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Abstract As is well-known, transition probabilities of jump Markov processes satisfy Kol-
mogorov’s backward and forward equations. In the seminal 1940 paper, William Feller
investigated solutions of Kolmogorov’s equations for jump Markov processes. Recently the
authors solved the problem studied by Feller and showed that the minimal solution of Kol-
mogorov’s backward and forward equations is the transition probability of the corresponding
jump Markov process if the transition rate at each state is bounded. This paper presents
more general results. For Kolmogorov’s backward equation, the sufficient condition for the
described property of the minimal solution is that the transition rate at each state is locally
integrable, and for Kolmogorov’s forward equation the corresponding sufficient condition is
that the transition rate at each state is locally bounded.

Keywords JumpMarkovprocess ·Kolmogorov’s equation ·Minimal solution ·Boundedness
condition · Transition function · Unbounded transition rates

1 Introduction

Continuous-time jumpMarkov processes are broadly used in stochastic models of operations
research. In many applications continuous-time jump Markov processes are defined by tran-
sition rates often called Q-functions. Each Q-function defines Kolmogorov’s backward and
forward equations, and transition probabilities of the jumpMarkov process defined by the Q-
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function satisfy these equations. If transition rates are unbounded, Kolmogorov’s equations
may have multiple solutions, see, e.g., Anderson (1991, Chap. 4, Example 1.2), Doob (1990,
Chap. 6), Kendall (1956), Reuter (1957), and the relation between Kolmogorov’s equations
and the corresponding transition probabilities is not trivial. For example, in queueing theory
birth and death processes have unbounded transition rates in each of the following three
situations: arrival rates depend on the state of the system and are unbounded, queues with an
infinite number of servers, queues with reneging.

This paper answers the questions on how a nonhomogeneous jumpMarkov process can be
defined for a given Q-function and how can its transition probability be found as a solution
of Kolmogorov’s backward and forward equations. These questions were studied by Feller
(1940) for continuous Q-functions and a standard Borel state space, by Ye et al. (2008) for
measurable Q-functions and a countable state space, and by Feinberg et al. (2014) formeasur-
able Q-functions and a standard Borel state space. All these papers considered Q-functions
satisfying certain boundedness conditions. This paper generalizes the results from Feinberg
et al. (2014) to more general classes of unbounded Q-functions, strengthens some of results
from Feinberg et al. (2014), and provides proofs of the following two facts: (i) (Lemma 1(a))
Fellers’s assumption on the boundedness of a Q-function, Assumption 1, is equivalent to the
boundedness of a Q-function at each state, Assumption 2, and (ii) (Theorem 4)Kolmogorov’s
forward equation is equivalent to the integral equation (14). The first fact is introduced and
the validity of equation (14) is stated in Feinberg et al. (2014) without detailed proofs.

For a topological space S, its Borel σ -field (the σ -field generated by open subsets of S)
is denoted by B(S), and the sets in B(S) are called Borel subsets of S. Let R be the real
line endowed with the Euclidean metric. We recall that a measurable space (S,S ) is called
a standard Borel space if there exists a bijection f from (S,S ) to a Borel subset of R such
that the mappings f and f −1 are measurable. Equivalently, a measurable space (S,S ) is
a standard Borel space if there is a topology τ on S such that (S, τ ) is a Polish (separable
completely metrizable) space and S = B(S). So, we usually write (S,B(S)) or simply S
instead of (S,S ) for a standard Borel space. If S is a standard Borel space and Y ∈ B(S),

we denoteB(Y ) := {A ⊆ Y : A ∈ B(S)} for Y ∈ B(S). Then (Y,B(Y )) is also a standard
Borel space. In this paper, measurability and Borel measurability are used synonymously.

Let (X,B(X)) be a standard Borel space, called the state space, and let [T0, T1[ be a finite
or an infinite interval in R+ := [0,∞[. In this paper, we always assume that T0 < T1. A
function P(u, x; t, B), where u ∈ [T0, T1[, t ∈]u, T1[, x ∈ X, and B ∈ B(X), is called a
transition function if it takes values in [0, 1] and satisfies the following properties:

(1) For all u, x, t the function P(u, x; t, ·) is a measure on (X,B(X));
(2) For all B the function P(u, x; t, B) is Borel measurable in (u, x, t);
(3) P(u, x; t, B) satisfies the Chapman-Kolmogorov equation

P(u, x; t, B) =
∫

X
P(s, y; t, B)P(u, x; s, dy), u < s < t. (1)

A transition function P is called regular if P(u, x; t, X) = 1 for all u, x, t in the domain of
P .

