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Abstract As is well known, average-cost optimality inequalities imply the existence of
stationary optimal policies for Markov decision processes with average costs per unit time,
and these inequalities hold under broad natural conditions. This paper provides sufficient
conditions for the validity of the average-cost optimality equation for an infinite state problem
with weakly continuous transition probabilities and with possibly unbounded one-step costs
and noncompact action sets. These conditions also imply the convergence of sequences of
discounted relative value functions to average-cost relative value functions and the continuity
of average-cost relative value functions. As shown in this paper, the classic periodic-review
setup-cost inventory control problem with backorders and convex holding/backlog costs
satisfies these conditions. Therefore, the optimality inequality holds in the form of an equality
with a continuous average-cost relative value function for this problem. In addition, the K-
convexity of discounted relative value functions and their convergence to average-cost relative
value functions, when the discount factor increases to 1, imply the K-convexity of average-
cost relative value functions. This implies that average-cost optimal (s, S) policies for the
inventory control problem can be derived from the average-cost optimality equation.

Keywords Dynamic programming - Average-cost optimal equation - Inventory control -
(s, S) policies
1 Introduction

For Markov decision processes (MDPs) with average costs per unit time, the existence of
stationary optimal policies follows from the validity of the average-cost optimality inequal-
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ity (ACOI). Feinberg et al. (2012) established broad sufficient conditions for the validity of
ACOIs for MDPs with weakly continuous transition probabilities and possibly noncompact
action sets and unbounded one-step costs. In particular, these and even stronger conditions
hold for the classic periodic-review inventory control problem with backorders; see Feinberg
(2016) or Feinberg and Lewis (2015). Previously, Schil (1993) established sufficient condi-
tions for the validity of ACOIs for MDPs with compact action sets and possibly unbounded
costs. Cavazos-Cadena (1991) provided an example in which the ACOI holds but the average-
cost optimality equation (ACOE) does not. This paper presents sufficient conditions for the
validity of ACOEs for MDPs with infinite state spaces, weakly continuous transition proba-
bilities and possibly noncompact action sets and unbounded one-step costs and, by showing
that the setup-cost inventory control problems with backorders and convex holding/backlog
costs satisfy these conditions, establishes the validity of the ACOEs for the inventory control
problems.

Sufficient conditions for the validity of ACOEs for discrete-time MDPs with countable and
general state spaces with setwise continuous transition probabilities are described in Sennott
(1998, Section 7.4; 2002) and Hernandez-Lerma and Lasserre (1996, Section 5.5), respec-
tively. Jaskiewicz and Nowak (2006) considered MDPs with Borel state spaces, compact
action sets, weakly continuous transition probabilities and unbounded costs. The geometric
ergodicity of transition probabilities is assumed in Jaskiewicz and Nowak (2006) to ensure
the validity of the ACOEs. Costa and Dufour (2012) studied the validity of ACOEs for MDPs
with Borel state and action spaces, weakly continuous transition probabilities, which are posi-
tive Harris recurrent, and with possibly noncompact action sets and unbounded costs. Neither
the geometric ergodicity nor positive Harris recurrent conditions hold for the periodic-review
inventory control problems.

As is mentioned above, Herndndez-Lerma and Lasserre (1996, Section 5.5) described
sufficient conditions for the validity of ACOEs for MDPs with setwise continuous transition
probabilities. These condition are based on the equicontinuity property of the value functions
for discounted criteria. An attempt, to establish such results for MDPs with weakly continuous
transition probabilities, was undertaken in Montes-de-Oca (1994). However, the formulations
and proofs in Montes-de-Oca (1994), as well as some proofs in Costa and Dufour (2012),
relied on a technically incorrect paper with statements contradicting the counterexample in
Luque-Vasques and Herndndez-Lerma (1995) relevant to Berge’s maximum theorem.

For average-cost periodic-review inventory control problems, Iglehart (1963) and Veinott
and Wagner (1965) proved the optimality of (s, S) policies for problems with setup costs and
backorders, when demand distributions are either discrete or continuous. Beyer and Sethi
(1999) corrected some gaps in these papers. Zheng (1991) proved the optimality of (s, S)
policies for problems with discrete demands by constructing a solution to the ACOE. Chen
and Simchi-Levi (2004a,b) investigated problems with general demand distributions when
prices may depend on current inventory levels. Beyer et al. (2010) studied problems with the
demand depending on a state of a Markov chain. All these references used versions of the
assumption that the backorder cost is higher than the cost of backordered inventory, if the
amount of backordered inventory tends to infinity; see e.g., the assumption in Feinberg and
Lewis (2015, Lemma 6.11). Under this assumption, (s, S) policies optimize expected total
discounted costs for all values of discount factors. However, without this assumption, (s, S)
policies may not be optimal for small values of discount factors, but they are optimal for
large values of discount factors; see Feinberg and Liang (2017a) for details. Feinberg and
Lewis (2015) proved that (s, S) policies are always optimal for average costs per unit time
even if such policies are not optimal for some values of discount factors. However, only the
validity of ACOIs was established in Feinberg and Lewis (2015).
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Section 2 of this paper describes the general MDPs framework. In particular, it states
Assumptions W* and B from Feinberg et al. (2012), which guarantee the validity of the
ACOISs. Section 3 provides the sufficient conditions for the validity of the ACOEs, which
extends the sufficient conditions in Hernandez-Lerma and Lasserre (1996, Theorem 5.5.4)
to weakly continuous transition probabilities. By verifying these conditions, it is shown in
Sect. 4, that the ACOE holds for the classic periodic-review inventory control problems with
backorders, setup costs, and general demands. It is also shown that optimal average-cost
relative value function is the limit inferior of the discounted relative value functions. The
paper also establishes K -convexity and continuity of the average-cost relative value function
and shows that an optimal (s, S) policy can be derived from the ACOE. It also shows that,
if the set of all possible inventory levels is the set of all real numbers R and any nonnegative
amount of inventory can be ordered, then at the appropriately defined level s there are at least
two optimal decisions: do not order and order up to the level S.

