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Abstract

Recent X-ray observations of merger shocks in galaxy clusters have shown that the postshock plasma has two
temperatures, with the protons hotter than the electrons. By means of two-dimensional particle-in-cell simulations,
we study the physics of electron irreversible heating in low-Mach-number perpendicular shocks, for a
representative case with sonic Mach number of 3 and plasma beta of 16. We find that two basic ingredients are
needed for electron entropy production: (1) an electron temperature anisotropy, induced by field amplification
coupled to adiabatic invariance; and (2) a mechanism to break the electron adiabatic invariance itself. In shocks,
field amplification occurs at two major sites: at the shock ramp, where density compression leads to an increase of
the frozen-in field; and farther downstream, where the shock-driven proton temperature anisotropy generates strong
proton cyclotron and mirror modes. The electron temperature anisotropy induced by field amplification exceeds
the threshold of the electron whistler instability. The growth of whistler waves breaks the electron adiabatic
invariance and allows for efficient entropy production. For our reference run, the postshock electron temperature
exceeds the adiabatic expectation by ~15%, resulting in an electron-to-proton temperature ratio of 20.45. We find
that the electron heating efficiency displays only a weak dependence on mass ratio (less than ~30% drop, as we
increase the mass ratio from m; /m, = 49 up to m;/m, = 1600). We develop an analytical model of electron
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irreversible heating and show that it is in excellent agreement with our simulation results.
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1. Introduction

Galaxy clusters grow via mergers of subclusters. A large
fraction of the kinetic energy of the infalling subclusters is
dissipated at shocks with low Mach number (M, < 5, where M,
is the ratio of shock speed and preshock sound speed) that heat
the intracluster medium (ICM) and sometimes accelerate
particles to relativistic energies (Sarazin 2002; Ryu et al
2003; Briiggen et al. 2012). Merger shocks in clusters are
collisionless. Due to the high ICM temperatures (~107-108 K)
and low densities (102=10~% cm—?), the collisional mean free
path (~10?'-10%* cm) is nearly approaches the size of the
cluster.

Galaxy cluster shocks are routinely observed in the radio and
X-ray bands. X-ray measurements can quantify the density and
temperature jumps between the unshocked (upstream) and the
shocked (downstream) plasma (e.g., Markevitch et al. 2002;
Finoguenov et al. 2010; Russell et al. 2010; Ogrean et al. 2013;
Eckert et al. 2016; Akamatsu et al. 2017). The existence of
shock-accelerated electrons is revealed by radio observations of
synchrotron radiation (e.g., van Weeren et al. 2010; Lindner
et al. 2014; Trasatti et al. 2015; Kale et al. 2017). Recently, the
pressure jump associated with a merger shock at relatively high
redshift has been measured through radio observations of the
thermal Sunyaev—Zel’dovich (SZ) effect (Basu et al. 2016).

Since all of our observational diagnostics are based on
radiation emitted by electrons, the proton properties (in
particular, their temperature) are basically unconstrained. One
usually makes the simplifying assumption that the electron
temperature equals the mean gas temperature (and so, the
proton temperature). This assumption is unlikely to hold in the
vicinity of merger shocks. Ahead of the shock, the bulk kinetic
energy of protons is a factor of m; /m, larger than for electrons
(here, m; and m, are the proton and electron masses,

respectively). In the absence of a channel for efficient proton-
to-electron energy transfer, a comparable ratio should persist
between the postshock temperatures of the two species.

While Coulomb collisions will eventually drive electrons
and protons to equal temperatures, the collisional equilibration
timescale (Spitzer 1962) for typical ICM conditions is as long
as 108-10? years. In fact, X-ray observations by Russell et al.
(2012) have shown that the electron temperature just behind a
merger shock in Abell 2146 is lower than the mean gas
temperature expected from the Rankine-Hugoniot jump
conditions, and thus lower than the proton temperature. As
separate evidence, Akamatsu et al. (2017) has compiled a list of
merger shocks, estimating their Mach number from both X-ray
(M, x-ray) and radio observations (M; ra4i0), and noticed a slight
bias of M adio 2 MsXray- Here, M .qio is derived by
measuring the power-law slope of the synchrotron emission,
which is related—rvia the theory of diffusive shock acceleration
—to the density compression at the shock (and so, to the Mach
number). On the other hand, M,x ., is obtained from the
electron free—free emission by measuring the jumps in density
and temperature across the shock. It follows that, if electrons
have a lower temperature than protons behind the shock,
M, x_ 1.y would have been underestimated.

In fact, it has long been thought that collisionless shocks
can lead to a two-temperature structure at the outskirts of
galaxy clusters (Fox & Loeb 1997; Ettori & Fabian 1998;
Takizawa 1999). Detailed cosmological hydrodynamic simula-
tions have shown that this can significantly bias the X-ray and
thermal SZ signatures (Rudd & Nagai 2009; Wong & Sarazin
2009). In the absence of a physical model for electron heating
in low-Mach-number shocks, these studies usually employ an
ad hoc subgrid approach to prescribe the electron heating
efficiency in shocks. Either electrons are heated adiabatically,
or the nonadiabatic (or “irreversible”) heating efficiency is
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quantified by a phenomenological (and often arbitrary)
parameter. While observations from heliospheric low-Mach-
number shocks have shown that electrons do not get heated
much beyond adiabatic compression (Bame et al. 1979;
Ghavamian et al. 2013), there has also been direct evidence
of electron entropy production (i.e., nonadiabatic heating) at
low-Mach-number shock fronts (Parks et al. 2012).

What is then the mechanism responsible for electron heating
at collisionless shocks? This is a fundamental question of
plasma physics, as the fluid-type Rankine-Hugoniot relations
only predict the jump in the mean plasma temperature across
the shock, without specifying how the shock-generated heat is
distributed between the two species. To understand electron
heating in collisionless shocks, fully kinetic simulations with
the particle-in-cell (PIC) method (Birdsall & Langdon 1985;
Hockney & Eastwood 1981) are essential to self-consistently
capturing the nonlinear structure of the shock and the role of
electron and proton plasma instabilities in particle heating.

So far, PIC studies of electron heating in shocks have
focused on the regime of high sonic Mach number (M; 2> 10)
and low plasma beta (8,0 S 1) appropriate for supernova
remnants. At very high Mach numbers, the Buneman instability
can trap electrons in the shock transition region and heat them
(Dieckmann et al. 2012). For lower Mach numbers, resonant
wave-particle scattering induced by the modified two-stream
instability (MTSI) can lead to significant electron heating at the
shock front (Matsukiyo & Scholer 2003; Matsukiyo 2010).

The regime of low sonic Mach number and high beta most
relevant for cluster merger shocks is still unexplored. In this
paper, we study the physics of electron heating in low-Mach-
number perpendicular fast-mode shocks by means of two-
dimensional (2D) PIC simulations. We focus on the results
from a reference shock simulation with M; =3 and 8,, = 16.
While adiabatic compression alone would result in a postshock
electron temperature 1;,4 =~ 2 Ty, we find that the actual
electron temperature is larger by ~15%, ie., T, = 2.3 T, as a
result of entropy production at the shock (here, Tj is the
preshock temperature). The downstream proton temperature
T, =~ 57 is much larger than the adiabatic expectation
T .q = 2 Ty, so most of the entropy produced by the shock
goes to the protons (a factor of ~10 more than to electrons).
The resulting postshock temperature ratio for our reference case
is T, /T; >~ 0.45. In a forthcoming paper (X. Guo et al. 2017, in
preparation), we will explore the dependence of our conclu-
sions (and, in particular, the efficiency of electron heating and
the resulting electron-to-proton temperature ratio) on sonic
Mach number and plasma beta. The choice of a perpendicular
magnetic field geometry is meant to minimize the role of
nonthermal electrons that are self-consistently accelerated in
oblique configurations, as we have shown in Guo et al. (2014a,
2014b). In the absence of shock-accelerated electrons returning
upstream, the shock can settle into a steady state in a shorter
time, thus allowing us to focus on the steady-state electron
heating physics. However, we emphasize that we have verified
with a suite of PIC simulations of quasi-perpendicular shocks
(not shown here) that the physics of electron heating presented
in this paper also applies to quasi-perpendicular configurations,
as long as the nonthermal electrons are energetically
subdominant.

The rest of the paper is organized as follows. In Section 2 we
lay out the theoretical framework for electron heating.
Section 3 describes the setup of the reference shock simulation.
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Section 4 shows the shock structure of the reference simulation.
We emphasize that efficient electron irreversible heating occurs
at two main locations. With periodic box experiments meant to
mimic the shock conditions at the two major sites of entropy
production, Sections 5 and 6 investigate in detail the electron
heating physics in these two locations and validate the heating
theory presented in Section 2. The reader primarily interested in
the implications of our model for shocks can skip Sections 5
and 6 and proceed directly to Section 7, where the heating
model is validated in the shock simulation. We conclude with a
summary in Section 8.

2. The Physics of Electron Heating

As electrons pass through the shock, they will experience a
density compression, which results in adiabatic heating. In
addition, irreversible processes might operate, which will further
increase the electron temperature. The purpose of this section is
to present a general formalism for the physics of irreversible
heating. Even though we will be primarily interested in electron
heating, the model can be applied to any particle species. It relies
on the presence of two basic ingredients: (1) a temperature
anisotropy and (2) a mechanism to break the adiabatic
invariance. We first describe the change in internal energy of
an anisotropic fluid, and then consider the resulting change in
ent1r0py.3

2.1. The Change in Internal Energy

The work done on an isotropic gas with pressure P and
volume V is simply dW = —PdV. We shall generalize this
expression to the case of an anisotropic gas having pressure
perpendicular (parallel) to the magnetic field lines equal to P
(P, respectively). Consider a magnetic flux tube with length L,
cross-sectional area A, volume V=LA, and field strength B.
The magnetic flux through the area A is @ = BA. In response to
a compression (or expansion) perpendicular to the magnetic
field, the volume will change as

dVL:LdA:Ld(g): —chd—B:—lenB, 1)
B B
where we have used the fact that, because of flux freezing, ® is
a constant. In contrast, for compression (or expansion) along
the field, the volume will change as

AVj=AdL=A d(z) _ AN d(é) — _vd 1n(£), 2)
A P n B

where N is the total number of particles in the volume element,
with number density n = N/V. It follows that the work done on
an anisotropic gas can be written as

AW =—P dV, — P|dV)

=P.VdInB + PVd ln(%). 3)

Defining the work done per particle as dw = dW/N, we find
that it can be separated into a “perpendicular” component dw,

3 We point out that the model that we propose is reminiscent of the so-called
“magnetic pumping” mechanism, where a periodically varying external
magnetic field is used in the laboratory to drive proton anisotropy and
subsequent plasma heating (Spitzer & Witten 1953; Berger et al. 1958;
Borovsky 1986).
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and a “parallel” component dw) as

dw = ksTidInB + kgTid 1n(ﬁ). )
== B
aw, _—
dWH

It follows that dw; will change the internal energy per particle
1, associated with motions perpendicular to the field, while dw)|
will affect the energy per particle i associated with parallel
motions.