A stochastic process {Xt : t ∈ [T0, T1[} with values in X, defined on the probability space
(Ω,F ,P) and adapted to the filtration {Ft }t∈[T0,T1[, is called Markov if P(Xt ∈ B | Fu) =
P(Xt ∈ B | Xu), P − a.s. for all u ∈ [T0, T1[, t ∈]u, T1[, and B ∈ B(X). Each Markov
process has a transition function P such that P(Xt ∈ B | Xu) = P(u,Xu; t, B), P − a.s.;
see Kuznetsov (1981), where the equivalence of two definitions of a Markov process given
by Kolmogorov (1992) is established. In addition, if a Markov process is a jump process,
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that is, if each sample path of the process is a right-continuous piecewise constant function
in t that has a finite or countable number of discontinuity points on t ∈ [T0, T1[, then the
Markov process is called a jump Markov process.

A function q(x, t, B), where x ∈ X, t ∈ [T0, T1[, and B ∈ B(X), is called a Q-function
if it satisfies the following properties:

(a) For all x, t the functionq(x, t, ·) is a signedmeasure on (X,B(X)) such thatq(x, t, X) ≤
0 and 0 ≤ q(x, t, B\{x}) < ∞ for all B ∈ B(X);

(b) For all B the function q(x, t, B) is measurable in (x, t).

In addition to properties (a) and (b), if q(x, t, X) = 0 for all x, t , then the Q-function q
is called conservative. Note that any Q-function can be transformed into a conservative Q-
function by adding an absorbing state x̄ to X with q(x, t, {x̄}) := −q(x, t, X), q(x̄, t, X) :=
0, and q(x̄, t, {x̄}) := 0, where x ∈ X and t ∈ [T0, T1[. To simplify the presentation, in
this paper we always assume that q is conservative. The same arguments as Feinberg et al.
(2014, Remark 4.1) explain how the main formulations change when the Q-function q is not
conservative. A Q-function q is called continuous if it is continuous in t ∈ [T0, T1[.

Feller (1940) studied Kolmogorov’s backward and forward equations for continuous Q-
functions and provided explicit formulae for a transition function that satisfies Kolmogorov’s
backward and forward equations. If the constructed transition function is regular, Feller (1940,
Theorem 3) showed that this transition function is the unique solution of Kolmogorov’s
backward equation. Though Feller (1940) focused on regular transition functions, it follows
from the proof of Theorem 3 in Feller (1940) that the transition function constructed there
is the minimal solution of Kolmogorov’s backward equation. Feinberg et al. (2014) showed
for a measurable Q-function that the transition function constructed by Feller (1940) is the
minimal solution of Kolmogorov’s backward and forward equations, and it is the transition
function of the jump Markov process defined by the random measure whose compensator is
defined via the Q-function. In this paper, we show that the minimal solution of Kolmogorov’s
backward and forward equations is the transition function of the corresponding jumpMarkov
process under more general boundedness assumptions on Q-functions than those assumed
in Feinberg et al. (2014).

2 Assumptions and description of main results

In this section, we describe several assumptions on unbounded Q-functions and the results
of this paper. Let q(x, t) := −q(x, t, {x}) for x ∈ X and t ∈ [T0, T1[, and let q̄(x) :=
supt∈[T0,T1[ q(x, t) for x ∈ X. Feller (1940) studied Kolmogorov’s equations for continuous
Q-functions under the following assumption.

Assumption 1 (Feller’s assumption) There exists Borel subsets Bn, n = 1, 2, . . . , ofX such
that supx∈Bn

q̄(x) < n for all n = 1, 2, . . . and Bn ↑ X as n → ∞.

Feinberg et al. (2014) studied Kolmogorov’s equations for measurable Q-functions under
the following assumption with T0 = 0 and T1 = ∞.