As shown in our follow-up paper (Feinberg and Liang 2017b), the equicontinuity property
holds for the inventory model with more general holding/backlog costs, when the convexity
assumption for holding/backlog costs is relaxed to the appropriate quasiconvexity assump-
tion. In addition, there are convergence of discounted relative value functions to average-cost
relative value function and convergence of optimal lower thresholds s, for discounted costs
to the the optimal lower threshold s for average costs per unit time as the discount factor
« tends to 1. Thus, optimal discounted thresholds with large discount factors approximate
optimal average-cost thresholds.

2 Model definition

Consider a discrete-time MDP with a state space X, an action space A, one-step costs c,
and transition probabilities ¢. Assume that X and A are Borel subsets of Polish (complete
separable metric) spaces.

Letc(x,a) : X x A —> R = RU{oo} be the one-step cost and g (B|x, a) be the transition
kernel representing the probability that the next state is in B € B(X), given that the action a
is chosen at the state x.

We recall that a function f : U — R U {oo} defined on a metric space U is called inf-
compact (on U), if for every A € R the level set {u € U : f(u) < A} is compact. A subset of
a metric space is also a metric space with the same metric. For U C U, if the domain of f
is narrowed to U, then this function is called the restriction of f to U.

Definition 2.1 (Feinberg et al. 2013, Definition 1.1; Feinberg 2016, Definition 2.1) A func-
tion f : X x A — R is called K-inf-compact, if for every nonempty compact subset K of X
the restriction f to K x A is an inf-compact function.

Let the one-step cost function ¢ and transition probability ¢ satisfy the following condition.
Assumption W#* (Feinberg et al. 2012, 2016; Feinberg and Lewis 2015, or Feinberg 2016).

(i) cis K-inf-compact and bounded below, and

(ii) the transition probability ¢(-|x,a) is weakly continuous in (x,a) € X x A, that
is, for every bounded continuous function f : X — R, the function f (x,a) =
Jx fq(dylx, a) is continuous on X x A.

The decision process proceeds as follows: at each time epoch + = 0, 1, ..., the current
state of the system, x, is observed. A decision-maker chooses an action a, the cost c¢(x, a) is
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accrued, and the system moves to the next state according to ¢ (-|x, ). Let H; = (X x A)’ x X

be the set of histories fort = 0, 1, .. .. A (randomized) decision rule at periodr = 0, 1, ... is
a regular transition probability 7, : H; — A, thatis, (i) 7;(-|k;) is a probability distribution
on A, where h; = (xo, ag, X1, ...,dr—1, X;), and (ii) for any measurable subset B C A,
the function 7, (B]-) is measurable on H,. A policy 7 is a sequence (7, 71, . ..) of decision

rules. Let IT be the set of all policies. A policy 7 is called non-randomized if each probability
measure 7, (-|h;) is concentrated at one point. A non-randomized policy is called stationary
if all decisions depend only on the current state.

The Tonescu Tulcea theorem implies that an initial state x and a policy 7 define a unique
probability P on the set of all trajectories Ho, = (X x A)* endowed with the product of
o -field defined by Borel o-field of X and A; see Bertsekas and Shreve (1996, pp. 140-141)
or Herndndez-Lerma and Lasserre (1996, p. 178). Let ET be an expectation with respect to
Pr.

For a finite-horizon N = 0, 1, .. ., let us define the expected total discounted costs,

N—1
vﬁ’a =E% Z ac(x, ar), xeX, 2.1)
t=0

where a € [0, 1) is the discount factor and vy ,(x) = 0. When N = oo, Eq. (2.1) defines an

infinite-horizon expected total discounted cost denoted by v} (x). Let vy 1= infrem v] (x),

x € X. A policy m is called optimal for the discount factor « if v} (x) = ve(x) forall x € X.
The average cost per unit time is defined as

1
w” (x) := lim sup NUX/’](X)’ x eX. (2.2)
N—o0

Define the optimal value function w(x) := infrc w”™ (x), x € X. A policy 7 is called
average-cost optimal if w”™ (x) = w(x) forall x € X.

Let
My @ = inf v (x), ug(x) 1= vy (x) —my,
xeX (2 3)
w : = liminf(1 — a)my, w :=limsup(l —a)my ’
atl atl

The function u, is called the discounted relative value function. Assume that the following
assumption holds in addition to Assumption W,

Assumption B

(1) w* :=infycx w(x) < 00, and (ii) sup uy(x) < 00, x € X.
ael0,1)

As follows from Schil (1993, Lemma 1.2(a)), Assumption B(i) implies that m, < oo
for all @ € [0, 1). Thus, all the quantities in (2.3) are defined. According to Feinberg et
al. (2012, Theorem 4), if Assumptions W* and B hold, then w = w. In addition, for each
sequence {& }p=1,2,... such thate, 1 1 asn — oo,

lim (1 —a,)mgy, =w = w. 24
n—o0

Define the following function on X for the sequence {&;, 1 1},=12,... :

i(x) := lim infx Ug, (¥). (2.5)

n—00,y—
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In words, i (x) is the largest number such that it(x) < liminf,_, U, () for all sequences
{yn — x}. Since uy(x) is nonnegative by definition, then #(x) is also nonnegative. The
function u, defined in (2.5) for a sequence {«;,, 1 1},=1,2,... of nonnegative discount factors,
is called an average-cost relative value function.

3 Average cost optimality equation

If Assumptions W* and B hold, then, according to Feinberg et al. (2012, Corollary 2), there
exists a stationary policy ¢ satisfying

w +u(x) ZC(x,cb(X))+/;§ﬁ(y)q(dylx,¢(X)), x € X, (3.1

with i defined in (2.5) for an arbitrary sequence {&, 1 1},=12,..., and

wd’(x) =w = li?}(l — Ve (x) =w = w*, x e X. 3.2)
o

These equalities imply that the stationary policy ¢ is average-cost optimal and w? (x) does
not depend on x.

