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Abstract: We investigate M-theory and heterotic compactifications to 7 and 3 dimensions.

In 7 dimensions we discuss a class of massive supergravities that arise from M-theory on K3

and point out obstructions to realizing these theories in a dual heterotic framework with a

geometric description. Taking M-theory further down to 3 dimensions on K3 × K3 with a

choice of flux leads to a rich landscape of theories with various amounts of supersymmetry,

including those preserving 6 supercharges. We explore possible heterotic realizations of these

vacua and prove a no–go theorem: every heterotic geometry that preserves 6 supercharges

preserves 8 supercharges.
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1 Introduction

Ever since its discovery [1], the seven-dimensional duality between M-theory compactified on

K3 and the heterotic string compactified on T 3 has played an essential role in our under-

standing of string theory. In its most prosaic usage, this duality, together with its F-theory

counterpart [2], have been used to produce and study many dual pairs of theories. The sim-

plest way to generate such pairs is to compactify the resulting seven-dimensional theory on

some common geometry; however, a much richer class of theories can be obtained by per-

forming a fiber-wise duality. A classic example of this correspondence is between M-theory

on K3 × K3 and heterotic flux vacua with target space a principal T 3 bundle over K3 [3].

Depending on the choice of G-flux on the M-theory side, these may have an F-theory lift with

a corresponding heterotic vacuum that is a principal T 2 bundle over K3. The latter have been

the focus of much attention, e.g. [4–7], and remain the sole compact examples of heterotic

flux vacua.

The class of four- or three-dimensional vacua just discussed is particularly simple, and

with a sufficient amount of supersymmetry, it should be possible to work out the duality map
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in some detail. However, these solutions are by no means exhaustive. Surprisingly, there are

many M-theory vacua on K3 × K3 that are more challenging to describe from a heterotic

perspective. The main aims of this work are to present these vacua, describe their basic

features, and to point out the challenges in finding corresponding heterotic descriptions.

Given that the M-theory geometry M8 = K3 × K3 is so simple, the reader will not

be surprised that it is the choice of G-flux that is responsible for the extra complications.

It is possible, while preserving N = 1, 2, 3 three-dimensional super-Poincaré invariance1, to

choose G with a component that threads the volumes of the two K3 factors. Such a volume-

threading flux automatically obstructs a lift to M-theory on K3 × R
1,6, so that we cannot

apply a standard duality with heterotic string on T 3 × R
1,6.

On the other hand, given that we do have the 3d solutions with this sort of volume-

threading flux, it is clear that there exists a supergravity theory in seven dimensions obtained

by reducing M-theory on K3 surface X with a volume-threading flux G ⊃ const × dVol(X)

that has supersymmetric vacua of the form R
1,2 × X̃ , where X̃ is a second K3. This seven-

dimensional theory does not have Minkowski vacua, and, as we will argue, necessarily involves

a spacetime potential and cosmological constant. The volume-threading flux will obstruct any

lift to F-theory, and it will lead to a puzzle with any potential geometric heterotic dual: briefly

stated, the Bianchi identity for the H-flux of the putative seven-dimensional heterotic dual

theory would seem to involve a term of the form dH = ∗H + · · · , where · · · refer to the

familiar heterotic curvature terms; the ∗H term is not present in standard formulations of

the heterotic string.

This is a strong indication that there is no conventional dual description of M-theory on

K3 with a volume-threading flux. We sharpen this statement as follows. First, we demonstrate

in some detail that in M-theory on X × X̃ it is possible to have solutions that preserve

three-dimensional N = 3 super-Poincaré invariance. These sorts of vacua are interesting in

themselves, since they lie between the challenging N = 2 and the reasonably well-understood

N = 4 vacua. We show that these solutions necessarily involve volume-threading flux, and

this is why they have not been previously encountered in the literature (for instance, they

certainly do not have an F-theory lift). We next turn to the heterotic string, and we prove

that every geometric compactification with N = 3 invariance in fact preserves N = 4.2

This work should be viewed as an exploration of the general structure of duality between

M-theory and the heterotic string. Consider a compactification of M-theory based on an

8-dimensional Ricci-flat manifold M8. Compactification geometries with extended supersym-

metry are conveniently summarized by the following famous table.3 The maximum number

of supersymmetries Nmax = Â(M8), where Â(M8) is the value of the Dirac index on M8.

1The N counts the two-component Majorana spinors of R1,2.
2By a geometric compactification we mean a solution (perhaps with some formal α′ expansion [7] with a

smooth seven-dimensional geometry X7 equipped with some gauge bundle, dilaton, and H-flux.
3Like Kodaira’s list of singularities, the M-theory part of the table can be found in many string theory

papers; we adapt it from [8].

– 2 –



M-theory Nmax 1 2 3 4

M8 holonomy Spin(7) ⊃ SU(4) ⊃ Sp(2) ⊃ Sp(1)× Sp(1)

Heterotic ∪ ∪ ⊆

X7 structure G2 ⊃ SU(3) ⊃ ??? Sp(1)

The lower line of the table can also be taken to indicate the holonomy of an internal eight-

manifold in M-theory compactifications M8, rather than the structure group of X7 on the

heterotic side. For all of these the 8d spinors are not chiral, and Â(M8) = 0. Moreover,

the internal flux G vanishes. The amount of 3d supersymmetry changes as N = 2, 4, 8 as

one moves right along the line. N = 16 corresponds to M8 with trivial holonomy. All these

theories have natural lifts to four dimensions, since M8 will necessarily involve at least one

trivial circle. In this work we will not consider such flux-free M-theory compactifications.

The table, while specifying the geometry, does not describe the conditions on the flux of

M-theory or the choice of gauge bundle of heterotic compactifications. For each class of M8 it

may be possible to choose G to preserve the maximal Nmax supersymmetry; we know many

examples of this form, and for a very large class of solutions (in particular those with an

F-theory lift), we have conjectured (and in examples tested) dual pairs of M-theory/heterotic

theories.

The solutions with N = 3 are certainly the least familiar in the list, and we conclude

our introduction by making two general points about them. First, we have a rather poor

understanding of M-theory vacua based on M8 with Sp(2) holonomy. This is in part due to

a dearth of examples of hyper-Kähler manifolds; a primary example is a resolution of the

symmetric product, S2(K3), of two K3 surfaces.4 However, as our heterotic no–go result

shows, as far as duality goes, the issue appears to be deeper: there are no candidates for dual

heterotic geometries. Second, although general Sp(2) manifolds may be of our reach, there

does not appear to be much of a difference from the perspective of the R
1,2 spacetime theory

between M8 with Sp(2) holonomy or M8 = X × X̃ with an appropriate choice of flux; so,

even with existing geometric technology there are many N = 3 vacua to be explored. We will

discuss their most basic properties below.

The rest of this paper is organized according to the table of contents. Seven-dimensional

dualities are discussed in section 2. Sections 3 and 4 are devoted to M-theory on K3 × K3

and heterotic three-dimensional compactifications respectively. An appendix contains some

technical details.

4An analysis of flux choices for this case, using orbifold techniques, can be found in [3].
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2 M–theory in seven dimensions

Let X be a K3 equipped with a hyper-Kähler metric. We denote the triplet of hyper-Kähler

forms by ja, a = 1, 2, 3, and we normalize them by

ja ∧ jb = 2δabvE , (2.1)

where v is the volume of X and E is the generator of H4(X,Z). In addition, we have the 19

anti-self-dual forms ωα, α = 1, . . . , 19 that satisfy

ωα ∧ ja = 0 , ωα ∧ ωβ = −2δαβvE . (2.2)

In what follows we will often suppress the explicit ∧ when there is no possibility of confusion.