Assumption 2 (Boundedness of q) q̄(x) < ∞ for each x ∈ X.

As mentioned in Feinberg et al. (2014, p. 262), Assumptions 1 and 2 are equivalent; see
Lemma 1(a) for details. In this section, we introduce two more general assumptions.

Assumption 3 (Local boundedness of q) supt∈[T0,s[ q(x, t) < ∞ for each s ∈]T0, T1[ and
x ∈ X.
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Assumption 4 (Local L 1 boundedness of q)
∫ s

T0
q(x, t)dt < ∞ for each s ∈]T0, T1[ and

x ∈ X.

The following lemma compares Assumptions 1–4.

Lemma 1 The following statements hold for a measurable Q-function q :
(a) Assumptions 1 and 2 are equivalent;
(b) Assumption 2 implies Assumption 3;
(c) Assumption 3 implies Assumption 4.

Proof (a) Let {Bn, n = 1, 2, . . .} be a sequence of Borel subsets of X satisfying the prop-
erties stated in Assumption 1. Then for each x ∈ X there exists an n ∈ {1, 2, . . .} such that
x ∈ Bn and therefore q̄(x) < n. Thus, Assumption 1 implies Assumption 2. To prove that
Assumption 2 implies Assumption 1, define Cn := {x ∈ X : q̄(x) ≥ n}, n = 1, 2, . . . .
Since Cn = ∩∞

k=1 projX({(x, t) ∈ (X × [T0, T1[) : q(x, t) ≥ n − k−1}) are countable
intersections of projections of Borel sets, the sets Cn are analytic for all n = 1, 2, . . . ; see
Bertsekas and Shreve (1978, Proposition 7.39 and Corollary 7.35.2). In addition, Assump-
tion 2 implies that

⋂∞
n=1 Cn = ∅. Thus, in view of the Novikov separation theorem, Kechris

(1995, Theorem 28.5), there exist Borel subsets Zn, n = 1, 2, . . . , of X such that Cn ⊆ Zn

and
⋂∞

n=1 Zn = ∅. This fact implies that Zc
n ⊆ Cc

n and
⋃∞

n=1 Zc
n = X, where the sets

Zc
n and Cc

n are complements of the sets Zn and Cn , respectively. Let Bn := ∪n
m=1Zc

m for all
n = 1, 2, . . . . The Borel sets Bn, n = 1, 2, . . . , satisfy the properties stated in Assumption 1.

(b,c) Statements (b) and (c) are obvious. �

Remark 1 Under Assumption 1, which, as stated in Lemma 1(a), is equivalent to Assump-
tion 2, Feller (1940) studied Kolmogorov’s equations for the time parameter t ∈ [T0, T1[.
Under Assumption 2, Feinberg et al. (2014) studied Kolmogorov’s equations for the time
parameter t ∈ [T0, T1[= [0,∞[. It is apparent that the formulation of results for an arbi-
trary interval [T0, T1[, where 0 ≤ T0 < T1 ≤ ∞, is more general than their formulation
for the interval [0,∞[. In fact, these two formulations are equivalent under Assumption 2
holding for the corresponding time intervals. Indeed, a Q-function q, defined for t ∈ [T0, T1[
and satisfying Assumption 2 on this interval, can be extended to all t ∈ [0,∞[ by setting
q(x, t, B) := 0 for x ∈ X, t ∈ [0, T0[∪[T1,∞[, and B ∈ B(X). The extended Q-function
satisfies Assumption 2 for t ∈ [0,∞[. Since solutions of Kolmogorov’s Eqs. (11) and (13)
for the extended Q-function are constants in t, when t ∈ [0, T0[ and t ∈ [T1,∞[, and since
Kolmogorov’s equations for the original Q-function q and the extended Q-function coincide
when t ∈ [T0, T1[, there is a one-to-one correspondence between solutions of Kolmogorov’s
equations for the Q-function q and for the extended Q-function. Since Assumption 2 is
assumed in Feinberg et al. (2014), the results obtained in Feinberg et al. (2014) for the
problem formulations for the interval [0,∞[ hold for an arbitrary interval [T0, T1[.

