M.

which is indicated with dotted lines in Figure 7(d). Because
proton-driven waves are stronger for higher M|, the relaxation
toward the marginal stability threshold is faster for higher M,
in analogy to what we discussed in Section 4.2. The case of
M; = 2, where proton modes are the weakest, is the only one
where the degree of proton anisotropy remains significant (see
the blue line in Figure 7(d) in the far downstream).

Given that protons in the far downstream are generally
isotropic, their temperature can be properly quantified by the
isotropic-equivalent estimate

E:23L+Ew

1
7 18)

which we present in Figure 7(c). The trend seen in the plot, i.e.,
T, /Ty increasing with M, is driven by the fact that the
temperature jump predicted by the Rankine—Hugoniot relations
for the overall fluid is a monotonic function of M, in
combination with the fact that most of the post-shock fluid
energy resides in protons (rather than electrons or proton-
driven modes). At sufficiently high Mach numbers, we then
expect that T, /Ty x M? (i.e., as predicted by the Rankine—
Hugoniot relations), a trend confirmed by Figure 7(c).

So far, we have mostly focused on the proton physics. With
regard to electrons, we find that the post-shock electron
temperature is a monotonically increasing function of M,
(Figure 7(e)). This might just follow from the dependence on
M, of the adiabatic heating efficiency, Because the density
compression increases with M (Figure 7(a)).

However, we find that the efficiency of itreversible electron
heating is also higher at larger M;. In panel (h), we present the
electron entropy profile as measured directly from our
simulations using Equation (5), while in panel (g), we show
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the excess of electron temperature 7,= 27T, + T.)/3
beyond the adiabatic prediction appropriate for a 3D non-
relativistic gas

2/3
Te,ad — ( N, ) &
1o 70

The fact that the efficiency of electron irreversible heating
increases with Mach number can be promptly understood from
the results obtained in Sections 3 and 4. First of all, the electron
fluid suffers a faster compression while passing through the
ramp of a high-M, shock, as compared to a low-M, shock. As
we have shown in Section 3.2 (case A), this drives the electrons
to larger levels of anisotropy, resulting in stronger whistler
waves and faster rates of adiabatic breaking, which leads to
more efficient entropy production. In addition, the highly
anisotropic protons present in high-M; shocks generate strong
proton modes, as we have discussed in Section 4.2 (case B).
The resulting field amplification provides another channel to
induce electron anisotropy and ultimately leads to electron
entropy increase. The stronger proton-driven modes at higher
M; result in higher efficiencies of irreversible electron heating
(Section 4.2).

While the first mechanism (case A) is present for all the
values of Mach number that we investigate, the second (case B)
does not operate for M; = 2. Here, the post-shock proton
anisotropy is weak, and the strength of the resulting proton
modes is insufficient to drive the electrons above the threshold
of the whistler instability. In the absence of pitch angle
scattering to break the adiabatic invariance, the electron
entropy (blue line in Figure 7(h)) does not change behind the
shock ramp (where entropy production is induced by
compression, as in case A). The same was observed in
Section 4.2.

In the shock with M, = 3 (green line in panel (h)), case A
controls the entropy increase in the shock ramp, whereas proton
modes (ergo, case B) are responsible for the additional entropy
jump seen at (x — Xg,)/11; ~ —2.5. For M, = 4 and 5 (orange
and red curves, respectively), proton-driven modes grow fast,
and the field amplification that they induce co-exists with the
large-scale compression of the upstream field (i.e., case A and
B are spatially coincident) in the shock ramp. This explains
why most of the entropy increase for M, = 4 and 5 is localized
in the shock transition region. However, because the strength of
proton modes remains significant for several proton Larmor
radii behind the shock, the proton waves can occasionally
excite local patches of electron anisotropy that exceed the
whistler threshold. The resulting whistler activity can further
increase the electron entropy downstream from the shock, in
analogy to what we have discussed in Section 4.2.

19)

5.3. Dependence on By

In this subsection, we investigate the dependence of our
results on plasma beta, at fixed Mach number. We vary G,
from 4 up to 32, for two different values of Mach number:
M, =3 in Section 5.3.1 and My, =5 in Section 5.3.2. We
demonstrate that both choices of M| lead to similar conclusions.

531 M, =3

Figure 9 compares the results of runs Ms3betad,
Ms3beta8, Ms3betal6, and Ms3beta32 having a fixed
Mach number M; = 3. The density compression across the
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shock is only weakly dependent on 5, (Figure 9(a)), as
expected from the Rankine—Hugoniot relations in the limit of
high beta. Similarly, the Rankine-Hugoniot jump conditions
justify why the post-shock proton temperature (Figure 9(c)) and
the proton anisotropy at the shock (Figure 9(d) at x ~ xg) are
nearly insensitive to Bpo.