These conditions are invariant with respect to SO(3)× SO(19) rotations that act on the

ja and ωα in the obvious fashion. The triplet ja defines an SU(2) structure; in particular,

the ja determine the metric in the following way: a combination of two of them, say j2 + ij3,

determines an integrable complex structure, and then the orthogonal complement, in this

case j1, becomes a corresponding Kähler form. There are SO(3)/U(1) = S2 ways of picking a

complex structure and, evidently, every SO(3) rotation of ja yields exactly the same Einstein

metric. The double cover SU(2) of this SO(3) turns out to be the SU(2) R-symmetry of the

7–dimensional theory.

2.1 Dualities between massive theories

We are interested in the physics of M-theory compactified on X with volume v. In the absence

of any flux, this background is famously dual to the heterotic or type I string compactified

on T 3. This is a strong-weak duality with

eφ7 = v3/4, (2.3)

where eφ7 is the 7-dimensional heterotic string coupling. For elliptic X with section, this

background has an 8-dimensional F-theory limit, corresponding to decompactifying a circle

of the heterotic T 3.

We would like to ask whether a volume threading flux, G ⊃ const × dVol(X), which is

compatible with Lorentz invariance in 7 dimensions, admits a dual description. Kaluza-Klein

reduction on this background was first studied in [9, 10]. At first sight, the question itself

might appear strange. The background with flux is not a solution of the equations of motion

with an R
1,6 Minkowski spacetime. This is easy to see for an unwarped spacetime metric

from the M-theory equations of motion,

Rµν = −
1

6
ηµν |G|2, (2.4)

since the spacetime Ricci tensor, which should vanish, is sourced by the flux. For a warped
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background, we consider the metric Ansatz

ds2 = e2ωη + ds2X , (2.5)

where η denotes the usual Minkowski metric, and ω is the warp factor. For warp factors that

do not depend on the spacetime coordinates, the Ricci tensor takes the form

Rµν = −
1

5
ηµνe

−5ω∇2e5ω. (2.6)

However on a compact space like X, the equation

∇2e5ω =
5

6
e5ω|G|2 (2.7)

has no solution. Therefore there are no Minkowski vacua for M-theory reduced on X with

volume threading G. Indeed, it is easy to extend this argument to see that there are no

solutions for any maximally symmetric spacetime: this background cannot be realized as an

on-shell solution in string theory without breaking maximal spacetime symmetry. Alternately,

it can appear as an intermediate massive theory en route to a static Minkowski or AdS solution

in lower dimension.

Regardless, we can still perform a Kaluza-Klein reduction on such a background and

some theory must determine the set of quantum corrections to the classical spacetime ef-

fective action. From this latter perspective, it is still reasonable to ask whether a weakly

coupled description might control the physics of small volume v, while eleven-dimensional

supergravity together with higher derivative corrections controls the perturbative physics of

large v. A natural guess based on the flux-free duality might be that the heterotic string

on T 3 with a volume threading flux H ⊃ const × dVol(T 3) provides such a description.

The gauged massive supergravities that arise from toroidal compactifications of the heterotic

string with backgrounds fluxes have been studied in [11]. In both cases, decompactification

to 8 dimensions is obstructed by the quantized flux.

However, there are immediate issues with such a proposed duality. To construct a macro-

scopic heterotic string, we usually wrap an M5-brane on X. The M5-brane world-volume

supports a self-dual 3-form field strength h3, which obeys a Bianchi identity:

dh3 = G. (2.8)

This obstructs wrapping X without some added ingredient to satisfy the Gauss law charge

constraint; for example, stretched M2-branes which realize self-dual strings on the world-

volume of the M5-brane. However, any such ingredient breaks additional Lorentz invariance

beyond the breaking introduced by the stretched macroscopic string.

Another immediate issue is seen by examining the form of the Bianchi identity for the
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heterotic H-flux, derived from M-theory. In the flux-free duality, we identify

H = ∗7G, (2.9)

where the Hodge dual is taken in 7 dimensions; the Bianchi identity for H follows from the

equation of motion for G. Since these are the only propagating 3-forms in 7 dimensions, any

proposed duality would need some identification between them. However the case with flux

threading X produces a new coupling in the heterotic Bianchi identity:

∫

X
d ∗G = −

1

2

∫

X
G ∧G =⇒ dH ∼ ∗7H + . . . . (2.10)

The omitted terms involve both gauge-fields from the Kaluza-Klein reduction of G on 2-forms

of X, and gravitational couplings from higher derivative interactions in M-theory. The new

coupling involving ∗7H in (2.10), which is proportional to the amount of flux through X, has

no obvious realization in geometric heterotic compactifications.

On its own, these pieces of evidence might not be convincing. It might be the case that

heterotic compactified on T 3 with H-flux simply admits no macroscopic string solutions, and

perhaps there is some subtle modification of the Bianchi identity to evade (2.10). There is

a more direct approach. To dualize M-theory on X to a type I/heterotic background, start

with an orbifold limit where X = T 4/Z2. The first step in the duality chain is to reduce on

a circle of X to a type IIA orientifold:

T 3/ΩZ2. (2.11)

The G-flux through X implies a volume threading H-flux in this type IIA background. Ar-

riving at a type I background requires T-dualizing all three directions of the T 3. While one

or two T-dualities can be performed in this background without great difficulty, dualizing

all three directions is difficult to understand. Each T-duality requires a potential for H,

but any trivialization of H breaks one isometry of T 3. For more discussion of what such a

resulting heterotic theory might possibly look like, see, for example, [18]. This obstruction

looks difficult to evade, and each known duality chain that leads to a heterotic or type I dual

description meets this same issue in one guise or the other.

On the other hand, heterotic on T 3 with volume threading H-flux does admit a dual

description, which can be seen as follows: consider heterotic on T 2. There are 2 periodic

scalars (τ1, ρ1) associated to the complex structure of T 2 and to the volume threading B2-flux.

Let us focus on this latter scalar. Under the duality to the type IIB orientifold T 2/Ω(−1)FLZ2

described in [12], this scalar maps to the type IIB axion C0. Now compactify on a further S1

and permit both ρ1 of heterotic and C0 of type IIB to depend linearly on the circle coordinate.

On the one side, we have heterotic on T 3 with volume threading H. The dual description is

type IIB compactified on

T 2/Ω(−1)FLZ2 × S1 (2.12)
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with constant quantized RR F1 field strength in the S1 direction. This is a dual pair. The

usual route to find a lift to M-theory involves T-dualizing on the S1 direction. This maps

F1 to F0 and we arrive at a massive type IIA background [13].5 The Romans mass obstructs

a lift to M-theory. The dual description is actually given by either the type IIA or type

IIB 7-dimensional orientifold background, depending on the size of S1. This story can be

extended to a more general F-theory setting by identifying both periodic scalars (τ1, ρ1) in

the geometry of an elliptic X [15, 16], and allowing them to depend on the S1 coordinate,

along the lines described in [17].

The bigger picture suggested by this example is a collection of dualities between lower-

dimensional massive supergravity theories, induced from higher-dimensional more conven-

tional dual pairs. Interestingly, there is no obvious candidate for a dual description of M-

theory on X with volume threading G. Like the Romans theory in ten dimensions, it might

simply exist without a relation to other known massive backgrounds.

3 M–theory vacua on K3×K3

In the previous section we discussed M–theory compactifications to seven dimensions with a

G–flux threading the K3. We saw that such theories do not have R
1,6 vacua; on the other

hand, it is possible to compactify further and obtain R
1,2 vacua. In this section we explore

the resulting theories in some detail. We will find familiar examples of three–dimensional

N = 1, N = 2 and N = 4 supersymmetric theories, but we will also find solutions that are a

bit more exotic and realize N = 3.

The interest in these solutions is two–fold. First, we will be able sharpen the puzzles

of “non-duality,” because, as we will see in the section that follows, there are no geometric

N = 3 heterotic compactifications. Second, we will see that the choice of flux allows the

rather simple geometry of K3×K3 to realize the features of more sophisticated solutions with

Spin(7), SU(4) or Sp(2) structures.

