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Abstract As is well known, average-cost optimality inequalities imply the existence of
stationary optimal policies for Markov decision processes with average costs per unit time,
and these inequalities hold under broad natural conditions. This paper provides sufficient
conditions for the validity of the average-cost optimality equation for an infinite state problem
with weakly continuous transition probabilities and with possibly unbounded one-step costs
and noncompact action sets. These conditions also imply the convergence of sequences of
discounted relative value functions to average-cost relative value functions and the continuity
of average-cost relative value functions. As shown in this paper, the classic periodic-review
setup-cost inventory control problem with backorders and convex holding/backlog costs
satisfies these conditions. Therefore, the optimality inequality holds in the form of an equality
with a continuous average-cost relative value function for this problem. In addition, the K -
convexity of discounted relative value functions and their convergence to average-cost relative
value functions, when the discount factor increases to 1, imply the K -convexity of average-
cost relative value functions. This implies that average-cost optimal (s, S) policies for the
inventory control problem can be derived from the average-cost optimality equation.

Keywords Dynamic programming · Average-cost optimal equation · Inventory control ·
(s, S) policies

1 Introduction

For Markov decision processes (MDPs) with average costs per unit time, the existence of
stationary optimal policies follows from the validity of the average-cost optimality inequal-
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ity (ACOI). Feinberg et al. (2012) established broad sufficient conditions for the validity of
ACOIs for MDPs with weakly continuous transition probabilities and possibly noncompact
action sets and unbounded one-step costs. In particular, these and even stronger conditions
hold for the classic periodic-review inventory control problem with backorders; see Feinberg
(2016) or Feinberg and Lewis (2015). Previously, Schäl (1993) established sufficient condi-
tions for the validity of ACOIs for MDPs with compact action sets and possibly unbounded
costs. Cavazos-Cadena (1991) provided an example inwhich theACOI holds but the average-
cost optimality equation (ACOE) does not. This paper presents sufficient conditions for the
validity of ACOEs for MDPs with infinite state spaces, weakly continuous transition proba-
bilities and possibly noncompact action sets and unbounded one-step costs and, by showing
that the setup-cost inventory control problems with backorders and convex holding/backlog
costs satisfy these conditions, establishes the validity of the ACOEs for the inventory control
problems.

Sufficient conditions for the validity ofACOEs for discrete-timeMDPswith countable and
general state spaces with setwise continuous transition probabilities are described in Sennott
(1998, Section 7.4; 2002) and Hernández-Lerma and Lasserre (1996, Section 5.5), respec-
tively. Jaśkiewicz and Nowak (2006) considered MDPs with Borel state spaces, compact
action sets, weakly continuous transition probabilities and unbounded costs. The geometric
ergodicity of transition probabilities is assumed in Jaśkiewicz and Nowak (2006) to ensure
the validity of the ACOEs. Costa and Dufour (2012) studied the validity of ACOEs forMDPs
with Borel state and action spaces, weakly continuous transition probabilities, which are posi-
tive Harris recurrent, and with possibly noncompact action sets and unbounded costs. Neither
the geometric ergodicity nor positive Harris recurrent conditions hold for the periodic-review
inventory control problems.

As is mentioned above, Hernández-Lerma and Lasserre (1996, Section 5.5) described
sufficient conditions for the validity of ACOEs for MDPs with setwise continuous transition
probabilities. These condition are based on the equicontinuity property of the value functions
for discounted criteria.An attempt, to establish such results forMDPswithweakly continuous
transition probabilities, was undertaken inMontes-de-Oca (1994). However, the formulations
and proofs in Montes-de-Oca (1994), as well as some proofs in Costa and Dufour (2012),
relied on a technically incorrect paper with statements contradicting the counterexample in
Luque-Vasques and Hernández-Lerma (1995) relevant to Berge’s maximum theorem.

For average-cost periodic-review inventory control problems, Iglehart (1963) and Veinott
andWagner (1965) proved the optimality of (s, S) policies for problems with setup costs and
backorders, when demand distributions are either discrete or continuous. Beyer and Sethi
(1999) corrected some gaps in these papers. Zheng (1991) proved the optimality of (s, S)

policies for problems with discrete demands by constructing a solution to the ACOE. Chen
and Simchi-Levi (2004a, b) investigated problems with general demand distributions when
prices may depend on current inventory levels. Beyer et al. (2010) studied problems with the
demand depending on a state of a Markov chain. All these references used versions of the
assumption that the backorder cost is higher than the cost of backordered inventory, if the
amount of backordered inventory tends to infinity; see e.g., the assumption in Feinberg and
Lewis (2015, Lemma 6.11). Under this assumption, (s, S) policies optimize expected total
discounted costs for all values of discount factors. However, without this assumption, (s, S)

policies may not be optimal for small values of discount factors, but they are optimal for
large values of discount factors; see Feinberg and Liang (2017a) for details. Feinberg and
Lewis (2015) proved that (s, S) policies are always optimal for average costs per unit time
even if such policies are not optimal for some values of discount factors. However, only the
validity of ACOIs was established in Feinberg and Lewis (2015).
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Section 2 of this paper describes the general MDPs framework. In particular, it states
Assumptions W* and B from Feinberg et al. (2012), which guarantee the validity of the
ACOIs. Section 3 provides the sufficient conditions for the validity of the ACOEs, which
extends the sufficient conditions in Hernández-Lerma and Lasserre (1996, Theorem 5.5.4)
to weakly continuous transition probabilities. By verifying these conditions, it is shown in
Sect. 4, that the ACOE holds for the classic periodic-review inventory control problems with
backorders, setup costs, and general demands. It is also shown that optimal average-cost
relative value function is the limit inferior of the discounted relative value functions. The
paper also establishes K -convexity and continuity of the average-cost relative value function
and shows that an optimal (s, S) policy can be derived from the ACOE. It also shows that,
if the set of all possible inventory levels is the set of all real numbers R and any nonnegative
amount of inventory can be ordered, then at the appropriately defined level s there are at least
two optimal decisions: do not order and order up to the level S.

As shown in our follow-up paper (Feinberg and Liang 2017b), the equicontinuity property
holds for the inventory model with more general holding/backlog costs, when the convexity
assumption for holding/backlog costs is relaxed to the appropriate quasiconvexity assump-
tion. In addition, there are convergence of discounted relative value functions to average-cost
relative value function and convergence of optimal lower thresholds sα for discounted costs
to the the optimal lower threshold s for average costs per unit time as the discount factor
α tends to 1. Thus, optimal discounted thresholds with large discount factors approximate
optimal average-cost thresholds.