Inequality (3.1) is known as the ACOIL. We remark that a weaker form of the ACOI with
w substituted with w is also described in Feinberg et al. (2012). If Assumptions W* and B
hold, let us define w := w; see (3.2) for other equalities for w.

Recall the following definition.

Definition 3.1 (Herndndez-Lerma and Lasserre 1996, Remark 5.5.2) A family H of real-
valued functions on a metric space X is called equicontinuous at the point x € X if for each
€ > 0 there exists an open set G containing x such that

|h(y) —h(x)| <e forally € G and forall h € H.

The family H is called equicontinuous (on X) if it is equicontinuous at all x € X.

Consider the following equicontinuity condition (EC) on the discounted relative value
functions.

Assumption EC There exists a sequence {&, 1 1},=12,... of nonnegative discount factors
such that

(i) the family of functions {uq, },=1,2,... is equicontinuous, and
(i) there exists a nonnegative measurable function U (x), x € X, such that U(x) > uq, (x),
n=1,2,...,and [ U(y)q(dy|x,a) < ooforallx € Xanda € A.

The following theorem states that Assumption EC implies that there exist a stationary
policy ¢ and a function #(-) satisfying the ACOE. This theorem is similar to Theorem 5.5.4
in Herndandez-Lerma and Lasserre (1996), where MDPs with setwise continuous transition
probabilities are considered.

Theorem 3.2 Let Assumptions W* and B hold. Consider a sequence {ot, 1 1},=12.... of

nonnegative discount factors. If Assumption EC is satisfied for the sequence {a,}n=12,..,

then the following statements hold.

(i) There exists a subsequence {oy, }k=12,... of {Qu}n=1,2,... Such that {”ank (x)} con-
verges pointwise to i(x), x € X, where u(x) is defined in (2.5) for the subsequence
{0t Yk=1,2,..., and the convergence is uniform on each compact subset of X. In addition,
the function u(x) is continuous.
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(ii) There exists a stationary policy ¢ satisfying the ACOE with the nonnegative function i
defined for the sequence {ay,, }k=1,2,... mentioned in statement (i), that is, for all x € X,
w0 =cCe, 900+ [ gy, o) = vmin [c(x,a>+ / ﬁ(y)q(dmx,a)} ,

X X
(3.3)

and, since the left equation in (3.3) implies inequality (3.1), every stationary policy
satisfying (3.3) is average-cost optimal.

To prove Theorem 3.2, we first state several auxiliary facts.

Lemma 3.3 Consider a family of nonnegative real-valued functions { fy}n=1,2,... on a metric
space X. If the family of functions { fu }n=1.2,... is equicontinuous on X and sup,, f,,(x) < 00
for each x € X, then

liminf f,(x) = f(x) = liminf f,(y), x € X. (3.4
n—00 n—00,y—>x

Proof Fix an arbitrary x € X. We first prove that there exists a subsequence { fj, };=1,2,... of
{fn}n=1.2.... such that
lim f; (x) = f(x). (3.5)
[— 00
In view of the definition of the function f (x) in (3.4), there exist a subsequence { f;;, }k=12,...
of { fu}n=12... and a sequence {yx}x=1.2... C X such that ny — oo, yy — x ask — oo and

Jim fo () = (). (3.6)

Since the family of functions { f,;, }x=1,2,... is equicontinuous on X and sup; f;, (x) < oo,
then, according to the Ascoli theorem (Hernandez-Lerma and Lasserre 1996, p. 96), there
exist a subsequence { f;, }i=1,2,... of { fu; }k=1,2,... and a continuous function f* such that

lim f;(2) = f*(2)., zeX. 3.7)
[—o0
Let y; := y,, [ = 1,2, ... . Then (3.6) implies
lim fi () = f (). (3.8)
[— 00

Let us fix an arbitrary € > 0. Then equality (3.7) implies that there exists a constant
N; > 0 such that for all [ > N;

|F*(x) — fz,(0)] < €/3. 3.9)

Since the family of functions {7 };=1,2,... is equicontinuous, then there exist a constant
N> > 0 and a neighborhood B(x) of x in X such that, for all/ > N, and y; € B(x)

[ f7 () — f7, O < €/3. (3.10)
In view of (3.8), there exists N3 > 0 such that for all / > N3
| fi ) — f )] < €/3. 3.11)

Then (3.9), (3.10), and (3.11) imply that for all / > max{N;, N2, N3}

|F5(0) = O < 175 = fa, O+ 1 5,0 = fi, D1+ 1 f7, G) — F (0]

(3.12)
<€/3+€/3+€/3=¢€.
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Since € > 0 can be chosen arbitrarily, then (3.12) implies that
0 = fo. (3.13)
In view of (3.7) and (3.13),

liminf f,(x) < f(x). (3.14)

The definition of the function f in (3.4) implies that f (x) <liminf,_, « f,(x). Thisinequal-
ity and (3.14) imply (3.4). O

Proof of Theorem 3.2 (i) Since the family of nonnegative functions {uy, }n=1,2,... is equicon-
tinuous and Assumption B(ii) holds, then, according to the Ascoli theorem (Hernandez-Lerma
and Lasserre 1996, p. 96), there exist a subsequence {&,, Jk=1,2,... of {&ty},=1,2,... and a con-
tinuous function *(-) such that

lim ug, (x) =a*(x), x €X, (3.15)
k—00 k

and the convergence is uniform on each compact subset of X.