As explained inRemark 1, if a Q-functionq satisfiesAssumption 2 on the interval [T0, T1[,
its extension to t ∈ [0,∞[ defined in Remark 1 satisfies the same assumption on [0,∞[.
The following example illustrates that this need not be the case if q satisfies Assumption 3
or Assumption 4. Hence, following Feller (1940), we formulate the results in this paper for
an arbitrary interval [T0, T1[ with 0 ≤ T0 < T1 ≤ ∞.

Example 1 A Q-function q satisfiesAssumption 3 on the interval [T0, T1[,while its extention
to t ∈ [0,∞[defined inRemark1does not satisfy even theweakerAssumption4whenT0 = 0
and T1 = ∞. Fix an arbitrary T1 ∈]0,∞[. Let T0 := 0, X := {1, 2, . . .}, and q(x, t) := 1

T1−t
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for all x ∈ X, 0 ≤ t < T1. Then supt∈[T0,s[ q(x, t) ≤ (T1 − s)−1 < ∞ for each s ∈]T0, T1[
and x ∈ X. Thus the Q-function q satisfies Assumption 3.

Consider the extension of q to t ∈ [0,∞[ defined in Remark 1 and the sequence {tm, m =
1, 2, . . .} ⊂ [0, T1[ with tm = T1 − 1

m for all m = 1, 2, . . . . Observe that

∫ T1

0
q(x, s)ds = lim

m→∞

∫ tm

0
q(x, s)ds = lim

m→∞

∫ tm

0

1

T1 − s
ds = lim

m→∞ log (m × T1) = ∞.

(2)
Therefore, the described extension of q from t ∈ [0, T1[ to t ∈ [0,∞[ does not satisfy
Assumption 4. �


In Sect. 3 we show in Theorem 1 that under Assumption 4 the compensator defined
by a Q-function and an initial probability measure define a jump Markov process, whose
transition function P̄ is described in (7), and Theorem 2 states that this function is theminimal
function satisfying Kolmogorov’s backward equation. The function P̄ was introduced in
Feller (1940). Section 4 deals with Kolmogorov’s forward equation, when Assumption 3
holds, and Theorem 3 states that P̄ is the minimal function satisfying the forward equation.
Section 5 presents results on Kolmogorov’s forward equation under Assumption 2.

3 Jump Markov process defined by a Q-function and Kolmogorov’s
backward equation

In this section, we show that a Q-function satisfying Assumption 4 defines a transition
function for a jump Markov process. In addition, this transition function is the minimal
function satisfying Kolmogorov’s backward equation defined by this Q-function.

Let x∞ /∈ X be an isolated point adjoined to the space X. Denote X̄ = X∪{x∞}. Consider
the Borel σ -field B(X̄) = σ(B(X), {x∞}) on X̄, which is the minimal σ -field containing
B(X) and {x∞}. Let (X̄×]T0, T1])∞ be the set of all sequences (x0, t1, x1, t2, x2, . . .) with
xn ∈ X̄ and tn+1 ∈]T0, T1] for all n = 0, 1, . . . . This set is endowed with the σ -field
generated by the products of the Borel σ -fieldsB(X̄) andB(]T0, T1]).

Denote by Ω the subset of all sequences ω = (x0, t1, x1, t2, x2, . . .) from (X̄×]T0, T1])∞
such that: (i) x0 ∈ X; (ii) for all n = 1, 2, . . . , if tn < T1, then tn < tn+1 and xn ∈ X,
and if tn = T1, then tn+1 = tn and xn = x∞. Observe that Ω is a measurable subset
of (X̄×]T0, T1])∞. Consider the measurable space (Ω,F ), where F is the σ -field of the
measurable subsets of Ω . For all n = 0, 1, . . ., let xn(ω) = xn and tn+1(ω) = tn+1, where
ω ∈ Ω, be the random variables defined on the measurable space (Ω,F ). Let t0 := T0,
t∞(ω) := lim

n→∞ tn(ω), ω ∈ Ω , and for all t ∈ [T0, T1], let Ft := σ(B(X),Gt ), where

Gt := σ(I {xn ∈ B}I {tn ≤ s} : n ≥ 1, T0 ≤ s ≤ t, B ∈ B(X)). Throughout this paper, we
omit ω whenever possible.