Given the relatively weak proton temperature anisotropy
attained for M; = 3 at the shock (I /T ~ 7, panel (d)),
proton-driven modes grow rather slowly in the downstream,
and the magnetic field fluctuations in the shock ramp are
powered by the electron whistler instability for all the values of
Bpo we explore (see Figure 10 at the shock; electron whistler
modes dominate the peak in magnetic energy seen in
Figure 9(b) at the shock). In analogy to what we discussed in
Section 4.3, the development of proton instabilities is faster at
higher 3, because the marginal stability threshold is lower (see
Equation (17)), and thus easier to exceed, and because the
growth rate is larger at higher 3,0, for a fixed degree of
anisotropy. This explains why the magnetic energy in proton
waves peaks closer to the shock at higher 3, (in fact, it peaks
at (x — Xg)/r; ~ —3 for the blue line of Figure 9(b), which
refers to 3,0 = 4, and at (x — xa)/r1i ~ —2 for the red line,
which refers to 3,0 = 32). From Figure 9(b), we also see that
proton modes are stronger for higher (3,9, if normalized to the
flux-frozen field. This is just a consequence of the fact that the
free energy in proton anisotropy available to source the waves
is larger for higher 3,, when compared to the magnetic energy
of the background field (the degree of anisotropy is
Bpo-independent, but the proton thermal content obviously
increases with (3,0).

Due to pitch angle scattering by the proton modes, the proton
anisotropy drops at a faster rate for higher 3,0 (Figure 9(d)),
because the waves grow faster and are also stronger in this
case. In the far downstream, the proton anisotropy settles to the
marginal stability threshold of Equation (17), which is higher
for lower (,, (see the dotted lines in Figure 9(d)). It follows
that low-3,, shocks maintain an appreciable degree of proton
anisotropy in the far downstream (see the blue line in
Figure 9(d)). The fact that the resulting adiabatic index will
be larger than the value I' = 5/3 appropriate for a 3D isotropic
gas (and so, the plasma will be less compressible) explains why
the blue curve in the density profile of panel (a) lies below the
other lines.

The adiabatic heating of electrons will follow the same trend
as the density compression of panel (a). With regard to the
efficiency of electron irreversible heating, we find that it
displays a weak dependence on plasma beta (Figure 9(g)
and (h)). From the findings in Sections 3.3 and 4.3, the lack of
dependence on (3, of the entropy prodution efficiency can be
understood as a result of two competing effects. In the case that
field amplification is induced by shock compression of the
background field (case A), as appropriate for the shock ramp
(for M, = 3, proton waves grow farther downstream), higher
values of (3,, generally lead to lower entropy production
(Section 3.3). This is because, at higher [,,, the electron
whistler instability can be ftriggered at lower levels of
temperature anisotropy (see the dependence on beta of the
stability threshold in Equation (9)), a trend that is indeed seen
at the shock in Figure 9(f). This leads to weaker whistler
waves, less dramatic adiabatic breaking, and a slower rate of
entropy production. In fact, in the ramp, shocks with lower 3,
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Figure 9. Dependence on (3, of various y-averaged quantities in our shock
simulations with M; = 3 (runs Ms3betad, Ms3beta8, Ms3betal6, and
Ms3beta3?2), att = 20.7 Q;il (the legend is in panel (d)). See the caption of
Figure 7 for details. Note that the increase in electron entropy is insensitive to
the value of Gyo.

tend to produce more entropy (see Figure 9(g) and (h)
at X ~ Xg)-

The trend is opposite when field amplification is induced by
proton-driven waves (case B, see Section 4.3). In this case,
higher values of 3, lead to stronger proton modes (as observed
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Figure 10. Dependence on (B, of the 2D structure of magnetic field
fluctuations 6B, /Bg in the shock simulations Ms3betad, Ms3betas,
Ms3betals, and Ms3beta32att = 20.7 Q7. The x-coordinate is measured
relative to the shock location xgp; both x and y coordinates are normalized to the
proton Larmor radius ;. Notice that the x and y extents of the box are different
for different Gyo.

in Figure 9(b)), which perform more work onto the electrons,
driving them further (and more often) into the unstable region
of the whistler mode. In turn, this leads to more efficient
entropy production at higher 3,,. This is the reason why, at
(x — xq)/1; ~ —2.5, i.e., at the peak of the energy in proton
waves (see Figure 9(b)), the electron entropy jump is more
pronounced for higher 3. It is here that shocks of high &,
which were lagging behind in electron entropy production, can
catch up with low-3,, shocks. The combination of the two
opposite effects leads to an efficiency of electron irreversible
heating that is nearly independent of 3,4, for M, = 3.

