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ABSTRACT: We investigate M-theory and heterotic compactifications to 7 and 3 dimensions.
In 7 dimensions we discuss a class of massive supergravities that arise from M-theory on K3
and point out obstructions to realizing these theories in a dual heterotic framework with a
geometric description. Taking M-theory further down to 3 dimensions on K3 x K3 with a
choice of flux leads to a rich landscape of theories with various amounts of supersymmetry,
including those preserving 6 supercharges. We explore possible heterotic realizations of these
vacua and prove a no—go theorem: every heterotic geometry that preserves 6 supercharges
preserves 8 supercharges.
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1 Introduction

Ever since its discovery [1], the seven-dimensional duality between M-theory compactified on
K3 and the heterotic string compactified on 72 has played an essential role in our under-
standing of string theory. In its most prosaic usage, this duality, together with its F-theory
counterpart [2], have been used to produce and study many dual pairs of theories. The sim-
plest way to generate such pairs is to compactify the resulting seven-dimensional theory on
some common geometry; however, a much richer class of theories can be obtained by per-
forming a fiber-wise duality. A classic example of this correspondence is between M-theory
on K3 x K3 and heterotic flux vacua with target space a principal 7% bundle over K3 [3].
Depending on the choice of G-flux on the M-theory side, these may have an F-theory lift with
a corresponding heterotic vacuum that is a principal 72 bundle over K3. The latter have been
the focus of much attention, e.g. [4-7], and remain the sole compact examples of heterotic
flux vacua.

The class of four- or three-dimensional vacua just discussed is particularly simple, and
with a sufficient amount of supersymmetry, it should be possible to work out the duality map



in some detail. However, these solutions are by no means exhaustive. Surprisingly, there are
many M-theory vacua on K3 x K3 that are more challenging to describe from a heterotic
perspective. The main aims of this work are to present these vacua, describe their basic
features, and to point out the challenges in finding corresponding heterotic descriptions.

Given that the M-theory geometry Mg = K3 x K3 is so simple, the reader will not
be surprised that it is the choice of G-flux that is responsible for the extra complications.
It is possible, while preserving N = 1,2,3 three-dimensional super-Poincaré invariance', to
choose G with a component that threads the volumes of the two K3 factors. Such a volume-
threading flux automatically obstructs a lift to M-theory on K3 x R so that we cannot
apply a standard duality with heterotic string on 73 x R6.

On the other hand, given that we do have the 3d solutions with this sort of volume-
threading flux, it is clear that there exists a supergravity theory in seven dimensions obtained
by reducing M-theory on K3 surface X with a volume- threadlng flux G D const x dVol(X)
that has supersymmetric vacua of the form R? x X where X is a second K3. This seven-
dimensional theory does not have Minkowski vacua, and, as we will argue, necessarily involves
a spacetime potential and cosmological constant. The volume-threading flux will obstruct any
lift to F-theory, and it will lead to a puzzle with any potential geometric heterotic dual: briefly
stated, the Bianchi identity for the H-flux of the putative seven-dimensional heterotic dual
theory would seem to involve a term of the form dH = *H + ---, where --- refer to the
familiar heterotic curvature terms; the *H term is not present in standard formulations of
the heterotic string.

This is a strong indication that there is no conventional dual description of M-theory on
K3 with a volume-threading flux. We sharpen this statement as follows. First, we demonstrate
in some detail that in M-theory on X x X it is possible to have solutions that preserve
three-dimensional N' = 3 super-Poincaré invariance. These sorts of vacua are interesting in
themselves, since they lie between the challenging N/ = 2 and the reasonably well-understood
N = 4 vacua. We show that these solutions necessarily involve volume-threading flux, and
this is why they have not been previously encountered in the literature (for instance, they
certainly do not have an F-theory lift). We next turn to the heterotic string, and we prove
that every geometric compactification with A" = 3 invariance in fact preserves N = 4.2

This work should be viewed as an exploration of the general structure of duality between
M-theory and the heterotic string. Consider a compactification of M-theory based on an
8-dimensional Ricci-flat manifold Mg. Compactification geometries with extended supersym-
metry are conveniently summarized by the following famous table.®> The maximum number
of supersymmetries Nyax = E(Mg), where A\(Mg) is the value of the Dirac index on Msg.

The N counts the two-component Majorana spinors of R%:2.

2By a geometric compactification we mean a solution (perhaps with some formal o’ expansion [7] with a
smooth seven-dimensional geometry X7 equipped with some gauge bundle, dilaton, and H-flux.

3Like Kodaira’s list of singularities, the M-theory part of the table can be found in many string theory
papers; we adapt it from [8].



M-theory Ninax 1 2 3 4
Mg holonomy Spin(7) D SU(4) D Sp(2) D Sp(1) x Sp(1)

Heterotic U U Ul
X7 structure G2 D SU(3) O 777 Sp(1)

The lower line of the table can also be taken to indicate the holonomy of an internal eight-
manifold in M-theory compactifications Mg, rather than the structure group of X7 on the
heterotic side. For all of these the 8d spinors are not chiral, and A\(Mg) = 0. Moreover,
the internal flux G vanishes. The amount of 3d supersymmetry changes as N' = 2,4, 8 as
one moves right along the line. N/ = 16 corresponds to Mg with trivial holonomy. All these
theories have natural lifts to four dimensions, since Mg will necessarily involve at least one
trivial circle. In this work we will not consider such flux-free M-theory compactifications.

The table, while specifying the geometry, does not describe the conditions on the flux of
M-theory or the choice of gauge bundle of heterotic compactifications. For each class of Mg it
may be possible to choose G to preserve the maximal Np,.x supersymmetry; we know many
examples of this form, and for a very large class of solutions (in particular those with an
F-theory lift), we have conjectured (and in examples tested) dual pairs of M-theory/heterotic
theories.

The solutions with A/ = 3 are certainly the least familiar in the list, and we conclude
our introduction by making two general points about them. First, we have a rather poor
understanding of M-theory vacua based on Mg with Sp(2) holonomy. This is in part due to
a dearth of examples of hyper-Kahler manifolds; a primary example is a resolution of the

symmetric product, S?(K3), of two K3 surfaces.?

However, as our heterotic no—go result
shows, as far as duality goes, the issue appears to be deeper: there are no candidates for dual
heterotic geometries. Second, although general Sp(2) manifolds may be of our reach, there
does not appear to be much of a difference from the perspective of the R12 spacetime theory
between Mg with Sp(2) holonomy or Mg = X x X with an appropriate choice of flux; so,
even with existing geometric technology there are many A/ = 3 vacua to be explored. We will

discuss their most basic properties below.

The rest of this paper is organized according to the table of contents. Seven-dimensional
dualities are discussed in section 2. Sections 3 and 4 are devoted to M-theory on K3 x K3
and heterotic three-dimensional compactifications respectively. An appendix contains some
technical details.

4An analysis of flux choices for this case, using orbifold techniques, can be found in [3].