In writing the energy equation for the perpendicular and
parallel components, we need to take into account two
additional processes: (1) In the presence of pitch-angle
scattering, heat can be transferred between the two components
(as we show below, this will give rise to an entropy increase).
We denote the differential amount of transferred heat as dg, |,
with the convention that dg, _, > O if heat flows from the
perpendicular to the parallel component. (2) Pitch-angle
scattering may be caused by self-generated waves (e.g.,
sourced by the plasma anisotropy), whose energy needs to be
provided by the plasma itself. The energy balance relations
then read

dw = dw. — dq, | — dey,1, 5)
du) = dw||+ dq,_,| — dew, (6)

where we denote the wave energy per particle coming from the
perpendicular (parallel) plasma energy as de,,  (dey,,
respectively). By summing the above two equations, we obtain
the expected result that the net change of internal energy per
particle is equal to the external work minus the energy given to
waves:

du = du + duj= dw — dey, i, (N

where we denote the total energy per particle transferred to
waves as de,, o = de,, | + de,,, including magnetic, electric,
and bulk kinetic contributions (in practice, the magnetic term
always dominates).

While the total wave energy per patticle de,, i is easy to
extract from our simulations, the two contributions de,, | and
dey,) are hard to separate. We show below that for the entropy
calculation it suffices to measure the total energy per particle
transferred to waves de,, . We also remark that de,,
accounts for the differential energy per particle transferred to
waves, which might not necessarily equal the differential
change in the energy residing in waves, which we shall call
de,,. More specifically, while for electron-driven waves
de,, o« = de,,, we will show in Section 6 that proton-generated
waves will lose energy by performing work on the electron
plasma, so the change in the energy residing in proton waves
de,, will be smaller than the differential energy de,, ot
transferred from protons to waves.

2.2. The Change in Entropy

For a nonrelativistic bi-Maxwellian plasma with perpendicular
temperature 7| and parallel temperature 7j, the entropy per

particle (or specific entropy) is
LL"”
In + C, ®)

& ring
§=— =
& n

Guo, Sironi, & Narayan

where f(p) is the phase space distribution and C is a
normalization constant. By differentiating,
T 1 dij
ds:&—i-——u—ﬁ. )
T 2 ]ﬂ n
The temperature 7' | can be related to the internal energy per
particle u, | via the respective adiabatic index T', | as

kBTL,H

e (10)
=1

u,|| =

For a nonrelativistic gas, I, = 2 (two degrees of freedom are
available in the perpendicular direction), whereas I} = 3 (one
degree of freedom). The equation above then becomes

du 4y dn

ds = . 11
T (11)
Using Equations (5) and (6), we have
1 1 d@w dew
ds=dg | = - |- Zet - 24, (12)
I T Iy 1

which shows that the entropy of the gas can change as a result of
heat flowing internally between the parallel and perpendicular
components (first term on the right-hand side) or when
generating the waves (second term). This can be rewritten in
two equivalent forms:

ds:[ldln( l )].[1—1]——‘1““”, (13)
2 (n/B)? T T

ds = —[dln(ﬂ)] ; [ﬂ — 1] _ dewio (14)
B 1 1

As anticipated above, the two separate components de,, | and
de,, | of the wave energy per particle do not explicitly enter the
entropy equation.

In Equations (13) and (14), the first term on the right-hand
side typically dominates. This clearly demonstrates that two
ingredients are required for entropy generation: (1) the presence
of a temperature anisotropy and (2) a mechanism to break the
adiabatic invariance. Note that the Chew—Goldberger—Low
(CGL) double adiabatic theory of Chew et al. (1956) predicts
that, for adiabatic perturbations, 7| oc B and 7 (n/B)>,
which follow from the conservation of the first and second
adiabatic invariants. The form of Equations (13) and (14) is
thus easy to understand. In most cases, it is the temperature
anisotropy that provides the free energy for generating the
waves responsible for breaking the adiabatic invariance.

We conclude with an important remark on the nature of the
magnetic field B. This should be meant as a large-scale field, so
the particle response to its variation is properly modeled by the
CGL approximation. In particular, the field that we have
denoted as B must not include the magnetic contribution of the
waves that break the particle adiabatic invariance. In practice, B
will take into account all of the magnetic contributions at scales
much larger than the particle Larmor radius (for the species in
question) and at frequencies much lower than the relevant
gyration frequency. It follows that proton-generated waves
that break the proton adiabatic invariance can still serve as
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large-scale B fields for the electron energy and entropy
equations, as we further discuss in Section 6.

3. Setup of the Shock Simulations

We perform numerical simulations using the three-dimensional
(3D) electromagnetic PIC code TRISTAN-MP (Spitkovsky 2005),
which is a parallel version of the code TRISTAN (Buneman 1993)
that was optimized for studying collisionless shocks. In this
section, we describe the setup of our shock simulations, which
parallels closely what we used in Guo et al. (2014a, 2014b). In
Section 5 and in Section 6, we will study in more detail the
physics of electron heating by employing periodic simulation
domains, meant to represent two specific regions of the shock
structure. The simulation setups adopted there are different and
are described in the respective sections.

For shock simulations, we use a 2D simulation box in the
x=y plane, with periodic boundary conditions in the y direction.
Even though the simulations are two-dimensional in space, all
three components of particle velocities and electromagnetic
fields are tracked. The shock is set up by reflecting an upstream
electron—proton plasma moving along the —£ direction off a
conducting wall at the leftmost boundary of the computational
box (x = 0). The interplay between the reflected stream and the
incoming plasma causes a shock to form, which propagates
along £. In the simulation frame, the downstream plasma is
at rest.

The upstream electron—proton plasma is initialized following
the procedure described by Zenitani (2015) as a drifting
Maxwell-Jiittner distribution with electron temperature 7,
equal to the proton temperature Ty, (i.e., T,o = Tjp = Tp) and
bulk velocity V; = —V;£. This gives a simulation-frame Mach
number

_w_ W (15)

¢ 2Tkglo/m;

where ¢, is the sound speed in the upstream, kg is the
Boltzmann constant, I' = 5/3 is the adiabatic index for an
isotropic nonrelativistic gas, and m; is the proton mass. Below,
we will adopt the usual definition of Mach number, as the ratio
between the upstream flow velocity and the upstream sound
speed in the shock rest frame (rather than in the downstream
frame of the simulations, as in Equation (15)), where the
upstream moves into the shock with speed V;. We will then
parameterize our results with the Mach number
Vi

M, = -L, (16)
Cs

MS,O

The shock-frame Mach number M; is related to the down-
stream-frame Mach number M, via

. ) (17)

My = M|l + ———
r(M;) — 1

where the density jump 7 (M;) across the shock, in the limit of
weakly magnetized flows, is equal to

I'+1

rMy) = —————.
s I'—1+2/M?

18)

In writing these relations, we have assumed an isotropic gas,
which is valid upstream of the shock by our initial conditions
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and is also valid sufficiently downstream of the shock, as we

will see in the discussion that follows.

The incoming plasma carries a uniform magnetic field By
and its associated motional electric field Ey = —V,/c x By.
The magnetic field strength is parameterized by the plasma beta

Smnoks(Lio + Lo)  16mnoksly
Bg B

ﬁpO = s (19)

where n;0 = n,0 = no is the number density of the incoming
protons and electrons. Alternatively, one could quantify the
magnetic field strength via the Alfvénic Mach number M, =
M, [TB,0/2.

The magnetic field is initialized in the simulation plane along
the y direction, that is, perpendicular to the shock normal. We
find that the shock physics is properly captured by 2D
simulations only if the field is lying in the simulation plane.
A posteriori, this will be motivated by the fact that the plasma
instabilities excited in the downstream region have wave
vectors preferentially parallel or quasi-parallel to the back-
ground magnetic field. We have explicitly verified with an
additional simulation having a magnetic field initialized along z
(so, perpendicular to both the shock normal and the simulation
plane) that the electron heating efficiency is significantly
suppressed, just as in 1D simulation results (Appendix A). Our
choice of an in-plane magnetic field configuration will be
justified again in the following sections.

For accuracy and stability, PIC codes have to resolve the
plasma oscillation frequency of the electrons

Wpe = 4me*ng /m, (20)

and the electron plasma skin depth ¢/ Wpe, Where e and m, are
the electron charge and mass, respectively. On the other hand,
the shock structure is controlled by the proton Larmor radius

My C c
r = My f—l > ; 21)
e Wpe Wpe

where the simulation-frame Alfvénic Mach number is
My = MS’OJF,BPO /2. Similarly, the evolution of the shock
occurs on a timescale given by the proton Larmor gyration
period Q;-l =mVy U> w;el. The need to resolve the electron
scales, and at the same time to capture the shock evolution for
many Q;-l, is an enormous computational challenge for the
realistic mass ratio m; /m, = 1836. Thus we adopt a reduced
mass ratio m;/m, =49 for our reference run, which is
sufficient to properly separate the electron and proton scales.
This allows us to follow the system for long times, until the
shock reaches a steady state. We have explicitly verified that
the electron heating physics in our shock simulations is nearly
the same for higher mass ratios (see Section 7, where we test up
to m;/m, = 200). In addition, in Sections 5 and 6 we
demonstrate via analytical arguments and PIC simulations in
periodic domains that the electron heating efficiency is nearly
independent of m; /m, over the range from m; /m, = 49 up to
the realistic mass ratio.

As in Guo et al. (2014a, 2014b), the upstream plasma is
initialized at a “moving injector,” which recedes from the wall
in the +% direction at the speed of light. When the injector
approaches the right boundary of the computational domain,
we expand the box in the 4% direction. This way both memory
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and computing time are saved, while following at all times the
evolution of the upstream regions that are causally connected
with the shock. Further numerical optimization can be achieved
by allowing the moving injector to periodically jump backward
(i.e., in the —% direction), resetting the fields to its right (see
Sironi & Spitkovsky 2009). For a perpendicular shock (i.e.,
with magnetic field perpendicular to the shock direction of
propagation), no particles are expected to escape ahead of the
shock, so we choose to jump the injector in the —% direction so
as to keep a distance of a few proton Larmor radii ahead of the
shock. This suffices to properly capture the heating physics of
electrons and protons. We have checked, though only for
relatively early times, that simulations with and without the
jumping injector give identical results.

In the main body of this paper, we present the results from a
reference run with M;=3 and G, = 16, as motivated by
galaxy cluster shocks. The upstream plasma is initialized with
To = To= 102 m,c? and ¥ = 0.05c. We remark that even
though our values for the plasma temperature and bulk speed
are motivated by galaxy cluster shocks, the results can be
readily applied to other systems (e.g., the solar wind), as long
as the dimensionless ratios M, and 3, are the same and all of
the velocities remain nonrelativistic. We will investigate the
dependence of the results on the Mach number and the plasma
beta in a forthcoming paper (X. Guo et al. 2017, in
preparation).

We employ a spatial resolution of 10 computational cells per
electron skin depth c/w,,, which is sufficient to resolve the
Debye length of the upstream electrons for our chosen
temperature of kgT,o = 1072 m.c?>. We have tested that a
spatial resolution of seven cells per electron skin depth can still
capture the electron heating physics. We use a time resolution
of dif = 0.045 w;el. Each cell is initialized with 32 computa-
tional particles (16 per species), but we have tested that a larger
number of particles per cell (up to 64 per species) does not
change our results (Appendix B). For the reference run, the
transverse size of the computational box is 151 ¢/w,,,
corresponding to ~3 15, but we have tested that simulations
with a transverse box size up to 256 c¢/w,, ~ 51 show
essentially the same results.

4. Shock Structure

In this section, we describe the structure of our reference
shock run, with M, =3, 8,0 = 16, and m; /m, = 49. We first
discuss the proton dynamics and the generation of magnetic
fluctuations sourced by the proton temperature anisotropy.
Then, we present the electron dynamics and focus on the profile
of electron irreversible heating. We will identify two main
locations where the electron entropy increases: the shock ramp
and the site where proton-driven waves grow in the down-
stream. The electron heating physics in these two regions will
be investigated in Sections 5 and 6, respectively.