2 Model definition

Consider a discrete-time MDP with a state space X, an action space A, one-step costs c,
and transition probabilities q. Assume that X and A are Borel subsets of Polish (complete
separable metric) spaces.

Let c(x, a) : X×A → R = R∪{∞} be the one-step cost and q(B|x, a) be the transition
kernel representing the probability that the next state is in B ∈ B(X), given that the action a
is chosen at the state x .

We recall that a function f : U → R ∪ {∞} defined on a metric space U is called inf-
compact (on U), if for every λ ∈ R the level set {u ∈ U : f (u) ≤ λ} is compact. A subset of
a metric space is also a metric space with the same metric. For U ⊂ U, if the domain of f
is narrowed to U, then this function is called the restriction of f to U.

Definition 2.1 (Feinberg et al. 2013, Definition 1.1; Feinberg 2016, Definition 2.1) A func-
tion f : X×A → R is calledK-inf-compact, if for every nonempty compact subset K of X
the restriction f to K × A is an inf-compact function.

Let the one-step cost function c and transition probability q satisfy the following condition.

Assumption W* (Feinberg et al. 2012, 2016; Feinberg and Lewis 2015, or Feinberg 2016).

(i) c is K-inf-compact and bounded below, and
(ii) the transition probability q(·|x, a) is weakly continuous in (x, a) ∈ X × A, that

is, for every bounded continuous function f : X → R, the function f̃ (x, a) :=∫
X
f (y)q(dy|x, a) is continuous on X × A.

The decision process proceeds as follows: at each time epoch t = 0, 1, . . . , the current
state of the system, x, is observed. A decision-maker chooses an action a, the cost c(x, a) is
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accrued, and the systemmoves to the next state according to q(·|x, a). Let Ht = (X×A)t ×X

be the set of histories for t = 0, 1, . . .. A (randomized) decision rule at period t = 0, 1, . . . is
a regular transition probability πt : Ht → A, that is, (i) πt (·|ht ) is a probability distribution
on A, where ht = (x0, a0, x1, . . . , at−1, xt ), and (ii) for any measurable subset B ⊂ A,

the function πt (B|·) is measurable on Ht . A policy π is a sequence (π0, π1, . . .) of decision
rules. Let� be the set of all policies. A policy π is called non-randomized if each probability
measure πt (·|ht ) is concentrated at one point. A non-randomized policy is called stationary
if all decisions depend only on the current state.

The Ionescu Tulcea theorem implies that an initial state x and a policy π define a unique
probability Pπ

x on the set of all trajectories H∞ = (X × A)∞ endowed with the product of
σ -field defined by Borel σ -field of X and A; see Bertsekas and Shreve (1996, pp. 140–141)
or Hernández-Lerma and Lasserre (1996, p. 178). Let Eπ

x be an expectation with respect to
Pπ
x .

For a finite-horizon N = 0, 1, . . . , let us define the expected total discounted costs,

vπ
N ,α := E

π
x

N−1∑

t=0

αt c(xt , at ), x ∈ X, (2.1)

where α ∈ [0, 1) is the discount factor and vπ
0,a(x) = 0. When N = ∞, Eq. (2.1) defines an

infinite-horizon expected total discounted cost denoted by vπ
α (x). Let vα := infπ∈� vπ

α (x),
x ∈ X. A policy π is called optimal for the discount factor α if vπ

α (x) = vα(x) for all x ∈ X.

The average cost per unit time is defined as

wπ(x) := lim sup
N→∞

1

N
vπ
N ,1(x), x ∈ X. (2.2)

Define the optimal value function w(x) := infπ∈� wπ(x), x ∈ X. A policy π is called
average-cost optimal if wπ(x) = w(x) for all x ∈ X.

Let

mα : = inf
x∈Xvα(x), uα(x) := vα(x) − mα,

w : = lim inf
α↑1 (1 − α)mα, w̄ := lim sup

α↑1
(1 − α)mα

(2.3)

The function uα is called the discounted relative value function. Assume that the following
assumption holds in addition to Assumption W*.

Assumption B

(i) w∗ := infx∈X w(x) < ∞, and (ii) sup
α∈[0,1)

uα(x) < ∞, x ∈ X.

As follows from Schäl (1993, Lemma 1.2(a)), Assumption B(i) implies that mα < ∞
for all α ∈ [0, 1). Thus, all the quantities in (2.3) are defined. According to Feinberg et
al. (2012, Theorem 4), if Assumptions W* and B hold, then w = w̄. In addition, for each
sequence {αn}n=1,2,... such that αn ↑ 1 as n → ∞,

lim
n→∞(1 − αn)mαn = w = w̄. (2.4)

Define the following function on X for the sequence {αn ↑ 1}n=1,2,... :
ũ(x) := lim inf

n→∞,y→x
uαn (y). (2.5)
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In words, ũ(x) is the largest number such that ũ(x) ≤ lim infn→∞ uαn (yn) for all sequences
{yn → x}. Since uα(x) is nonnegative by definition, then ũ(x) is also nonnegative. The
function ũ, defined in (2.5) for a sequence {αn ↑ 1}n=1,2,... of nonnegative discount factors,
is called an average-cost relative value function.

3 Average cost optimality equation

If AssumptionsW* and B hold, then, according to Feinberg et al. (2012, Corollary 2), there
exists a stationary policy φ satisfying

w + ũ(x) ≥ c(x, φ(x)) +
∫

X

ũ(y)q(dy|x, φ(x)), x ∈ X, (3.1)

with ũ defined in (2.5) for an arbitrary sequence {αn ↑ 1}n=1,2,..., and

wφ(x) = w = lim
α↑1(1 − α)vα(x) = w̄ = w∗, x ∈ X. (3.2)

These equalities imply that the stationary policy φ is average-cost optimal and wφ(x) does
not depend on x .

Inequality (3.1) is known as the ACOI. We remark that a weaker form of the ACOI with
w substituted with w̄ is also described in Feinberg et al. (2012). If Assumptions W* and B
hold, let us define w := w; see (3.2) for other equalities for w.

Recall the following definition.

Definition 3.1 (Hernández-Lerma and Lasserre 1996, Remark 5.5.2) A family H of real-
valued functions on a metric space X is called equicontinuous at the point x ∈ X if for each
ε > 0 there exists an open set G containing x such that

|h(y) − h(x)| < ε for all y ∈ G and for all h ∈ H.

The family H is called equicontinuous (on X ) if it is equicontinuous at all x ∈ X.

Consider the following equicontinuity condition (EC) on the discounted relative value
functions.