According to Lemma 3.3, since the family of functions {u, } is equicontinuous and
SUpy Ug,, (x) < oo foreach x € X, then liminf;_ Ua, (x) = u(x) for x € X, where i1 (x)
is defined in (2.5) for the subsequence {oy, }k=1,2,.... Therefore, (3.15) implies that

lim ug, (x) =d*(x)=d(x), xeX, (3.16)
k— 00 k
and the function # is continuous on X.
(i1) Since Assumptions W#* and B hold, then according to Feinberg et al. (2012, Corollary

2), there exists a stationary policy ¢ satisfying the ACOI with & defined in (2.5) for the
sequence {ay, Jk=1,2,..., thatis

W+ u(x) = c(x, ¢(x)) +/Xﬁ(Y)q(dy|x, ¢ (x)). (3.17)

To prove the ACOE, it remains to prove the opposite inequality to (3.17). According to
Feinberg et al. (2012, Theorem 2(iv)), the discounted-cost optimality equation is Vo, (x) =
mingealc(x, a) +a fx Vo, (v)g(ylx, a)], x € X, which, by subtracting m, from both sides,
implies that for alla € A

(I —an)Img, +uq, (x) <c(x,a)+ a/ Ug, (Nq(ylx,a), xeX (3.18)
X

Let k — oo. In view of (2.4) and (3.16), and Lebesgue’s dominated convergence theorem,
(3.18) implies that for alla € A

w+i(x) < c(x,a) +/ u(y)q(dylx,a), xeX,
X
which implies
w + #(x) < min[c(x, a) —I—/ u(y)q(dy|x, a)l, x e X. (3.19)
ach X

Since mingep[c(x, a)+ [x @#(y)g(dylx, a)] < c(x, ¢ (x)+ [x @ (y)q(y|x, ¢ (x)), then (3.17)
and (3.19) imply (3.3). O
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4 Inventory control problem

In the rest of this paper, we study the application of Theorem 3.2 to the discrete-time
periodic-review inventory control problem with backorders and convex costs. For exam-
ples of continuous review inventory control problems, see Bensoussan (2011, Chapter 14),
Chen and Simchi-Levi (2006), Katehakis and Smit (2012), Presman and Sethi (2006), and
Shi et al. (2013).

Let R denote the real line, Z denote the set of all integers, RT := [0, co) and Ny =
{0, 1, 2, ...}. Consider the classic stochastic periodic-review inventory control problem with
fixed ordering cost, backorders, and generally distributed demand. At times t =0, 1, ..., a
decision-maker views the current inventory of a single commodity and makes an ordering
decision. Assuming zero lead times, the products are immediately available to meet demand.
Demand is then realized, the decision-maker views the remaining inventory, and the process
continues. The unmet demand is backlogged and the cost of inventory held or backlogged
(negative inventory) is modeled as a convex function. The demand and the order quantity are
assumed to be non-negative. The state and action spaces are either (i) X = Rand A = R,
or (i) X = Z and A = Ny. The inventory control problem is defined by the following
parameters.

1. K > 0 is a fixed ordering cost;

2. ¢ > 0 1is the per unit ordering cost;

3. h(-)is the holding/backordering cost per period, which is assumed to be a convex function
on X with real values and 4 (x) — o0 as |x| — o0;

4. {D;,t =1, 2,...}isasequence of i.i.d. nonnegative finite random variables representing
the demand at periods 0, 1, ... . We assume that E[2(x — D)] < oo for all x € X and
P(D > 0) > 0, where D is a random variable with the same distribution as D;

5. a € [0, 1) is the discount factor.

Note that E[ D] < oo since, in view of Jensen’s inequality, #(x —E[D]) < E[h(x—D)] < oo.
Without loss of generality, assume that 4 is nonnegative and 4(0) = 0. The assumption
P(D > 0) > 0 avoids the trivial case when there is no demand. If P(D = 0) = 1, then
the optimality inequality does not hold because w(x) depends on x; see Feinberg and Lewis
(2015) for details.

The dynamic of the system is defined by the equation

X[+]ZXI+at_D[+], t:071527"'7

where x; and a; denote the current inventory level and the ordered amount at period f,
respectively. Then the one-step cost is

c(x,a) = Kly=oy+ca+Eh(x+a—D)], (x,a) eXxA, “4.1)

where Ip is an indicator of the event B.

According to Feinberg and Lewis (2015, Corollary 6.1, Proposition 6.3), Assumptions
W# and B hold for the MDP corresponding to the described inventory control problem. This
implies that the optimality equation for the total discounted costs can be written as

Vo (x) = min{m>i{)1[K 4+ Go(x +a)],Go(x)} —cx, xeX| 4.2)
where
Gy (x) :=cx + E[h(x — D)] + aE[vg(x — D)], x e X. 4.3)

@ Springer



Ann Oper Res

According to Feinberg and Liang (2017a, Theorem 5.3), the value function v, (x) is contin-
uous for all @ € [0, 1). The function G (x) is real-valued Feinberg and Liang (Feinberg and
Lewis 2015, Corollary 6.4) and continuous (2017a, Theorem 5.3).

The function ¢ : X x A — R is inf-compact; see Feinberg and Lewis (2015, Corollary
6.1). This property and the validity of Assumption W#* imply that for each « € [0, 1) the
function vy, is inf-compact (Feinberg and Lewis 2007, Proposition 3.1(iv)) and therefore the
set X, := {x € X : vy(x) = my}, where my is defined in (2.3), is nonempty and compact.
The validity of Assumptions W* and B(i) and the inf-compactness of ¢ imply that there is a
compact subset I of X such that X, C K for all @ € [0, 1); Feinberg et al. (2012, Theorem
6). Following Feinberg and Lewis (2015), let us consider a bounded interval [xl’f, xz’}] cX
such that

Xo C[x7,x(;]  foralle €0, 1). 4.4)

Recall the definitions of K -convex functions and (s, S) policies.

Definition 4.1 A function f : X — R is called K-convex where K > 0, if foreach x <y
and for each A € (0, 1),

FU=Mx+2y) (=1 fx)+Af(y) +AK.