3.1 M–theory on M8

We begin with a brief review of M–theory compactification of the form R
1,2 × M8. This is

determined by a choice of a warped metric g and flux G on M8. The latter needs to obey two

topological conditions: the flux is quantized according to [19]

1
2πG− 1

4p1(M8) ∈ H4(M8,Z) ,

and it satisfies the tadpole equation for C3 [20, 21]. A necessary and sufficient condition for

that is

1

2

∫

M8

G

2π
∧

G

2π
=

χ(M8)

24
−N(M2) . (3.1)

5The interpretation of massive theories from the perspective of M-theory and F-theory has been described
in [14].
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Here χ(M8) is the Euler number ofM8, whileN(M2) is the number of space-filling M2-branes.

In this paper we will be interested in solutions with N(M2) = 0.

Minimal supersymmetry requires M8 to admit a Spin(7) holonomy metric and also im-

poses a condition on G. H4(M8,R) can be decomposed according to representations of

Spin(7) [8], and we must have G ∈ H4
+27

(M8,R). That is, the flux is self-dual and in the

27 [22].

3.2 M-theory on K3×K3 and N = 1, 2, 3, 4 examples

We consider M-theory on M8 = X × X̃ , where X and X̃ are both K3 surfaces. Minkowski

R
1,2 vacua with this compactification geometry are labeled by a choice of Einstein metric on

M8 and a choice of G obeying the integrality and supersymmetry conditions. In our case

p1(M8) = p1(X) + p1(X̃) is divisible by 4, so the integrality condition on G is simply that
1
2πG ∈ H4(X,Z). We have the identification

H4(M8,Z) = H2(X,Z) ⊗H2(X̃,Z)⊕H4(X,Z)⊕H4(X̃,Z) . (3.2)

In much of the work on this compactification, e.g. [3, 23], the flux does not involve any

components in the last two terms. However, as has been observed more recently [24], minimal

supersymmetry allows a more general flux.

Consider now X × X̃. The two components X and X̃ have self-dual forms ja and ȷ̃ȧ

and anti-self-dual forms ωα, ω̃α̇ in an obvious extension of the notation from section 2 . We

denote the generators of H4(X,Z) and H4(X̃,Z) by, respectively, E and Ẽ; similarly X and

X̃ have volumes v and ṽ. With this notation, we can state the general result [24]: up to an

SO(3)×SO(3) rotation, the most general form of the G-flux on X× X̃ consistent with N = 1

supersymmetry in R
1,2 is

G = jaMaȧ ȷ̃ȧ + (4A − 2C)
[
vE + ṽẼ

]
+ fαα̇ωαω̃α̇ , (3.3)

and the 3× 3 constant matrix M has the form

M =

⎛
⎜⎝

C D1 D2

D1 A+B1 B2

−D2 −B2 B1 −A

⎞
⎟⎠ . (3.4)

The last term in G with the 19 × 19 constant matrix f just involves the anti-self-dual forms

ω and ω̃. G should also satisfy the integrality and tadpole constraints.

We can now give some examples of solutions that preserve different amounts of super-

symmetry.

1. The most familiar way to satisfy (3.3) is to set M = 0; this also eliminates the “volume–

threading” term. In this case G is invariant under SO(3) × SO(3) rotations and corre-

sponds to an N = 4 vacuum. We can think of this as two statements: the underlying
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manifold has SU(2) × SU(2) structure, and the flux respects this:

ja ∧G = 0 , ȷ̃ȧ ∧G = 0 . (3.5)

2. We can reduce supersymmetry by taking M = λ 3, so that

G = λ(j1ȷ̃1 + j2ȷ̃2 + j3ȷ̃3)− 2λ
[
vE + ṽẼ

]
+ fαα̇ωαω̃α̇ . (3.6)

G is invariant under a diagonal SO(3) ⊂ SO(3) × SO(3) action; in fact it respects an

Sp(2) structure on the underlying manifold and therefore leads to N = 3 in R
1,2. The

Sp(2) structure is generated by the three 2–forms6

Ja = ja + ȷ̃a , (3.7)

and for all a

Ja ∧G = 0 . (3.8)

3. To obtain N = 2 symmetry we demand that G only preserved by U(1) ⊂ SO(3) ⊂

SO(3) × SO(3). For instance, following [3] we can take

G = λ(j1 ȷ̃1 + j2ȷ̃2) + fαα̇ωαω̃α̇ . (3.9)

This flux respects an SU(4) structure of X × X̃: we set

J = J1 , Ω = 1
2 (J2 + iJ3)

2 , (3.10)

and G is (2,2) and primitive with respect to this SU(4) structure. That is the familiar

condition for preserving N = 2 supersymmetry [21].

3.3 Structures and extended supersymmetry

As we have seen, for particular choices of flux we obtain vacua with various amounts of

extended supersymmetry. In this section we will make a more systematic study of the con-

straints that lead to N = 2, 3, 4, and we will also explore the massless spectrum of these

theories. To start, we note that every Sp(2) structure on X× X̃ compatible with the product

metric takes the form

JA = RAaja + R̃Aȧȷ̃ȧ , (3.11)

where R and R̃ are 3 × 3 SO(3) matrices; it is an easy matter to check that these satisfy

the defining relations of Sp(2) structure (see footnote 6). To show that every Sp(2) structure

6 That is, the Ja are three non-degenerate two-forms that satisfy the defining cubic and quartic relations
3JaJbJc = δabJ

3

c + δcaJ
3

b + δbcJ
3

a and JaJbJcJd = 8dVol8 [δabδcd + δcaδbd + δbcδad] [25].
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takes this form, we just note that by raising an index on the JA with the metric we should

obtain the triplet of complex structures satisfying the familiar quaternionic algebra; that fixes

the JA in the form shown.

Similarly, the most general SU(4) structure on X × X̃ takes the form

J = yAJA , Ω = 1
2(uAJA)

2 . (3.12)

Here yA is a real vector and uA is a complex vector such that the 3× 3 matrix

⎛
⎜⎝
Re(u1) Im(u1) y1
Re(u2) Im(u2) y2
Re(u3) Im(u3) y3

⎞
⎟⎠ ∈ SO(3) .

In particular, yTu = 0, 2yT y = u†u = 2, and uTu = 0. Setting x = yTR, t = uTR, and

similarly for x̃ and t̃, and using (3.11), we can write the most general SU(4) structure on

X × X̃ as

J = xaja + x̃ȧȷ̃ȧ , Ω = tat̃ȧjaȷ̃ȧ , (3.13)

where x and t, as well as x̃ and t̃ satisfy the same conditions as y, u.

N ≥ 2 supersymmetry

Having taken care of the preliminaries, the analysis of the supersymmetry conditions is now

straightforward. To preserve at least N = 2 we know that G must be a primitive (2,2)

form [21] with respect to some SU(4) structure. In other words,

J ∧G = 0 , Ω ∧G = 0 , (3.14)

and G has no (1,3) or (3,1) components. Applying the first two conditions to the general flux

in (3.3), we obtain

J ∧G = 0 ⇐⇒ Mx̃+ (2A− C)x = 0 and xTM + (2A −C)x̃T = 0 ,

Ω ∧G = 0 ⇐⇒ tTMt̃ = 0 . (3.15)

To ensure no (1,3) or (3,1) components in G we note that the harmonic (3, 1) forms on X× X̃

with respect to the chosen SU(4) structure are all linear combinations of

taja ∧ x̃ȧȷ̃ȧ , taja ∧ ωα̇ , xaja ∧ t̃ȧȷ̃ȧ , ωα ∧ t̃ȧȷ̃ȧ . (3.16)

So, our final requirement is that G is annihilated by each of these terms. This leads to the

conditions

tTMx̃ = 0 , xTMt̃ = 0 . (3.17)
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The vectors x,Re(t), Im(t) form an orthonormal basis, as do x̃,Re(t̃), Im(t̃), and by taking

real and imaginary parts of (3.15, 3.17), we find that in order for G to be compatible with

some SU(4) structure the matrix M must be expressible as

M = ST

⎛
⎜⎝
C − 2A 0 0

0 α β

0 −β α

⎞
⎟⎠ S̃ , (3.18)

where S and S̃ are SO(3) matrices. This implies

MMT = ST

⎛
⎜⎝
(C − 2A)2 0 0

0 α2 + β2 0

0 0 α2 + β2

⎞
⎟⎠S , (3.19)

so that MMT has (C − 2A)2 as an eigenvalue, and MMT has at least two equal eigenvalues.