2 M-—theory in seven dimensions

Let X be a K3 equipped with a hyper-Kéahler metric. We denote the triplet of hyper-Kéahler
forms by j,, a = 1,2, 3, and we normalize them by

Ja N\ Jp = 200 E (2.1)

where v is the volume of X and FE is the generator of H*(X,Z). In addition, we have the 19
anti-self-dual forms ws, o = 1,...,19 that satisfy

Wa Nja =0, Wa Awg = —204VE . (2.2)

In what follows we will often suppress the explicit A when there is no possibility of confusion.

These conditions are invariant with respect to SO(3) x SO(19) rotations that act on the
Jja and wq in the obvious fashion. The triplet j, defines an SU(2) structure; in particular,
the j, determine the metric in the following way: a combination of two of them, say jo + ij3,
determines an integrable complex structure, and then the orthogonal complement, in this
case j1, becomes a corresponding Kéhler form. There are SO(3)/ U(1) = S? ways of picking a
complex structure and, evidently, every SO(3) rotation of j, yields exactly the same Einstein
metric. The double cover SU(2) of this SO(3) turns out to be the SU(2) R-symmetry of the
7—dimensional theory.

2.1 Dualities between massive theories

We are interested in the physics of M-theory compactified on X with volume v. In the absence
of any flux, this background is famously dual to the heterotic or type I string compactified
on T3. This is a strong-weak duality with

7 = o34, (2.3)

where €7 is the 7-dimensional heterotic string coupling. For elliptic X with section, this
background has an 8-dimensional F-theory limit, corresponding to decompactifying a circle
of the heterotic 7.

We would like to ask whether a volume threading flux, G D const x dVol(X), which is
compatible with Lorentz invariance in 7 dimensions, admits a dual description. Kaluza-Klein
reduction on this background was first studied in [9, 10]. At first sight, the question itself
might appear strange. The background with flux is not a solution of the equations of motion
with an RY® Minkowski spacetime. This is easy to see for an unwarped spacetime metric
from the M-theory equations of motion,

1
Ry = = sl G (24)

since the spacetime Ricci tensor, which should vanish, is sourced by the flux. For a warped



background, we consider the metric Ansatz
ds® = e*n 4 ds% | (2.5)

where 1 denotes the usual Minkowski metric, and w is the warp factor. For warp factors that
do not depend on the spacetime coordinates, the Ricci tensor takes the form

1
Ry = —377MV6_5WV265“. (2.6)

However on a compact space like X, the equation

o

v2 50.):
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|G (2.7)
has no solution. Therefore there are no Minkowski vacua for M-theory reduced on X with
volume threading G. Indeed, it is easy to extend this argument to see that there are no
solutions for any maximally symmetric spacetime: this background cannot be realized as an
on-shell solution in string theory without breaking maximal spacetime symmetry. Alternately,
it can appear as an intermediate massive theory en route to a static Minkowski or AdS solution
in lower dimension.

Regardless, we can still perform a Kaluza-Klein reduction on such a background and
some theory must determine the set of quantum corrections to the classical spacetime ef-
fective action. From this latter perspective, it is still reasonable to ask whether a weakly
coupled description might control the physics of small volume v, while eleven-dimensional
supergravity together with higher derivative corrections controls the perturbative physics of
large v. A natural guess based on the flux-free duality might be that the heterotic string
on T3 with a volume threading flux H O const x dVol(T?3) provides such a description.
The gauged massive supergravities that arise from toroidal compactifications of the heterotic
string with backgrounds fluxes have been studied in [11]. In both cases, decompactification
to 8 dimensions is obstructed by the quantized flux.

However, there are immediate issues with such a proposed duality. To construct a macro-
scopic heterotic string, we usually wrap an M5-brane on X. The Mb-brane world-volume
supports a self-dual 3-form field strength hg, which obeys a Bianchi identity:

dhz = G. (2.8)

This obstructs wrapping X without some added ingredient to satisfy the Gauss law charge
constraint; for example, stretched M2-branes which realize self-dual strings on the world-
volume of the M5-brane. However, any such ingredient breaks additional Lorentz invariance
beyond the breaking introduced by the stretched macroscopic string.

Another immediate issue is seen by examining the form of the Bianchi identity for the



heterotic H-flux, derived from M-theory. In the flux-free duality, we identify
H = *7G, (29)

where the Hodge dual is taken in 7 dimensions; the Bianchi identity for H follows from the
equation of motion for G. Since these are the only propagating 3-forms in 7 dimensions, any
proposed duality would need some identification between them. However the case with flux
threading X produces a new coupling in the heterotic Bianchi identity:

/d*G:—l/G/\G =  dH ~x;H+.... (2.10)
X 2 /x

The omitted terms involve both gauge-fields from the Kaluza-Klein reduction of G on 2-forms
of X, and gravitational couplings from higher derivative interactions in M-theory. The new
coupling involving *7H in (2.10), which is proportional to the amount of flux through X, has
no obvious realization in geometric heterotic compactifications.

On its own, these pieces of evidence might not be convincing. It might be the case that
heterotic compactified on T with H-flux simply admits no macroscopic string solutions, and
perhaps there is some subtle modification of the Bianchi identity to evade (2.10). There is
a more direct approach. To dualize M-theory on X to a type I/heterotic background, start
with an orbifold limit where X = T%/Z,. The first step in the duality chain is to reduce on
a circle of X to a type IIA orientifold:

T3 /QZs. (2.11)

The G-flux through X implies a volume threading H-flux in this type IIA background. Ar-
riving at a type I background requires T-dualizing all three directions of the 7. While one
or two T-dualities can be performed in this background without great difficulty, dualizing
all three directions is difficult to understand. Each T-duality requires a potential for H,
but any trivialization of H breaks one isometry of 7. For more discussion of what such a
resulting heterotic theory might possibly look like, see, for example, [18]. This obstruction
looks difficult to evade, and each known duality chain that leads to a heterotic or type I dual
description meets this same issue in one guise or the other.

On the other hand, heterotic on 72 with volume threading H-flux does admit a dual
description, which can be seen as follows: consider heterotic on 72. There are 2 periodic
scalars (71, p1) associated to the complex structure of T? and to the volume threading Bo-flux.
Let us focus on this latter scalar. Under the duality to the type IIB orientifold 72 /Q(—1)f2Z,
described in [12], this scalar maps to the type IIB axion Cy. Now compactify on a further S*
and permit both p; of heterotic and Cj of type IIB to depend linearly on the circle coordinate.
On the one side, we have heterotic on 7 with volume threading H. The dual description is
type IIB compactified on

T2/Q(-1)ftZy x S! (2.12)



with constant quantized RR F) field strength in the S* direction. This is a dual pair. The
usual route to find a lift to M-theory involves T-dualizing on the S' direction. This maps
Fy to Fy and we arrive at a massive type ITA background [13].> The Romans mass obstructs
a lift to M-theory. The dual description is actually given by either the type ITA or type
IIB 7-dimensional orientifold background, depending on the size of S'. This story can be
extended to a more general F-theory setting by identifying both periodic scalars (71, p1) in
the geometry of an elliptic X [15, 16], and allowing them to depend on the S! coordinate,
along the lines described in [17].