532.M, =5

We now demonstrate that the same conclusion—i.e., the fact
that the electron entropy production is independent of 50—
also holds for shocks with M, = 5, by showing (in Figure 11)
the results of runs Ms5betad, MsS5beta8, Msbbetalé,
and MsSbeta32.

The main difference between M, = 5 shocks and their
M = 3 counterparts is that the proton anisotropy at the shock
is now so large (Figure 11(d)) that proton waves grow quickly,
and their energy peaks right at the shock (Figure 11(b)). This
implies that the two competing effects mentioned above—i.e.,
the fact that shock compression leads to more entropy
production in low-3,, cases, whereas proton waves favor
high-3,, shocks—occur in the same spatial region (specifically,
the shock ramp). Despite this difference from the M, = 3 cases
explored above, the electron entropy production in M; = 5 runs
still shows a negligible dependence on (3, (panels (g) and (h)).
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Figure 11. Dependence on By, of various y-averaged quantities in our shock
simulations with My = 5 (runs Ms5betad, MsSbeta8, MsSbetal6, and
Msbbeta3?2), at t = 22 Qc’il (the legend is in panel (d)). See the caption of
Figure 7 for details. Note that the increase in electron entropy is insensitive to
the value of Gyo.

6. Key Results on Proton Anisotropy and Electron Heating

In this section, we summarize our shock results, combining
the dependences on 3,, and M,. The subscript “0” indicates
quantities measured ahead of the shock, and “2” indicates
quantities far downstream, computed by spatially averaging in
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the region where the proton anisotropy has dropped below the
threshold in Equation (17). We then time-average the spatial
averages. In the runs with M; = 2, where the proton anisotropy
is yet to decrease below the threshold in Equation (17) even at
times as large as t = 40 (!, we compute the quantities with
subscript “2” as spatial averages in the region at
(x — xa)/ri S —20. This particular choice of the averaging
region is unlikely to affect our estimates for the efficiency of
electron irreversible heating because proton waves are too
weak to lead to appreciable entropy production in the far
downstream; in fact, the only significant increase in electron
entropy for M, = 2 occurs at the shock ramp (see the blue line
of Figure 7(h)). Our key results are shown in Figures 12 and 13
and summarized in Table 4.

Figure 12(a) presents the residual proton temperature
anisotropy in the far downstream. As mentioned above,
because M; = 2 shocks have yet to relax to the threshold in
Equation (17), our measurements are merely upper limits (as
indicated by the arrows). For the other cases, we obtain a firm
measurement of the proton anisotropy. We find that the residual
proton anisotropy decreases with increasing (3, (indicated by
the colors, see the legend in panel (a)) and increasing M,
(indicated by the horizontal axis). These trends are properly
captured by the dotted—dashed lines (with the same color
coding as the symbols), which are obtained analytically as
follows.

In analogy to the discussion in Section 4.1, we assume that
the proton plasma can be described as a 2D gas in the
immediate downstream region, with perpendicular temperature
as in Equation (12) and parallel temperature as in
Equation (13).!! We also assume that the proton thermal
content stays constant during the relaxation of the proton
anisotropy. Even though protons convert part of their energy
into magnetic fluctuations, the wave energy in the regime
Bypo > 1 of interest here is much smaller than the proton
thermal energy, so our assumption is satisfied. If we indicate
(with T}) the isotropic-equivalent proton temperature, as in
Equation (18) (which, as we said, stays the same during the
relaxation of proton anisotropy), we can define the plasma beta
in the far downstream as

B = 8ma Ty EZ,

20
B2 (20)

where n, and B, are the density and field strength in the far
downstream. There, proton waves have decayed and B, is the
flux-frozen field strength, which can be determined via the
shock density jump

B,
By

)
= — = TIRHI=5/3
no

ay)

where I" = 5/3 is appropriate if the residual proton anisotropy
is small in the far downstream, as in most of our cases. It
follows that

_hfw 1

B = (22)