Consider the multivariate point process (tn, xn)n=1,2,... on (Ω,F ). Given a Q-function q
satisfying Assumption 4, define a random measure ν on ([T0, T1[×X) as

ν(ω; [T0, t], B) :=
∫ t

T0

∑
n≥0

I {tn < s ≤ tn+1}q(xn, s, B\{xn})ds, t ∈ [T0, T1[, B ∈ B(X).

(3)
Observe that ν is a predictable randommeasure. Indeed, formula (3) coincides with Feinberg
et al. (2014, Eq. (2)) when T0 = 0 and T1 = ∞. Arguments similar to those following
Feinberg et al. (2014, Eq. (2)), which show that the random measure ν defined in Feinberg
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et al. (2014, Eq. (2)) is a predictable random measure, imply that the measure ν defined
in (3) is a predictable random measure. Furthermore, ν({t} × X) ≤ 1 for all t ∈]T0, T1[
and ν([t∞,∞[×X) = 0. According to Jacod (1975, Theorem 3.6), the predictable random
measure ν defined in (3) and a probability measure γ on X define a unique probability
measure P on (Ω,F ) such that P(x0 ∈ B) = γ (B), B ∈ B(X), and ν is the compensator
of the random measure of the multivariate point process (tn, xn)n≥1 defined by the triplet
(Ω,F ,P).

Consider the process {Xt : t ∈ [T0, T1[},
Xt (ω) :=

∑
n≥0

I{tn ≤ t < tn+1}xn + I{t∞ ≤ t}x∞, (4)

defined on (Ω,F ,P) and adapted to the filtration {Ft , t ∈ [T0, T1[}. By definition, the
process {Xt : t ∈ [T0, T1[} is a jump process.

For x ∈ X and t ∈ [T0, T1[, let q+(x, t, ·) be the measure on (X,B(X)) with values
q+(x, t, B) := q(x, t, B\{x}), B ∈ B(X). In this paper, we use the notation

q(x, t, dz\{x}) := q+(x, t, dz).

Following Feller (1940, Theorem 2), for x ∈ X, u ∈ [T0, T1[, t ∈]u, T1[, and B ∈ B(X),
define

P̄(0)(u, x; t, B) := I {x ∈ B}e− ∫ t
u q(x,s)ds, (5)

and

P̄(n)(u, x; t, B) : =
∫ t

u

∫
X

e− ∫ w
u q(x,θ)dθq(x, w, dy\{x})P̄(n−1)(w, y; t, B)dw,

n = 1, 2, . . . . (6)

Set

P̄(u, x; t, B) :=
∞∑

n=0

P̄(n)(u, x; t, B). (7)

According to Feller (1940, (27) and Theorem 4), Eq. (6) can be rewritten as

P̄(n)(u, x; t, B) =
t∫

u

∫

X

∫

B

e− ∫ t
w q(y,θ)dθq(z, w, dy\{z})P̄(n−1)(u, x;w, dz)dw,

n = 1, 2, . . . . (8)

Though Feller (1940) considered continuous Q-functions, the proof of (8) given in Feller
(1940, Theorem 4) remains correct for measurable Q-functions.

Observe that P̄ is a transition function if the Q-function q satisfies Assumption 4. For
continuous Q-functions satisfying Assumption 1, Feller (1940, Theorems 2, 5) proved that:
(a) for fixed u, x, t the function P̄(u, x; t, ·) is a measure on (X,B(X)) such that 0 ≤
P̄(u, x; t, ·) ≤ 1, and (b) for all u, x, t, B the function P̄(u, x; t, B) satisfies the Chapman-
Kolmogorov equation (1). The proofs remain correct for measurable Q-functions satisfying
Assumption 4. Themeasurability of P̄(u, x; t, B) in u, x, t for all B ∈ B(X) follows directly
from the definitions (5), (6), and (7). Therefore, if q satisfies Assumption 4, the function
P̄ takes values in [0, 1] and satisfies properties (i)–(iii) from the definition of a transition
function.
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Theorem 1 (cp. Feinberg et al. (2014, Theorem 2.2)) Given a probability measure γ on X
and a Q-function q satisfying Assumption 4, the jump process {Xt : t ∈ [T0, T1[} defined in
(4) is a jump Markov process with the transition function P̄.