Assumption EC There exists a sequence {αn ↑ 1}n=1,2,... of nonnegative discount factors
such that

(i) the family of functions {uαn }n=1,2,... is equicontinuous, and
(ii) there exists a nonnegative measurable functionU (x), x ∈ X, such thatU (x) ≥ uαn (x),

n = 1, 2, . . . , and
∫
X
U (y)q(dy|x, a) < ∞ for all x ∈ X and a ∈ A.

The following theorem states that Assumption EC implies that there exist a stationary
policy φ and a function ũ(·) satisfying the ACOE. This theorem is similar to Theorem 5.5.4
in Hernández-Lerma and Lasserre (1996), where MDPs with setwise continuous transition
probabilities are considered.

Theorem 3.2 Let Assumptions W* and B hold. Consider a sequence {αn ↑ 1}n=1,2,... of
nonnegative discount factors. If Assumption EC is satisfied for the sequence {αn}n=1,2,...,

then the following statements hold.

(i) There exists a subsequence {αnk }k=1,2,... of {αn}n=1,2,... such that {uαnk
(x)} con-

verges pointwise to ũ(x), x ∈ X, where ũ(x) is defined in (2.5) for the subsequence
{αnk }k=1,2,..., and the convergence is uniform on each compact subset of X. In addition,
the function ũ(x) is continuous.
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(ii) There exists a stationary policy φ satisfying the ACOE with the nonnegative function ũ
defined for the sequence {αnk }k=1,2,... mentioned in statement (i), that is, for all x ∈ X,

w+ũ(x)=c(x, φ(x))+
∫

X

ũ(y)q(dy|x, φ(x))= vmin
a∈A

[

c(x, a)+
∫

X

ũ(y)q(dy|x, a)

]

,

(3.3)

and, since the left equation in (3.3) implies inequality (3.1), every stationary policy
satisfying (3.3) is average-cost optimal.

To prove Theorem 3.2, we first state several auxiliary facts.

Lemma 3.3 Consider a family of nonnegative real-valued functions { fn}n=1,2,... on a metric
space X. If the family of functions { fn}n=1,2,... is equicontinuous on X and supn fn(x) < ∞
for each x ∈ X, then

lim inf
n→∞ fn(x) = f̃ (x) := lim inf

n→∞,y→x
fn(y), x ∈ X. (3.4)

Proof Fix an arbitrary x ∈ X. We first prove that there exists a subsequence { fñl }l=1,2,... of
{ fn}n=1,2,... such that

lim
l→∞ fñl (x) = f̃ (x). (3.5)

In view of the definition of the function f̃ (x) in (3.4), there exist a subsequence { fnk }k=1,2,...

of { fn}n=1,2,... and a sequence {yk}k=1,2,... ⊂ X such that nk → ∞, yk → x as k → ∞ and

lim
k→∞ fnk (yk) = f̃ (x). (3.6)

Since the family of functions { fnk }k=1,2,... is equicontinuous on X and supk fnk (x) < ∞,

then, according to the Ascoli theorem (Hernández-Lerma and Lasserre 1996, p. 96), there
exist a subsequence { fñl }l=1,2,... of { fnk }k=1,2,... and a continuous function f̃ ∗ such that

lim
l→∞ fñl (z) = f̃ ∗(z), z ∈ X. (3.7)

Let ỹl := ykl , l = 1, 2, . . . . Then (3.6) implies

lim
l→∞ fñl (ỹl) = f̃ (x). (3.8)

Let us fix an arbitrary ε > 0. Then equality (3.7) implies that there exists a constant
N1 > 0 such that for all l ≥ N1

| f̃ ∗(x) − fñl (x)| < ε/3. (3.9)

Since the family of functions { fñl }l=1,2,... is equicontinuous, then there exist a constant
N2 > 0 and a neighborhood B(x) of x in X such that, for all l ≥ N2 and ỹl ∈ B(x)

| fñl (x) − fñl (ỹl)| < ε/3. (3.10)

In view of (3.8), there exists N3 > 0 such that for all l ≥ N3

| fñl (ỹl) − f̃ (x)| < ε/3. (3.11)

Then (3.9), (3.10), and (3.11) imply that for all l ≥ max{N1, N2, N3}
| f̃ ∗(x) − f̃ (x)| ≤ | f̃ ∗(x) − fñl (x)| + | fñl (x) − fñl (ỹl)| + | fñl (ỹl) − f̃ (x)|

< ε/3 + ε/3 + ε/3 = ε.
(3.12)
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Since ε > 0 can be chosen arbitrarily, then (3.12) implies that

f̃ ∗(x) = f̃ (x). (3.13)

In view of (3.7) and (3.13),

lim inf
n→∞ fn(x) ≤ f̃ (x). (3.14)

The definition of the function f̃ in (3.4) implies that f̃ (x) ≤ lim infn→∞ fn(x).This inequal-
ity and (3.14) imply (3.4). ��
Proof of Theorem 3.2 (i) Since the family of nonnegative functions {uαn }n=1,2,... is equicon-
tinuous andAssumptionB(ii) holds, then, according to theAscoli theorem (Hernández-Lerma
and Lasserre 1996, p. 96), there exist a subsequence {αnk }k=1,2,... of {αn}n=1,2,... and a con-
tinuous function ũ∗(·) such that

lim
k→∞ uαnk

(x) = ũ∗(x), x ∈ X, (3.15)

and the convergence is uniform on each compact subset of X.

According to Lemma 3.3, since the family of functions {uαnk
} is equicontinuous and

supk uαnk
(x) < ∞ for each x ∈ X, then lim infk→∞ uαnk

(x) = ũ(x) for x ∈ X, where ũ(x)
is defined in (2.5) for the subsequence {αnk }k=1,2,.... Therefore, (3.15) implies that

lim
k→∞ uαnk

(x) = ũ∗(x) = ũ(x), x ∈ X, (3.16)

and the function ũ is continuous on X.