The bigger picture suggested by this example is a collection of dualities between lower-
dimensional massive supergravity theories, induced from higher-dimensional more conven-
tional dual pairs. Interestingly, there is no obvious candidate for a dual description of M-
theory on X with volume threading G. Like the Romans theory in ten dimensions, it might
simply exist without a relation to other known massive backgrounds.

3 M-theory vacua on K3 x K3

In the previous section we discussed M—theory compactifications to seven dimensions with a
G-flux threading the K3. We saw that such theories do not have R%® vacua; on the other
hand, it is possible to compactify further and obtain R"? vacua. In this section we explore
the resulting theories in some detail. We will find familiar examples of three-dimensional
N =1, N =2 and N = 4 supersymmetric theories, but we will also find solutions that are a
bit more exotic and realize N’ = 3.

The interest in these solutions is two—fold. First, we will be able sharpen the puzzles
of “non-duality,” because, as we will see in the section that follows, there are no geometric
N = 3 heterotic compactifications. Second, we will see that the choice of flux allows the
rather simple geometry of K3xK3 to realize the features of more sophisticated solutions with
Spin(7), SU(4) or Sp(2) structures.

3.1 M-theory on Mg

We begin with a brief review of M-theory compactification of the form R'? x Mg. This is
determined by a choice of a warped metric g and flux G on Mg. The latter needs to obey two
topological conditions: the flux is quantized according to [19]

=G — ip1(Ms) € H' (Mg, Z)

and it satisfies the tadpole equation for C3 [20, 21]. A necessary and sufficient condition for
that is

1 G G x(Ms)
2 /M8 o N T T VUB) (3:1)

®The interpretation of massive theories from the perspective of M-theory and F-theory has been described
in [14].



Here x(Ms) is the Euler number of Mg, while N (M3) is the number of space-filling M 2-branes.
In this paper we will be interested in solutions with N(Mz) = 0.

Minimal supersymmetry requires Mg to admit a Spin(7) holonomy metric and also im-
poses a condition on G. H*(Mg,R) can be decomposed according to representations of
Spin(7) [8], and we must have G € H%,,(Ms,R). That is, the flux is self-dual and in the
27 [22].

3.2 M-theory on K3xK3 and N = 1,2,3,4 examples

We consider M-theory on Mg = X x X , where X and X are both K3 surfaces. Minkowski
R'2 vacua with this compactification geometry are labeled by a choice of Einstein metric on
Mg and a choice of G obeying the integrality and supersymmetry conditions. In our case
p1(Mg) = p1(X) + p1(X) is divisible by 4, so the integrality condition on G is simply that
+G € HY(X,Z). We have the identification

HY(Ms,Z) = H*(X,Z) ® H*(X,Z) ® H*(X,Z) & HY(X,Z) . (3.2)

In much of the work on this compactification, e.g. [3, 23], the flux does not involve any
components in the last two terms. However, as has been observed more recently [24], minimal
supersymmetry allows a more general flux.

Consider now X x X. The two components X and X have self-dual forms jo and 74
and anti-self-dual forms w,, Ws in an obvious extension of the notation from section 2 . We
denote the generators of H*(X,Z) and H 4()? ,Z) by, respectively, E and E; similarly X and
X have volumes v and 7. With this notation, we can state the general result [24]: up to an
SO(3) x SO(3) rotation, the most general form of the G-flux on X x X consistent with A" = 1
supersymmetry in RY? is

G = joMaajs + (44 — 20) [UE n 5@] ¥ foaWala (3.3)
and the 3 x 3 constant matrix M has the form

C D, Dy
M = Dy A+ By By . (34)
—Dy —By B —A

The last term in G with the 19 x 19 constant matrix f just involves the anti-self-dual forms
w and w. G should also satisfy the integrality and tadpole constraints.

We can now give some examples of solutions that preserve different amounts of super-
symmetry.

1. The most familiar way to satisfy (3.3) is to set M = 0; this also eliminates the “volume—
threading” term. In this case G is invariant under SO(3) x SO(3) rotations and corre-
sponds to an N' = 4 vacuum. We can think of this as two statements: the underlying



manifold has SU(2) x SU(2) structure, and the flux respects this:
JuANG =0, G AG=0. (3.5)
2. We can reduce supersymmetry by taking M = A13, so that
G = A(juJi + o + JaTs) = 20 [VE + TE| + fagwadi - (3.6)

G is invariant under a diagonal SO(3) C SO(3) x SO(3) action; in fact it respects an
Sp(2) structure on the underlying manifold and therefore leads to N' = 3 in R*2. The

Sp(2) structure is generated by the three 2-forms®

Ja = Ja+7Ja » (3.7)
and for all a

JaNG=0. (3.8)

3. To obtain N' = 2 symmetry we demand that G only preserved by U(1) C SO(3) C
SO(3) x SO(3). For instance, following [3] we can take

G = A1 + j2i2) + faawaWe - (3.9)
This flux respects an SU(4) structure of X x X: we set
J=T, Q= %(jz +iJ3)? , (3.10)

and G is (2,2) and primitive with respect to this SU(4) structure. That is the familiar
condition for preserving N/ = 2 supersymmetry [21].

3.3 Structures and extended supersymmetry

As we have seen, for particular choices of flux we obtain vacua with various amounts of
extended supersymmetry. In this section we will make a more systematic study of the con-
straints that lead to N = 2,3,4, and we will also explore the massless spectrum of these
theories. To start, we note that every Sp(2) structure on X x X compatible with the product
metric takes the form

T4 = Raaja + Raaja , (3.11)

where R and R are 3 x 3 SO(3) matrices; it is an easy matter to check that these satisfy
the defining relations of Sp(2) structure (see footnote 6). To show that every Sp(2) structure

6 That is, the [, are three non-degenerate two-forms that satisfy the defining cubic and quartic relations
3JaToTe = 6ab TS + Sca Ty + Obe Ty and JaTpJeJa = 8dVols [0abded + Seabbd + Obedaa) [25).



takes this form, we just note that by raising an index on the J4 with the metric we should
obtain the triplet of complex structures satisfying the familiar quaternionic algebra; that fixes
the J4 in the form shown.

Similarly, the most general SU(4) structure on X x X takes the form

J=yaTda , Q= 3(uada)’ . (3.12)
Here y4 is a real vector and w4 is a complex vector such that the 3 x 3 matrix

Re(uq) Im(uy) 41
Re(ug) Im(usz) y2 | € SO(3) .
Re(ug) Im(us) ys

In particular, yTu = 0, 24Ty = u'u = 2, and wu = 0. Setting x = y'R, t = u' R, and
similarly for 7 and ¢, and using (3.11), we can write the most general SU(4) structure on
X x X as

J = Taja + Tada Q = tatajada , (3.13)
where z and ¢, as well as 7 and ¢ satisfy the same conditions as v, u.