Proof The statement of the theorem follows from the same arguments as in the proof of
Feinberg et al. (2014, Theorem 2.2), where the case T0 = 0 and T1 = ∞ was considered.
We remark that though it was assumed there that the Q-function q satisfies Assumption 2,
the arguments in the proof in Feinberg et al. (2014) only require that,

∫ t

u
q(x, s)ds < ∞, x ∈ X, u ∈ [T0, T1[, t ∈]u, T1[, (9)

and this holds in view of Assumption 4. �

LetP be the family of all real-valued non-negative functions P(u, x; t, B), defined for all

t ∈]T0, T1[, u ∈ [T0, t[, x ∈ X, and B ∈ B(X),which are measurable in (u, x) ∈ [T0, t[×X
for all t ∈]T0, T1[ and B ∈ B(X). Observe that P̄ ∈ P .

Consider a set E and some familyA of functions f : E → R̄ = [−∞,+∞]. A function
f from A is called minimal in the family A if for every function g from A the inequality
f (x) ≤ g(x) holds for all x ∈ E . The following theorem generalizes Theorems 3.1 and 3.2 in
Feinberg et al. (2014), stating the same statements under Assumption 2which is stronger than
Assumption 4. The measurability in (u, x) of a function satisfying Kolmogorov’s backward
equation is implicitly assumed in Feinberg et al. (2014).

Theorem 2 Under Assumption 4, the transition function P̄ is the minimal function in P
satisfying the following two properties:

(i) for all t ∈]T0, T1[, x ∈ X, and B ∈ B(X),

lim
u→t− P(u, x; t, B) = I{x ∈ B}, (10)

and the function is absolutely continuous in u ∈ [T0, t[;
(ii) for all t ∈]T0, T1[, x ∈ X, and B ∈ B(X), Kolmogorov’s backward equation

∂

∂u
P(u, x; t, B) = q(x, u)P(u, x; t, B) −

∫
X

q(x, u, dy\{x})P(u, y; t, B) (11)

holds for almost every u ∈ [T0, t[.
In addition, if the transition function P̄ is regular (that is, P̄(u, x; t, X) = 1 for all u, x, t in
the domain of P̄), then P̄ is the unique function in P satisfying properties (i), (ii) and which
is a measure on (X,B(X)) for all t ∈]T0, T1[, u ∈ [T0, t[, and x ∈ X, and taking values in
[0, 1].
Proof Under Assumption 2, this theorem is Theorems 3.1 and 3.2 from Feinberg et al. (2014)
combined. However, the proofs there only use the property that (9) holds, and this property
is true under Assumption 4. Therefore, the statements of the theorem hold. �


4 Kolmogorov’s forward equation

Under Assumption 2, Kolmogorov’s forward equation (13) was studied by Feller (1940,
Theorem 1) for continuous Q-functions and by Feinberg et al. (2014, Theorems 4.1, 4.3)
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for measurable Q-functions. In this section, we study Kolmogorov’s forward equation (13)
under Assumption 3, which, in view of Lemma 1(b), is more general than Assumption 2.

Let P̂ be the family of real-valued functions P̂(u, x; t, B), defined for all u ∈ [T0, T1[,
t ∈]u, T1[, x ∈ X, and B ∈ B(X), which are measures on (X,B(X)) for fixed u, x, t and
are measurable functions in t for fixed u, x, B. In particular, P̄ ∈ P̂, where P̄ is defined in
(7).

Definition 1 For s ∈]T0, T1], a set B ∈ B(X) is called (q, s)-bounded if the function q(x, t)
is bounded on the set B × [T0, s[.

Definition 2 A (q, T1)-bounded set is called q-bounded.

In Definition 2 we follow the terminology from Feinberg et al. (2014, p. 262). Feller (1940)
called such sets bounded.

The following theorem shows that the transition function P̄ is the minimal function satis-
fying Kolmogorov’s forward equation. Being applied to a function q satisfying the stronger
Assumption 2, this theorem implies Corollary 5, which is a stronger result than Feinberg et
al. (2014, Theorem 4.3); see explanations before Corollary 5.