(ii) Since AssumptionsW* and B hold, then according to Feinberg et al. (2012, Corollary
2), there exists a stationary policy φ satisfying the ACOI with ũ defined in (2.5) for the
sequence {αnk }k=1,2,..., that is

w + ũ(x) ≥ c(x, φ(x)) +
∫

X

ũ(y)q(dy|x, φ(x)). (3.17)

To prove the ACOE, it remains to prove the opposite inequality to (3.17). According to
Feinberg et al. (2012, Theorem 2(iv)), the discounted-cost optimality equation is vαnk

(x) =
mina∈A[c(x, a)+α

∫
X

vαnk
(y)q(y|x, a)], x ∈ X,which, by subtractingmα from both sides,

implies that for all a ∈ A

(1 − αnk )mαnk
+ uαnk

(x) ≤ c(x, a) + α

∫

X

uαnk
(y)q(y|x, a), x ∈ X. (3.18)

Let k → ∞. In view of (2.4) and (3.16), and Lebesgue’s dominated convergence theorem,
(3.18) implies that for all a ∈ A

w + ũ(x) ≤ c(x, a) +
∫

X

ũ(y)q(dy|x, a), x ∈ X,

which implies

w + ũ(x) ≤ min
a∈A[c(x, a) +

∫

X

ũ(y)q(dy|x, a)], x ∈ X. (3.19)

Sincemina∈A[c(x, a)+∫
X
ũ(y)q(dy|x, a)] ≤ c(x, φ(x))+∫

X
ũ(y)q(y|x, φ(x)), then (3.17)

and (3.19) imply (3.3). ��
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4 Inventory control problem

In the rest of this paper, we study the application of Theorem 3.2 to the discrete-time
periodic-review inventory control problem with backorders and convex costs. For exam-
ples of continuous review inventory control problems, see Bensoussan (2011, Chapter 14),
Chen and Simchi-Levi (2006), Katehakis and Smit (2012), Presman and Sethi (2006), and
Shi et al. (2013).

Let R denote the real line, Z denote the set of all integers, R+ := [0,∞) and N0 =
{0, 1, 2, . . .}. Consider the classic stochastic periodic-review inventory control problem with
fixed ordering cost, backorders, and generally distributed demand. At times t = 0, 1, . . . , a
decision-maker views the current inventory of a single commodity and makes an ordering
decision. Assuming zero lead times, the products are immediately available to meet demand.
Demand is then realized, the decision-maker views the remaining inventory, and the process
continues. The unmet demand is backlogged and the cost of inventory held or backlogged
(negative inventory) is modeled as a convex function. The demand and the order quantity are
assumed to be non-negative. The state and action spaces are either (i) X = R and A = R

+,

or (ii) X = Z and A = N0. The inventory control problem is defined by the following
parameters.

1. K ≥ 0 is a fixed ordering cost;
2. c̄ > 0 is the per unit ordering cost;
3. h(·) is the holding/backordering cost per period, which is assumed to be a convex function

on X with real values and h(x) → ∞ as |x | → ∞;
4. {Dt , t = 1, 2, . . . } is a sequence of i.i.d. nonnegative finite randomvariables representing

the demand at periods 0, 1, . . . . We assume that E[h(x − D)] < ∞ for all x ∈ X and
P(D > 0) > 0, where D is a random variable with the same distribution as D1;

5. α ∈ [0, 1) is the discount factor.
Note thatE[D] < ∞ since, in view of Jensen’s inequality, h(x−E[D]) ≤ E[h(x−D)] < ∞.

Without loss of generality, assume that h is nonnegative and h(0) = 0. The assumption
P(D > 0) > 0 avoids the trivial case when there is no demand. If P(D = 0) = 1, then
the optimality inequality does not hold because w(x) depends on x; see Feinberg and Lewis
(2015) for details.

The dynamic of the system is defined by the equation

xt+1 = xt + at − Dt+1, t = 0, 1, 2, . . . ,

where xt and at denote the current inventory level and the ordered amount at period t,
respectively. Then the one-step cost is

c(x, a) = K I{a>0} + c̄a + E[h(x + a − D)], (x, a) ∈ X × A, (4.1)

where IB is an indicator of the event B.

According to Feinberg and Lewis (2015, Corollary 6.1, Proposition 6.3), Assumptions
W* and B hold for the MDP corresponding to the described inventory control problem. This
implies that the optimality equation for the total discounted costs can be written as

vα(x) = min{min
a≥0

[K + Gα(x + a)],Gα(x)} − c̄x, x ∈ X, (4.2)

where
Gα(x) := c̄x + E[h(x − D)] + αE[vα(x − D)], x ∈ X. (4.3)
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According to Feinberg and Liang (2017a, Theorem 5.3), the value function vα(x) is contin-
uous for all α ∈ [0, 1). The function Gα(x) is real-valued Feinberg and Liang (Feinberg and
Lewis 2015, Corollary 6.4) and continuous (2017a, Theorem 5.3).

The function c : X × A → R is inf-compact; see Feinberg and Lewis (2015, Corollary
6.1). This property and the validity of Assumption W* imply that for each α ∈ [0, 1) the
function vα is inf-compact (Feinberg and Lewis 2007, Proposition 3.1(iv)) and therefore the
set Xα := {x ∈ X : vα(x) = mα}, where mα is defined in (2.3), is nonempty and compact.
The validity of AssumptionsW* and B(i) and the inf-compactness of c imply that there is a
compact subset K of X such that Xα ⊆ K for all α ∈ [0, 1); Feinberg et al. (2012, Theorem
6). Following Feinberg and Lewis (2015), let us consider a bounded interval [x∗

L , x∗
U ] ⊆ X

such that
Xα ⊆ [x∗

L , x∗
U ] for all α ∈ [0, 1). (4.4)

Recall the definitions of K -convex functions and (s, S) policies.

Definition 4.1 A function f : X → R is called K -convex where K ≥ 0, if for each x ≤ y
and for each λ ∈ (0, 1),

f ((1 − λ)x + λy) ≤ (1 − λ) f (x) + λ f (y) + λK .

Definition 4.2 Let s and S be real numbers such that s ≤ S. A stationary policy ϕ is called
an (s, S) policy if

ϕ(x) =
{
S − x if x < s;
0 otherwise.

Suppose f (x) is a continuous K -convex function such that f (x) → ∞ as |x | → ∞. Let

S ∈ argmin
x∈X

{ f (x)}, (4.5)

s = inf{x ≤ S : f (x) ≤ K + f (S)}. (4.6)

Define

α∗ := 1 + lim
x→−∞

h(x)

c̄x
, (4.7)

where the limit exists and α∗ < 1 since the function h is convex; see Feinberg and Liang
(2017a).

Theorem 4.3 (Feinberg and Liang 2017a, Theorem 4.4(i) and Corollary 5.4) If α ∈ (α∗, 1)
is a nonnegative discount factor, then an (sα, Sα) policy is optimal for the discount factor
α, where the real numbers Sα and sα satisfy (4.5) and are defined in (4.6) respectively with
f (x) = Gα(x), x ∈ X. The stationary policy ϕ coinciding with the (sα, Sα) policy at all
x ∈ X, except x = sα, where ϕ(sα) = Sα − sα, is also optimal for the discount factor α.