These requirements can be easily translated into polynomial conditions on the parameters

A,B1, B2, C,D1,D2 that appear in (3.3) .

N ≥ 3 supersymmetry

The flux will be compatible with an Sp(2) structure if and only if JA ∧G = 0 for A = 1, 2, 3.

Using the JA in (3.11), this leads to

M = (C − 2A)RT R̃ , (3.20)

so that MMT = (C − 2A)2 3. Finally, to be compatible with Sp(1) × Sp(1) structure

and therefore N = 4 supersymmetry, the condition on M has to be true for all R, R̃ in

SO(3) × SO(3). This forces M = 0.

Note that the volume-threading term in the G-flux is proportional to (C − 2A). This

means that every N ≥ 3 vacuum without a volume-threading term necessarily has M = 0,

so that it is actually preserving N = 4.

It is not obvious that we can choose an integral G-flux that both takes the N = 3 form

and satisfies the Bianchi identity without M2-branes. Appendix B shows this to be the case.

3.4 Massless spectrum

Like the existence of the vacuum, the massless spectrum also correlates nicely with the struc-

ture preserved by the flux. We will not go into a detailed study of the interactions and, for

example, explicit expressions for the moduli space metric; this has been carried out at the

supergravity level for the most general flux compatible with minimal supersymmetry in [26].

Instead, we will just point out how the counting of massless degrees of freedom correlates

with the structure.
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Metric moduli

The 58–dimensional space of first-order deformations of an Einstein metric on X can be

parametrized in terms of a scalar parameter x that corresponds to rescaling the total volume,

as well as a 3× 19 matrix Xaα:

δja = xja +Xaαωα , δωα = xωα − jaXaα , δv = 2xv . (3.21)

It is easy to see that this preserves the defining conditions:

δ (jajb − 2δabvE) = 0 , δ (jaωα) = 0 , δ (ωαωβ + 2δαβvE) = 0 .

We have analogous expressions for the other K3 X̃, except for tildes and dots.

Not all of these geometric deformation parameters correspond to three–dimensional mass-

less modes: a necessary condition is that the integral (and therefore rigid) flux G satisfies

the same conditions with respect to the deformed and undeformed ja and ȷ̃ȧ. Since we

parametrized G in terms of the basis of self-dual and anti-self-dual forms on X and X̃ , this

amounts to finding δM and δf in (3.3) such that under (3.21) δG = 0. Plugging all of the

variations into G and demanding δG = 0, we obtain the following conditions:

δM = −(x+ x̃)M , δf = −(x+ x̃)f , (3.22)

and

(2A− C)(x− x̃) = 0 , X TM = f X̃ T , M X̃ = Xf . (3.23)

The first two equations merely determine δM and δf and do not lead to interesting con-

straints. On the other hand, the remaining three are interesting. First, we see that if 2A ̸= C

then x = x̃, so that while the overall volume modulus of X × X̃ remains massless, it is not

possible to tune the volumes of X and X̃ separately. Thus, 2A = C is a necessary condition

to be able to lift the vacuum to 7 dimensions.

The remaining conditions are covariant with respect to the obvious O(3)×O(3)×O(19)×

O(19) action on the ja, ȷ̃ȧ and ωα, ω̃α̇. This means we can use singular value decomposition

to bring M and f to canonical form:

M = diag(µ1, µ2, µ3) , f = diag(φ1,φ2, . . . ,φ19) , (3.24)

where the µa and φa are all non-negative (they are positive square roots of the eigenvalues

of, respectively, MMT and ffT .). In this form the conditions on X and X̃ are written as

µaXaα = X̃aαφα , µaX̃aα = Xaαφα , no sum on a or α. (3.25)

Generically these require X = X̃ = 0, but if some of the eigenvalues of M match those of f ,
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there are more solutions. The number of independent parameters is given by

n(X , X̃ ) = 2dimkerM dimker f +
∑

a,α |µa ̸=0

δ(µa − φa) ,

= dimkerM dimker f +
∑

a,α

δ(µa − φa) , (3.26)

where δ(µa − φα) = 1 if µa = φα and is zero otherwise. To understand this, note that the

second line follows trivially from the first. The first line merely says that if µa = 0 then the

equations require that Xa and X̃ȧ both belong to ker f ; if for a fixed a µa ̸= 0, then X̃aα is

determined by Xaα, and the latter satisfies (µa − φα)Xaα = 0.

Including the constraints on the x, x̃, we find that the massless metric moduli are counted

by

#(metric moduli) =

{
2 + n(X , X̃ ) , 2A = C ,

1 + n(X , X̃ ) , 2A ̸= C .
(3.27)

Massless vectors

Fluctuations of C give rise to massless vectors in three dimensions: C = · · · + V
I
ΩI , where

the V I are three-dimensional vectors with field strengths F I = dV I , and the ΩI are harmonic

forms on X × X̃. Inserting this into the M-theory action leads to a Chern-Simons mass term

for the V
I proportional to

∆L3 = V
I
F

J

∫

M8

GΩIΩJ . (3.28)

To explore the kernel of this mass term we write out

V I
ΩI = V a

+ja + V α
−ωα + Ṽ ȧ

+ ȷ̃ȧ + Ṽ α̇
− ω̃α̇ (3.29)

and combine these components into a 44–dimensional vector

V
T = (V T

+ Ṽ T
+ V T

− Ṽ T
− ) , (3.30)

and similarly for the field-strengths, which are packaged in a vector F. With a little bit of

algebra we find

∆L3 = 4vṽVT
MF , (3.31)

where

M =

(
M+ 0

0 M−

)
, (3.32)
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and

M+ =

(
(2A− C) 3 M

MT (2A− C) 3

)
, M− =

(
(C − 2A) 19 f

fT (C − 2A) 19

)
. (3.33)

So, the number of massless vectors is dimkerM+ + dimkerM−. The latter depend on the

value of (2A −C):

dimkerM+ =

{
2 dimkerM 2A = C

dimker(MTM − (2A− C)2 3) 2A ̸= C
,

dimkerM− =

{
2 dimker f 2A = C

dimker(fT f − (2A− C)2 19) 2A ̸= C
,

(3.34)

Summary for N = 2, 3, 4

We now combine the previous results with the constraints on M and N found in the previous

section. In each case we will find a result consistent with the three-dimensional multiplet

structure for the particular N .

1. N = 4. This requires M = 0 and therefore leads to

#(metric moduli) = 2 + 6dim ker f ,

#(massless vectors) = 6 + 2dim ker f . (3.35)

Recall that the massless vector and hyper multiplets of N = 4 each contain 4 scalar

degrees of freedom; this is consistent with the total number of massless scalars obtained

here (which is in fact divisible by 8). We do not expect quantum corrections to lift any

of these massless degrees of freedom.

2. N = 3. In this case µa = |2A− C| ̸= 0 for a = 1, 2, 3, and therefore

#(metric moduli) = 1 + 3dim ker{fT f − (2A −C)2 19} ,

#(massless vectors) = 3 + dimker{fTf − (2A− C)2 19} . (3.36)

Since the massless supermultiplets for N = 3 have exactly the same structure as the

more familiar N = 4 multiplets [27], we expect that the total number of scalars is

divisible by 4, and indeed it is. The moduli space of N = 3 theories is quaternionic [27],

and we suspect but have not checked that, as in the N = 4 case, supersymmetry is

sufficient to rule out quantum corrections that might lift these degrees of freedom.