Definition 4.2 Let s and S be real numbers such that s < S. A stationary policy ¢ is called
an (s, S) policy if

@) S—x ifx <s;
X =
¢ 0 otherwise.

Suppose f(x) is a continuous K -convex function such that f(x) — oo as |x| — oo. Let

S € argmin{ f(x)}, 4.5)
xeX
s=inf{x <§: f(x) < K+ f(S)}. 4.6)
Define
N . hx)
=14+ lim —=, 4.7)

where the limit exists and «* < 1 since the function /4 is convex; see Feinberg and Liang
(2017a).

Theorem 4.3 (Feinberg and Liang 2017a, Theorem 4.4(i) and Corollary 5.4) If & € (a*, 1)
is a nonnegative discount factor, then an (s, Sy) policy is optimal for the discount factor
o, where the real numbers Sy and sy, satisfy (4.5) and are defined in (4.6) respectively with
f(x) = Gq(x), x € X. The stationary policy ¢ coinciding with the (sy, S) policy at all
x € X, except x = sy, where ¢(s¢) = Sy — Sa, is also optimal for the discount factor «.

As shown in Feinberg and Lewis (2015, Equations (6.20), (6.23)), the optimality inequality
can be written as

w~+u(x) > min{m>ig[K + H(x +a)], Hx)} — cx, 4.8)
where
H(x) :=cx + E[h(x — D)] + E[u(x — D)]. 4.9)

The following statement is Theorem 6.10(iii) from Feinberg and Lewis (2015) with the value
of a* is provided in (4.7); see Theorem 4.3.
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Theorem 4.4 For each nonnegative o € (a*, 1), consider an optimal (s}, S,) policy
for the discounted-cost criterion with the discount factor a. Let {a, 1 1},=12,. be a
sequence of nonnegative numbers with oy > o*. Every sequence {(s&”, S(;”)}nzl,zy_” is
bounded, and each its limit point (s*, S*) defines an average-cost optimal (s*, S*) pol-
icy. Furthermore, this policy satisfies the optimality inequality (4.8), where the function
i is defined in (2.5) for an arbitrary subsequence {ay, Yk=12,.. Of {0tn}n=1,2, . satisfying
(s*, 8% = limk_)oo(sl’xnk, S&nk).

The following theorem states that the conditions and conclusions described in Theorem 3.2
hold for the described inventory control problem. It also states some problem-specific results.

Theorem 4.5 For each sequence {o, 1 1},=12,.. of nonnegative discount factors with
oy > o, the MDP for the described inventory control problem satisfies Assumption EC.
Therefore, the conclusions of Theorem 3.2 hold, that is, there exists a stationary policy ¢
such that for all x € X

w+i(x) = Kligyso) + Hx +¢(x)) —cx = min{flnlg[K + H(x +a)], Hx)} —cx,
(4.10)

where the function H is defined in (4.9). In addition, the functions i and H are K -convex,
continuous and inf-compact, and a stationary optimal policy ¢ satisfying (4.10) can be
selected as an (s*, S*) policy described in Theorem 4.4. It also can be selected as an (s, S)
policy with the real numbers S and s satisfying (4.5) and defined in (4.6) respectively for
fx)=Hx),x eX.

To prove Theorem 4.5, we first state several auxiliary facts. Consider the renewal process
N(t) :=sup{n =0, 1,...|S, <t}

where t € RT, S =0and S, = Z;l':l Djforn =1,2,... . Observe that since P(D >
0) > 0, then E[N(¢)] < oo, t € R™T; see Resnick (1992, Theorem 3.3.1).

Consider an arbitrary « € [0, 1) and a state x,, such that uy (xq) = my. Then, in view of
(4.4), the inequalities x; < x, < xj; take place.

Define Ey(x) := E[h(x — Sn(y+1)] for x € X, y > 0. In view of Feinberg and Lewis
(2015, Lemma 6.2), Ey(x) < oo. According to Feinberg and Lewis (2015, inequalities
(6.11), (6.17)), for x < x*

ug(x) < K +c(xj; — x), (4.11)
and for x > x¢
Ug(x) < K+ (E(x) + cE[D])(1 + E[N(x — x}'i)]), 4.12)

where E(x) := h(x) + Ey_xx (x). Let

U) = K +c(xf —x), if x <xj,
K 4 elg —xf) + (E(x) + CE[DD(1 + E[NGx —xP)]),  ifx > x}.
(4.13)
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Lemma 4.6 The following inequalities hold for a € [0, 1) :

(i) ug(x) <U(x) < ooforall x € X;
(ii) If x4, x € Xand x4 < x, then C (x4, x) := SUP ey, x] U(y) < oo;
(iii) E[U(x — D)] < oo forall x € X.

Proof (i) For x < xj the inequality u,(x) < U(x) holds because of (4.11). For x > xj
denote by f the function added to the constant K in the right-hand side of (4.12),

f(x) == (E(x)+cE[D]) (1 + E[N(x —x})]). (4.14)
For x > x{;, inequality (4.12) and the inequality u}, > x; imply that
g (x) < K + f(x) < K+l — x7) + f(x) = Ux),

where the first inequality is (4.12), for x > u’f] > Xy, and the second inequality follows from
uj; > xj. Thus, ug(x) < U(x) for x > xj;.
Forxj <x <uj,
ue(x) < K + max{c(xj; —x), f(x)}
<SK+cap—x)+ fx) <K +cf —xp)+ f(x) =UW),
where the first inequality follows from (4.11), (4.12), and x] < x4 < x{;, the second
inequality holds because the maximum of two nonnegative numbers is not greater than their
sum, and the last inequality follows from x; < x, < x;. In addition, U (x) < oo because

all the functions in the right-hand side of (4.13) take real values.
(i) For x < x}