N > 2 supersymmetry

Having taken care of the preliminaries, the analysis of the supersymmetry conditions is now
straightforward. To preserve at least N/ = 2 we know that G must be a primitive (2,2)
form [21] with respect to some SU(4) structure. In other words,

JAG=0, QNG =0, (3.14)

and G has no (1,3) or (3,1) components. Applying the first two conditions to the general flux
in (3.3), we obtain

JANG =0 — Mi+(2A-C)z=0 and  TM+24-0)3F" =0,
(3.15

QNG =0 = t'Mt=0. )

To ensure no (1,3) or (3,1) components in G we note that the harmonic (3,1) forms on X x X
with respect to the chosen SU(4) structure are all linear combinations of

taja N\ faj]va , taja N\ We TaJa N ?aj]va s Wa N Za:]va . (316)

So, our final requirement is that G is annihilated by each of these terms. This leads to the

conditions

t'Mz =0, e’ Mt=0. (3.17)

— 10 —



The vectors z,Re(t),Im(¢) form an orthonormal basis, as do Z,Re(t),Im(t), and by taking
real and imaginary parts of (3.15, 3.17), we find that in order for G to be compatible with
some SU(4) structure the matrix M must be expressible as

C—24 0 0\
M =57 0 a 8|S, (3.18)
0 -0 «

where S and S are SO(3) matrices. This implies

(C—24)2 0 0
MMT =T 0 a2+ 62 0 S, (3.19)
0 0 a4 p?

so that MM7T has (C' —2A)? as an eigenvalue, and M M7 has at least two equal eigenvalues.
These requirements can be easily translated into polynomial conditions on the parameters
A, B1, By, C, Dy, Dy that appear in (3.3) .

N > 3 supersymmetry

The flux will be compatible with an Sp(2) structure if and only if 74 AG =0 for A =1,2,3.
Using the J4 in (3.11), this leads to

M = (C—2A)R"R , (3.20)

so that MMT = (C — 2A4)?13. Finally, to be compatible with Sp(1) x Sp(1) structure
and therefore N' = 4 supersymmetry, the condition on M has to be true for all R,ﬁ in
SO(3) x SO(3). This forces M = 0.

Note that the volume-threading term in the G-flux is proportional to (C' — 2A). This
means that every NV > 3 vacuum without a volume-threading term necessarily has M = 0,
so that it is actually preserving N = 4.

It is not obvious that we can choose an integral G-flux that both takes the A" = 3 form
and satisfies the Bianchi identity without M2-branes. Appendix B shows this to be the case.

3.4 Massless spectrum

Like the existence of the vacuum, the massless spectrum also correlates nicely with the struc-
ture preserved by the flux. We will not go into a detailed study of the interactions and, for
example, explicit expressions for the moduli space metric; this has been carried out at the
supergravity level for the most general flux compatible with minimal supersymmetry in [26].
Instead, we will just point out how the counting of massless degrees of freedom correlates
with the structure.

— 11 —



Metric moduli

The 58-dimensional space of first-order deformations of an Einstein metric on X can be
parametrized in terms of a scalar parameter x that corresponds to rescaling the total volume,
as well as a 3 x 19 matrix X,,:

0Ja = Tja + Xpawa OWa = TWa — JaXaa s ov = 2zv . (3.21)
It is easy to see that this preserves the defining conditions:
0 (Jajb — 2000 E) =0, 6 (Jawa) =0, § (wawp + 20,5vE) =0 .

We have analogous expressions for the other K3 X , except for tildes and dots.

Not all of these geometric deformation parameters correspond to three-dimensional mass-
less modes: a necessary condition is that the integral (and therefore rigid) flux G satisfies
the same conditions with respect to the deformed and undeformed j, and 7. Since we
parametrized G in terms of the basis of self-dual and anti-self-dual forms on X and X , this
amounts to finding 0M and §f in (3.3) such that under (3.21) 6G = 0. Plugging all of the
variations into G and demanding dG = 0, we obtain the following conditions:

M =—(z+2)M , of =—(x+2)f, (3.22)
and
(2A—C)(z—%)=0, X'y = fx’ | MX =X (3.23)

The first two equations merely determine M and df and do not lead to interesting con-
straints. On the other hand, the remaining three are interesting. First, we see that if 24 # C
then x = 7, so that while the overall volume modulus of X x X remains massless, it is not
possible to tune the volumes of X and X separately. Thus, 24 = C' is a necessary condition
to be able to lift the vacuum to 7 dimensions.

The remaining conditions are covariant with respect to the obvious O(3) x O(3) x O(19) x
O(19) action on the jg, 74 and wy,ws. This means we can use singular value decomposition
to bring M and f to canonical form:

M = diag(:ula 12, :u3) ) f= diag(qbly b2, - - 7¢19) ) (324)

where the p, and ¢, are all non-negative (they are positive square roots of the eigenvalues
of, respectively, MM™ and ff7.). In this form the conditions on X and X are written as

faXga = ~aa¢a , taXaa = Xaa®a s no sum on @ or . (3.25)

Generically these require X = X = 0, but if some of the eigenvalues of M match those of f,

— 12 —



there are more solutions. The number of independent parameters is given by

n(X,X) = 2dimker M dimker f + Z (g — ba) ,
a,a |pa#0
= dimker M dimker f + > 6(tta — ¢a) (3.26)

a,x

where 6(pg — ¢o) = 1 if py = ¢o and is zero otherwise. To understand this, note that the
second line follows trivially from the first. The first line merely says that if pu, = 0 then the
equations require that X, and fd both belong to ker f; if for a fixed a pq # 0, then faa is
determined by X4, and the latter satisfies (uq — ¢a)Xaa = 0.

Including the constraints on the x, Z, we find that the massless metric moduli are counted
by

2+ n(X,X), 24=C,

#(metric moduli) = ( N) (3.27)
1+nX,X), 2A#C.

Massless vectors

Fluctuations of C' give rise to massless vectors in three dimensions: C' = --- + V!Q;, where

the V! are three-dimensional vectors with field strengths F/ = dV!, and the Q; are harmonic
forms on X x X. Inserting this into the M-theory action leads to a Chern-Simons mass term
for the V! proportional to

ALy =VIF/ /M GOQy . (3.28)
8

To explore the kernel of this mass term we write out
VIQ = V3, + VoW, + Vi34 + VoG, (3.29)
and combine these components into a 44—dimensional vector
v =wlIvlivrvhy, (3.30)

and similarly for the field-strengths, which are packaged in a vector F. With a little bit of
algebra we find

ALz = 400VIMF | (3.31)
where
M, 0
M = 32
< 0 M_) ; (3.32)

— 13 —



and

(eA-C)13 M _ ((C=24)11 f
M+_< M (2A—C)113> ’ M‘_< fr (C—2A)1119> - (839)

So, the number of massless vectors is dimker M, + dimker M_. The latter depend on the
value of (24 — C):

) 2 dim ker M 2A=C
dim ker M, = )

dimker(MTM — (24 — C)%*13) 24 # C

) 2dim ker f 2A=C
dimkerM_ = ,

dimker(fTf — (24 — C)?119) 24 #C

(3.34)

Summary for N =2,3,4

We now combine the previous results with the constraints on M and A found in the previous
section. In each case we will find a result consistent with the three-dimensional multiplet
structure for the particular N.