3. N = 2. In this case we expect quantum corrections to lift some of the classically

massless fields, so our results are merely upper bounds on the massless spectrum. The
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content of N = 2 chiral and vector multiplets easily follows by reduction from d = 4

N = 1 multiplets, and each massless multiplet contains two scalar degrees of freedom.

Based on the analysis above, we find the following massless spectrum; in each case we

do find the expected even number of scalars.

(a) The generic case is when µ1 = |2A− C| ̸= 0 and 0 < µ2 = µ3 ̸= µ1.

#(metric moduli) = 1 + dimker{fT f − µ2
1 }+ 2dimker{fTf − µ2

2 } ,

#(massless vectors) = 1 + dimker{fT f − µ2
1 } . (3.37)

(b) A less generic possibility µ1 = |2A− C| ̸= 0 and µ2 = µ3 = 0 leads to

#(metric moduli) = 1 + 4dimker f + dimker{fT f − µ2
1 } ,

#(massless vectors) = 1 + dimker{fTf − µ2
1 } . (3.38)

(c) The final possibility, µ1 = |2A− C| = 0 and 0 < µ2 = µ3, leads to

#(metric moduli) = 2 + 2dimker f + 2dimker{fT f − µ2
2 } ,

#(massless vectors) = 2 + 2dimker f . (3.39)

4 Heterotic 3d compactifications

The preceding sections identified and studied a large class of M-theory vacua based on the

relatively simple geometry of K3×K3. In this section we will consider potential dual heterotic

descriptions of these vacua in three dimensions. There are many examples of dual pairs

based on the 7–dimensional duality between a heterotic string on T 3 and M-theory on K3.

For instance, we expect to be able to find M-theory descriptions of heterotic backgrounds

satisfying the following two conditions:

1. the three–dimensional gauge group is abelian;

2. the compactification manifold X7 is a principal T 3 fibration over K3, with the bundle

obtained by a combination of Wilson lines and a pull-back of a bundle from the base

K3 geometry.

These geometries have a lift to 7 dimensions, and fiberwise duality with M-theory on K3

should make sense.

On the other hand, as we already saw, M-theory solutions with G-flux that threads the

volumes of the K3s do not have simple heterotic duals. We outlined some of the challenges

of finding the duality in terms of the massive 7–dimensional theory in section 2. We will now

consider the problem directly in 3 dimensions, and we will show that there are no heterotic

geometries that lead to exactly N = 3 supersymmetry in three dimensions: a solution with 6

supercharges actually preserves 8 or 16 supercharges.
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4.1 Review of heterotic G2 geometry

Consider a three–dimensional compactification of the heterotic string with N ≥ 1 on a seven–

dimensional compact manifold X7. In order to discuss spinors and their properties on X7 let

us first fix a basis for the Clifford algebra.7

Clifford algebra on X7

We choose the Γi, i = 1, . . . , 7 to be a pure imaginary antisymmetric basis satisfying

{Γi,Γj} = 2gij .

The matrices { , iΓijk} are real symmetric, while {iΓi,Γjk} are real anti-symmetric. Together

they span the Clifford algebra: given a non-zero real spinor ε0 a basis of spinors is {ε0, iΓiε0}.

That is, we have the completeness relation

Γ
iε0ε

t
0Γi + ε0ε

t
0 = 8 . (4.1)

In the usual way we define Γi1···ik = 1
k!Γ

[i1Γi2 · · ·Γik], and we lower and raise the (co)tangent

space indices with the metric gij and its inverse gij .

Minimal supersymmetry requirements

Minimal supersymmetry requires that the geometry satisfies the following conditions.8

1. The gauge bundle P → X7 has structure group in Spin(32)/Z2 or E8×E8 and satisfies

the heterotic Bianchi identity in integral cohomology.

2. The vanishing of the gravitino variation requires that X7 admits a ∇−–constant spinor

ε0. The ∇− connection is the Levi-Civita connection twisted by the 3–form H:

(
Γ
−
)l
jk

= gli
(
1
2 [gji,k + gki,j − gjk,i]−

1
2Hijk

)
= Γ

l
jk −

1
2H

l
jk .

This means X7 has G2 structure.

3. The vanishing of the dilatino variation requires

[
∂iϕΓ

i − 1
12HijkΓ

ijk
]
ε0 = 0 . (4.2)

Here ϕ is the dilaton field.

4. The gauge curvature F annihilates the spinor: FijΓ
ijε0 = 0.

5. The Bianchi identity has a solution in the formal α′ expansion [7].

7A thorough and readable review of G2–structure compactification is given in [28]; we follow it in a number
of conventions, including that for the spinors.

8The general result goes back to [29]; applications to X7 may be found in, for instance, [25, 30].
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Conditions 2,3, and 4 will be sufficient for our purposes, but any putative solution must satisfy

all of these necessary conditions.

The existence of a∇−–constant spinor ε0 implies the existence of∇−–constant associative

and co-associative forms

Φijk = iεT0 Γijkε0 , Ψijkl = εT0 Γijklε0 . (4.3)

The metric g relates these two by ∗gΦ = Ψ, and Φ ∧ ∗gΦ = 7dVolg(X7). Moreover, we have

the helpful relations

Γijε0 = −iΦijkΓ
kε0 , iΓijkε0 = Φijkε0 − iΨijklΓ

lε0 . (4.4)

The Φ and Ψ obey a number of useful relations summarized in appendix A of [28]. We will

find use for two of these:

ΨijnmΦ
klm = 6δ

[k
[i Φ

l]
jn] , ΦijkΦ

k
lm = gilgmj − gimglj −Ψijlm . (4.5)

Turning the construction around, suppose X has a G2 structure, i.e. a non-degenerate

3-form Φ that in a local orthonormal frame {ei}i=1,...,7 with respect to metric g has the

canonical form

Φ = e246 − e235 − e145 − e136 + e127 + e347 + e567 ,

∗Φ = e1234 + e1256 + e3456 + e1357 − e1467 − e2367 − e2457 . (4.6)

We use a condensed notation, where we omit the wedge symbol when it is unlikely to cause

confusion, and we collapse labels on products of 1-forms; thus, e246 = e2 ∧ e4 ∧ e6, etc.

The necessary and sufficient conditions to satisfy conditions 2 and 3 are that, in addition

to the algebraic conditions of (4.6), we also have the differential conditions

Φ ∧ dΦ = 0 , d
[
e−2ϕ ∗Φ

]
= 0 , ∗H = e2ϕd

[
e−2ϕ

Φ
]
. (4.7)

Note that the last one determines the torsion H, and the last two involve the dilaton ϕ.

4.2 Extended supersymmetry : conditions on X7

In order to have extended supersymmetry in d = 3, X7 must admit additional linearly in-

dependent ∇−–constant spinors. Suppose there are p + 1 such linearly independent spinors

{ε0, ε1, . . . , εp}. Let A = 1, . . . , p index the “extra” spinors. Since {iΓiε0, ε0} are a complete

basis, we can find vector fields V i
A and functions uA so that

εA = iV i
AΓiε0 + uAε0 (4.8)

for each A. Covariant constancy of ε0 requires ∇−VA = 0 and ∇−uA = 0; the latter means

that the uA are just constants; we can set uA = 0 without loss of generality [31].
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We conclude that extended supersymmetry requires X7 to admit of ∇−–constant vec-

tor fields. Conversely, given p linearly-independent ∇−–constant vector fields VA, we can

construct p additional spinors εA. We can take the VA to be orthonormal.9

The reader may recall that any compact G2 structure manifold admits 3 nowhere van-

ishing vector fields which reduce the structure further to SU(2) [32]. However, we stress that

the supersymmetry conditions are stronger: the vectors must be annihilated by ∇−.