Clxe,x) < sup U®y) <K +¢(xf; —xy) < o00. (4.15)

yE[x*,xZ)
Let xj < x4. In this case,

C(xs,x) <C(xf,x) =K +cxjy —xp)+ sup  f(y),

yelxy x]

where the function f is defined in (4.14) and f(y) < (E(y) + cE[D]D)(1 + E[N(x — x})])
for y € [x], x]. To complete the proof of C (x4, x) < oo for x]; < x,, we need to show that
SUPye[xt x] E(y) < oo. This is true because of the following reasons. First, by Feinberg and
Lewis (2015, inequalities (6.5), (6,6), and the inequality between them), forz > Oand y € X

E.(y) = (1 +EIN@)DE[(y —z = D) + h(y). (4.16)
Therefore, for y € [x], x]
E(y) < (1+E[N(y —x)])E[h(x] — D)] + 2h(y)
< (1+E[N@& —x)])E[r(x] — D)] + 2max{h(x}), h(x)} < oo,

where the first inequality follows from the definition of the function E(-), introduced after
(4.12), and from (4.16). The second inequality follows from the convexity of # and from
xf <y < x.Thus, for x] < x4

C(xe,x) <C(x},x) =K+ —x;)+ sup f(y) < oo. (4.17)

yelxy,x]
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Now consider arbitrary x,, x € X such that x, < x. Choose z4, z € X such that z, <
min{x,, x} } and z > max{x, xj }. Then

C(xs4,x) < C(z4,2) < max{ sup {U}, C(x], z)} < 00,

VE[zx,X])

where the first inequality follows from [x,, x] C [z, z], the second inequality follows
from [z, z] = [z«, x]) U [x], z], and the last one follows from (4.15) and from (4.17).
(ii1) Let us define C (x4, x) = 0 for x4, x € Xand x, > x. Forx € X

E[U(r = D)l =E[U = D)ljx pesz)| + E[UG = D) <vpey]

<E[(K +20 = x + DD e pesyy | +E[COT 0 g ze p=a ]
< (K +&(xf; —x)P(D > x —x}) + EE[D] + C(x}, x) < 00,

where the first equality holds because D is a nonnegative random variable, the first inequality
follows from the definitions of the functions U and C, the second inequality holds because an
expectation of an indicator of an event is its probability and because the random variable D
and the constant C(x7, x) are nonnegative, and the last inequality follows from E[D] < oo
and from Lemma 4.6(ii). O

The next lemma establishes the equicontinity on X of a family of discounted relative value
functions.

Lemma 4.7 For each sequence {a, 1 1},=12,... of nonnegative discount factors with o >
o*, the family {uq, }n=1,... is equicontinuous on X.

Proof Before providing the proof, we would like to describe its main idea. It is based on
estimating the difference between the total discounted costs incurred when the process starts
from two states, z; and z, when the distance between z; and z, is small. Let z; < z».
This estimation is trivial when zo < s4, because the function u, (x) is linear on (—00, s, 1.
By using Lemma (4.6)(ii), it is possible to derive such estimation for z; < 54, < 2. For
21 > Sq,, the estimation consists of two parts: (i) the difference between the total holding
costs incurred until the process, that starts at z, reaches the set (—o0, s, |, and this difference
is small because of the Lipshitz continuity of the convex function E[#(x — D)] on a bounded
interval and because the average number of jumps is finite; (ii) the difference between the
total costs incurred after the process, that starts at 71, reaches (—00, ¢, ], and this difference
is small because it is bounded by the differences of the total costs for the two cased zo < sq,
and z; < 5o, < 22 described above. Now we start the proof.

The discounted-cost optimality equations (4.2) and the optimality of (sq,, Sq,) policies,
stated in Theorem 4.3, imply that the function vy, (x) is linear, when x < s, , and

E(San —x)+ Va,, (SDé")a ifx < Saty »

~ ] (4.18)
h(x) + a,Elvg, (x — D)1, ifx > sq,,

Vo, (X) =

where fz(x) := E[h(x — D)] < oo is convex in x on X. According to Theorem 4.4, since
each sequence {(sq,, Sa,)}n=1,2,... is bounded, then there exists a constant b > 0 such that

Sa, € (—b, D), n=12,.... 4.19)
Therefore, there exists a constant 8o > 0 such that —b < 54, — 8o < Sq, + 80 < b,
n=12,...
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Consider z1, 22 > Sq,. Without loss of generality, assume that z; < z». According to

Nx—sap)+1 _ j—17 N —Sg,)+1
(4.18), va, (1) = B[ ol e =850 +an T g, (2 = Snemgyy )] for
X > Sg,. Therefore, forn =1,2, ...
[tg, (21) — g, (22)| = |V, (21) — Vo, (22)]
N(Zlfsan)‘*’l )
=E| > ol (@ —Sj-) —h(z2—S;-1)
j=1
N(z1— oan +1
+ b O () = SNy s 1) — Yy (22 —SN(ZI_WH))]‘ (4.20)

N1 —Sa)+1

<E Z lh(z1 —Sj—1) — h(z2 = Sj_1)|
j=1

+ E[lug, (21 = SN —sqy)+1) — U (22 = SN 1=s0y)+1) 1]+

where the inequality holds because of «;, < 1, the change of the expectations and the absolute
values, and because the sum of absolute values is greater or equal than the absolute value of
the sum.

Consider € > 0. Define a positive number N :=E[N(z; +b)]+1 < oo. Since b > —Sa, s
then E[N(z1 — s¢,)]1 +1 < N. Since the function ﬁ(x) is convex on R, then it is Lipschitz
continuous on [—b, z2]; see Hiriart-Urruty and Lemaréchal (1993, Theorem 3.1.1). Since
Lipschitz continuity implies uniformly continuity, then there exists §; € (0, §p) such that for

- - €
X,y € [—b, zo] satisfying |x — y| < &1, |h(x) —h(y)| < YT Therefore, for 5o, < z1 < 22
satisfying |z1 — 22| < 81

~ ~ € .
lh(zi —Sj) —h(z2 = S))I < e 4= 0,1,....N(z1 — $a,), (4.21)
and
N(z1 =8¢, )+1 N(z1—5q,)+1
Bl Y |i@-sio-h@-sif|<E| Y o
j=1 j=1 (4.22)
(E[N( +1) = <<
= -, — < —.
S 2N 2
where the first inequality follows from (4.21) and the last inequality holds because of E[N(z| —
Sq,) ]+ 1 <N.