4.1. Proton Dynamics and Proton-driven Instabilities

In this subsection, we describe the proton dynamics, with a
focus on proton isotropization and thermalization downstream
of the shock. Figure 1 shows the profile of various quantities in
the shock at time f = 25.6 (', as a function of the x
coordinate relative to the shock location xg,, in units of the
proton Larmor radius 1; defined in Equation (21).
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Figure 1. Shock structure and proton dynamics at ¢ = 25.6 O . The x
coordinate is measured relative to the shock location x,, and it is normalized to
the proton Larmor radius ;. From top to bottom, we plot (a) the y-averaged
1D profiles of proton density (black, in units of the upstream value), magnetic
field B, (green, in units of the upstream field By), and total magnetic field
strength B (red, in units of the upstream field Bg); (b) the cross-shock
electrostatic potential energy e®, in units of the proton upstream bulk energy
m; V2 /2; (¢)—(e) the proton phase spaces f(x — Xy, Pix)s (& — Xsn, p; ), and
fx — xgp, pi’y), where the proton momentum p; , is in units of m;V; 4o and the
proton thermal velocity is defined as v;mo = JksTo/m;; (f) the proton
temperature perpendicular (7 1, blue line) and parallel (|, orange line) to the
magnetic field, and the mean proton temperature T; = 271 + T;,)/3 (green
line); (g) the proton anisotropy 7; /T; | — 1 (blue line) and the anisotropy
upper bound in Equation (23) (red dashed line).

Panel (a) shows the y-averaged profile of the proton number
density n; in units of the proton density in the upstream 7,
(black line). The density compression at the shock reaches
n;/nio ~ 3.5 over a distance of ~r;, consistent with the
expectation that the thickness of a perpendicular shock should
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be of the order of the proton Larmor radius (Bale et al. 2003;
Scholer & Burgess 2006). The density oscillates on a typical
length scale of ~r1; after the overshoot and then relaxes to the
Rankine—Hugoniot value of ~2.8 beyond a distance of ~5 r;
behind the shock.

The density pileup at the shock is related to the electrostatic
potential ® that develops in the shock transition region. This
phenomenon has been well studied via hybrid simulations of
collisionless shocks (e.g., Leroy et al. 1981, 1982; Leroy 1983).
As shown in Figure 1(b), the potential energy ¢® reaches
~60% of the incoming proton energy n1; V72 /2. As a result, a
significant fraction of the incoming protons are reflected back
toward the upstream, leading to a pileup of particles just in
front of the shock. The reflected protons can be identified as the
ones with positive p; , and p, , ahead of the shock in the phase
spaces of Figures 1(c) and (d), respectively. As the reflected
protons gyrate in the shock-compressed magnetic field, they
gain energy from the upstream motional electric field. Upon
their second encounter with the cross-shock potential, the
reflected protons now have sufficient energy to penetrate the
shock. In the downstream region just behind the shock,
the protons keep gyrating in the x—z plane perpendicular to the
shock-compressed magnetic field (compare the phase spaces in
Figures 1(c) and (d) at —4 < (x — xsn)/1; S 0). The peaks in
density seen in Figure 1(a) are then correlated with the
locations where the proton gyrophase is such that most protons
have small Dix (e.g., at x — x5, ~ —0.25r1;, —1.25r1;, and
—2.75 ;). The amplitude of the density oscillations gets
smaller as the gyrating reflected protons become more and
more phase-mixed with the directly transmitted protons,
at X — Xgn 5 -5 ni-

Since the postshock protons gyrate in the x—z plane
perpendicular to the field, the momentum dispersion along
the y direction of the field is expected to be nearly the same on
the two sides of the shock (see the p,  phase space in
Figure 1(e) near the shock). Farther behind the shock, the
dispersion in p; , increases. This can be also quantified with the
y-averaged profiles of the proton temperature perpendicular
(Z;, 1) and parallel (Z; ) to the background magnetic field, as in
Figure 1(f). Here, the jk component of the temperature tensor is
defined as kgTj/mic? = (y'v/v{) [c?, where v/, v are the
particle velocities in the fluid comoving frame and ' is the
comoving particle Lorentz factor, and the average is performed
over the particle distribution at a given spatial location. As
Figure 1(f) shows, the mean proton temperature 7;, defined as?

2%, + 1))

="t W 22
2 (22)

is nearly uniform in the downstream region (green line), but the
parallel temperature (orange line)—which is continuous across
the shock—increases with distance behind the shock, while the
perpendicular temperature (blue line) shoots up at the shock
and then experiences a modest decline. This is the same trend
shown by the phase spaces in Figures 1(c)—(e).

The decrease in perpendicular temperature and the resulting
increase in parallel temperature suggest that protons are
being scattered in pitch angle. In fact, in the region
—4 S (x — xg)/ri S —1, where the variation in 7; | and T}
is most pronounced, strong magnetic waves are observed in

4 The factor of two that multiplies 7; | in the definition of 7; comes from the
fact that the perpendicular motion has two degrees of freedom.
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Figure 2. 1D and 2D structures of magnetic fluctuations in our reference shock
run at t = 25605 In panel (a), we plot the energy of magnetic field
fluctuations in the x, z, and y directions (blue, orange, and green lines,
respectively) normalized to the magnetic energy of the frozen-in field, which is
defined as Bg = Bg$ = Bo(n/ng)$. Panels (b)—~(d) show the 2D structure of
the field fluctuations 6B, = By /Bss, 6B, = B, /By, and 6By = (B, — Bs) /B,
respectively. The x coordinate is measured relative to the shock location xg,
and it is normalized to the proton Larmor radius rp;. In panels (b)—(d), the y
coordinate is in units of the proton Larmor radius ry;.

Figure 2. Their wavelength is comparable to the proton skin
depth, indicating that they are driven by protons (as opposed to
electrons). In Figure 2(a), we compare the 1D profiles
(averaged over the y direction) of the magnetic fluctuations
6sz, 6By2, and 6BZ2, normalized to Bf%, where Bg is defined
as the magnitude of the flux-frozen magnetic field (i.e.,
By = By(n/ny)¥y, where n is the y-averaged particle density).5
The energy of proton-driven waves peaks at X —
Xsh ~ —2.5 ;. In Figure 1(a), they are responsible for the
excess of magnetic field strength (red curve) above the flux-
freezing prediction (which would correspond to the density
profile, in black).

The dominant mode at —4 < (x — xg,) /1 S —1 in the x
and z directions has a wave vector nearly parallel to the
background field (Figures 2(b) and (c)), consistent with the
proton cyclotron instability (Kennel 1966; Davidson &
Ogden 1975). The waves in 6B, are slightly weaker (compare
the green line with the blue and orange curves in Figure 2(a))
and have oblique wave vectors (Figure 2(d)), as expected for
the mirror mode (Chandrasekhar et al. 1958; Barnes 1966;
Hasegawa 1975; McKean et al. 1993). The presence of mirror
modes breaks the flux freezing condition, as shown by the fact
that in Figure 1(a) the y-averaged transverse magnetic field
profile B, /B, deviates at —5 < (x — xa) /71 S —2 from the
density profile (in black, Wh1ch tracks the flux freezing
prediction).

5 The frozen-in magnetic field is also used in the definition
of 6By = By — By.
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Both the proton cyclotron instability and the mirror
instability are sourced by proton temperature anisotropy. In
fact, since the motion of downstream protons right behind the
shock is mostly confined in the x—z plane, a large temperature
anisotropy arises, with 7; | > T; | (Figure 1(g)). The anisotropy
provides free energy for the growth of proton cyclotron waves
and mirror modes, which scatter the protons in pitch angle and
reduce their anisotropy back to the upper bound corresponding
to marginal stability (Gary et al. 1997; see the red dashed line
in Figure 1(g)), which is

T -
Here, (5; = 8wnkg Yl“-,H/B2 is the local value of the proton
plasma beta, computed with the parallel proton temperature.

4.2. Electron Dynamics and Heating

In this subsection, we describe the electron dynamics, with a
focus on electron heating in the shock layer and in the
downstream region. Due to their opposite charge and much
smaller Larmor radius, the dynamics of electrons is drastically
different from that of the protons.

Figure 3(a) shows the electron density profile (black line),
which strongly resembles that of the protons (black line in
Figure 1(a)) and thus ensures approximate charge neutrality.
While a small degree of charge separation at the shock is
responsible for establishing the electric potential & shown in
Figure 1(b), the fact that & is nearly uniform at
X — Xg < =511 suggests that charge neutrality is satisfied
very well in the far downstream.

Figures 3(b)—(d) shows the electron phase space. Since
electrons have opposite charge than protons, they are not
reflected back upstream by the cross-shock potential. In fact,
unlike for protons, there is no reflected electron population with
D, 2 0 just ahead of the shock (compare Figures 3(b)
and 1(c)).

Figure 3(e) shows the temperature profile of electrons, for
the perpendicular component 7, | (blue), the parallel comp-
onent 7, | (orange), and the mean temperature 7, (green), which
is defined as

2L+ T
3 !

The profile of perpendicular temperature (blue line) follows closely
the density compression (compare with the black line in
Figure 3(a)) and starts to rise just ahead of the shock at
X — Xgn ~ 0.5 ;. This is consistent with the double adiabatic
theory, also known as the CGL theory (Chew et al. 1956), which
predicts 7) x B (and in flux freezing, B n).6 The double
adiabatic theory applies to electrons, since the density and
magnetic field compression occurs on scales much larger than
the electron Larmor radius. This is not true for protons, since the
shock thickness and the scale length of the downstream oscillations
seen in Figure 1(a) are set by the proton Larmor radius 7 ;.

The parallel electron temperature (orange line in
Figure 3(e)) initially remains unchanged, as the CGL theory

(24)

e

5 We remark, as we have already pointed out at the end of Section 2, that the

field strength B should include all of the magnetic contributions at scales much
larger than the electron Larmor radius and at frequencies much lower than the
electron gyration frequency.
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Figure 3. Shock structure and electron dynamics at ¢ = 25.6 ;1. From top to
bottom, we plot (a) the y-averaged profiles of electron density (black) and total
magnetic field strength B (red); (b)—(d) the electron phase spaces f'(x — Xsh, D, ;)
f(&x — X, p,;), and J 6o — % pe’y), where the electron momentum p, , is in
units of m,V; 4o and the electron thermal velocity is v, o = /kp To0/m. ; (¢) the
electron temperature perpendicular (7,1, blue) and parallel (Z;,, orange) to the
magnetic field, and the mean electron temperature 7, = (27, + T;,) /3 (green);
(D) the electron anisotropy 7,1 /T.,| — 1; (g) the excess electron temperature 7,
over the adiabatic expectation 7, o = (12, /neo)z/ 3T,o for an isotropic gas; (h) the
electron entropy profile, measured as in Equation (26).

predicts 7j o (n/B)* and B o n as a result of flux freezing
(compare the green and black lines in Figure 1(a) in the
vicinity of the shock). The increase in perpendicular
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temperature at the shock, while the parallel temperature stays
the same as in the upstream, leads to a strong electron
anisotropy, up to 7, /T, — 1 ~ 0.6 (Figure 3(f)). This
excites the electron whistler instability, which creates the
small-wavelength transverse magnetic waves in 0B, and 0B,
seen in the region x — Xy, ~ —0.25 r1; of Figures 2(b) and (c¢)
(see also the magnetic energy in 6B and cSBZ2 in Figure 2(a), at
the same location). The electron whistler instability provides a
mechanism for electron pitch-angle scattering and thus
reduces the electron temperature anisotropy, as shown in the
downstream region of Figure 3(f).