1. N =4. This requires M = 0 and therefore leads to

#(metric moduli) = 2 + 6dimker [,
#(massless vectors) = 6 + 2dimker f . (3.35)

Recall that the massless vector and hyper multiplets of NV = 4 each contain 4 scalar
degrees of freedom; this is consistent with the total number of massless scalars obtained
here (which is in fact divisible by 8). We do not expect quantum corrections to lift any
of these massless degrees of freedom.

2. N =3. In this case p, = [2A — C| # 0 for a = 1,2, 3, and therefore

#(metric moduli) = 1 4+ 3dimker{f7 f — (24 — C)*119} ,
#(massless vectors) = 3 + dimker{fT f — (24 — C)*119} . (3.36)

Since the massless supermultiplets for N' = 3 have exactly the same structure as the
more familiar N' = 4 multiplets [27], we expect that the total number of scalars is
divisible by 4, and indeed it is. The moduli space of A/ = 3 theories is quaternionic [27],
and we suspect but have not checked that, as in the N’ = 4 case, supersymmetry is
sufficient to rule out quantum corrections that might lift these degrees of freedom.

3. N = 2. In this case we expect quantum corrections to lift some of the classically
massless fields, so our results are merely upper bounds on the massless spectrum. The
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content of N/ = 2 chiral and vector multiplets easily follows by reduction from d = 4
N = 1 multiplets, and each massless multiplet contains two scalar degrees of freedom.
Based on the analysis above, we find the following massless spectrum; in each case we
do find the expected even number of scalars.

(a) The generic case is when g = [2A — C| # 0 and 0 < po = pg # p1.

#(metric moduli) = 1 4+ dimker{f? f — 31} + 2dimker{fT f — p31} ,
#(massless vectors) = 1 4 dimker{f f — 31} . (3.37)

(b) A less generic possibility pu; = |24 — C| # 0 and pe = pus = 0 leads to

#(metric moduli) = 1 + 4dimker f + dimker{f? f — p31} ,
#(massless vectors) = 1 4 dimker{f7 f — 31} . (3.38)

(c) The final possibility, 1 = [2A — C| =0 and 0 < pg = s, leads to

#(metric moduli) = 2 + 2dimker f + 2dimker{ f% f — p21} ,
#(massless vectors) = 2 + 2dimker f . (3.39)

4 Heterotic 3d compactifications

The preceding sections identified and studied a large class of M-theory vacua based on the
relatively simple geometry of K3xK3. In this section we will consider potential dual heterotic
descriptions of these vacua in three dimensions. There are many examples of dual pairs
based on the 7-dimensional duality between a heterotic string on 7% and M-theory on K3.
For instance, we expect to be able to find M-theory descriptions of heterotic backgrounds
satisfying the following two conditions:

1. the three—dimensional gauge group is abelian;

2. the compactification manifold X7 is a principal T° fibration over K3, with the bundle
obtained by a combination of Wilson lines and a pull-back of a bundle from the base
K3 geometry.

These geometries have a lift to 7 dimensions, and fiberwise duality with M-theory on K3
should make sense.

On the other hand, as we already saw, M-theory solutions with G-flux that threads the
volumes of the K3s do not have simple heterotic duals. We outlined some of the challenges
of finding the duality in terms of the massive 7-dimensional theory in section 2. We will now
consider the problem directly in 3 dimensions, and we will show that there are no heterotic
geometries that lead to exactly A/ = 3 supersymmetry in three dimensions: a solution with 6
supercharges actually preserves 8 or 16 supercharges.
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4.1 Review of heterotic Gy geometry

Consider a three—dimensional compactification of the heterotic string with N' > 1 on a seven—
dimensional compact manifold X7. In order to discuss spinors and their properties on X7 let
us first fix a basis for the Clifford algebra.”

Clifford algebra on X
We choose the I';, i = 1,...,7 to be a pure imaginary antisymmetric basis satisfying
{PZ’,P]’} = 2gij .

The matrices {1,iI";j;} are real symmetric, while {il';, I';; } are real anti-symmetric. Together
they span the Clifford algebra: given a non-zero real spinor €y a basis of spinors is {€g, ;o }.
That is, we have the completeness relation

Tegel T + eoehy = 1g . (4.1)

In the usual way we define It = %F[ilfiz ... T%], and we lower and raise the (co)tangent
space indices with the metric g;; and its inverse g%,

Minimal supersymmetry requirements

Minimal supersymmetry requires that the geometry satisfies the following conditions.®

1. The gauge bundle P — X7 has structure group in Spin(32)/Zy or Eg x Eg and satisfies
the heterotic Bianchi identity in integral cohomology.

2. The vanishing of the gravitino variation requires that X; admits a V~—constant spinor
€. The V™ connection is the Levi-Civita connection twisted by the 3—form H:

(F_);k = 6" (3 950k + ki — gikal — $Higr) =Tl — $H'yy, .
This means X7 has Go structure.
3. The vanishing of the dilatino variation requires
B %Hijkriﬂf] €0 =0. (4.2)
Here ¢ is the dilaton field.

4. The gauge curvature F annihilates the spinor: F;;"/¢y = 0.

5. The Bianchi identity has a solution in the formal o’ expansion [7].

"A thorough and readable review of Ca-structure compactification is given in [28]; we follow it in a number
of conventions, including that for the spinors.
8The general result goes back to [29]; applications to X7 may be found in, for instance, [25, 30].
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Conditions 2,3, and 4 will be sufficient for our purposes, but any putative solution must satisfy
all of these necessary conditions.

The existence of a V™~ —constant spinor ¢y implies the existence of V™ —constant associative
and co-associative forms

. T T
ik = i€g Lijreo Wikt = € Lijrico - (4.3)

The metric g relates these two by %,® = ¥, and ® A x,® = 7dVol,(X7). Moreover, we have
the helpful relations

FijE(] = —iq)iijkEO 5 ’L'FijkE(] = q)ijke(] - i\IfijlelEO . (44)

The ® and ¥ obey a number of useful relations summarized in appendix A of [28]. We will
find use for two of these:

kg [l

klm __
Vi@ = 6570,

ik ®," = gigmj — Gimi; — Vijim - (4.5)

Turning the construction around, suppose X has a G structure, i.e. a non-degenerate
3-form @ that in a local orthonormal frame {ei}izl,,,,j with respect to metric g has the
canonical form

B — 246 _ (235 _ M5 _ 136 127 4 34T | 56T

+P — 61234 + 61256 + 63456 + 61357 o 61467 o 62367 o 62457 ) (4.6)

We use a condensed notation, where we omit the wedge symbol when it is unlikely to cause
confusion, and we collapse labels on products of 1-forms; thus, e**6 = €% A e* A €9, etc.