Additional arguments are needed to estimate the last term in (4.20). Next we prove that
there exists 6> € (0, §1) such that for x € [sq,, So, + 821,

[, (X) — Uq, (Sa,)| < T n=12,.... (4.23)
Let x > s4. Then formula (4.18) implies
U, (X) = (x) + 0t E[vg, (x — D)] (4.24)

and
E[va,,(x - D)] =P(D >x —s4,)E [E(Sa,, —x+D)D>x-— sa,,]
+ PO < D < x —54,)E v, (x = D)0 < D < x —s4,] (4.25)
+ P(D = 0)vg, (x)
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Formulas (4.24) and (4.25) imply

[1 —ay P(D = 0)]vg, (x) = h(x) + oy (P(D = x — 5,)E [¢(s0, — X + D)|D = x — 54, ]

+P0 <D < x —54,)E [va,(x = D)0 < D < x —54,]) -
(4.26)

Therefore, since ug, (y1) —Ua, (¥2) = Vo, (Y1) — Ve, (y2) forall y1, y2 € X, forx € [sq,, 5S¢, +
Si]Jand forn =1,2,...

[ — oy P(D = 0)]ug, (x) — e, (S, )| = [1 — ota P(D = 0)][vg, (x) = Vay, (S, )|

= [h(x) — h(sq,) + @ P(D > x — 54,)E(5a, — X)
4.27)
+a, P(0 < D < x —5¢,)Elug,(x — D) — g, (Sq, — D)0 < D < x — 5¢,]

< |h(x) = h(sa,)| + E(x — sa,) +2P(0 < D < x — 54,)C(—b, b),

where the nonnegative function C is defined in Lemma 4.6. Let us define L := (1 — P(D =
0))~!, and 0(x,5q,) == P(0O < D < x — sg,). Recall that P(D > 0) > 0, which is
equivalent to P(D = 0) < 1. Since (1 —a, P(D = 0))~! < L, Formula (4.27) implies that
forn=1,2,...

|ty (X) — thay, (5e5,)| < LX) = (50, + E(xX — $0,) +20(x, 50,)C(=b, b)). (4.28)

Since the function % is convex, it is Lipshitz continuous on [—b, b]. Therefore, all three
summands in the right-hand side of the last equations converge uniformly inntoOasx | Sq, .
Therefore, there exists 8, € (0, 61) such that (4.23) holds for all x € [sy,, So, + 62].

Since uq, (x) = ¢(Sq, — X) + g, (Sq,) forall x < sq,, then forall x, y < 54,

[, (x) — uq,(Y)| =clx —y| < n=12,..., (4.29)

Z,
for [x — y| < 4z. Let 83 := min{4, 62}. Then (4.29) holds for [x — y| < &3.
For x < sy, < y satisfying |[x — y| < 83

e, (X) = U, (V)] = e, (X) = Ug, (S, + e, (Sai,) — the, (V)] < % (4.30)

where the first inequality is the triangle property and the second one follows from (4.23)
and (4.29). Therefore, (4.23), (4.29) and (4.30) imply that |ug, (x) — uq, (¥)| < % for all
X,y < Sq, + 03 satisfying |x — y| < 83. Then for |z; — z2| < &3 with probability 1

€
|“an(Zl - SN(Z1—SD,,,)+1) - ua,,(ZZ - SN(zl—so,n)+l)| < 5, n=12 ...,
and therefore
€
Elluq, (21 — SN(zy —sg,)+1) = Ua (22 = SNz s+ D1 < 3 n=12,.... (431

>
Formulae (4.20), (4.22) and (4.31) imply that for z1, z2 > 54, satisfying |z; — 22| < &3
i, (21) — U, (z2)| <€, n=12.... (4.32)
Therefore, (4.29), (4.30) and (4.32) imply that for each x € X
g, (X) —ug,(M| <€, n=12,...,

if |[x — y| < &3, which means that the family {u, },=1,2,... is equicontinuous on X. ]
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Proof of Theorem 4.5 Since fx U(y)g(dylx,a) = E[U(x + a — D)], where the function
U is defined in (4.6), then, in view of Lemma (4.6)(iii), fx U(y)q(dylx,a) < oo for all
x € Xanda € A. According to Lemma 4.7, the family {u, },=1.2,... is equicontinuous on X.
Therefore, Theorem 3.2 implies that there exists a subsequence {o, }i=1,2,... Of {ay}a=12,...
such that there exists a policy ¢ satisfying ACOE (3.3) with & defined in (2.5) for the sequence
{an Jk=1,2,..., the function Ug, cONVerges pointwise to i, and the function # is continuous.

According to Feinberg and Lewis (2015, Theorem 6.10), the (s*, $*) policy satisfies the
ACOI with & defined in (2.5) for the sequence {ay, }k=1,2,.... Since the ACOE holds with i
defined in (2.5) for the sequence {ay, }k=1,2,..., then the (s*, S*) policy satisfies the ACOE.

Next we show that the functions # and H are K-convex and inf-compact. Since the cost
function c is inf-compact, the function # is inf-compact; see Feinberg et al. (2012, Theorem
3 and Corollary 2). According to Feinberg and Lewis (2015, Lemma 6.8), the functions vy,
are K -convex. Therefore the functions u, are K-convex. Since Ug, converges pointwise to
i, then the function # is K-convex. The function H is K-convex because, in view of (4.9),
it is a sum of a linear, convex, and K -convex functions.