Iy 2 rrur=5/3

1 The expression in Equation (12) assumes that electrons are heated
adiabatically and that the energy in proton waves is much smaller than the
proton thermal content. Both assumptions are reasonably satisfied in the
parameter regime we explore.
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Figure 12. Time- and space-averaged downstream proton quantities from the
shock simulations with m; /m, = 49 (listed in Table 3), as a function of Mach
number M, (on the horizontal axis) and plasma beta 8o (as indicated by the
colors; see the legend in the top panel). The data points in panel (a) represent
the asymptotic proton temperature anisotropy. Dotted—dashed lines plot the
predicted upper bound from Equation (23). The data points in panel (b) refer to
the density compression. For comparison, we show the Rankine—Hugoniot
density jump predictions for a 3D gas (I' = 5/3, dashed lines) and a 2D gas
(T = 2, dotted—dashed lines).

and the threshold in Equation (17), which we rewrite as

I

1.1
[3@2/(2 EvL/E,H £ 1)]0.55

~0, (23)

may be solved for the anisotropy Ti, L/EQ’H — 1 in the far
downstream. The solutions of Equation (23) at different 3,, as
a function of M, are plotted as dotted—dashed lines in
Figure 12(a). They capture the trend of decreasing asymptotic
proton temperature anisotropy with increasing 3,0 and M,.
Because Equation (17) (or equivalently, Equation (23)) sets an
upper limit for the asymptotic proton anisotropy, it is also
expected that our data points (apart from the M; = 2 runs
where the proton anisotropy is yet to relax) should lie below the
upper bound prescribed by Equation (17).

Because the post-shock protons are not perfectly isotropic
(Figure 12(a)), one might expect that the density jump n,/ng
from the upstream to the far downstream (Figure 12(b)) will lie
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Figure 13. Time- and space-averaged downstream electron quantities from the
shock simulations with m1; /m, = 49 (listed in Table 3), as a function of Mach
number M, (on the horizontal axis) and plasma beta By (as indicated by the
colors, see the legend in the top panel). Panel (a) shows the total electron
temperature jump across the shock. Panel (b) shows the electron temperature
excess over the adiabatic expectation of a 3D gas. For comparison, a dashed
black line shows our proposed fit of Equation (25). Panel (c¢) shows the post-
shock electron-to-proton temperature ratio. For comparison, we show our
prediction with a dashed black line (Equation (27)), the adiabatic expectation
with a dotted line (Equation (27), but fixing Aty = 0), and the scaling
Too /T x My 2 with a dash—dotted line.

in between the predictions for a I' = 2 gas (anisotropic, with
two degrees of freedom) and for a I' = 5/3 gas (perfecly
isotropic, with three degrees of freedom). In panel (b), we plot
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the former with dotted—dashed lines and the latter with dashed
curves. Indeed, our data points lie in between the two sets of
curves. Because the post-shock protons tend to be more
isotropic for higher 3,, and M, (panel (a)), our data points in
panel (b) tend to move closer to the I' = 5/3 curves for either
larger 3,0 (compare the blue points for 53,0 = 4 with the red
points for 3,, = 32) or higher M; (e.g., compare M; = 3 with
M, = 5). The overall increase in 7, /n, with Mach number is
simply a consequence of the Rankine—Hugoniot relations.

Next, we summarize (in Figure 13) the dependence on [,y
and M, of the electron heating efficiency (the legend is in panel
(a)). The overall electron temperature jump 7., /7.0, which
includes both adiabatic and irreversible contributions, shows a
weak dependence on 3, and a systematic increase with M. In
the regime of low Mach numbers investigated in this work,
most of the electron temperature increase is contributed by
adiabatic heating (compare the overall temperature jump in
panel (a) with the irreversible contribution in panel (b)), so the
temperature jump should be nearly equal to

Too0a/Teo = (n2/n0)¥* = iefi’r_s

as a result of density compression in a 3D gas. In fact, the mild
increase in T,,/T.c with B,; at fixed M, is primarily a
consequence of the dependence of 7, /7, on plasma beta (see
Figure 12(b)).

At high values of M|, the contribution of adiabatic heating
will saturate, because n,/ng — 4 for a 3D gas. Here, most of
the electron heating will be controlled by irreversible processes
(i.e., associated with entropy increase). Panel (b) shows the
efficiency of irreversible electron heating, quantified by the
electron temperature increase beyond the adiabatic expectation.
As discussed in Section 3, the efficiency of irreversible electron
heating increases with Mach number and is nearly insensitive
to plasma beta in the regime explored in this work (as a
reminder, the fact that it is nearly independent of (3, is due to
the opposite effects of shock-compression and proton waves,
which tend to cancel out). Combining all the data, we find that
the efficiency of electron irreversible heating can be fitted quite
well with the following simple function,

T — Tooag
T,

(24)

~ 0.044 M; (M; — 1) = At i, 25)
with no appreciable dependence on (3,;. The above fitting
function is shown in panel (b) with a dashed black line. Note
that this fitting formula exhibits the correct behavior in the limit
M; — 1: in the absence of a shock, the efficiency tends to zero.