The necessary and sufficient conditions to satisfy conditions 2 and 3 are that, in addition
to the algebraic conditions of (4.6), we also have the differential conditions

®NdP =0, dle™x 2] =0, «H = e*d [e" %] . (4.7)
Note that the last one determines the torsion H, and the last two involve the dilaton .

4.2 Extended supersymmetry : conditions on X~

In order to have extended supersymmetry in d = 3, X7 must admit additional linearly in-
dependent V™~ —constant spinors. Suppose there are p + 1 such linearly independent spinors
{€o,€1,...,¢p}. Let A =1,...,p index the “extra” spinors. Since {il';ep, €p} are a complete
basis, we can find vector fields Vji and functions 4 so that

ea = iVilieo + u'leg (4.8)

for each A. Covariant constancy of €y requires V™V, = 0 and V" uy = 0; the latter means
that the u4 are just constants; we can set u* = 0 without loss of generality [31].
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We conclude that extended supersymmetry requires X7 to admit of V™ —constant vec-
tor fields. Conversely, given p linearly-independent V™~ —constant vector fields V4, we can
construct p additional spinors 4. We can take the V4 to be orthonormal.”

The reader may recall that any compact Go structure manifold admits 3 nowhere van-
ishing vector fields which reduce the structure further to SU(2) [32]. However, we stress that
the supersymmetry conditions are stronger: the vectors must be annihilated by V.

Constraints on the number of vectors

Suppose that X7 satisfies the minimal supersymmetry conditions and admits exactly p linearly
independent V™ —constant vectors V4. We will now show that the number of vectors Vjy,
A =1,...,p can only take on specific values: p € {0,1,3,7}. Realizations of each of these
cases are well known.

1. p = 0 corresponds to an irreducible X7 — this is minimally supersymmetric and exem-
plified by, for example, one of Joyce’s manifolds of Gy holonomy [8] (standard embedding
for the gauge bundle is a standard solution of the other supersymmetry constraints).

2. p = 1, which leads to A/ = 2 in three dimensions, is also familiar: for instance we can
take X7 = Xg x S!, where Xg is a Calabi-Yau 3-fold; more generally, we can take X7
to be a principal circle bundle over Xj.

3. p = 3, which leads to N = 4 in three dimensions can be obtained from X; = K3 x T3;
again, it is easy to make more general solutions by fibering the T° over K3.

4. p =17, which leads to A/ = 8 in three dimensions can be obtained by taking X7 = T".

Two vectors imply a third

Suppose we have two vectors V4, A = 1,2. Given these, we can construct the dual 1-forms
©4, and we can also find a third 1-form

0% = ViLVoL® . (4.9)

The L denotes contraction of the vector field into the form: given a k—form w = %Wh---ik dz' .- da'*,
the kK — 1-form Viw is

Viw = mvzla%ﬂz...ikdxlz cooda'™ .

By construction ©3 is V™ —constant and annihilated by V; and V5. Hence, if ©2 # 0, its dual
V3 will be a third V~—constant vector linearly independent from V; and V5.

Tt is not hard to show that the V4 are Killing vectors; moreover their commutator is determined by a
pairwise contraction with the torsion H.

— 18 —



To show that ©3 is non-zero, we compute its norm:
10312 = ViVY @, VIVE ®ppn g™ = ViVIVI VI @158, (4.10)
Using (4.5) we find (recall that the V4 are orthonormal by assumption)
18°(1* = [[Val*||[Val® =1 (4.11)
Thus, if X7 has p > 2 V~—constant vectors, then p > 3.

From 4 to 7 vectors

We will now show that if p > 4, then p = 7. Suppose that we have exactly p V™~ —constant
vectors VA and their dual 1-forms © 4. We can choose all of these to be orthonormal and in
any patch complete the basis with some 1-forms e®, o = 1,...,7 — p. The Hodge star then
decomposes as 7 = *p*7_,, and the 3-form @ is

o =00 + o4+ Lol 048 4+ 1)) e45C (4.12)
where the ®) are s—forms constructed from the e®:

o) =047 3
ol = 0170 Ll 6

R (a1

and ®®) is found by taking the difference of these terms with ®. Clearly the ®() are V-
constant. In particular, the dual ®(), if non-zero, would yield an additional vector that is
linearly independent from the ©4. So, we set ®(1) = 0 and work with

o =0® + oot + Lol e15C
2 0
5@ = (17, 0®) (1) + (57,0 D) (1,04) + & (57,8} ) (4,045

U = 0P (4,1) + T (5,04) + Lo 0 (5 9450 (4.14)

Since ¥ = %P, the last line is merely convenient notation for the contents of the second one.
By the same arguments as above, the W(7"P=%) are V~—constant and linearly independent
from the ©4.

Now consider the possibility p = 4. This requires <I>E42)

yields

= 0, since otherwise \I'S)

an additional 1-form. On the other hand, since A’R* = R we can write <1>f£1)9(} = eapopY P
for some constants Y, but this contradicts non-degeneracy of ® because ® is annihilated by

S A YAV
Similarly, p = 5 is not compatible with a non-degenerate metric. To see this, recall that
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® determines the metric as

1

iy = meklmnpqrq)iqu)jmn¢pqr . (415)
If p =5, then ® is given by
® = k404 + o)) e45C (4.16)

and a moment’s thought shows the contradiction: on one hand we assumed without loss of
generality that {e!,e2,©',... ©°} is an orthonormal basis, but on the other hand from the
explicit formula for g we have g1; = 0.

Finally, p > 6 implies p = 7 because otherwise ® is annihilated by the dual of e'.

4.3 A no-go theorem

As we just argued, the geometry of X7 admits exactly p V™ —constant vectors V4 only if
p € {0,1,3,7}. Naively such X7 lead to N' = {1,2,4, 8} supersymmetry in three dimensions.
Of course this requires that the remaining supersymmetry conditions are obeyed with ¢
replaced by the corresponding €4, and it may be that this only holds for some k& < p spinors.
This would lead to extended supersymmetry with A" = k+1. We will now prove the following
no-go result: if p > 1 then k > 2, so that a solution with A/ > 3 necessarily has N > 4.
Similarly, N' > 5 implies N = 8.
To get started, we note that (4.2) holds if and only if

dLH=0, 2dp = —HLU . (4.17)

To show this we apply the completeness relation (B.8) to (4.2), which shows the latter to be
equivalent to

0= ef [Vl — HP Ty e, 0= €lTy, |[Vigly — S HIFT 1] € .