Constraints on the number of vectors

Suppose thatX7 satisfies the minimal supersymmetry conditions and admits exactly p linearly

independent ∇−–constant vectors VA. We will now show that the number of vectors VA,

A = 1, . . . , p can only take on specific values: p ∈ {0, 1, 3, 7}. Realizations of each of these

cases are well known.

1. p = 0 corresponds to an irreducible X7 — this is minimally supersymmetric and exem-

plified by, for example, one of Joyce’s manifolds of G2 holonomy [8] (standard embedding

for the gauge bundle is a standard solution of the other supersymmetry constraints).

2. p = 1, which leads to N = 2 in three dimensions, is also familiar: for instance we can

take X7 = X6 × S1, where X6 is a Calabi-Yau 3–fold; more generally, we can take X7

to be a principal circle bundle over X6.

3. p = 3, which leads to N = 4 in three dimensions can be obtained from X7 = K3× T 3;

again, it is easy to make more general solutions by fibering the T 3 over K3.

4. p = 7, which leads to N = 8 in three dimensions can be obtained by taking X7 = T 7.

Two vectors imply a third

Suppose we have two vectors VA, A = 1, 2. Given these, we can construct the dual 1-forms

ΘA, and we can also find a third 1-form

Θ
3 = V1!V2!Φ . (4.9)

The ! denotes contraction of the vector field into the form: given a k–form ω = 1
k!ωi1···ikdx

i1 · · · dxik ,

the k − 1–form V !ω is

V !ω =
1

(k − 1)!
V i1ωi1i2···ikdx

i2 · · · dxik .

By construction Θ3 is ∇−–constant and annihilated by V1 and V2. Hence, if Θ
3 ̸= 0, its dual

V3 will be a third ∇−–constant vector linearly independent from V1 and V2.

9It is not hard to show that the VA are Killing vectors; moreover their commutator is determined by a
pairwise contraction with the torsion H .
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To show that Θ3 is non-zero, we compute its norm:

∥Θ3∥2 = V i
1V

j
2 ΦijkV

l
1V

m
2 Φlmng

km = V i
1V

l
1V

j
2 V

m
2 ΦijkΦ

k
lm . (4.10)

Using (4.5) we find (recall that the VA are orthonormal by assumption)

∥Θ3∥2 = ∥V1∥
2∥V2∥

2 = 1 . (4.11)

Thus, if X7 has p ≥ 2 ∇−–constant vectors, then p ≥ 3.

From 4 to 7 vectors

We will now show that if p ≥ 4, then p = 7. Suppose that we have exactly p ∇−–constant

vectors V A and their dual 1–forms ΘA. We can choose all of these to be orthonormal and in

any patch complete the basis with some 1-forms eα, α = 1, . . . , 7 − p. The Hodge star then

decomposes as ∗7 = ∗p∗7−p, and the 3-form Φ is

Φ = Φ
(3) + Φ

(2)
A Θ

A + 1
2Φ

(1)
ABΘ

AB + 1
3!Φ

(0)
ABCΘ

ABC , (4.12)

where the Φ(s) are s–forms constructed from the eα:

Φ
(0)
ABC = Θ

ABC
!Φ ,

Φ
(1)
AB = Θ

AB
!Φ − 1

2Φ
(0)
ABCΘ

C ,

Φ
(2)
A = Θ

A
!Φ− Φ

(1)
ABΘ

B − 1
2Φ

(0)
ABCΘ

BC , (4.13)

and Φ(3) is found by taking the difference of these terms with Φ. Clearly the Φ(s) are ∇−–

constant. In particular, the dual Φ(1), if non-zero, would yield an additional vector that is

linearly independent from the ΘA. So, we set Φ(1) = 0 and work with

Φ = Φ
(3) + Φ

(2)
A Θ

A + 1
3!Φ

(0)
ABCΘ

ABC ,

∗Φ = (∗7−pΦ
(3))(∗p1) + (∗7−pΦ

(2)
A )(∗pΘ

A) + 1
3!(∗7−pΦ

(0)
ABC)(∗pΘ

ABC)

Ψ = Ψ
(4−p)(∗p1) +Ψ

(5−p)
A (∗pΘ

A) + 1
3!Ψ

(7−p)
ABC (∗pΘ

ABC) . (4.14)

Since Ψ = ∗Φ, the last line is merely convenient notation for the contents of the second one.

By the same arguments as above, the Ψ(7−p−s) are ∇−–constant and linearly independent

from the ΘA.

Now consider the possibility p = 4. This requires Φ
(2)
A = 0, since otherwise Ψ

(1)
A yields

an additional 1–form. On the other hand, since ∧3
R
4 = R we can write Φ

(0)
ABC = εABCDY

D

for some constants Y D, but this contradicts non-degeneracy of Φ because Φ is annihilated by∑
A Y AVA.

Similarly, p = 5 is not compatible with a non-degenerate metric. To see this, recall that
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Φ determines the metric as

gij =
1

144
εklmnpqr

ΦiklΦjmnΦpqr . (4.15)

If p = 5, then Φ is given by

Φ = e12kAΘ
A + Φ

(0)
ABCΘ

ABC , (4.16)

and a moment’s thought shows the contradiction: on one hand we assumed without loss of

generality that {e1, e2,Θ1, . . . ,Θ5} is an orthonormal basis, but on the other hand from the

explicit formula for g we have g11 = 0.

Finally, p ≥ 6 implies p = 7 because otherwise Φ is annihilated by the dual of e1.

4.3 A no-go theorem

As we just argued, the geometry of X7 admits exactly p ∇−–constant vectors VA only if

p ∈ {0, 1, 3, 7}. Naively such X7 lead to N = {1, 2, 4, 8} supersymmetry in three dimensions.

Of course this requires that the remaining supersymmetry conditions are obeyed with ε0

replaced by the corresponding εA, and it may be that this only holds for some k < p spinors.

This would lead to extended supersymmetry with N = k+1. We will now prove the following

no-go result: if p > 1 then k > 2, so that a solution with N ≥ 3 necessarily has N ≥ 4.

Similarly, N ≥ 5 implies N = 8.

To get started, we note that (4.2) holds if and only if

Φ!H = 0 , 2dϕ = −H!Ψ . (4.17)

To show this we apply the completeness relation (B.8) to (4.2), which shows the latter to be

equivalent to

0 = εT0

[
∇iϕΓi −

1
12H

ijk
Γijk

]
ε0 , 0 = εT0 Γm

[
∇iϕΓi −

1
12H

ijk
Γijk

]
ε0 .

Since Γi is antisymmetric, the first equation is the statement Φ!H = 0; using (4.4) the second

condition leads to 2dϕ = −H!Ψ.