As we have already discussed, if the electron fluid were to
follow the double adiabatic predictions, 7, o« n and 7, o
const. The fact that the perpendicular temperature profile in
Figure 3(f) (blue line) resembles the density profile (black line
in Figure 3(a)) and the fact that T, ~ 7, | (compare the green
and blue curves in Figure 3(e)) suggest that most of the
increase in electron temperature comes from adiabatic
compression. However, the fact that 7; | is not constant across
the shock requires nonadiabatic processes. In order to quantify
the degree of nonadiabatic (or “irreversible”) electron heating,
we compare in Figure 3(g) the mean electron temperature 7,
with the adiabatic prediction

2/3
Te,ad — ( N, ) ) (25)

T, )

This estimate of the adiabatic temperature assumes an isotropic
gas, which is valid, given the small degree of electron
anisotropy far downstream of the shock (see Figure 3(f) at
x — xgn S —1 11;). Figure 3(g) shows the excess of T, above
1, .4 in units of the upstream electron temperature. Most of the
irreversible heating occurs at two locations: x — xg, ~ 0, that
is, in the shock transition region; and x — xg ~ —2.5 1,
where the density suffers another compression and strong
proton-driven waves are generated (see Figure 2). These two
locations are marked by the vertical dotted lines in Figures 2
and 3, and the particle and wave properties there will be further
studied below. In the far downstream, the temperature excess
over the adiabatic estimate saturates at 7, — T, ,q ~ 0.3 Tg
(Figure 3(g)).

An alternative (and possibly more rigorous) estimate of the
degree of irreversible electron heating is given by the specific
entropy s. (i.e., the entropy per particle), measured with the
electron distribution function f, as

dp f,1
S, = — f . Ilf s (26)

e

where the normalization is such that f a? P =1 / Neo. To
construct the spatial profile of s.(x), we first bin the particles by
their x position with a width of Ax = 100 cells. In each spatial
bin, we compute f,(p) by constructing a three-dimensional
histogram of the particle momenta. In each direction (), . 1 ,»
and p, ), the central bin of the histogram lies at the mean
momentum, and the histogram spans four standard deviations
above and below the mean. Each standard deviation is resolved
with 10 momentum bins.

Figure 3(h) shows the change of electron entropy with

respect to the upstream value. In analogy to Figure 3(g), the
increase in electron entropy is localized around x — xg, ~ O
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and x — xg, ~ —2.5 r; (indicated by the gray and pink vertical
dotted lines, respectively). The increase in electron specific
entropy saturates at As, ~ 0.25 in the far downstream.

4.2.1. Electron Whistler Waves

The physics of particle irreversible heating that we have
described in Section 2 relies on two ingredients: a certain level
of particle anisotropy and a mechanism to break the adiabatic
invariance. As we have shown above, a large-scale magnetic
field amplification (e.g., resulting from shock compression of
the upstream field) will lead to electron anisotropy with
T, 1 > T.). In turn, this triggers the growth of whistler waves,
which scatter the electrons in pitch angle, providing a
mechanism to break the adiabatic invariance and generate
irreversible heat. Below, we show that the two ingredients
needed for entropy increase are indeed present in the two
locations where the entropy profile shows the fastest increase
(vertical dotted lines in Figures 2 and 3).

At the shock (gray dotted line in Figures 2 and 3), the
electron temperatures are driven to 7., > 7, by shock
compression of the upstream field, via conservation of the first
and second adiabatic invariants. In Figure 4, we show the
spacetime diagram of various quantities, in the time interval
20.0 < Ot < 274 and along the y extent of the box. The
x location is fixed at the shock ramp (more precisely,
X — X¢n = 4 ¢/wp.). Shock compression of the upstream field
(see Figure 4(a), where |B|/By ~ 2.2) leads to a temperature
anisotropy T, /T, | — 1 = 0.6 (Figure 4(d)). Both the field
amplification and the degree of temperature anisotropy are
nearly constant in time and uniform in y.

As a result of the strong temperature anisotropy, magnetic
waves are excited throughout the y range consistently over
time. Panels (b) and (c) show the spacetime diagrams of the
magnetic fluctuations 6B, and 6B,, revealing the presence of
high-frequency and short-wavelength modes (as also seen in
Figures 2(b) and (c) near the shock). Figures 4(e) and (f) show
the corresponding power spectra, as a function of frequency w
(horizontal axis) and wavenumber k,, (vertical axis). The power
spectrum displays a pronounced peak at frequency w = 0.5 Q,,
(here Q.. = (m;/m.)Q; is the electron gyrofrequency) and
wave vector ky =~ 0.5 w,,/c. We have compared this with
linear theory of the electron whistler instability (e.g., Gary &
Madland 1985; Gary & Wang 1996; Gary & Karimabadi 2006)
by solving the dispersion relation

0 = D*(k,, Q)

QO
=02 — %k} + wii—k Z(¢hH
yVi

+od,—Z(¢H + w (T@i - 1)[1 AP
el L,
27)
where (&= (Q £ Qo) /fkyn, W= QksT ) /m)/?, (&=

(Q £ Qo) fkyVyp Vi = QkpTi/m;)'/?, and Z(() is the plasma
dispersion function:

2!
70=— [ a2 (8

The input values of v, v, 7.1 /Te,H — 1 for the dispersion
relation are taken from the time and space averages of the
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Figure 4. Spacetime diagrams and power spectra at a distance of x — xy, = 4 ¢/wy, ahead of the shock (as indicated by the vertical dotted gray lines in Figures 2 and
3), during the time interval 24.0 < Qt < 27.4. For this plot, the unit of time is the electron cyclotron time 2, (the corresponding unit of frequency is Qc,), and the
unit of distance along y is the electron skin depth ¢/wp, (the corresponding unit for the wave vector &, is wp, /c). Panels (a)—(d) are the spacetime diagrams of (a) total
magnetic field strength |B|, in units of the upstream field Bo; (b) and (c) transverse magnetic field fluctuations 6B, /Bo and 6B, /Bo; (d) electron anisotropy T, 1 /T, — 1.
Panels () and (f) show the (w, ky) power spectra of the field fluctuations presented in panels (b) and (c), respectively. In panels (e) and (f), the solid black line is the
predicted real part of the frequency of electron whistler modes, whereas the dashed black line is the predicted imaginary part (i.e., the growth rate). The agreement
between the prediction and our measurement confirms that the fluctuations in panels (a)—(c) are whistler waves.

corresponding quantities over the same time period and spatial
extent as the spacetime diagram in Figure 4. The resulting
theoretical prediction for the real part of the frequency is shown
with a black solid line in panels (e) and (f), and it matches
extremely well the contours of the power spectrum. The
imaginary part of the frequency, that is, the growth rate of the
mode, is plotted with a dashed black curve. The value of k,
giving the fastest growth agrees well with the location of the
peak of the power spectrum (ky > 0.5 wy./c). The excellent
agreement between the simulation data and the electron
whistler dispersion relation confirms that the waves in the
shock ramp are produced by the electron whistler instability.

Figure 5 shows similar plots at the location indicated in
Figures 2 and 3 with a vertical dotted pink line, at
X — X = =251~ —122 ¢/w,,. Here, field amplification
is driven by a combination of two effects: the density (and so,
the frozen-in magnetic field) experiences another large-scale
compression, and the proton-driven waves shown in Figure 2
further increase the local magnetic field intensity.

As compared to Figure 4, the spacetime diagrams show now
a higher degree of inhomogeneity, imprinted by the anisotropy-
driven long-wavelength proton modes. These fluctuations
coexist with weaker small-wavelength, high-frequency modes,
which only appear in localized patches (e.g., at x ~ 80 ¢/wp,

and f ~ 100 ng in Figures 5(b) and (c)). The high-frequency

waves are generated in regions where field amplification
(Figure 5(a) at x ~ 80 ¢/wp. and f ~ 100 ng) causes the
electron anisotropy (Figure 5(d)) to exceed the threshold for
whistler growth (Figure 5(g)), which is given by

1,1 021
T’ - 1= 0.6’
el Bell

where 8, | = 8mn.kp TE,H/B2 is the local value of the parallel
electron beta (Gary 2005).

Figures 5(e) and (f) show the power spectra of 6B, and 6B,.
Most of the power is concentrated in low-frequency, long-
wavelength modes, generated by the proton cyclotron or
mirror instabilities. However, there is still an appreciable
amount of power in high-frequency, short-wavelength modes
peaking at w ~ 0.7 Q. and k, ~ 0.7 wp./c. We apply a
high-frequency, short-wavelength filter, in order to isolate
the top right region in Figures 5(e) and (f) (the cutoff
frequency and wavenumber of our filter are shown with
dashed red lines). This allows us to extract (via an inverse
Fourier transform) the spacetime wave patterns of high-
frequency, short-wavelength modes, which are shown in
panels (h) and (i). The two panels confirm that short-
wavelength modes exist only in regions where the electron
temperature anisotropy exceeds the electron whistler thresh-
old (Figure 5(g) at x ~ 80 ¢/wp, and ¢ ~ 100 Q;@l). We have
measured the average electron and proton temperatures and

(29)
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Figure 5. Spacetime diagrams and power spectra at X — Xg, = —122 ¢/wy, ~ —2.5 r1; behind the shock (as indicated by the vertical dotted pink lines in Figures 2

and 3), during the same time interval 24.0 < Q¢ < 27.4 as in Figure 4. For panels (a)—(f), see Figure 4, the only difference being that the predictions in panels (e) and
(f) (solid black line for the whistler wave frequency, dashed black line for the growth rate) are computed considering the plasma properties only in regions where the
electron anisotropy is well above the whistler threshold, more specifically 7 | / Ly—1-021 / ﬁg;ﬁ > 03. In panel (g), where we indeed plot
T, . / y—1-021 / ﬁg;ﬁ, this would correspond to the dark green areas. Since panels (a)—(c) are dominated by long-wavelength, slowly propagating proton
modes, we isolate electron waves via a high-pass filter in the power spectra of panels (e) and (f), keeping only the high-w, high-k, region delimited by the red dashed
lines. The resulting spacetime wave pattern is shown in panels (h) and (i), which reveal the presence of electron whistler waves.

densities in the region where the whistler threshold is
appreciably exceeded (Te,L/Te,H - 1= 0.21/,62;ﬁ > 0.3), in
order to obtain linear theory predictions. The real part and
imaginary part of the resulting dispersion relation are plotted
in Figures 5(e) and (f) with solid and dashed black lines,
respectively. The good agreement with the power spectra
extracted from our shock simulation confirms the presence
of patches of whistler waves in the second ramp (at
X — Xg ~ —2.5 11;) of the electron entropy profile.

To summarize, we have identified two major sites of
electron entropy production in the shock downstream. One is

10

at the shock ramp, and the other is at a distance of ~2.5 11
behind the shock, where density compression and proton-
driven waves both contribute to magnetic field amplification.
Both sites show the presence of electron whistler waves
triggered by electron temperature anisotropy. Whistler waves
provide the pitch-angle scattering required to break electron
adiabatic invariance and to generate entropy. In the following
two sections, we further elucidate the physics of entropy
production in these two sites, by means of periodic box
simulations. The reader primarily interested in the implica-
tions for shocks can skip Sections 5 and 6 and proceed
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directly to Section 7, where the heating model is validated in
the shock simulation.

5. Electron Heating in the Shock Ramp

The first increase in electron entropy happens in the shock
ramp. As a result of the shock compression of the upstream field
(B o n by flux freezing), electrons become anisotropic and they
trigger whistler waves. Below, we model the shock compression
in a periodic box using a novel form of the PIC equations
introduced in Sironi & Narayan (2015) and Sironi (2015), which
incorporates the effect of a large-scale compression of the
system. We briefly describe the simulation setup in Section 5.1,
we discuss periodic box simulations applicable to our reference
shock run in Section 5.2, and we describe the dependence on
mass ratio in Section 5.3.