As shown in Feinberg andLewis (2015, Equations (6.20), (6.23)), the optimality inequality
can be written as

w + ũ(x) ≥ min{min
a≥0

[K + H(x + a)], H(x)} − c̄x, (4.8)

where

H(x) := c̄x + E[h(x − D)] + E[ũ(x − D)]. (4.9)

The following statement is Theorem 6.10(iii) from Feinberg and Lewis (2015) with the value
of α∗ is provided in (4.7); see Theorem 4.3.
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Theorem 4.4 For each nonnegative α ∈ (α∗, 1), consider an optimal (s′
α, S′

α) policy
for the discounted-cost criterion with the discount factor α. Let {αn ↑ 1}n=1,2,... be a
sequence of nonnegative numbers with α1 > α∗. Every sequence {(s′

αn
, S′

αn
)}n=1,2,... is

bounded, and each its limit point (s∗, S∗) defines an average-cost optimal (s∗, S∗) pol-
icy. Furthermore, this policy satisfies the optimality inequality (4.8), where the function
ũ is defined in (2.5) for an arbitrary subsequence {αnk }k=1,2,... of {αn}n=1,2,... satisfying
(s∗, S∗) = limk→∞(s′

αnk
, S′

αnk
).

The following theorem states that the conditions and conclusions described in Theorem3.2
hold for the described inventory control problem. It also states some problem-specific results.

Theorem 4.5 For each sequence {αn ↑ 1}n=1,2,... of nonnegative discount factors with
α1 > α∗, the MDP for the described inventory control problem satisfies Assumption EC.
Therefore, the conclusions of Theorem 3.2 hold, that is, there exists a stationary policy ϕ

such that for all x ∈ X

w + ũ(x) = K I{ϕ(x)>0} + H(x + ϕ(x)) − c̄x = min{min
a≥0

[K + H(x + a)], H(x)} − c̄x,

(4.10)

where the function H is defined in (4.9). In addition, the functions ũ and H are K -convex,
continuous and inf-compact, and a stationary optimal policy ϕ satisfying (4.10) can be
selected as an (s∗, S∗) policy described in Theorem 4.4. It also can be selected as an (s, S)

policy with the real numbers S and s satisfying (4.5) and defined in (4.6) respectively for
f (x) = H(x), x ∈ X.

To prove Theorem 4.5, we first state several auxiliary facts. Consider the renewal process

N(t) := sup{n = 0, 1, . . . |Sn ≤ t},
where t ∈ R

+, S0 = 0 and Sn = ∑n
j=1 Dj for n = 1, 2, . . . . Observe that since P(D >

0) > 0, then E[N(t)] < ∞, t ∈ R
+; see Resnick (1992, Theorem 3.3.1).

Consider an arbitrary α ∈ [0, 1) and a state xα such that uα(xα) = mα. Then, in view of
(4.4), the inequalities x∗

L ≤ xα ≤ x∗
U take place.

Define Ey(x) := E[h(x − SN(y)+1)] for x ∈ X, y ≥ 0. In view of Feinberg and Lewis
(2015, Lemma 6.2), Ey(x) < ∞. According to Feinberg and Lewis (2015, inequalities
(6.11), (6.17)), for x < xα

uα(x) ≤ K + c̄(x∗
U − x), (4.11)

and for x ≥ xα

uα(x) ≤ K + (E(x) + c̄E[D])(1 + E[N(x − x∗
L)]), (4.12)

where E(x) := h(x) + Ex−x∗
L
(x). Let

U (x) :=
{
K + c̄(x∗

U − x), if x < x∗
L ,

K + c̄(x∗
U − x∗

L) + (E(x) + c̄E[D])(1 + E[N(x − x∗
L)]), if x ≥ x∗

L .

(4.13)
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Lemma 4.6 The following inequalities hold for α ∈ [0, 1) :
(i) uα(x) ≤ U (x) < ∞ for all x ∈ X;
(ii) If x∗, x ∈ X and x∗ ≤ x, then C(x∗, x) := supy∈[x∗,x] U (y) < ∞;
(iii) E[U (x − D)] < ∞ for all x ∈ X.

Proof (i) For x < x∗
L the inequality uα(x) ≤ U (x) holds because of (4.11). For x ≥ x∗

L
denote by f the function added to the constant K in the right-hand side of (4.12),

f (x) := (E(x) + c̄E[D]) (
1 + E

[
N(x − x∗

L)
])

. (4.14)

For x ≥ x∗
U , inequality (4.12) and the inequality u∗

U ≥ x∗
L imply that

uα(x) ≤ K + f (x) ≤ K + c̄(x∗
U − x∗

L) + f (x) = U (x),

where the first inequality is (4.12), for x ≥ u∗
U ≥ xα, and the second inequality follows from

u∗
U ≥ x∗

L . Thus, uα(x) ≤ U (x) for x ≥ x∗
U .

For x∗
L ≤ x < u∗

U

uα(x) ≤ K + max{c̄(x∗
U − x), f (x)}

≤ K + c̄(x∗
U − x) + f (x) ≤ K + c̄(x∗

U − x∗
L) + f (x) = U (x),

where the first inequality follows from (4.11), (4.12), and x∗
L ≤ xα ≤ x∗

U , the second
inequality holds because the maximum of two nonnegative numbers is not greater than their
sum, and the last inequality follows from x∗

L ≤ xα ≤ x∗
U . In addition, U (x) < ∞ because

all the functions in the right-hand side of (4.13) take real values.
(ii) For x < x∗

L

C(x∗, x) ≤ sup
y∈[x∗,x∗

L )

U (y) ≤ K + c̄(x∗
U − x∗) < ∞. (4.15)

Let x∗
L ≤ x∗. In this case,

C(x∗, x) ≤ C(x∗
L , x) = K + c̄(x∗

U − x∗
L) + sup

y∈[x∗
L ,x]

f (y),

where the function f is defined in (4.14) and f (y) ≤ (E(y) + c̄E[D])(1 + E[N(x − x∗
L)])

for y ∈ [x∗
L , x]. To complete the proof of C(x∗, x) < ∞ for x∗

L ≤ x∗, we need to show that
supy∈[x∗

L ,x] E(y) < ∞. This is true because of the following reasons. First, by Feinberg and
Lewis (2015, inequalities (6.5), (6,6), and the inequality between them), for z ≥ 0 and y ∈ X

Ez(y) ≤ (1 + E[N(z)])E[h(y − z − D)] + h(y). (4.16)

Therefore, for y ∈ [x∗
L , x]

E(y) ≤ (
1 + E

[
N(y − x∗

L)
])
E

[
h(x∗

L − D)
] + 2h(y)