Since T'; is antisymmetric, the first equation is the statement &L H = 0; using (4.4) the second
condition leads to 2dp = —H_ V.
Similarly, applying (4.4) to the gaugino variation, we learn that

FT5e0 =0 — FLd =0 — F=F_0. (4.18)

The third relation follows from the second by contracting FL® into (the non-degenerate) W
and using (4.5) . With these preparations in hand, we assume minimal supersymmetry, and
we turn to extended supersymmetry.
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The gravitino variation for c4

The existence of the spinors €4 yields extra Go structures:
(I)f}-k = ieﬁfijk@x ) ‘I’z‘Ajkl = fzrijkleA : (4.19)
Using €4 = iV} 'y ep we can also write this as
Oy = iVE'VEEG TN Teq - (4.20)
By commuting the I',,, through I';I';T";,, we obtain an elegant form for oA

P =204 A (VyL®) — @ . (4.21)

In other words, to obtain ®* from ® we write out ® in a © expansion, and we flip the
sign of every term that does contain ©4. The ®4 will be V~—constant since ® and ©4 are
V~—constant. Note that

v-et=o0 — dot = VALH . (4.22)

The dilatino variation for e4

The dilatino variation will vanish for e4 provided that
Vi (Vi(pfi — 1—12Hijkr,-jk> Lpeo =0 . (4.23)
Since it vanishes for ¢y, we can replace this with the anti-commutator
V}f{ (Vi(pfi - 1—12Hiﬂ'kr,-jk> ,rm}eo —0, (4.24)
and some Clifford algebra manipulations, together with (4.4), reduce this to

Varde =0, (VALH)L® =0 . (4.25)

The gaugino variation for €4

Finally, we have
FiTiieq = iV FIT ), Tinleo = 4iVEF gimeo - (4.26)
So, the vanishing of the gaugino variation for ¢4 reduces to

VacF =0. (4.27)
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N > 3 implies N > 4

Suppose that all of the supersymmetry conditions are satisfied by ¢y and €4 for A = 1,2. We
will call these the N' = 3 supersymmetry conditions. From the results above we know that
there exists a third V~—constant spinor

€3 = iVy"I'mer = iV3" Tineo V3= ViVl e, (4.28)

We will now show that e also yields a supersymmetry.
Let us start with the gaugino variation. Minimal supersymmetry requires F = FLV, so

V3" Fon = $VEVI® " FIV i = — 2070 FIW 1y MM (4.29)
Using (4.5) we then obtain

i

} +olfe Ty

7 = il

m 77 k
Vi" Fonn = ~0761F (o0,

kg 1Y _
[ o, ) ~0. (4.30)

[n
The last equality follows because every term in the sum is proportional to either ViLF, VoL F,
or to FL®, and all of these are zero by the N/ = 3 conditions.

Next, we consider the term VsLdp that arises from the dilatino variation. Using minimal
supersymmetry we have

—2Vaidp = V3L (HLY) . (4.31)
In components we have
—2Vsidp = 2020 L HIF W, 1, PI™ (4.32)

and (4.5) allows us to rewrite this as
—2Viidp = 2ViL[(Vor H) @] — 2Vol [(VicH ) @] =0 . (4.33)

The last equality follows because each square bracket is zero by N’ = 3 conditions.

Finally, we need to show that (VsLH)L® = 0. This requires more details on the structure
of ® and H.'° The first ingredient is the form of ® with p = 3 vectors. As we show in the
appendix, we have

® = w10 + wyO? + w303 + 0% (4.34)

where wy = %M Aij e! Nel are three self-dual 2-forms that satisfy the SU(2) structure relations

10At the level of representation theory the comparative difficulty can be traced to the fact that H has
components in both 27 and 7 of A3T% under the G2 structure decomposition.
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wa ANwp = 20 45e1234

. This implies that W is given by
U = %wAeABCGBC + el (4.35)
Next, we obtain constraints on H. The H flux has a general expansion
H=H®+ P4+ 1n{)e? + H0e? (4.36)
and minimal supersymmetry requires

0=H®=H wy+HO (4.37)

A short computation shows that the N = 3 supersymmetry conditions imply H,E;% = 0 for
all A and B, while

HY wp = —-0a3H®  A=1,2, B=1,23. (4.38)

There are further constraints on H from the minimal supersymmetry conditions. First, since
H determines dO4 via

A0 = VaH = HY + LHO ¢y p©PF (4.39)
we see that
dd = wAHI(f) + {terms with at least one O} . (4.40)

Therefore, ® A d® = 0 implies'!
HPws =0 — HY wa=0. (4.41)

Combining this result with (4.37), we conclude that H() =0, so that VaLH = Hﬁf).
For our last machination we note that since HLW = —2dyp, and VALdp = 0, H.¥ cannot
have any © components. On the other hand, we have

H.U = HB) 1234 _ Hf)l_wBEABC@C . (4.42)
The latter terms vanish if and only if

Hf)I_WB = Hg)\_wA (4.43)

1 The second condition follows from the first because wa = *wa4.
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for all A, B. But, combining this with (4.38) and H©) = 0, we finally have
HY Lwp =0 (4.44)

for all A and B. So, at last, (VaLH)L® = 0 for all A, and, as promised, N’ > 3 implies N > 4.

Incidentally, H ) = 0 also implies that all three vectors V4 commute, so the ' = 4
solutions are all of the form of a T3 bundle over a hyper-Hermitian surface. Just as in
the analogous case of d = 4 N = 2 compactifications [6], we expect that the most general
geometric solution of this form is indeed a 7% bundle over a K3.

N > 5 implies N = 8

Finally, we show that a compactification with N’ > 5 necessarily preserves maximal super-
symmetry. By assumption of N' > 5, we have ¢y and e4 = iV}'T'),¢0, with A =1,2,3, as well
as €4 = 1V"I';,€0 that solve the supersymmetry constraints. We also know that X7 admits
three more mdependent V ~—constant vectors Va, with a = 5,6,7. Without loss of generahty
we take the V, orthonormal and orthogonal to the V4; we define their dual forms L

From above we know that for N’ > 4 ® takes the form

b =ws0%+ 0",

where the wa are self-dual and satisfy waq Awp = 26 AB(94(:)567. The conditions on w4 imply
that

wa = Uy [@460 n %e“bCébéC] , (4.45)

with UsaUpa = d4p. Hence ©4 = 0% wy are three orthonormal V~—constant 1-forms that
are also orthogonal to ©',...,0% The dual vectors V) complete the Vy4 to a basis for Tx.
Moreover, we have

O = VAL (VL ®) | (4.46)

and therefore the arguments we gave in the previous section guarantee that the spinors €,
constructed using the vectors V) satisfy all of the supersymmetry conditions and generate
three additional supersymmetries.
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A Three vectors on X; and constraints on G, form
We argued in section 4.2 that with p nowhere vanishing vectors V4 we must have
_ 53 (2) g4 (0) oABC
o =00 + o0+ Lol) 645C (A1)

When p = 3 we need ) = 0, since otherwise %,®®) will yield an additional vector. So, we
have

d = w01 + O (A.2)