Given our empirical fit in Equation (25), the overall electron
temperature jump in the shock is given by

1,

T,

2/3

= rRH,F:5/3 + AteZ,irh (26)

and the resulting ratio of electron and proton temperatures in
the far downstream will be

2/3
T, rR{LF:S/3 + Aley i

= 273 ’
L,  2Amgr-s;s— rR[{LF:S/3 — Al

@7

where the proton temperature is obtained by subtracting the
electron contribution from the Rankine—Hugoniot temperature
jump Afrpr—ss3 of the overall fluid (assuming a 3D gas). This
prediction is plotted in panel (c) with a black dashed line (we
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Table 4
Key Results of the Shock Simulations with m; /m, = 49, as Discussed in Section 6
100 name M; Bpo T, [Tz — 1 ny/ng T2 /Ty (Te2 — Tna)/Too Ty /T
Ms2beta4d 2 4 1.29 1.92 1.60 0.05 0.81
Ms2beta8 2 8 0.98 2.03 1.70 0.10 0.80
Ms2betalé 2 16 0.58 2.15 1.76 0.10 0.79
Ms2beta3l3?2 2 32 0.46 2.19 1.79 0.10 0.79
Ms3beta4d 3 4 0.63 2.55 2.18 0.31 0.49
Ms3beta$8 3 8 0.37 2.66 2.26 0.34 0.48
Ms3betalé 3 16 0.25 2.75 2.27 0.30 0.46
Ms3beta3?2 3 32 0.13 2.85 2.27 0.27 0.46
Msdbeta4d 4 4 041 2.97 2.65 0.58 0.32
Ms4beta$8 4 8 0.22 3.14 2.71 0.57 0.32
Msdbetal6 4 16 0.12 3.25 2.72 0.52 0.32
Msdbeta3?2 4 32 0.06 3.29 2.70 0.49 0.31
MsS5beta4d 5 4 0.26 3.33 3.11 0.88 0.24
Ms5beta8 5 8 0.12 347 3.13 0.84 0.23
Ms5betalé 5 16 0.07 3.50 3.12 0.81 0.23
MsS5beta3?2 5 32 0.04 3.51 3.19 0.88 0.23

assume (3,0 = 32 in calculating the Rankine-Hugoniot jump
conditions, but the curve will be nearly the same as long as
Bpo => 1). The prediction matches very well with the simulation
results.

In Figure 13(c), we also compare our simulation results with
the adiabatic expectation (dotted black line), which is obtained
by assuming that electrons are heated only via adiabatic
compression, without any entropy increase (i.e., we set
Aty = 0 in Equation (27)). In analogy to panel (b), the
comparison of our data with the dotted curve shows that the
efficiency of electron irreversible heating (and so, the deviation
between our data and the adiabatic expectation) increases with
shock Mach number. In Figure 13(c), we also plot the scaling
T /T ox M, 2 inferred from temperature ratio measurements
behind the Earth and Saturn bow shocks (Schwartz et al. 1988;
Masters et al. 2011; Ghavamian et al. 2013). Our results seem
to follow this scaling, due to the combination of two effects:
first, we find that in low Mach number shocks, most of the
electron heating comes from adiabatic compression; second, in
the absence of efficient electron entropy generation, the
electron-to-proton temperature ratio is expected to scale as
T, /T, ~ 8 - 42/3/5 M? if M, > a few (which we plot as a
black dash—dotted line in panel (c)). In other words, we argue
that the approximate T, /T, o< My 2 scaling observed at low
Mach number shocks is primarily driven by adiabatic effects.'?