≤ (
1 + E

[
N(x − x∗

L)
])
E

[
h(x∗

L − D)
] + 2max{h(x∗

L), h(x)} < ∞,

where the first inequality follows from the definition of the function E(·), introduced after
(4.12), and from (4.16). The second inequality follows from the convexity of h and from
x∗
L ≤ y ≤ x . Thus, for x∗

L ≤ x∗

C(x∗, x) ≤ C(x∗
L , x) = K + c̄(x∗

U − x∗
L) + sup

y∈[x∗
L ,x]

f (y) < ∞. (4.17)
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Now consider arbitrary x∗, x ∈ X such that x∗ ≤ x . Choose z∗, z ∈ X such that z∗ <

min{x∗, x∗
L } and z > max{x, x∗

L}. Then

C(x∗, x) ≤ C(z∗, z) ≤ max

{

sup
y∈[z∗,x∗

L )

{U (y)},C(x∗
L , z)

}

< ∞,

where the first inequality follows from [x∗, x] ⊂ [z∗, z], the second inequality follows
from [z∗, z] = [z∗, x∗

L) ∪ [x∗
L , z], and the last one follows from (4.15) and from (4.17).

(iii) Let us define C(x∗, x) = 0 for x∗, x ∈ X and x∗ > x . For x ∈ X

E [U (x − D)] = E

[
U (x − D)I{x−D<x∗

L }
]

+ E

[
U (x − D)I{x∗

L≤x−D≤x}
]

≤ E

[
(K + c̄(x∗

U − x + D))I{x−D<x∗
L }

]
+ E

[
C(x∗

L , x)I{x∗
L≤x−D≤x}

]

≤ (K + c̄(x∗
U − x))P(D > x − x∗

L) + c̄E[D] + C(x∗
L , x) < ∞,

where the first equality holds because D is a nonnegative random variable, the first inequality
follows from the definitions of the functionsU andC, the second inequality holds because an
expectation of an indicator of an event is its probability and because the random variable D
and the constant C(x∗

L , x) are nonnegative, and the last inequality follows from E[D] < ∞
and from Lemma 4.6(ii). ��

The next lemma establishes the equicontinity onX of a family of discounted relative value
functions.

Lemma 4.7 For each sequence {αn ↑ 1}n=1,2,... of nonnegative discount factors with α1 >

α∗, the family {uαn }n=1,2,... is equicontinuous on X.

Proof Before providing the proof, we would like to describe its main idea. It is based on
estimating the difference between the total discounted costs incurred when the process starts
from two states, z1 and z2, when the distance between z1 and z2 is small. Let z1 < z2.
This estimation is trivial when z2 ≤ sαn because the function uαn (x) is linear on (−∞, sαn ].
By using Lemma (4.6)(ii), it is possible to derive such estimation for z1 ≤ sαn < z2. For
z1 > sαn , the estimation consists of two parts: (i) the difference between the total holding
costs incurred until the process, that starts at z1, reaches the set (−∞, sαn ], and this difference
is small because of the Lipshitz continuity of the convex function E[h(x − D)] on a bounded
interval and because the average number of jumps is finite; (ii) the difference between the
total costs incurred after the process, that starts at z1, reaches (−∞, sαn ], and this difference
is small because it is bounded by the differences of the total costs for the two cased z2 ≤ sαn
and z1 ≤ sαn < z2 described above. Now we start the proof.

The discounted-cost optimality equations (4.2) and the optimality of (sαn , Sαn ) policies,
stated in Theorem 4.3, imply that the function vαn (x) is linear, when x ≤ sαn , and

vαn (x) =
{
c̄(sαn − x) + vαn (sαn ), if x ≤ sαn ,

h̃(x) + αnE[vαn (x − D)], if x ≥ sαn ,
(4.18)

where h̃(x) := E[h(x − D)] < ∞ is convex in x on X. According to Theorem 4.4, since
each sequence {(sαn , Sαn )}n=1,2,... is bounded, then there exists a constant b > 0 such that

sαn ∈ (−b, b), n = 1, 2, . . . . (4.19)

Therefore, there exists a constant δ0 > 0 such that −b ≤ sαn − δ0 < sαn + δ0 ≤ b,
n = 1, 2, . . ..
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Consider z1, z2 ≥ sαn . Without loss of generality, assume that z1 < z2. According to

(4.18), vαn (x) = E[∑N(x−sαn )+1
j=1 α

j−1
n h̃(x −S j−1)+α

N(x−sαn )+1
n vαn (x −SN(x−sαn )+1)] for

x ≥ sαn . Therefore, for n = 1, 2, . . .

|uαn (z1) − uαn (z2)| = |vαn (z1) − vαn (z2)|

=
∣
∣
∣
∣
∣
∣
E

⎡

⎣
N(z1−sαn )+1∑

j=1

α
j−1
n (h̃(z1 − S j−1) − h̃(z2 − S j−1))

+ α
N(z1−sαn )+1
n

(
vαn (z1 − SN(z1−sαn )+1) − vαn (z2 − SN(z1−sαn )+1)

)]∣∣
∣

≤ E

⎡

⎣
N(z1−sαn )+1∑

j=1

|h̃(z1 − S j−1) − h̃(z2 − S j−1)|
⎤

⎦

+ E
[|uαn

(
z1 − SN(z1−sαn )+1

) − uαn

(
z2 − SN(z1−sαn )+1

) |] ,

(4.20)

where the inequality holds because of αn < 1, the change of the expectations and the absolute
values, and because the sum of absolute values is greater or equal than the absolute value of
the sum.

Consider ε > 0.Define a positive number N̄ := E[N(z1+b)]+1 < ∞. Since b > −sαn ,
then E[N(z1 − sαn )] + 1 ≤ N̄ . Since the function h̃(x) is convex on R, then it is Lipschitz
continuous on [−b, z2]; see Hiriart-Urruty and Lemaréchal (1993, Theorem 3.1.1). Since
Lipschitz continuity implies uniformly continuity, then there exists δ1 ∈ (0, δ0) such that for

x, y ∈ [−b, z2] satisfying |x − y| < δ1, |h̃(x) − h̃(y)| <
ε

2N̄
. Therefore, for sαn ≤ z1 < z2

satisfying |z1 − z2| < δ1

|h̃(z1 − S j ) − h̃(z2 − S j )| <
ε

2N̄
, j = 0, 1, . . . ,N(z1 − sαn ), (4.21)

and

E

⎡

⎣
N(z1−sαn )+1∑

j=1

∣
∣
∣h̃(z1 − S j−1) − h̃(z2 − S j−1)

∣
∣
∣

⎤

⎦ ≤ E

⎡

⎣
N(z1−sαn )+1∑

j=1

ε

2N̄

⎤

⎦

= (
E

[
N(z1 − sαn )

] + 1
) ε

2N̄
≤ ε

2
.