Similarly, applying (4.4) to the gaugino variation, we learn that

F ij
Γijε0 = 0 ⇐⇒ F!Φ = 0 ⇐⇒ F = F!Ψ . (4.18)

The third relation follows from the second by contracting F!Φ into (the non-degenerate) Ψ

and using (4.5) . With these preparations in hand, we assume minimal supersymmetry, and

we turn to extended supersymmetry.
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The gravitino variation for εA

The existence of the spinors εA yields extra G2 structures:

Φ
A
ijk = iεTAΓijkεA , Ψ

A
ijkl = εTAΓijklεA . (4.19)

Using εA = iV n
AΓnε0 we can also write this as

Φ
A
ijk = iV m

A V n
A εT0 ΓmΓiΓjΓkΓnε0 . (4.20)

By commuting the Γm through ΓiΓjΓk, we obtain an elegant form for ΦA:

Φ
A = 2ΘA ∧ (VA!Φ)− Φ . (4.21)

In other words, to obtain ΦA from Φ we write out Φ in a Θ expansion, and we flip the

sign of every term that does contain ΘA. The ΦA will be ∇−–constant since Φ and ΘA are

∇−–constant. Note that

∇−
Θ

A = 0 =⇒ dΘA = V A
!H . (4.22)

The dilatino variation for εA

The dilatino variation will vanish for εA provided that

V m
A

(
∇iϕΓi −

1

12
H ijk

Γijk

)
Γmε0 = 0 . (4.23)

Since it vanishes for ε0, we can replace this with the anti-commutator

V m
A

{(
∇iϕΓi −

1

12
H ijk

Γijk

)
,Γm

}
ε0 = 0 , (4.24)

and some Clifford algebra manipulations, together with (4.4), reduce this to

VA!dϕ = 0 , (VA!H)!Φ = 0 . (4.25)

The gaugino variation for εA

Finally, we have

F ij
ΓijεA = iV m

A F ij [ΓiΓj,Γm]ε0 = 4iV m
A F ijgjmε0 . (4.26)

So, the vanishing of the gaugino variation for εA reduces to

VA!F = 0 . (4.27)
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N ≥ 3 implies N ≥ 4

Suppose that all of the supersymmetry conditions are satisfied by ε0 and εA for A = 1, 2. We

will call these the N = 3 supersymmetry conditions. From the results above we know that

there exists a third ∇−–constant spinor

ε3 = iV m
2 Γmε1 = iV m

3 Γmε0 , V m
3 = V i

2V
j
1 Φ

m
ij . (4.28)

We will now show that ε3 also yields a supersymmetry.

Let us start with the gaugino variation. Minimal supersymmetry requires F = F!Ψ, so

V m
3 Fmn = 1

2V
k
2 V

l
1Φ

m
kl F ij

Ψijmn = −1
2Θ

2
kΘ

1
lF

ij
ΨijnmΦ

klm . (4.29)

Using (4.5) we then obtain

V m
3 Fmn = −Θ

2
kΘ

1
lF

ij
(
δ
[k
[i Φ

l]
jn] + δ

[k
[jΦ

l]
ni] + δ

[k
[nΦ

l]
ij]

)
= 0 . (4.30)

The last equality follows because every term in the sum is proportional to either V1!F , V2!F ,

or to F!Φ, and all of these are zero by the N = 3 conditions.

Next, we consider the term V3!dϕ that arises from the dilatino variation. Using minimal

supersymmetry we have

−2V3!dϕ = V3!(H!Ψ) . (4.31)

In components we have

−2V3!dϕ = 1
2Θ

2
pΘ

1
q
1
3!H

ijk
ΨijkmΦ

pqm , (4.32)

and (4.5) allows us to rewrite this as

−2V3!dϕ = 1
2V1![(V2!H)!Φ] − 1

2V2![(V1!H)!Φ] = 0 . (4.33)

The last equality follows because each square bracket is zero by N = 3 conditions.

Finally, we need to show that (V3!H)!Φ = 0. This requires more details on the structure

of Φ and H.10 The first ingredient is the form of Φ with p = 3 vectors. As we show in the

appendix, we have

Φ = ω1Θ
1 + ω2Θ

2 + ω3Θ
3 +Θ

123 , (4.34)

where ωA = 1
2MAije

i∧ej are three self-dual 2–forms that satisfy the SU(2) structure relations

10At the level of representation theory the comparative difficulty can be traced to the fact that H has
components in both 27 and 7 of ∧3

T
∗

X under the G2 structure decomposition.
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ωA ∧ ωB = 2δABe
1234. This implies that Ψ is given by

Ψ = 1
2ωAεABCΘ

BC + e1234 . (4.35)

Next, we obtain constraints on H. The H flux has a general expansion

H = H(3) +H
(2)
A Θ

A + 1
2H

(1)
ABΘ

AB +H(0)
Θ

123 , (4.36)

and minimal supersymmetry requires

0 = H!Φ = H
(2)
A !ωA +H(0) . (4.37)

A short computation shows that the N = 3 supersymmetry conditions imply H
(1)
AB = 0 for

all A and B, while

H
(2)
A !ωB = −δABH

(0) A = 1, 2, B = 1, 2, 3 . (4.38)

There are further constraints on H from the minimal supersymmetry conditions. First, since

H determines dΘA via

dΘA = VA!H = H
(2)
A + 1

2H
(0)εADEΘ

DE (4.39)

we see that

dΦ = ωAH
(2)
A + {terms with at least one Θ} . (4.40)

Therefore, Φ ∧ dΦ = 0 implies11

H
(2)
A ωA = 0 ⇐⇒ H

(2)
A !ωA = 0 . (4.41)

Combining this result with (4.37), we conclude that H(0) = 0, so that VA!H = H
(2)
A .

For our last machination we note that since H!Ψ = −2dϕ, and V A
!dϕ = 0, H!Ψ cannot

have any Θ components. On the other hand, we have

H!Ψ = H(3)
!e1234 −H

(2)
A !ωBεABCΘ

C . (4.42)

The latter terms vanish if and only if

H
(2)
A !ωB = H

(2)
B !ωA (4.43)

11The second condition follows from the first because ωA = ∗ωA.
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for all A,B. But, combining this with (4.38) and H(0) = 0, we finally have

H
(2)
A !ωB = 0 (4.44)

for all A and B. So, at last, (VA!H)!Φ = 0 for all A, and, as promised, N ≥ 3 implies N ≥ 4.

Incidentally, H(0) = 0 also implies that all three vectors VA commute, so the N = 4

solutions are all of the form of a T 3 bundle over a hyper-Hermitian surface. Just as in

the analogous case of d = 4 N = 2 compactifications [6], we expect that the most general

geometric solution of this form is indeed a T 3 bundle over a K3.

N ≥ 5 implies N = 8

Finally, we show that a compactification with N ≥ 5 necessarily preserves maximal super-

symmetry. By assumption of N ≥ 5, we have ε0 and εA = iV m
A Γmε0, with A = 1, 2, 3, as well

as ε4 = iV m
4 Γmε0 that solve the supersymmetry constraints. We also know that X7 admits

three more independent ∇−–constant vectors Ṽa, with a = 5, 6, 7. Without loss of generality

we take the Ṽa orthonormal and orthogonal to the VA; we define their dual forms Θ̃a.

From above we know that for N ≥ 4 Φ takes the form

Φ = ωAΘ
A +Θ

123 ,

where the ωA are self-dual and satisfy ωA ∧ ωB = 2δABΘ
4Θ̃567. The conditions on ωA imply

that

ωA = UAa

[
Θ

4
Θ̃

a + 1
2ε

abc
Θ̃

b
Θ̃

c
]
, (4.45)

with UAaUBa = δAB . Hence Θ′A = Θ4
!ωA are three orthonormal ∇−–constant 1-forms that

are also orthogonal to Θ1, . . . ,Θ4. The dual vectors V ′
A complete the VA to a basis for TX .

Moreover, we have

Θ
′A = VA!(V4!Φ) , (4.46)

and therefore the arguments we gave in the previous section guarantee that the spinors ε′A
constructed using the vectors V ′

A satisfy all of the supersymmetry conditions and generate

three additional supersymmetries.
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A Three vectors on X7 and constraints on G2 form

We argued in section 4.2 that with p nowhere vanishing vectors VA we must have

Φ = Φ
(3) + Φ

(2)
A Θ

A + 1
3!Φ

(0)
ABCΘ

ABC . (A.1)

When p = 3 we need Φ(3) = 0, since otherwise ∗4Φ
(3) will yield an additional vector. So, we

have

Φ = ωAΘ
A + kΘ123 . (A.2)

We can take k ≥ 0, since the sign of k can be changed by redefining ΘA → −ΘA and

ωA → −ωA. This is just a convenient choice of orientation on X7.