We conclude with two important comments. First, we remark
that the results of this section have been obtained for our reference
value of the mass ratio, m; /m, = 49. In Paper 1, we explicitly
demonstrated that the electron entropy increase in our reference
shock with M, = 3 and 3,0 = 16 is nearly insensitive to the mass
ratio, from m;/m, =49 up to m;/m, =200 (see also
Appendix A for the same conclusion in the case of M; =35
shocks with different 3,). In addition, in Paper I we were able to
extrapolate our results up to the realistic mass ratio, in controlled
periodic box experiments meant to mimic the two possible
scenarios for field amplification (i.e., shock-compression of the
upstream field, or field amplification due to proton waves in the

12 We caution that our results cannot be directly compared to the available data
from the Earth and Saturn bow shocks (where the T, /Ty o< M, 2 relation is
observed) because the value of beta expected in these systems is lower
(typically, Byo ~ 1) than we explore in this work. We defer the investigation of
electron heating in low Mach number shocks having 5,0 ~ 1 to a later study.
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downstream). We found that the electron irreversible heating
efficiency has only a weak dependence on mass ratio—less than a
~30% decrease, as we increase the mass ratio from m; /m, = 49
up to m; /m, = 1600. Based on this result, we argue that the
coefficient in Equation (25) should be reduced by the same
fraction, ~30%, for realistic mass ratios, so it will be ~0.03
instead of ~0.044.

Second, we remind the reader that our results have been
obtained for strictly perpendicular shocks. In quasi-parallel shocks
(i.e., where the angle between the pre-shock field and the shock
direction of propagation is <45°), protons are expected to be
efficiently reflected back upstream and accelerated via the Fermi
process (e.g., Caprioli & Spitkovsky 2014; Park et al. 2015). In
this regime, efficient electron heating (up to equipartition with the
protons) was observed for supernova remnant conditions (i.e., at
M of a few hundreds and 3,y ~ 1), and similar conclusions
should apply in the low-M; high-3,, regime investigated here. In
contrast, in quasi-perpendicular shocks, (i.e., where the angle
between the pre-shock field and the shock direction of
propagation is >45°), protons are not efficiently injected into
the Fermi process. At low M,, electrons can still be efficiently
accelerated, as we have shown in Guo et al. (2014a, 2014b). As
long as the non-thermal electrons are energetically sub-dominant,
we expect that the conclusions presented in this paper as regard to
the electron heating efficiency will still apply for quasi-
perpendicular field configurations.

7. Summary

In this paper, the second of a series, we have used 2D PIC
simulations to quantify how the efficiency of electron heating and
the post-shock electron-to-proton temperature ratio depend on the
shock Mach number A and the plasma beta 3,o, in the regime
relevant for galaxy cluster shocks. In Paper I, we described the
physics of electron heating. In analogy to the so-called “magnetic
pumping” mechanism (Spitzer & Witten 1953; Berger et al. 1958;
Borovsky 1986), we found that two basic ingredients are needed
for irreversible electron heating: (i) the presence of a temperature
anisotropy, induced by field amplification coupled to adiabatic
invariance; and (ii) a mechanism to break the adiabatic invariance
itself. We found that the growth of whistler waves—triggered by
the electron temperature anisotropy induced by field amplification
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—was responsible for the violation of adiabatic invariance, and
for the efficient entropy production.

‘While Paper I focused only on a reference shock with M; =3
and 3, = 16, here we have extended our study to a wide range of
plasma beta (45 5,0 S32) and sonic Mach number
(2 < M; £5). We first employed periodic box experiments to
reproduce, under controlled conditions, the two mechanisms that
can drive field amplification in shocks: (i) shock compression of
the upstream field, and (ii) the growth of proton cyclotron modes
accompanying the relaxation of proton temperature anisotropy.
Armed with a detailed understanding of the electron heating
efficiency in these two scenarios, and of its dependence on M, and
B0, we then studied the efficiency of electron entropy production
in 2D shock simulations,’® where the two mechanisms generally
coexist.

Our main results are summarized in Section 6. Most
importantly, we find that the irreversible electron heating efficiency
in shocks is nearly independent of 3,,, and its dependence on M
can be cast in a simple form: for our reference mass ratio
m; /m, = 49, the post-shock electron temperature 7, exceeds the
adiabatic expectation 7} ,¢ by an amount that scales with Mach
number as (1; — 1o.aq) /10 = 0.044 M, (M; — 1), where T, is
the pre-shock temperature (see Equation (25)). As discussed in
Section 6, the coefficient should be reduced by ~30% when
extrapolating to realistic mass ratios (so it will be ~20.03 instead of
~(.044). This can be used to predict the electron-to-proton
temperature ratio in the shock downstream (see Equation (27)),
with important implications for current and future measurements of
electron-proton equilibration in galaxy cluster shocks.