(4.22)

where thefirst inequality follows from (4.21) and the last inequality holds because ofE[N(z1−
sαn )] + 1 ≤ N̄ .

Additional arguments are needed to estimate the last term in (4.20). Next we prove that
there exists δ2 ∈ (0, δ1) such that for x ∈ [sαn , sαn + δ2],

|uαn (x) − uαn (sαn )| <
ε

4
, n = 1, 2, . . . . (4.23)

Let x ≥ sα. Then formula (4.18) implies

vαn (x) = h̃(x) + αnE[vαn (x − D)] (4.24)

and

E
[
vαn (x − D)

] = P(D ≥ x − sαn )E
[
c̄(sαn − x + D)|D ≥ x − sαn

]

+ P(0 < D < x − sαn )E
[
vαn (x − D)|0 < D < x − sαn

]

+ P(D = 0)vαn (x)

(4.25)
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Formulas (4.24) and (4.25) imply

[1 − αn P(D = 0)]vαn (x) = h̃(x) + αn
(
P(D ≥ x − sαn )E

[
c̄(sαn − x + D)|D ≥ x − sαn

]

+P(0 < D < x − sαn )E
[
vαn (x − D)|0 < D < x − sαn

])
.

(4.26)

Therefore, since uαn (y1)−uαn (y2) = vαn (y1)−vαn (y2) for all y1, y2 ∈ X, for x ∈ [sαn , sαn +
δ1] and for n = 1, 2, . . .

[1 − αn P(D = 0)]|uαn (x) − uαn (sαn )| = [1 − αn P(D = 0)]|vαn (x) − vαn (sαn )|
=

∣
∣
∣h̃(x) − h̃(sαn ) + αn P(D ≥ x − sαn )c̄(sαn − x)

+ αn P(0 < D < x − sαn )E[uαn (x − D) − uαn (sαn − D)|0 < D < x − sαn ]
∣
∣
∣

≤ |h̃(x) − h̃(sαn )| + c̄(x − sαn ) + 2P(0 < D < x − sαn )C(−b, b),

(4.27)

where the nonnegative function C is defined in Lemma 4.6. Let us define L := (1− P(D =
0))−1, and Q(x, sαn ) := P(0 < D < x − sαn ). Recall that P(D > 0) > 0, which is
equivalent to P(D = 0) < 1. Since (1− αn P(D = 0))−1 ≤ L , Formula (4.27) implies that
for n = 1, 2, . . .

|uαn (x) − uαn (sαn )| ≤ L(|h̃(x) − h̃(sαn )| + c̄(x − sαn ) + 2Q(x, sαn )C(−b, b)). (4.28)

Since the function h̃ is convex, it is Lipshitz continuous on [−b, b]. Therefore, all three
summands in the right-hand side of the last equations converge uniformly in n to 0 as x ↓ sαn .
Therefore, there exists δ2 ∈ (0, δ1) such that (4.23) holds for all x ∈ [sαn , sαn + δ2].

Since uαn (x) = c̄(sαn − x) + uαn (sαn ) for all x ≤ sαn , then for all x, y ≤ sαn

|uαn (x) − uαn (y)| = c̄|x − y| <
ε

4
, n = 1, 2, . . . , (4.29)

for |x − y| < ε
4c̄ . Let δ3 := min{ ε

4c̄ , δ2}. Then (4.29) holds for |x − y| < δ3.

For x ≤ sαn ≤ y satisfying |x − y| < δ3

|uαn (x) − uαn (y)| ≤ |uαn (x) − uαn (sαn )| + |uαn (sαn ) − uαn (y)| <
ε

2
, (4.30)

where the first inequality is the triangle property and the second one follows from (4.23)
and (4.29). Therefore, (4.23), (4.29) and (4.30) imply that |uαn (x) − uαn (y)| < ε

2 for all
x, y ≤ sαn + δ3 satisfying |x − y| < δ3. Then for |z1 − z2| < δ3 with probability 1

|uαn (z1 − SN(z1−sαn )+1) − uαn (z2 − SN(z1−sαn )+1)| <
ε

2
, n = 1, 2, . . . ,

and therefore

E[|uαn (z1 − SN(z1−sαn )+1) − uαn (z2 − SN(z1−sαn )+1)|] <
ε

2
, n = 1, 2, . . . . (4.31)

Formulae (4.20), (4.22) and (4.31) imply that for z1, z2 ≥ sαn satisfying |z1 − z2| < δ3

|uαn (z1) − uαn (z2)| < ε, n = 1, 2, . . . . (4.32)

Therefore, (4.29), (4.30) and (4.32) imply that for each x ∈ X

|uαn (x) − uαn (y)| < ε, n = 1, 2, . . . ,

if |x − y| < δ3, which means that the family {uαn }n=1,2,... is equicontinuous on X. ��
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Proof of Theorem 4.5 Since
∫
X
U (y)q(dy|x, a) = E[U (x + a − D)], where the function

U is defined in (4.6), then, in view of Lemma (4.6)(iii),
∫
X
U (y)q(dy|x, a) < ∞ for all

x ∈ X and a ∈ A.According to Lemma 4.7, the family {uαn }n=1,2,... is equicontinuous onX.

Therefore, Theorem 3.2 implies that there exists a subsequence {αnk }k=1,2,... of {αn}n=1,2,...

such that there exists a policyϕ satisfyingACOE (3.3) with ũ defined in (2.5) for the sequence
{αnk }k=1,2,..., the function uαnk

converges pointwise to ũ, and the function ũ is continuous.
According to Feinberg and Lewis (2015, Theorem 6.10), the (s∗, S∗) policy satisfies the

ACOI with ũ defined in (2.5) for the sequence {αnk }k=1,2,.... Since the ACOE holds with ũ
defined in (2.5) for the sequence {αnk }k=1,2,..., then the (s∗, S∗) policy satisfies the ACOE.

Next we show that the functions ũ and H are K -convex and inf-compact. Since the cost
function c is inf-compact, the function ũ is inf-compact; see Feinberg et al. (2012, Theorem
3 and Corollary 2). According to Feinberg and Lewis (2015, Lemma 6.8), the functions vαn

are K -convex. Therefore the functions uαn are K -convex. Since uαnk
converges pointwise to

ũ, then the function ũ is K -convex. The function H is K -convex because, in view of (4.9),
it is a sum of a linear, convex, and K -convex functions.