5.1. Simulation Setup

To emulate the conditions for electrons in the shock ramp,
we set up a suite of compressing box experiments, using the
method introduced in Sironi & Narayan (2015) and Sironi
(2015). Here, we report only its main properties. We solve
Maxwell’s equations and the Lorentz force in the fluid
comoving frame, which is related to the laboratory frame by
a Lorentz boost. In the comoving frame, we define two sets of
spatial coordinates with the same time coordinate. The
unprimed coordinate system has a basis of unit vectors, so it
is the appropriate coordinate set to measure all physical
quantities. Yet, it is convenient to redefine the unit length of the
spatial axes in the comoving frame such that a particle subject
only to compression stays at fixed coordinates. This will be our
primed coordinate system. Then, compression with rate ¢ is
accounted for by the diagonal matrix

l+gnt 00

Ox (

L=§— 0 1 of (30)
0 01

which has been tailored for compression along the x axis, as
expected in our shock.

A uniform ordered magnetic field By is initialized along the y
direction (in analogy to the shock setup). We define (2; as the
proton Larmor frequency in the initial field B,. Maxwell’s
equations in the primed coordinate system (Sironi & Narayan
2015) prescribe that the field will grow in time as By(1 + ¢ 1),
which is consistent with flux freezing (the particle density in
the box increases at the same rate). From the Lorentz force in
the compressing box (Sironi & Narayan 2015), the component
of particle momentum aligned with the field does not change
during compression, whereas the perpendicular momentum
increases as o<4/1 + g ¢. This is consistent with the conserva-
tion of the first and second adiabatic invariants.

This method is implemented for 1D, 2D, and 3D computa-
tional domains, with periodic boundary conditions in all
directions. In the previous section, we have shown that the
whistler instability is the dominant mode in the shock ramp. Its
wave vector is nearly aligned with the field direction (i.e., along
¥). It follows that the evolution of the dominant mode can be
conveniently captured by means of 1D simulations with the
computational box oriented along y, which we will be
employing in this section. Yet, all three components of
electromagnetic fields and particle velocities are tracked. In
1D simulations, we can employ a large number of particles per

11
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Figure 6. As a function of the comoving time of the electron fluid defined in
Equation (31), we present the density profile experienced by electrons as they
propagate from upstream to downstream (solid blue line). The time axis is
shifted such that 7 = O just ahead of the shock. The shock compression felt by
incoming electrons can be approximated as m,/m. = (1 + gt) with
compression rate ¢ = 2.5 Q; (orange dashed line).

cell (typically 10 per cell), so we have adequate statistics for
the calculation of the electron specific entropy from the phase
space distribution function. In addition, in 1D simulations, we
can readily extend our results up to the realistic mass ratio.
Even though we only show results from 1D runs, we have
checked that the main conclusions hold in 2D.

As a result of the large-scale compression encoded in
Equation (30), both electrons and protons will develop a
temperature anisotropy, and we should witness the develop-
ment of both electron and proton anisotropy-driven modes.
However, in our reference shock, no proton modes grow in the
shock ramp (they only develop a few Larmor radii behind the
shock). For this reason, in our compressing box runs, we
artificially inhibit the update of the proton momentum
(effectively, this corresponds to the case of infinitely massive
protons, which only serve as a charge-neutralizing fluid).

The compression rate g is measured directly from our
reference shock simulation. There, we can quantify the profile
of electron density as a function of the comoving time of the
electron fluid, which follows from

. f dx’
T= [ ———,
Vie (')
where V,, is the electron fluid velocity in the shock frame, and
the integral goes from the upstream to the downstream region.
Figure 6 shows the density profile as a function of 7 from our
reference run. The density oscillates on a timescale comparable
to the proton gyration time Q;-l, which is expected given that
the proton dynamics controls the shock structure. At the ramp
starting near 7 = 0, the electron density increases by a factor
of ~3.5 within ~1 Q. Even though the density increase is
not perfectly linear, we find that a linear approximation with
q = 2.5Q,; provides a reasonable fit (see the orange dashed
line in Figure 6). We remark that our electron heating model is
agnostic of the exact profile of density compression, as long as
the compression rate and the resulting field amplification rate
are much slower than the electron gyration frequency.
Below, we fix g = 2.5 Q;. With increasing mass ratio, the
separation between ¢ and the electron cyclotron frequency (2,
will increase as m; /m,. As in our reference shock run, electrons

are initialized to have kgT,; = 1072 m,c?, and the strength of
the background magnetic field is set so that 8,; = 16. We

3L
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resolve the electron skin depth with 10 cells, so the Debye
length is marginally resolved. The box extent along the y
direction is fixed at 43 ¢/w,., which is sufficient to capture
several wavelengths of the electron whistler instability. The
box size does not need to scale with the mass ratio, since we are
artificially excluding the proton physics.

5.2. Application to the Reference Shock

As in our reference shock run, we employ a reduced mass
ratio m; /m, = 49. In the periodic compressing box, this means
that our choice of ¢ = 2.5 ,; leads to a compression rate that
is a factor of ~20 lower than the electron gyration frequency.

To highlight the importance of the electron whistler
instability in facilitating electron entropy production, in
Figure 7 we compare two simulations, one with the background
field B; in the z direction, the other one with By along the y
direction. Since our simulation box is oriented along y and the
dominant wave vector of the electron whistler instability is
parallel to the background field, if the field lies along z (which
we shall call the “out-of-plane” case and indicate with dotted
lines), we artificially suppress the growth of electron whistlers.
By comparing it with the “in-plane” simulation with the field
along y (solid lines), which does allow for whistler wave
growth, we can demonstrate the importance of the electron
whistler instability for entropy production.

In the absence of electron-scale instabilities that would break
the adiabatic invariance, the out-of-plane simulation is
expected to follow adiabatic scalings. In fact, in the out-of-
plane simulation, we see that 7, | o< B o< (1 4 gt) (blue dotted
line in Figure 7(b)), while 7, o< (n/ B)?x const. (orange dotted
line in Figure 7(b)), as expected from the double adiabatic
theory. Since no whistler waves grow (notice that the fields stay
at the noise level; see the dotted lines of Figure 7(a)), no
mechanism exists that can transfer heat from the perpendicular
to the parallel temperature, and the electron entropy remains
constant.

The in-plane simulation shows a different behavior. Initially,
1;, and 1, follow the double adiabatic trends (solid lines in
Figure 7(b)). At .t ~ 0.3, the increasing temperature
anisotropy (blue solid line in panel (c)) leads to the exponential
growth of electron whistler waves (solid lines in Figure 7(a)).
At t ~ 0.4, the wave energy is strong enough to pitch-angle
scatter the electrons. As a result, heat is transferred from the
perpendicular to the parallel direction. Both 7; | and T;, | deviate
from the adiabatic scalings, and the temperature anisotropy is
reduced.

Atr~ 04 Q;-l, with the onset of pitch-angle scattering and
the consequent breaking of adiabatic invariance, the electron
specific entropy starts to rise (solid blue line in Figure 7(d)).
The most rapid entropy increase happens near the end of the
exponential whistler growth, at t ~ 0.4-0.5 Q_;'. Here, the
electron anisotropy is still large, and at the same time whistler
waves are sufficiently powerful to provide effective pitch-angle
scattering. In other words, both terms in the square brackets of
either Equation (13) or (14) are large. After the exponential
growth, the electron whistler waves enter a secular phase where
the wave energy (normalized to the compressed background
field energy) stays almost constant (solid green line in
Figure 7(a)). In this phase, whistler waves are continuously
generated as the large-scale compression steadily pushes the
electron anisotropy slighly above the threshold of marginal
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Figure 7. Time evolution of various space-averaged quantities in a 1D
periodic box whose compression rate ¢ = 2.5 ; is chosen to mimic the
effect of the shock ramp. We compare two field geometries, with
the background field lying either along the y axis of the simulation box
(“in-plane” configuration, solid lines) or along the z direction perpendicular
to the box (“out-of-plane” configuration, dotted lines): (a) energy in
magnetic field fluctuations, normalized to the energy of the compressed
magnetic field (the legend is appropriate for the in-plane configuration,
whereas for the out-of-plane case the orange line refers to §By2); (b) electron
temperature perpendicular (7;, 1, blue lines) and parallel (7;,|, orange lines) to
the background field; (c¢) electron temperature anisotropy (blue lines), and
comparison with the threshold of the electron whistler instability, as in
Equation (29) (dashed red line); (d) electron entropy change, measured from
the electron distribution function as in Equation (26) (blue solid) or predicted
from Equation (33) (red dashed); (e) electron energy increase in units of
kgT,o, measured directly (blue solid) or predicted using Equation (32) (red
dashed).
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stability (indicated by the red dashed line in Figure 7(c)). Both
the ingredients needed for entropy increase (i.e., nonzero
electron anisotropy and efficient pitch-angle scattering
mediated by whistler waves) persist during the secular phase,
leading to a further increase in the electron entropy.

In Figure 7, we also explicitly validate the heating model
described in Section 2. Following Equation (7), the electron
energy per particle should change as

du, = kpT, 1 d1nB + kT, d ln(%) — dey,

=kpT, d1nB — de,,,, (32)

where e,, , is the energy per particle in whistler waves (as we
have discussed in Section 2, the electron energy transferred to
electron modes stays entirely in the waves, so de,, . = dey (ote),
and we have used the fact that #/Bo const. In Figure 7(e), the
blue solid line shows the measured change of electron internal
energy from the in-plane run, while the red dashed line is
obtained by integrating Equation (32). We find excellent
agreement between simulation results and our electron heating
model.

The validation can also be extended to the entropy
measurement, as we do in Figure 7(d). Again, the blue solid
line shows the measured change in electron specific entropy
(computed from the distribution function as in Equation (26)),
while the red dashed line is obtained by integrating

1 1,
—dInT,||1 -
2 1.

which follows from Equation (13) (an equivalent form can be
obtained from Equation (14)). Once again, the model matches
the simulation results extremely well.

dey e
__7

ds, =
‘ 1,1

(33)

5.3. Dependence on the Mass Ratio

We now extend our compressing box experiments up to the
realistic mass ratio and show that the electron entropy increase
is nearly insensitive to m;/m, (as long as the mass ratio is
larger than a few tens). Figure 8 compares the evolution of the
whistler wave energy (panel (a)), the electron temperature
anisotropy (panel (b)), the rate —dIn(Z, | /B) of breaking
adiabatic invariance (panel (c)), and the electron entropy
increase (panel (d)) when varying the mass ratio from
m;/m, = 49 up to m;/m, = 1600 (from purple to red; see
the legend in the second panel). Since we fix the compression
rate to be g = 2.5 0, a larger mass ratio corresponds to a
lower compression rate in units of the electron gyration
frequency ., = (1;/1m,) ;.