Although we have only focused on perpendicular field
geometries, we argue that our conclusions will also apply for
quasi-perpendicular shocks (see Section 6), as long as the non-
thermal electrons that are accelerated in such configurations
stay energetically sub-dominant. For quasi-parallel geometries,
protons are efficiently injected into the Fermi process, and the
two species might be led to thermal equilibrium, as found by
Park et al. (2015). The robustness of our electron heating
mechanism—and the resulting efficiency of irreversible
electron heating—in supernova remnant shocks (M, of a few
hundreds and 3,y ~ 1) and heliospheric shocks (low Mach
number and 3,y ~ 1) remains to be explored.
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tion. X.G. and R.N. acknowledge support from NASA TCAN
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NASA High-End Computing (HEC) Program through the NASA
Advanced Supercomputing (NAS) Division at Ames Research
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Appendix A
Dependence on the Mass Ratio

In this appendix, we investigate the dependence on M, in
shock simulations having 3,0 = 16 and a higher value of the

B Paper I (see their Appendix A), we have shown that the electron heating
physics cannot be properly captured by 1D shock simulations because they do
not resolve the fastest growing mode of the electron whistler instability, whose
wavevector is aligned with the large-scale field.
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Figure 14. Dependence on M; of various y-averaged quantities, from our shock
simulations with #; /m, = 200 (mi200Ms2, mi200Ms3, mi200Ms4, and
mi200Ms5), at t = 12.9 Qc’il (the legend is in panel (d)). The x-coordinate
(aligned with the shock direction of propagation) is measured relative to the
shock location Xg,, in units of the proton Larmor radius rp;. From top to
bottom, we plot: (a) number density (thick lines) and magnetic field strength
(thin lines); (b) energy in magnetic fluctuations, normalized to the energy of the
frozen-in field; (c) mean proton temperature; (d) proton temperature anisotropy
(with dotted lines representing the marginal stability threshold in
Equation (17)); (e) mean electron temperature; (f) electron temperature
anisotropy; (g) excess of electron temperature beyond the adiabatic prediction
for an isotropic gas; (h) change in electron entropy. If we compare to Figure 7,
which employed a lower mass ratio (m;/m, = 49), we confirm that the shock
physics (and in particular, the efficiency of electron irreversible heating) is
nearly insensitive to the choice of mass ratio.

mass ratio (m;/m, = 200), as compared to the choice
m;/m, = 49 employed in the main body of the paper (the
runs presented in this appendix are mi200Ms2, mi200Ms3,
mi200Ms4, and mi200Ms5 in Table 3).
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Figure 15. For m; /m, = 200, we present the dependence on M, of the 2D
structure of magnetic field fluctuations 6B,/Bg in the shock simulations
mi200Ms2, mi200Ms3, mi200Ms4, and mi200Ms5 at t = 12.9 Qc’il. The
x-coordinate is measured relative to the shock location xg; both x- and y-
coordinates are normalized to the proton Larmor radius rp;. Notice that the x
and y extents of the box are different for different M. As compared to Figure 8,
which employed a lower mass ratio (m; /m, = 49), electron modes in the shock
ramp now appear more clearly, due to the larger separation between electron
and proton scales.

In Figure 14, we present the y-averaged profiles of various
quantities at t = 12.9 Q. Comparing with Figure 7 (which
employed m;/m, = 49), we see that the profiles are almost
identical for both protons and electrons. This proves that the
electron heating physics is insensitive to the mass ratio, as long
as proton and electron scales are sufficiently separated (see
Paper I for further details on the dependence on mass ratio).

One important advantage of simulations with a higher mass
ratio is the fact that electron whistler modes in the shock ramp
appear more clearly for m; /m, = 200 (as compared to the case
m; /m, = 49), due to the larger separation between electron and
proton scales. This is particularly critical at high M, because
proton waves grow right at the shock and their wavelength is
quite small (potentially approaching electron scales), due to the
strong proton anisotropy (see Appendix C). For instance,
electron whistler waves are much more apparent in
Figure 15(c) (having m; /m, = 200) than in Figure 8(c) (which
employed m; /m, = 49).

Appendix B
Linear Properties of the Electron Whistler Instability

According to our electron heating model, the presence of a
mechanism to break the electron adiabatic invariance is
essential for generating electron entropy. The electron whistler
instability is usually invoked to serve this purpose in the shock
downstream. In this appendix, we study the linear properties of
the whistler instability that are useful for interpreting the
simulation results presented in the main body of the paper.
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Figure 16. Dispersion relation of the electron whistler instability, i.e., the
solution of Equation (28). Panel (a) shows the dependence on 5, at fixed
electron temperature anisotropy 7,1 /T, = 2; panel (b) explores the depend-
ence on temperature anisotropy at fixed &, ; panel (c) shows the dispersion
relation for different combinations of 3, and 7, /T, that lead to a fixed
maximum growth rate of - = 0.28 Q.