We can take k > 0, since the sign of k can be changed by redefining 64 — —©04 and
w4 — —w4. This is just a convenient choice of orientation on X7.
We assume that {e!,e?,¢e3 e*, 0, 02,03} is an orthonormal basis for T and check the

compatibility of this with the metric obtained from ® via

1 klmnpgr
9ij = 1446 Pa cI)ikch)jmn(I)pqr . (A3)
A bit of algebra and (A.2) show that

144gij = 36ABCEOCB'Y(S((I>,'AB(I)J'Q§ + q)iaﬁq)jAB)q)C'yé
— 12e4BCe 09, 4, @500 + € BCP0D 50, 5P AR (A.4)

This can be unpacked into various components. Taking F, to be the dual vectors to e?, we
have the following results:

g(E/u VA) =0 )
k
g(Vp,Vg) = geamé@Daﬁ@Ews ,

1
9(E,, E,) = _EEABC PP 4,0 Pp,sPos - (A.5)

Starting with the general form of ®, we write w4 = %MAageo‘ AeP . so that D p0p = Mang-
Finally, setting

(+M) aap = 5" Mass (A.6)
we obtain a simple form for the metric components:

9(Vp,Ve) = 5 Te(Mp(+Mp)) ,  9(Bu, By) = — e P (Ma(+Mp)M) - (A7)
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Since we already verified g(E,,V4) = 0, we now just need to check that
Spp = —¥ Tr(Mp(+Mg)) | Ly = —Le*PO(Ma(xMp)Mc) . (A.8)

Reduction of parameters by SO(4) action

Since (A.8) is invariant under SO(4) rotations My — RTMR we can bring the anti-
symmetric matrices M4 to a canonical form. Without loss of generality we set

M, = (W 0) , (A.9)
0 wyip

where p = iog and 21 > 0, y; > 0.!2 This is stabilized by an SO(2) x SO(2) action, which
allows us to bring Ms to the form

P
My = 3}2@« 2 ) Py = 0 b ) (AlO)
=Py y2p c2 0
with co > 0. Finally, M3 takes the general form
x3p P az bs
’ (‘P?,T ?JSP) ’ <C3 d3> (A1)

Solution of the constraints

We now have a system of 16 equations in (A.8) that depend on 13 parameters: 12 of these
are in the reduced M4, and k is the last one. The equations have a unique solution, with

0100 0 001 0010
My = —-10 00 My 0 010 M= 0 00-1 7 (A.12)
0001 0 -101 —-100 0
0 0-10 -1 000 0100
or in terms of Pauli matrices
My =19 ®109 , My =i09 ® 071 M3 =109 ® 03 . (A.13)
These satisfy
*«My =My MsMp = —6aly + eapcMc . (A.14)

2The ¢; are the Pauli matrices.
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Thus,

d =wy 04 + 0% | (A.15)

and the wy are non-degenerate, self-dual, and satisfy wa A wp = 2645e'23* .

B An integral flux for N’ = 3 supersymmetry

The case of the A = 3 vacuum on X x X is exotic enough that it is worthwhile to check that
it can be obtained by some choice of integral flux and no space-filling M2-branes.'3

Let x = (2A — C), and write fos = TPas. To obtain exactly NV = 3 supersymmetry, we
take x # 0 and the flux must be

G = —2jaja + 22[VE + TE) 4 1wadacia - (B.1)

This flux is integral if and only if

1 N N N ~

— [~juda + Wafeadsl € HYX x X,Z)  and ‘ez, Zez. (B2
27 us us

While the implications of the first of these are not immediately obvious, the last two are

readily solved: there are non-zero integers m, m such that

v=— V= —". (B.3)

The integrated Bianchi identity now becomes

T 15+ tr(¢7¢)] = 24 — N(Ms) . (B.4)
We will now demonstrate that we can choose m,m and ¢ so that the flux is integral and
N(M;) = 0.

Our Ansatz for the flux is motivated by the counting of massless moduli for N' = 3 vacua:
we see that at best, the number of geometric moduli preserved is that of a single K3 geometry,
so that it is not unreasonable to tie the geometries of X and X together. In fact, we will take
X and X to be identical.

Let us explain a little bit more what this means. We fix an integral basis {e!,e?, ..., e??}
for H%(X,Z) such that

ele’ = DVE | (B.5)

3We thank Dave Morrison for stressing the importance of this point and for discussions regarding the
solution presented here and its possible generalizations.
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where D = (—Eg)®? @ H®3 is the standard metric of signature (3,19). Since H%(X,Z) is

unimodular, we have the key fact that D™!, with components denoted by Dy; is also an

integral matrix. There is a corresponding set of forms ¢/ on X that have identical structure.
The j, and w, can be written in terms of the integral basis:

jo = Earel W = Eqre’ . (B.6)
The coefficients obey

EaD &y = 250 , EaDE =0, EarD" 57 = —2805v . (B.7)
There is also a useful completeness relation for the vielbeins &:

Earlag — Earlag =2vDyy . (B.8)

We now describe our Ansatz for the flux.

1. We assume that X has an integral —4 class that is orthogonal to all of the j,. That is,
there exists ¢ € H?(X,Z) that is annihilated by the j, and satisfies EAE = €-(E = —4E.
It is easy to construct smooth K3 geometries with this property at low Picard number.

Without loss of generality we can take & to be the direction of one of the anti-self-dual

M:V%‘ (B.9)

2. Once we choose this data for X, we use the same £,; and &, to prescribe the 7; and

forms. More precisely, we set

Wa, 1.e. the geometry of X:

Ja=E,¢" Go =& " . (B.10)
This implies that v = v, and therefore m = m as well; we also have a form E as a special
—4 class on X.

3. We take the ¢, to be diagonal: ¢ns = dadad-
With these assumptions the flux takes the form

G Tr .. - - xT _
- — T o_ []a]a - Wawa] + —(qba — 1)wawa
2w 2w o2
= _mDIfeIgj + i(qba - 1)wa0~ua 5 (B.ll)

2

where in the second line we used the completeness relation (B.8).
The reason this works nicely is that the first term is automatically integral, and we just
need to choose the ¢, appropriately so that the last term is integral as well. We accomplish
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this by setting ¢, = 1 for all « > 1, so that now

G i, M1 —1) ~
Choosing ¢1 = 5 leads to an integral flux.

For this choice of integral flux the Bianchi identity becomes

m2

- (5452 + 18] =24 — N(Mp) , (B.13)
and setting m = 1, we find the desired N(M3) = 0.

We have shown that there is a choice of flux that leads to exactly N’ = 3 supersymmetry
without space-filling M2 branes. The choice leaves many moduli; indeed, the number of
massless scalars is smaller than the maximum allowed by just one N/ = 3 “hypermultiplet.”

It is not so easy to generalize this solution. If one stays with the “completeness” relation

trick above and simply modifies the ¢ it is quite likely there are no others with N (M) = 0.1
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