Initially, the electron temperature anisotropy grows linearly
in time as T, L/TE,H — 1 = gt, as a result of the large-scale
compression. This proceeds until the energy in whistler waves
reaches a fraction ~3 x 1072 of the compressed background
field energy (Figure 8(a)). At this point, whistler waves are
sufficiently strong to scatter the electrons in pitch angle,
breaking their adiabatic invariance and reducing the electron
anisotropy by transferring energy from the perpendicular to the
parallel component. In fact, notice that the peak in panel (c),
that is, the time when the electron adiabatic invariance is most
violently broken, always corresponds to the time when the
electron anisotropy in panel (b) shows the sharpest decrease.
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Figure 8. Dependence on mass ratio (up to m; /m, = 1600) of various space-
averaged quantities in a 1D periodic box with compression rate ¢ = 2.5 Q;
(the legend is in panel (b)). The background field is aligned with the box
(in-plane configuration). We plot (a) energy in magnetic field fluctuations,
normalized to the energy of the compressed field; (b) electron temperature
anisotropy (solid lines) and threshold condition for the electron whistler
instability (dotted lines with the same color coding as the solid lines); (c) rate of
violation of adiabatic invariance —d In(7, 1 /B); (d) electron entropy change,
measured from the electron distribution function as in Equation (26). After
Qit ~ 1 (vertical dotted black line in panel (d)), which corresponds to the end
of the compression phase in the shock ramp, the entropy change is nearly
independent of the mass ratio.
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The onset of efficient pitch-angle scattering (and so, the peak
time of electron anisotropy) occurs earlier at higher mass ratio,
at a time that decreases from f ~ 0.35 Q;-l at m;/m, = 49
downtot ~ 0.1 Q;-l at m; /m, = 1600. This can be understood
from the competition between the large-scale compression rate
(which increases the electron anisotropy) and the growth rate of
whistler waves (which try to reduce the anisotropy via pitch-
angle scattering). The compression rate in units of the electron
cyclotron frequency is g = 2.5(m,/m;))., while the whistler
growth rate (also in units of €..) depends on how much the
anisotropy exceeds the whistler threshold in Equation (29). In
order to balance the two rates, a higher anisotropy is needed for
larger m,/m;, that is, for lower mass ratios. This has two
consequences: first, the growth rate of the whistler instability
(normalized to §2..) will decrease at higher m;/m,, as indeed
confirmed by the inset of Figure 8(a); second, lower peak
anisotropies (and so, earlier onsets of efficient pitch-angle
scattering) will be achieved at higher mass ratios, which
explains the trend seen in Figure 8(b). In addition, since the
energy of whistler waves ultimately comes from the free energy
in electron anisotropy, higher mass ratios display weaker levels
of whistler wave activity (panel (a)).

The electron entropy evolution in Figure 8(d) can be
separated into two stages. In the first phase (which, for
m;/m, = 49, occurs at t ~ 045 Q;-l), the electron entropy
grows quickly. This stage corresponds to the late exponential
phase of whistler wave growth (and so, we shall call it the
“exponential phase”), when both the electron anisotropy (panel
(b)) and the rate of breaking adiabatic invariance (panel (c))—
that is, the two ingredients needed for efficient entropy
production—are large. Since higher mass ratios reach lower
levels of electron anisotropy, the entropy produced during this
stage is a decreasing function of m1; /mi,, as seen in Figure 8(d)
(compare the purple line growth around ¢ ~ 0.45 Q;-l with the
red line around f ~ 0.15 €0'). After whistler waves have
reached saturation, the electron entropy still increases, in a
phase that we shall call “secular.” Here, the electron anisotropy
stays close to the threshold of marginal stability (indicated in
Figure 8(c) by the dotted lines, with the same color coding as
the solid curves). Continuous pitch-angle scattering (and so,
persistent violation of adiabatic invariance) is needed to oppose
the steadily driven compression and maintain the system close
to marginal stability. It is then expected that entropy will
continuously increase during the secular phase, albeit at a lower
rate than in the exponential stage. For m;/m, 2> 400, the
electron anisotropy at late times is nearly insensitive to n1; /m,
(compare yellow, orange, and red lines at Q.;f 2> 0.4 in panel
(b)), which explains why the entropy growth in the secular
phase is nearly the same for all m; /m, = 400 (Figure 8(d)).

From Figure 8(d), we can infer how the entropy increase in
the shock ramp should scale with mass ratio. Since the
compression in the shock ramp lasts about one proton gyration
time, we compare the entropy curves at {2,;f ~ 1, as indicated
by the vertical dotted black line in panel (d). When the mass
ratio increases from m1; /m, = 49 to m; /m, = 1600 (i.e., more
than a factor of 32), the entropy produced until Q.f =1
decreases from 0.065 to 0.048, only a ~30% decrease. The
dependence on mass ratio would be far more pronounced if
we were only to consider the entropy produced during the
exponential phase. However, higher mass ratio runs have
earlier onset times, as we have explained above, so they spend
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more time (within the first Q') in the secular phase, as
compared to lower mass ratios. In summary, most of the
entropy production at lower mass ratios happens during the
exponential phase, whereas at higher mass ratios the secular
phase lasts longer and thus compensates for the lower level of
entropy generated during the exponential stage. The net effect
is that the entropy increase in our compressing box with
m;/m, = 1600 is only slightly smaller than for m;/m, = 49.
The same conclusion should hold also for our reference shock.

6. Electron Heating by Proton-driven Waves

In the downstream region of our reference shock, at a
distance of ~2.5 r1; from the shock front, the electron entropy
shows a second phase of rapid increase. Here, a large-scale
density compression coexists with the growth of proton-driven
waves, and both contribute to magnetic field amplification and
irreversible electron heating. The new concept here is the effect
of proton-driven waves, so we focus on that in this section. We
demonstrate that magnetic fluctuations induced by a proton
temperature anisotropy can naturally lead to an increase in
electron entropy, even in the absence of a large-scale
compression. We employ periodic simulation domains with
the standard form of the PIC equations (as opposed to what we
used in the previous section) and set up a population of
anisotropic protons, with a degree of anisotropy motivated by
our reference shock run. We discuss the simulation setup in
Section 6.1, we discuss periodic box simulations applicable to
our reference shock run in Section 6.2, and we describe the
dependence on mass ratio in Section 6.3.

6.1. Simulation Setup

In order to study the role of anisotropy-driven proton modes
in producing electron irreversible heating, we set up a periodic
simulation box with anisotropic protons. The simulation is
initialized to approximate the conditions right after the shock
transition. The protons are initialized as a bi-Maxwellian
distribution with Ti | /Tio ) ~ 7, as observed just behind the
shock in Figure 1(g). The value of T} | is the same as in the
shock upstream (in fact, the parallel proton temperature is
nearly uniform across the shock; see the orange line in
Figure 1(f)). The electron temperature increases roughly by a
factor of two across the shock (Figure 3(e)), so the electrons in
the tests here are initialized with T,y ~ 2 x 1072 m,c?/kg (note
that in the shock upstream the electron temperature was
1072 m,c?/kg). We take electrons to be isotropic, since the fast
growth of whistler waves in the shock ramp ensures that the
degree of downstream electron anisotropy is low (see the
postshock region in Figure 3(f)). We also take into account that
both density and magnetic field strength have increased by a
factor of ~2.5 as compared to the shock upstream (Figure 1(a)).

We resolve the electron skin depth with seven cells in order
to (marginally) capture the electron Debye length. Since both
the proton cyclotron instability, which dominates over the
mirror mode in the downstream of our reference run, and the
electron whistler instability have the fastest growing wave
vector aligned with the background field, we employ 1D
simulation domains with the box aligned with the y direction of
the background magnetic field. Thanks to the reduced
dimensionality of our computational domain, we can employ
a large number of particles per cell (10%). Therefore, we have
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adequate statistics for the calculation of the electron specific
entropy, and we can properly control the effect of numerical
heating. In addition, in 1D simulations, we can readily extend
our results up to the realistic mass ratio. The length of the
computational box is 1512 cells for m;/m, = 49. Since the
fastest growing mode of the proton cyclotron instability has a
wave vector ~w,;/c, we increase the number of cells in our

computational domain proportional to ocy/m;/m,, to include
the same number of proton skin depths (and so, approximately
the same number of proton cyclotron wavelengths).”

6.2. Application to the Reference Shock

In order to compare the results obtained from the periodic
box simulations with the reference shock run, in Figures 9 and
10 we show the evolution of our periodic system for
m;/m, =49. As a result of the initial proton temperature
anisotropy, the proton cyclotron instability develops, generat-
ing exponentially growing waves with 6B, and 6B, components
(Figure 9(a)). As shown in Figures 10(b) and (c), the growing
waves are dominated by modes with wavelength at the proton
inertial scale (for m;/m, = 49, the proton skin depth is
¢fwpi = T ¢Jwpe) and frequency comparable to the proton
gyration frequency, as expected for the proton cyclotron
instability.

At t ~ 4 O, when the energy in proton cyclotron waves
reaches a fraction ~107! of the background field energy,
efficient pitch-angle scattering quickly reduces the proton
temperature anisotropy (Figure 9(c)). During the isotropization
process, the proton specific entropy increases (Figure 9(e)
att ~ 5010,

The heating model described in Section 2 can be applied to
protons, keeping in mind that in the current setup no
perturbations in density or magnetic field exist on scales larger
than the proton scales (so, no work is being done on the
protons). It follows that the perpendicular and parallel energy
per proton change as

dui, . = —dg; |, — dew,, (34)
dui)| = dg; |, — dew.|, (35)

so the total change in proton energy per particle is
du; = —dey, ;) — dey ;| = —dey; o (36)

which simply states that the energy lost by protons is
transferred to proton waves. Following Section 2, the change
in specific proton entropy is

]; d w,i to
dsi:(ldlnTi,H) ~ 2l Stk (37)
2 L. L.
EL dewitot
ds; = (—dln E,L)(+ — 1) — —t, (38)
L L
where the two expressions are equivalent, as with

Equations (13) and (14). We now need to specify de,, ; (o, that
is, the energy per proton transferred to proton modes. As we
anticipated in Section 2, this is not equal to the energy residing
in proton waves, since some fraction of that is being used to

1 Beyond m;/m, = 400, we also_increase the number of computational
particles per cell proportional to +fm;/m,, in order to minimize numerical
heating effects.
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perform work on the electrons. In the remainder of this section,
we denote as n and B the density and magnetic field
fluctuations induced by proton waves. Since the scale of the
perturbations is much larger than the electron gyroradius, the
fluctuations perform work on the electrons, so Equation (4) for
electrons becomes

dw, =T, d1nB + T&‘ﬂln(%) = dw, .+ dw..  (39)

This energy increase in the electrons is at the expense of the
energy in proton waves, so the residual energy per particle
residing in proton waves will be

dew,i = dew,i tot — dwe,L - dwe,Hv (40)
and the energy equation for protons reads
di; = —dWe L — AW, — dey;, “41)

where the three terms on the right-hand side can be explicitly
measured in our simulations.

Figures 9(e) and (g) demonstrate that our heating model
works remarkably well for protons (later on, we will show that
it also works for electrons). In Figure 9(e), the blue solid line is
the proton entropy change measured directly from the
simulation, using the distribution function as we did in
Equation (26). It matches extremely well the prediction
obtained by integrating the right-hand side of the proton
entropy equation, Equation (37) or (38) (see the orange dotted
line in Figure 9(e)). The agreement is also remarkable
regarding the proton energy equation, Equation (41). In
Figure 9(g), the proton energy loss —Au; = — f du; is indicated
as a green line. From Equation (41), this should be equal to
Aey; +w + w), where we have defined Ae,; = fdew,i,

w = f aw,, |, and w) = f aw,,|. In fact, the green line nearly
overlaps the red curve.

The growth of proton cyclotron waves provides a source of
field amplification and density perturbations that can perform
work on the electrons. Indeed, Figure 9(h) shows that during
the exponential phase of the proton cyclotron instability
@4 < Qut < 7), the proton waves increase the electron
perpendicular energy (i.e., dw, | > O; see the blue line in
Figure 9(h)) and decrease the parallel component (ie.,
dw,,)) < 0; see the orange line in Figure 9(h)). This leads to a
temperature anisotropy 1., > 7, (compare the blue and
orange lines in Figure 9(d) at Q.f ~ 5), which can be
equivalently explained as a result of the conservation of the
first and second adiabatic invariants in the growing fields of the
proton cyclotron waves. The resulting electron anisotropy is
sufficiently strong to trigger the growth of whistler waves.