We assume that {e1, e2, e3, e4,Θ1,Θ2,Θ3} is an orthonormal basis for T ∗
X and check the

compatibility of this with the metric obtained from Φ via

gij =
1

144
εklmnpqr

ΦiklΦjmnΦpqr . (A.3)

A bit of algebra and (A.2) show that

144gij = 3εABCεαβγδ(ΦiABΦjαβ + ΦiαβΦjAB)ΦCγδ

− 12εABCεαβγδΦiAαΦjBβΦCγδ + εABCεαβγδΦiαβΦjγδΦABC . (A.4)

This can be unpacked into various components. Taking Eα to be the dual vectors to ea, we

have the following results:

g(Eµ, VA) = 0 ,

g(VD, VE) =
k

8
εαβγδΦDαβΦEγδ ,

g(Eµ, Eν) = −
1

12
εABCεαβγδΦAµαΦBνβΦCγδ . (A.5)

Starting with the general form of Φ, we write ωA = 1
2MAαβe

α∧eβ, so that ΦAαβ = MAαβ .

Finally, setting

(∗M)Aαβ = 1
2ε

αβγδMAγδ , (A.6)

we obtain a simple form for the metric components:

g(VD, VE) = −k
4 Tr(MD(∗ME)) , g(Eµ, Eν) = −1

6ε
ABC(MA(∗MB)MC)µν . (A.7)
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Since we already verified g(Eµ, VA) = 0, we now just need to check that

δDE = −k
4 Tr(MD(∗ME)) , 4 = −1

6ε
ABC(MA(∗MB)MC) . (A.8)

Reduction of parameters by SO(4) action

Since (A.8) is invariant under SO(4) rotations MA → RTMAR we can bring the anti-

symmetric matrices MA to a canonical form. Without loss of generality we set

M1 =

(
x1ρ 0

0 y1ρ

)
, (A.9)

where ρ = iσ2 and x1 ≥ 0, y1 ≥ 0.12 This is stabilized by an SO(2) × SO(2) action, which

allows us to bring M2 to the form

M2 =

(
x2ρ P2

−P T
2 y2ρ

)
, P2 =

(
0 b2
c2 0

)
, (A.10)

with c2 ≥ 0. Finally, M3 takes the general form

M3 =

(
x3ρ P3

−P T
3 y3ρ

)
, P3 =

(
a3 b3
c3 d3

)
. (A.11)

Solution of the constraints

We now have a system of 16 equations in (A.8) that depend on 13 parameters: 12 of these

are in the reduced MA, and k is the last one. The equations have a unique solution, with

M1 =

⎛
⎜⎜⎜⎝

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

⎞
⎟⎟⎟⎠ , M2 =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 −1 0 1

−1 0 0 0

⎞
⎟⎟⎟⎠ , M3 =

⎛
⎜⎜⎜⎝

0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0

⎞
⎟⎟⎟⎠ , (A.12)

or in terms of Pauli matrices

M1 = 2 ⊗ iσ2 , M2 = iσ2 ⊗ σ1 , M3 = iσ2 ⊗ σ3 . (A.13)

These satisfy

∗MA = MA , MAMB = −δAB 4 + εABCMC . (A.14)

12The σi are the Pauli matrices.
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Thus,

Φ = ωAΘ
A +Θ

123 , (A.15)

and the ωA are non-degenerate, self-dual, and satisfy ωA ∧ ωB = 2δABe
1234 .

B An integral flux for N = 3 supersymmetry

The case of the N = 3 vacuum on X × X̃ is exotic enough that it is worthwhile to check that

it can be obtained by some choice of integral flux and no space-filling M2-branes.13

Let x = (2A − C), and write fαα̇ = xφαα̇. To obtain exactly N = 3 supersymmetry, we

take x ̸= 0 and the flux must be

G = −xjaȷ̃a + 2x[vE + ṽẼ] + xωαφαα̇ω̃α̇ . (B.1)

This flux is integral if and only if

1

2π
[−xjaȷ̃ȧ + ωαfαα̇ω̃α̇] ∈ H4(X × X̃,Z) and

xv

π
∈ Z ,

xṽ

π
∈ Z . (B.2)

While the implications of the first of these are not immediately obvious, the last two are

readily solved: there are non-zero integers m, m̃ such that

v =
mπ

x
, ṽ =

m̃π

x
. (B.3)

The integrated Bianchi identity now becomes

mm̃

2

[
5 + tr(φTφ)

]
= 24−N(M2) . (B.4)

We will now demonstrate that we can choose m, m̃ and φ so that the flux is integral and

N(M2) = 0.

Our Ansatz for the flux is motivated by the counting of massless moduli for N = 3 vacua:

we see that at best, the number of geometric moduli preserved is that of a single K3 geometry,

so that it is not unreasonable to tie the geometries of X and X̃ together. In fact, we will take

X and X̃ to be identical.

Let us explain a little bit more what this means. We fix an integral basis {e1, e2, . . . , e22}

for H2(X,Z) such that

eIeJ = DIJE , (B.5)

13We thank Dave Morrison for stressing the importance of this point and for discussions regarding the
solution presented here and its possible generalizations.
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where D = (−E8)
⊕2 ⊕ H⊕3 is the standard metric of signature (3, 19). Since H2(X,Z) is

unimodular, we have the key fact that D−1, with components denoted by DIJ is also an

integral matrix. There is a corresponding set of forms ẽİ on X̃ that have identical structure.

The ja and ωα can be written in terms of the integral basis:

ja = EaIe
I , ωα = EαIe

I . (B.6)

The coefficients obey

EaID
IJEbJ = 2δabv , EaID

IJEαJ = 0 , EαID
IJEβJ = −2δαβv . (B.7)

There is also a useful completeness relation for the vielbeins E :

EaIEaJ − EαIEαJ = 2vDIJ . (B.8)

We now describe our Ansatz for the flux.

1. We assume that X has an integral −4 class that is orthogonal to all of the ja. That is,

there exists ξ ∈ H2(X,Z) that is annihilated by the ja and satisfies ξ∧ξ = ξ ·ξE = −4E.

It is easy to construct smooth K3 geometries with this property at low Picard number.

Without loss of generality we can take ξ to be the direction of one of the anti-self-dual

forms. More precisely, we set

ω1 =
√

v
2ξ . (B.9)

2. Once we choose this data for X, we use the same EaI and EαI to prescribe the ȷ̃ȧ and

ω̃α̇, i.e. the geometry of X̃ :

ȷ̃a = Eaİ ẽ
İ , ω̃α = Eαİ ẽ

İ . (B.10)

This implies that v = ṽ, and therefore m = m̃ as well; we also have a form ξ̃ as a special

−4 class on X̃ .

3. We take the φαα̇ to be diagonal: φαα̇ = φαδαα̇.

With these assumptions the flux takes the form

G

2π
= −

x

2π
[jaȷ̃a − ωαω̃α] +

x

2π
(φα − 1)ωαω̃α

= −mDIİe
I ẽİ +

x

2π
(φα − 1)ωαω̃α , (B.11)

where in the second line we used the completeness relation (B.8).

The reason this works nicely is that the first term is automatically integral, and we just

need to choose the φα appropriately so that the last term is integral as well. We accomplish
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this by setting φα = 1 for all α > 1, so that now

G

2π
= −mDIİe

I ẽİ +
m(φ1 − 1)

4
ξξ̃ . (B.12)

Choosing φ1 = 5 leads to an integral flux.

For this choice of integral flux the Bianchi identity becomes

m2

2

[
5 + 52 + 18

]
= 24−N(M2) , (B.13)

and setting m = 1, we find the desired N(M2) = 0.

We have shown that there is a choice of flux that leads to exactly N = 3 supersymmetry

without space-filling M2 branes. The choice leaves many moduli; indeed, the number of

massless scalars is smaller than the maximum allowed by just one N = 3 “hypermultiplet.”

It is not so easy to generalize this solution. If one stays with the “completeness” relation

trick above and simply modifies the φαα̇ it is quite likely there are no others withN(M2) = 0.14
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