Following Gary & Madland (1985), we solve the dispersion
relation for the electron whistler instability

0 = D*(k, Q)

© 2

el

Q
2 + 2

1,

+wi == = 1|1l + ¢tz (28)

el
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Figure 17. Dependence of the dispersion relation (growth rate y as a function of wavevector k) of the proton cyclotron instability on the initial proton temperature
anisotropy and plasma beta, phrased in terms of the shock Mach number M and the plasma beta 5. The relations of M and 3,y with the input parameters of the

dispersion relation (i.e., T, /T; |, T, T., 3,) can be derived as in Section 4.1.

where () = w + iy is the frequency of the instability, k is
the wavevector, §i =+ ch)/kv b Qee = (M /M),

Vo) = ke fm)' %, CF = Q£ Q) /v v = 2 kpTi/mp)'/?,
and Z(¢) is the plasma dispersion function
20 = - [T a2 29)

We explore how the dispersion relation of the electron
whistler instability, i.e., its growth rate v as a function of the
wavevetor k, varies for different levels of electron temperature
anisotropy 1; 1 /T, ||, and of electron plasma beta parallel to the
magnetic field 3, ||. For all calculations, we fix m; /m, = 49 and
v; = 0.02 c.

Figure 16(a) compares the dispersion relation at fixed
electron temperature anisotropy T /7, = 2 but different
3., ranging from 2 to 32. For a given temperature anisotropy,
the growth rate of the electron whistler instability increases
monotonically with 3, |, and the wavelength of the maximally
growing mode increases—or equivalently, the wavevector of
the maximally growing mode decreases. Figure 16(b) depicts
the trend of the dispersion relation at fixed 3. = 8, but for
different levels of electron temperature anisotropy. We see that
the growth rate of the electron whistler instability increases
monotonically with increasing temperature anisotropy 7; 1 /7. |,
and the wavelength of the maximally growing mode decreases.
It follows that, in order to attain a given growth rate of the
instability, the required temperature anisotropy is lower for
higher 3, ). In addition, the wavelength of the maximally
growing mode is longer at higher 3, . Indeed, Figure 16(c)
shows that, in order to reach a maximum growth rate of
~0.28 Q, the required temperature anisotropy decreases from
2.5 for 8, )= 2 to 1.5 for 5, = 32. The maximally growing
wave vector decreases from 0.7 wp /¢ down to 0.35 wy /c.

Appendix C
Linear Properties of the Proton Cyclotron Instability

In our electron heating model, we require the presence of
electron anisotropy. Electron anisotropy can be induced by
field amplification via the proton cyclotron instability, which
naturally occurs in the shock downstream, where it is sourced
by proton anisotropy. In this appendix, we study the linear
propetties of the proton cyclotron instability and its dependence
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on plasma beta and on the level of proton temperature
anisotropy.
Following Davidson & Ogden (1975), we solve the

dispersion relation for the proton cyclotron instability
(Equation (3) of Davidson & Ogden 1975)
0 = Dk, Q)
2 212 » Q0 == 2 § +
=07 —c%k +wpe Z(C )—i—wpl—ZZ(C)
v kv; '
y e i
3 (N Loy ok
- wpi(l — T—)[l + GZ(G (30)
|l

where () = w + iy is the frequency of the instability, k is the
wavevector, and QE =(Q=x ch)/kyve, V= QkgT,/m)/?,
Cli =+ Qci)/kyvi,H, v = (2 kB]l“-"‘/mi)l/Z’ and Z(¢) form
the plasma dispersion function

f P eXp( xz)

To calculate the dispersion relation from Equation (30), one
possible choice for the set of parameters that we need to specify
is I, \/T;, T, 1., B, m;/m,. As described in Section 4.1, in
the immediate post-shock downstream, the values of
1 L/ L), T T, B. can be derived from M, and 5,0. We adopt
m;/m, = 49 for the computations presented here, but we have
checked that the dispersion relation for m;/m, = 1836 is
almost identical.

Figure 17 shows the results. We see that, with increasing M,
(as indicated from the titles of panels, from left to right), which
leads to an increasing 7; | /T; |, both the maximum growth rate v
and the wavevector k of the fastest growing mode increase
monotonically at fixed 3,,. At fixed proton temperature
anisotropy 7; 1 /T; (i.e., fixed M), the growth rate and the
wavevector of the fastest growing mode increase moderately
with 3,4 (as indicated by the different colors in each panel).

Z(¢) =
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