While the presence of whistler waves is hard to identify by
eye in the spacetime diagrams of Figures 10(b) and (c), due to
the dominance of proton cyclotron modes, we can extract their
signature by applying a filter in frequency and wavenumber, as
done in Section 4.2.1. Figures 10(e) and (f) show the power
spectra of 6B, and 0B;. Most of the power is concentrated near
the origin at low frequencies and long wavelengths, associated
with the proton cyclotron mode. However, we can still
identify a significant peak around w = 13 Q,; =~ 0.3 ., and
ky = 0.3 wy, /c. In analogy with the discussion in Section 4.2.1,
we associate this peak with electron whistler waves. When
applying a high-pass filter whose frequency and wavelength
cuts are shown as red dashed lines in Figures 10(e) and (f), we
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Figure 9. Time evolution of various space-averaged quantities in a 1D periodic box initialized with anisotropic protons, to mimic the shock conditions in the
downstream. The background field is aligned with the box (in-plane configuration). We plot (a) total energy in magnetic field fluctuations, normalized to the energy of
the initial field; (b) energy in electron-scale fluctuations, extracted using the high-pass filter in frequency and wavenumber indicated by the red dashed lines in the
power spectra of Figures 10(e) and (f); (c) proton and (d) electron temperature perpendicular (blue lines) and parallel (orange lines) to the background field, together
with the mean temperature (green lines); (e) proton entropy change, measured from the proton distribution function or predicted from Equation (37) (orange dotted);
(f) electron entropy change, measured from the electron distribution function (blue solid) or predicted from Equation (42) (orange dotted); (g) proton energy change in
units of kgT;y, measured directly (green) or predicted using Equation (41) (red); (h) electron energy increase in units of kgT,o, measured directly (green) or predicted

using Equation (43) (red). For other curves in panels (g) and (h), see the text.

recover in the spacetime diagrams of Figures 10(h) and (i) the
typical spatial and temporal patterns of electron whistler waves.
As expected, most of the electron whistler activity takes place
near the end of the exponential growth of proton waves, at
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5 < Qut < 7 (see also the temporal evolution of the energy in
whistler waves in Figure 9(b)). In this time interval, the
electron anisotropy exceeds the threshold of whistler instability
in the whole simulation domain (Figure 10(g)).
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Figure 10. Spacetime diagrams and power spectra of a 1D periodic box initialized with anisotropic protons. The panels are the same as in Figure 5, with the only
difference that the time unit here is ;' (and frequencies are normalized to €);). As in Figure 5, since panels (a)—(c) are dominated by long-wavelength, slowly
propagating proton modes, we isolate electron waves via a high-pass filter in the power spectra of panels (e) and (f), keeping only the high-w, high-k, region delimited
by the red dashed lines. The resulting spacetime wave pattern is shown in panels (h) and (i), whose insets clearly reveal the presence of electron whistler waves.

This period also corresponds to a rapid increase of the
electron specific entropy, as measured directly from the
electron distribution function (blue solid line in Figure 9(f)).
This is expected, since whistler waves provide the pitch-angle
scattering required to break adiabatic invariance, which
(together with the sustained electron anisotropy; see
Figures 9(d) and 10(d) at 5 < Q. < 7) drives efficient
entropy generation. Based on our model in Section 2, the
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electron specific entropy should increase as

[tz

which follows from Equation (13) (an equivalent form can be
obtained from Equation (14)). Here, we have used the
condition de,, . = dey,. for electrons. The comparison of

L
(n/B)y?

dey, .
- _7

(42)

L
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the measured entropy increase (blue solid line in Figure 9(f))
with the predicted entropy change (orange dotted line in
Figure 9(f)) provides another validation of our heating model.

While most of the electron entropy production happens near
the end of the exponential growth of proton waves, a moderate
increase of the electron entropy also occurs during the secular
stage (i.e., at Qyt 2 10). Here, the oscillating cyclotron
fluctuations are sloshing electrons around and can occasionally
excite local patches of electron anisotropy that exceed the
whistler threshold (e.g., see Figure 10(g) at ¢~ 11 and
¥y =2 175 ¢/wp.). In the same region, we can identify a short
episode of electron whistler activity, particularly in 6B, in
Figure 10(i). These sporadic episodes of anisotropy-driven
whistler waves further increase the electron entropy.

It is worth noticing, though, that at late times the box-averaged
electron anisotropy switches sign, with 7, 2 T, | (in Figure 9(d),
at Q1 2 9), so the opportunities for whistler growth are fewer.
This behavior is consistent with the conservation of the first and
second adiabatic invariants in the decaying field of the proton
cyclotron waves, leading to an increase in 7, || and a decrease in
1, (as indeed seen in Figure 9(d) at late times). The same
“inverted” anisotropy with 7, | 2 T | is seen in the far down-
stream of our reference shock run (Figure 3(f)), accompanying the
decay of the proton modes. We remark that electron entropy
production is still possible when T, 2 T, |, as long as the
anisotropy is large enough to exceed the threshold of the firehose
instability, which would then provide the mechanism for breaking
adiabatic invariance. We have verified with expanding box
simulations similar to the ones reported in Section 5 (not shown)
that once the system exceeds the firehose threshold, the electron
entropy rapidly increases.

Finally, by measuring directly the energy in whistler waves,
we can also validate the electron energy equation

dite = AW, 1 + dW, | — deye. 43)
Once again, the time integral of the left-hand side matches very
well the time integral of the right-hand side (compare green and
red curves in Figure 9(h)); that is, the change of electron internal
energy can be accounted for by the total work done by the proton
waves and the energy lost to generate electron whistler waves.

In summary, we have demonstrated that efficient electron
entropy production can occur even in the absence of a large-scale
compression. Magnetic and density fluctuations sourced by
anisotropic protons drive electrons to become anisotropic, with
1, > 1. The electron anisotropy is relaxed by the growth of
whistler waves, which break the electron adiabatic invariance and
mediate the production of electron entropy. In the next subsection,
we show that the resulting electron entropy increase is nearly
independent of the proton-to-electron mass ratio.

0.3. Dependence on the Mass Ratio

In this subsection, we explore with periodic boxes initialized
with anisotropic protons how the development of the proton
cyclotron instability can lead to electron irreversible heating.
We vary the mass ratio from 49 up to 1600, as indicated in the
legend of Figure 11(a). Since the fastest growing mode of the
proton cyclotron instability has wave vector ~uw,;/c, we
increase the number of cells in our computational domain as
o+l 1 /M., to include the same number of proton skin depths
for all values of m;/m, (and so, approximately the same
number of proton cyclotron wavelengths).
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Figure 11. Dependence on mass ratio (up to m; /m, = 1600) of various space-
averaged quantities in a 1D periodic box with anisotropic protons (the legend is
in panel (a)). The background field is aligned with the box (in-plane
configuration). We plot (a) energy in magnetic field fluctuations, normalized to
the energy of the initial field; (b) proton temperature anisotropy; (c) energy in
electron-scale field fluctuations; (d) electron temperature anisotropy (solid
lines) and threshold condition for the electron whistler instability (dotted lines
with the same color coding as the solid lines); (e) rate of violation of the
electron adiabatic invariance —d In(T;/B); (f) electron entropy change,
measured from the electron distribution function.
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Figure 12. Validation of the heating model in our reference shock simulation at
Qcit = 25.6. In the top panel, we compare the y-averaged electron entropy
change measured with the electron distribution function as in Equation (26)
(blue solid line) with the predicted change based on Equation (14) (orange
dashed line). The differential terms on the right-hand side of Equation (14) are
calculated from the difference of neighboring cells along the x direction. In the
bottom panel, we compare the y-averaged electron energy change measured
directly from our simulation (blue solid line) with the predicted increase based
on Equation (7) (orange dashed line). For both entropy and internal energy, the
agreement between the model and the simulation results is remarkably good.

Figure 11 compares the runs. Panel (a) shows the time
evolution of the wave magnetic energy, which is dominated by
proton cyclotron modes. Panel (b) shows the evolution of the
proton temperature anisotropy, which reduces strongly at
Q.t 2 4 by pitch-angle scattering off the strong cyclotron
waves. Unsurprisingly, since these two quantities are related to
protons, their evolution is almost identical for different mass
ratios. As long as the mass ratio is sufficiently large to
adequately separate electron and proton scales, the proton
cyclotron instability—whose polarization is resonant with
protons, but nonresonant with electrons—is not affected by
electron physics.

As in the case m;/m, = 49 discussed above, the growth of
the proton cyclotron instability induces an electron temperature
anisotropy with 7, | > 1, (Figure 11(d)), which excites
electron whistler waves (Figure 11((:))8 and facilitates electron
entropy increase (Figure 11(f)) by violating the electron
adiabatic invariance (Figure 11(e)). The dependence of the
peak electron anisotropy on mass ratio for m; /m, < 200 can be
understood from the same argument we have presented in
Section 5: in units of the electron gyration period, the growth of
proton waves (or the compressed field, for Section 5) is faster at
lower m;/m., which leads to an overshoot in electron
anisotropy beyond the threshold of whistler marginal stability.
The overshoot is more pronounced for lower mi; /m,. Due to the

8 We isolate the magnetic energy associated with whistler waves by applying
a high-pass filter for frequency higher than 3.1Q,; and wavelength shorter
than 35¢/wp,.

19

Guo, Sironi, & Narayan

(@)

0.0
0.3

0.2

< 0.1

0.0k
-5

T — Tgp [TLi]

Figure 13. Dependence on mass ratio (up to m;/m, = 200) of shock
simulations at £ = 13.1 Q7! (the legend is in panel (d)). Along the shock
direction of propagation, we plot the y-averaged profiles of (a) number density;
(b) energy in magnetic fluctuations, normalized to the energy of the frozen-in
field; (c) mean proton temperature; (d) proton temperature anisotropy; (e) mean
electron temperature; (f) electron temperature anisotropy; (g) excess of electron
temperature beyond the adiabatic prediction for an isotropic gas; (h) change in
electron entropy. The increase in electron entropy is nearly insensitive to the
mass ratio.

higher electron anisotropy, more free energy is available for the
growth of whistler waves at lower m; /m, (see the trend from
purple to green in Figure 11(c) at Q.f ~ 6). Because of the
higher electron anisotropy and stronger whistler waves, the
electron entropy increases slightly more at lower mass ratios (in
particular, see the purple line in Figure 11(f) for m; /m, = 49).

On the other hand, the electron physics shows no appreciable
dependence on mass ratio for m; /m, 2 400. The peak electron

~
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anisotropy at 5 < Qgf ~ 7 saturates at the threshold of
whistler marginal stability (indicated in Figure 11(c) by the
dotted lines, with the same color coding as the solid lines). As a
consequence, the peak strength of whistler waves is nearly
independent of mass ratio (see Figure 11(b) in the same time
interval), and the resulting entropy increase is the same for all
mass ratios m;/m, 2 400 (Figure 11(f)). Even for
m; /m, = 49, the electron entropy increase at the final time is
only ~30% higher than for m; /m, = 1600.

7. Validation of the Electron Heating Physics in Shocks

We are now in a position to validate our heating model in
full shock simulations. In Sections 5 and 6, we have
demonstrated that our heating model provides an excellent
description of the change in electron energy and entropy for
two physical scenarios: if electrons are subject to a large-scale
compression, as in the shock ramp; and if electrons are driven
to temperature anisotropy by the growth of proton-driven
modes, as observed in the far downstream. Since the two
scenarios correspond to the two locations where the entropy
profile in shocks shows the fastest increase, we expect that our
model will properly capture the electron heating physics in our
reference shock run described in Section 4.