Since the (s*, S*) policy satisfies the ACOE (4.10) with & defined in (2.5) for the sequence
{on, Ye=1,2,... then it (x) = K + H(S*) — cx — w, for all x < s. Therefore, for x <s,

H(x) = c¢x + E[h(x — D)] + E[a(x — D)]
=cx +Eh(x — D)+ K+ H(S*) —éx +cE[D] —w (4.33)
=E[h(x — D)]+ K + H(S*) + cE[D] — w.

Since E[h(x — D)] — oo as x — —oo, then (4.33) implies that H(x) tends to oo as
x — —oo. Since h and # are nonnegative, then (4.9) implies that H(x) > cx — 00 as
x — 00. Therefore, H(x) — o0 as |x| — o0.

Since & is continuous and (y — D) converges weakly to (x —D) asy — x, then E[u(x—D)]
is lower semi-continuous. Since E[/A(x — D)] is convex on X and hence continuous, cx is
continuous and E[u(x — D)] is lower semi-continuous, then H is lower semi-continuous.
Therefore, since H (x) tends to oo as |x| — oo, then H is inf-compact.

According to the statements following Feinberg and Lewis (2015, Lemma 6.7), since H
is K-convex, inf-compact, and tends to oo as |x| — oo, then an (s, S) policy, with the real
numbers S and s satisfying (4.5) and defined in (4.6) respectively for f(x) = H(x), x € X,
is optimal.

Now we prove that the function H is continuous. Let us fix an arbitrary y € X. Define the
following function

g(x)={bz(x)+5x, ] ifx <yl
uy+D+ciy+1, ifx>y+1.
Since the functions @i (x) and ¢x are continuous, then the function H(x) is continuous. In
view of (4.10), the function H (x) is bounded on X. Therefore,

Zli_I)T;{E[h(Z — D)1+ E[H(z — D)} = E[h(y — D)1 + E[H (y — D)], (4.34)

where the equality holds since the function E[k(x — D)] is convex on X and hence it is
continuous, and z — D converges weakly to y — D as z — y and the function H (x) is
continuous and bounded.

Observe that H(x) = E[h(x — D)]+E[H (x — D)]+cE[D] forall x < y+ 1. Therefore,
(4.34) implies that lim,_,, H(z) = H(y). Thus the function H (x) is continuous. m]
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Corollary 4.8 Let the state space X = R and the action space A = R*. Forthe (s, S) policy
defined in Theorems 4.5, consider the stationary policy ¢ coinciding with this policy at all
x € X, except x = s, and with ¢(s) = S — 5. Then the stationary policy ¢ also satisfies the
optimality equation (4.10), and therefore the policy ¢ is average-cost optimal.

Proof Since the proof of the optimality of (s, ) policies is based on the fact that K + H (S) <
H(x),ifx <s,and K + H(S) > H(x), if x > s. Since the function H is continuous, we
have that K + H(S) = H (s). Thus both actions are optimal at the state s. ]

Theorem 4.5 states that Assumption EC holds. This implies the validity of the ACOE. The
following theorem shows that a stronger equicontinuity assumption holds for the inventory
control problem studied in this paper.

Theorem 4.9 For each 8 € (a*, 1), the following statements hold:

(a) the family of functions {uy : o € [B, 1)} is equicontinuous;
(b) there exists a nonnegative measurable function U (x) on X such that U (x) > uy(x) for
eacha € [B, 1) and fx U(y)q(dylx,a) < oo forall x € Xanda € A.

Proof Statement (b) follows from Lemma 4.6.
(a) Let y1, y2 € («*, 1) be two discount factors such that y; < y,. Define

s*(y1, y2) == inf{x < S, : G, (x) < K + 14+ G, (S),)}. (4.35)

Observe thats*(y1, y2) is afinite number because G, (S,) < G,,(S,,) < K+1+G,,(Sy,),
where the first holds since G, (Sy,) is the minimum of the function G, and the second one
holds since K +1 > 0 and Gy, (-) < G, ().

Consider an arbitrary y € [y1, 2] and the quantity xZ‘] introduced in (4.4). According to
Theorem 4.3, for the discount factor y there is an optimal (s, S;,) policy. We first prove that

sy € [s*(y1, v2), x71. (4.36)
Since G, (-) = Gy (-) = Gy, (), then for x < s*(y1, y2)
Gy(x) > Gy(x) > K+14Gp,(Sy,) > K+ Gy(S,)), (4.37)

where the second inequality follows from (4.35). Since G, (x) < K + G, (S)) for x €
[sy, Sy 1, then it follows from (4.37) that s*(y1, y2) < 5.

To prove (4.36), it remains to show that s, < xi‘,. In view of (4.2), the optimality of
(sy, Sy) policies implies that v, (x) > G,(S)) —cx > G,(S)) — ¢S, = v,(S,) for
x < §,. Therefore, S, < x,, where x,, := max{x € X : v, (x) = mingex vy, (z)}. Since
sy <8, <xyand x, <xp, thens, < x;;. Hence, (4.36) holds.

Secondly, we prove that for each 8 € (@*, 1) there exists a constant » > 0 such that

Sq € (=b, D), ac[B.]). (4.38)

According to Theorem 4.4, since each sequence {(Sq,, Sa,)}n=1,2,... is bounded, then there
exist nonnegative numbers y* € («*, 1) and b* > 0 such that s, € (—b*, b*) for all
a € [y*, 1). Therefore, (4.36) implies that (4.38) holds with b defined as

b* if B> y*,
max{b*, |s*(B, y )|, Ix/;I} + 1  otherwise.

The remaining proof of the equicontinuity of the family of functions {u, : @ € [B, 1)}
coincides with the proof of Lemma 4.7 with (4.19) replaced with (4.38) and «,, replaced with
ae[B, ). O
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