Since the (s∗, S∗) policy satisfies the ACOE (4.10) with ũ defined in (2.5) for the sequence
{αnk }k=1,2,..., then ũ(x) = K + H(S∗) − c̄x − w, for all x < s. Therefore, for x < s,

H(x) = c̄x + E[h(x − D)] + E[ũ(x − D)]
= c̄x + E[h(x − D)] + K + H(S∗) − c̄x + c̄E[D] − w

= E[h(x − D)] + K + H(S∗) + c̄E[D] − w.

(4.33)

Since E[h(x − D)] → ∞ as x → −∞, then (4.33) implies that H(x) tends to ∞ as
x → −∞. Since h and ũ are nonnegative, then (4.9) implies that H(x) ≥ c̄x → ∞ as
x → ∞. Therefore, H(x) → ∞ as |x | → ∞.

Since ũ is continuous and (y−D) convergesweakly to (x−D) as y → x, thenE[ũ(x−D)]
is lower semi-continuous. Since E[h(x − D)] is convex on X and hence continuous, c̄x is
continuous and E[ũ(x − D)] is lower semi-continuous, then H is lower semi-continuous.
Therefore, since H(x) tends to ∞ as |x | → ∞, then H is inf-compact.

According to the statements following Feinberg and Lewis (2015, Lemma 6.7), since H
is K -convex, inf-compact, and tends to ∞ as |x | → ∞, then an (s, S) policy, with the real
numbers S and s satisfying (4.5) and defined in (4.6) respectively for f (x) = H(x), x ∈ X,

is optimal.
Now we prove that the function H is continuous. Let us fix an arbitrary y ∈ X. Define the

following function

H̄(x) =
{
ũ(x) + c̄x, if x ≤ y + 1,

ũ(y + 1) + c̄(y + 1), if x > y + 1.

Since the functions ũ(x) and c̄x are continuous, then the function H̄(x) is continuous. In
view of (4.10), the function H̄(x) is bounded on X. Therefore,

lim
z→y

{E[h(z − D)] + E[H̄(z − D)]} = E[h(y − D)] + E[H̄(y − D)], (4.34)

where the equality holds since the function E[h(x − D)] is convex on X and hence it is
continuous, and z − D converges weakly to y − D as z → y and the function H̄(x) is
continuous and bounded.

Observe that H(x) = E[h(x −D)]+E[H̄(x −D)]+ c̄E[D] for all x ≤ y+1. Therefore,
(4.34) implies that limz→y H(z) = H(y). Thus the function H(x) is continuous. ��
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Corollary 4.8 Let the state spaceX = R and the action spaceA = R
+.For the (s, S) policy

defined in Theorems 4.5, consider the stationary policy ϕ coinciding with this policy at all
x ∈ X, except x = s, and with ϕ(s) = S − s. Then the stationary policy ϕ also satisfies the
optimality equation (4.10), and therefore the policy ϕ is average-cost optimal.

Proof Since the proof of the optimality of (s, S) policies is based on the fact that K+H(S) <

H(x), if x < s, and K + H(S) ≥ H(x), if x ≥ s. Since the function H is continuous, we
have that K + H(S) = H(s). Thus both actions are optimal at the state s. ��

Theorem 4.5 states that Assumption EC holds. This implies the validity of the ACOE. The
following theorem shows that a stronger equicontinuity assumption holds for the inventory
control problem studied in this paper.

Theorem 4.9 For each β ∈ (α∗, 1), the following statements hold:

(a) the family of functions {uα : α ∈ [β, 1)} is equicontinuous;
(b) there exists a nonnegative measurable function U (x) on X such that U (x) ≥ uα(x) for

each α ∈ [β, 1) and
∫
X
U (y)q(dy|x, a) < ∞ for all x ∈ X and a ∈ A.

Proof Statement (b) follows from Lemma 4.6.
(a) Let γ1, γ2 ∈ (α∗, 1) be two discount factors such that γ1 < γ2. Define

s∗(γ1, γ2) := inf{x ≤ Sγ1 : Gγ1(x) ≤ K + 1 + Gγ2(Sγ2)}. (4.35)

Observe that s∗(γ1, γ2) is a finite number becauseGγ1(Sγ1) ≤ Gγ1(Sγ2) < K+1+Gγ2(Sγ2),

where the first holds since Gγ1(Sγ1) is the minimum of the function Gγ1 and the second one
holds since K + 1 > 0 and Gγ1(·) ≤ Gγ2(·).

Consider an arbitrary γ ∈ [γ1, γ2] and the quantity x∗
U introduced in (4.4). According to

Theorem 4.3, for the discount factor γ there is an optimal (sγ , Sγ ) policy. We first prove that

sγ ∈ [s∗(γ1, γ2), x∗
U ]. (4.36)

Since Gγ2(·) ≥ Gγ (·) ≥ Gγ1(·), then for x ≤ s∗(γ1, γ2)

Gγ (x) ≥ Gγ1(x) ≥ K + 1 + Gγ2(Sγ2) > K + Gγ (Sγ ), (4.37)

where the second inequality follows from (4.35). Since Gγ (x) ≤ K + Gγ (Sγ ) for x ∈
[sγ , Sγ ], then it follows from (4.37) that s∗(γ1, γ2) ≤ sγ .

To prove (4.36), it remains to show that sγ ≤ x∗
U . In view of (4.2), the optimality of

(sγ , Sγ ) policies implies that vγ (x) ≥ Gγ (Sγ ) − c̄x ≥ Gγ (Sγ ) − c̄Sγ = vγ (Sγ ) for
x ≤ Sγ . Therefore, Sγ ≤ xγ , where xγ := max{x ∈ X : vγ (x) = minz∈X vγ (z)}. Since
sγ ≤ Sγ ≤ xγ and xγ ≤ x∗

U , then sγ ≤ x∗
U . Hence, (4.36) holds.

Secondly, we prove that for each β ∈ (α∗, 1) there exists a constant b > 0 such that

sα ∈ (−b, b), α ∈ [β, 1). (4.38)

According to Theorem 4.4, since each sequence {(sαn , Sαn )}n=1,2,... is bounded, then there
exist nonnegative numbers γ ∗ ∈ (α∗, 1) and b∗ > 0 such that sα ∈ (−b∗, b∗) for all
α ∈ [γ ∗, 1). Therefore, (4.36) implies that (4.38) holds with b defined as

b :=
{
b∗ if β ≥ γ ∗,
max{b∗, |s∗(β, γ ∗)|, |x∗

U |} + 1 otherwise.

The remaining proof of the equicontinuity of the family of functions {uα : α ∈ [β, 1)}
coincides with the proof of Lemma 4.7 with (4.19) replaced with (4.38) and αn replaced with
α ∈ [β, 1). ��
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