In the top panel of Figure 12, we compare the electron
entropy profile measured directly from the phase space
distribution function as in Equation (26) (solid blue line), with
the entropy change predicted by Equation (14) (dashed orange
line). The differential terms on the right-hand side of
Equation (14) are calculated from the difference of neighboring
cells along the x direction. The agreement between the
measured entropy profile and the predicted one is remarkably
good (with the exception of the far downstream region, where
numerical heating of electrons might be responsible for the
discrepancy; see Appendix B). In particular, the theory
correctly predicts the location and magnitude of the two sites
of fastest entropy growth: in the shock ramp, where electron
irreversible heating is induced by the shock compression of
density and magnetic field (in analogy to the scenario we have
studied in Section 5); and at a distance of ~2.5 r;; behind the
shock, where a large-scale density and field compression
coexists with the growth of proton-driven waves, the latter
contributing to further magnetic field amplification. The
agreement of theory and measurement at this location is then
a combined validation of the two scenarios described in
Sections 5 and 6, confirming that our model holds regardless of
what drives the field amplification (and so, the resulting
electron anisotropy).

In addition, in the bottom panel of Figure 12 we show that
the change in electron energy per particle (blue solid line) is
predicted extremely well by our heating model (orange dashed
line, following Equation (7)).

7.1. Dependence on the Mass Ratio

In the periodic box runs of Sections 5 and 6, we have
extended our study to realistic mass ratios, showing that the
entropy increase at m; /m, = 1600 is only ~30% smaller than
for the choice m; /m, = 49 of our reference shock simulation.
In Figure 13, we investigate the dependence of the electron
physics in our full shock simulations on the mass ratio, from
m;/m, = 25 up to m; /m, = 200 (as indicated in the legend of
panel (d)). We typically employ 32 computational particles per
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cell, with the exception of m;/m, = 200, where we use 64
particles per cell to keep numerical heating under control.
We keep the upstream electron temperature fixed at
ksT.o = 1072 m,.c? so that electrons stay safely nonrelativistic.
This implies that the plasma inflow velocity is slower with
increasing mass ratio, as oc./#./m;.

The proton physics is expected to be the same regardless of
mass ratio, and in fact the profiles of density (panel (a)), proton
temperature (panel (c)), and proton anisotropy (panel (d)) are
nearly the same for all mass ratios. The same holds for the
wave magnetic energy at (X — Xg)/r; S —0.5 (panel (b)),
where proton-driven modes dominate (see Section 4 for
details).

On the other hand, the peak electron anisotropy at the shock
(panel (e)) is systematically lower for higher mass ratios, in
perfect agreement with the trend observed in the periodic box
experiments of Figure 8. Despite the pronounced difference in
peak anisotropy, Figure §(d) showed that the entropy increase
until ¢ ~ Q;-l was only marginally lower at higher m; /m,. This
trend (and the weak mass ratio dependence) is confirmed by the
profiles of electron entropy in the shock ramp shown in
Figure 13(h). Overall, Figure 13(h) confirms the results of our
periodic box experiments, namely, the electron entropy
increase is nearly independent of mass ratio (with the exception
of the lowest mass ratio m;/m, = 25 presented in Figure 13).
Even though our shock simulations only extend up to
m; /m, = 200, the results of our periodic runs in Sections 5
and 6 suggest that the same conclusion should hold up to the
realistic mass ratio.

8. Summary and Discussion

In this work, we have investigated by means of analytical
theory and 2D PIC simulations the electron heating physics in
low-Mach-number perpendicular fast-mode shocks, in applica-
tion to merger shocks in galaxy clusters. While most of the
electron heating is adiabatic—induced by shock compression
of the upstream magnetic field—we direct our attention to the
electron entropy increase, that is, to the production of
irreversible electron heating.

We find that, in analogy to the so-called “magnetic
pumping” mechanism, two basic ingredients are needed for
electron irreversible heating: (1) the presence of a temperature
anisotropy, induced by field amplification coupled to adiabatic
invariance; and (2) a mechanism to break the adiabatic
invariance itself.

We have demonstrated that, in our reference shock with
sonic Mach number M, = 3 and plasma beta 3, = 16, efficient
electron entropy production occurs at two major sites: at the
shock ramp, where density compression coupled to flux
freezing leads to field amplification and a high degree of
electron anisotropy; and farther downstream, where density
compression and long-wavelength magnetic waves induced by
the proton temperature anisotropy are both contributing to
magnetic field growth. Regardless of the origin of field
amplification, electrons are driven to a large degree of
temperature anisotropy, exceeding the threshold of the electron
whistler instability. The resulting growth of electron whistler
waves—whose presence is one of the common denominators of
the two sites mentioned above—causes the violation of the
electron adiabatic invariance and allows for efficient entropy
production.
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Our model is in excellent agreement with the measured
electron entropy increase, which can be quantified directly from
the electron distribution function in our simulations. The
agreement holds for our reference shock simulation, as well as
for controlled periodic box experiments meant to focus on the
two potential mechanisms for field amplification. In particular,
the shock physics in the ramp can be replicated in a periodic box
where the PIC equations are modified to allow for a continuous
large-scale compression, as in Sironi & Narayan (2015) and
Sironi (2015). Also, the physics of anisotropy-driven proton
waves, and the resulting electron irreversible heating, can be
conveniently studied in a periodic box initialized with
anisotropic protons, with a degree of anisotropy inspired by
the shock simulation. The advantage of the periodic domains is
twofold: (1) they allow for a more direct control of the relevant
physics; (2) and, due to less demanding computational
requirements, they permit us to extend our investigation up to
the realistic mass ratio. We have then been able to ascertain that
the entropy increase has only a weak dependence on mass ratio
(less than ~30% decrease as we increase the mass ratio from
m; /m. = 49 up to m;/m, = 1600).

Finally, we remark that in this paper (the first of a series), we
have only focused on one representative set of shock
parameters, fixing the Mach number M, =3 and the plasma
beta 3,0 = 16. For this case, the postshock electron temper-
ature 7, in the far downstream (where the proton anisotropy has
settled to the marginal stability threshold for mirror and proton
cyclotron modes, with 7; L/EH — 1 >~ 0.4) exceeds the adia-
batic expectation T, ,g =~ 2 Ty by ~15%, that is, T, ~ 2.3 Ty, as
a result of entropy production at the shock (here, 7, is the
preshock temperature). The downstream proton temperature
T, =57, is much larger than the adiabatic expectation
T g = 2 1y, so most of the entropy produced by the shock
goes to the protons (a factor of (L—T1; ,q) /(1.—T, .q) ~ 10 more
than to electrons). The resulting postshock temperature ratio for
our reference case is 7,/T ~ 0.45. In a forthcoming work
(X. Guo et al. 2017, in preparation), we will explore the
dependence of our conclusions (and in particular, the efficiency
of electron heating and the resulting downstream electron-to-
proton temperature ratio) on sonic Mach number and plasma
beta, and we will discuss the implications of our results for
observations of galaxy cluster shocks.
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Appendix A
Comparison between In-plane and Out-of-plane
Magnetic Field Geometries

In the 2D shock simulations presented in the main body of the
paper, we have initialized the upstream field in the x—y plane of the
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Figure 14. Comparison at §2.;f = 23.1 between two 2D simulations with in-
plane (orange) or out-of-plane (blue) fields and a 1D simulation (green), as
indicated in the legend of panel (c). Along the shock direction of propagation,
we plot the y-averaged profiles of (a) number density; (b) energy in magnetic
fluctuations, normalized to the energy of the frozen-in field; (¢) mean proton
temperature; (d) proton temperature anisotropy; (e) mean electron temperature;
(f) electron temperature perpendicular (solid) and parallel (dashed) to the
bakground field; (g) change in electron entropy.

simulation (“in-plane” geometry). As we have discussed, this is
instrumental in capturing the dominant wave vector of both proton
and electron waves: the fastest growing mode of the proton
cyclotron instability is aligned with the background field, and
mirror modes are also naturally resolved if the magnetic field
lies in the simulation plane; similarly, the dominant mode of
the electron whistler instability is nearly parallel to the back-
ground field.
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Figure 15. Comparison at .t = 15.8 of three runs with the same physical
parameters (as in our reference shock run) but a different number of particles
per cell, as indicated in the legend of panel (d). Along the shock direction of
propagation, we plot the y-averaged profiles of (a) number density; (b) energy
in magnetic fluctuations, normalized to the energy of the frozen-in field;
(c) mean proton temperature; (d) proton temperature anisotropy; (e) mean
electron temperature; (f) electron temperature anisotropy; (g) excess of electron
temperature beyond the adiabatic prediction for an isotropic gas; (h) change in
electron entropy.

Given that the heating mechanism that we propose relies on
such waves for breaking the electron adiabatic invariance (in
the case of whistler waves) or for amplifying the magnetic field,
thus leading to irreversible electron heating (in the case of
proton modes), we expect that the alternative “out-of-plane”
geometry, in which the field is initialized along the z direction,
will lead to weaker electron heating. This is confirmed by
Figure 14: there, orange lines refer to our reference 2D
simulation with in-plane fields, blue lines to a 2D simulation
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with out-of-plane fields, and green lines to a 1D simulation.
The physical and numerical parameters of the two 2D runs are
the same as in our reference run (of course, apart from the field
orientation). The 1D simulation has the same physical
parameters, but a higher number of particles per cell (5000
per species).

As expected, the 2D out-of-plane case is remarkably similar
to the 1D results (compare blue and green lines). In both cases,
both protons and electrons stay highly anisotropic (panels (d)
and (f)), due to the lack of anisotropy-driven waves (and in
fact, the wave energy in panel (b) does not appreciably exceed
noise levels). This should be contrasted with the in-plane case
(orange lines), where both electron and proton anisotropies get
reduced by the effect of strong self-generated waves. As a
consequence, the entropy increase in the in-plane case (orange
line in panel (g)) is much more pronounced than in the out-of-
plane run (blue), which in turn is quite similar to the 1D result
(glreen).9

Appendix B
Dependence on the Number of Computational
Particles Per Cell

In a two-temperature plasma, with protons hotter than
electrons, numerical noise will tend to heat the electrons, even
in the absence of any physical effect. It is therefore important to
check that our results are converged with respect to the number
of computational particles per cell (Shalaby et al. 2017), whose
value controls the noise level of PIC simulations, and so the
rate of numerical electron heating. In Figure 15, we compare
our results for three choices of the number of particles per cell
(including both species), from 8 (light blue) to 128 (dark blue),
as shown in the legend of panel (d). Figure 15 shows that the
proton physics is largely independent from the number of
particles per cell (panels (a), (c) and (d)). On the other hand,
panel (b) shows that for eight particles per cell the noise level
of field fluctuations is not negligible, as compared to the
physical fields (see the light blue line in panel (b) ahead of the
shock). As a result, electrons are heated due to numerical
artifacts (light blue line in panels (g) and (h)), to a temperature
much larger than in runs with a higher number of particles per
cell. The comparison of the runs with 32 and 128 particles per
cell shows solid evidence of convergence, even in the profiles
of irreversible electron heating (panels (g) and (h)), which are
most sensitive to numerical noise. Still, a small difference
persists between the entropy profiles obtained with 32 and 128
particles per cell (compare the medium blue with the dark blue
line in panel (h)). We argue that the deviation of our model
from the measured entropy profile in the top panel of Figure 12
might be largely explained by numerical effects acting far
behind the shock.
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