Theorem 3 Under Assumption 3, the transition function P̄ is the minimal function in P̂
satisfying the following two properties:

(i) for all u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and (q, s)-bounded sets B,

lim
t→u+ P(u, x; t, B) = I{x ∈ B}, (12)

and the function is absolutely continuous in t ∈]u, s[;
(ii) for all u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and (q, s)-bounded sets B, Kolmogorov’s

forward equation

∂

∂t
P(u, x; t, B) = −

∫
B

q(y, t)P(u, x; t, dy)+
∫

X
q(y, t, B\{y})P(u, x; t, dy), (13)

holds for almost every t ∈]u, s[.
In addition, if the transition function P̄ is regular, then P̄ is the unique function in P̂

satisfying properties (i), (ii) and taking values in [0, 1].

As stated in Theorem 3, the function P̄ satisfies Kolmogorov’s forward equation (13) for
(q, s)-bounded sets B ∈ B(X). In general, as the following example demonstrates, it is not
possible to extend (13) to all sets B ∈ B(X).

Example 2 For a set B ∈ B(X), Kolmogorov’s forward equation (13) does not hold at all
t ∈]u, T1[. LetX = Z,whereZdenotes the set of integers,q(0, t) = 1, q(0, t, j) = 2−(| j |+1)

for all j �= 0, and q( j, t,− j) = q( j, t) = 2| j | for all j �= 0. If Xu = 0, then starting at time
u the process spends an exponentially distributed amount of time at state 0, then it jumps to
a state j �= 0 with probability 2−(| j |+1), and then it oscillates between the states j and − j
with equal intensities. Thus for all u ∈ [T0, T1[ and t ∈]u, T1[

P̄(u, 0; t, 0) = e−(t−u) and P̄(u, 0; t, j) = 1 − e−(t−u)

2| j |+1 , j �= 0,
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which implies∫
X

q(y, t, X\{y})P̄(u, 0; t, dy) =
∫

X
q(y, t)P̄(u, 0; t, dy)

= q(0, t)P̄(u, 0; t, 0) +
∑
j �=0

q( j, t)P̄(u, 0; t, j) = e−(t−u) +
∑
j>0

(1 − e−(t−u)) = ∞.

Thus, if B = X, then (13) does not hold with P = P̄ because both integrals in (13) are
infinite. �


The following theorem describes the necessary and sufficient condition for a function P
from P̂ to satisfy properties (i) and (ii) stated in Theorem 3. In other words, it provides a
necessary and sufficient condition that a function P from P̂ satisfies Kolmogorov’s forward
equation. The necessity part of this theorem plays the central role in proving the minimality
property of P̄ stated in Theorem 3.

Theorem 4 Let Assumption 3 hold. A function P from P̂ satisfies properties (i) and (ii)
stated in Theorem 3 if and only if, for all u ∈ [T0, T1[, t ∈]u, T1[, x ∈ X, and B ∈ B(X),

P(u, x; t, B) = I{x ∈ B}e− ∫ t
u q(x,θ)dθ

+
∫ t

u

∫
X

∫
B

e− ∫ t
w q(y,θ)dθq(z, w, dy\{z})P(u, x;w, dz)dw. (14)

Lemma 2 Under Assumption 3, the following statements hold:

(a) for each u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and B ∈ B(X), the function P̄(u, x; t, B)

satisfies the boundary condition (12) and is absolutely continuous in t ∈]u, s[.
(b) the function P̄ satisfies property (ii) stated in Theorem 3.

Proof (a) Under Assumption 2, statement (a) of this lemma is Theorem 4.1(i) in Feinberg
et al. (2014), and the proof there is correct if (9) holds. In viewofLemma1(c), formula (9)
is true under Assumption 3, and therefore, statement (a) of the lemma holds.

(b) Fix an arbitrary s ∈]T0, T1[. Observe that a Q function satisfying Assumption 3 satisfies
Assumption 2 with T1 = s. Then it follows from Feinberg et al. (2014, Theorem 4.1(ii))
that, for all u ∈ [T0, s[, x ∈ X, and (q, s)-bounded sets B ∈ B(X), the function
P̄(u, x; t, B) satisfies Kolmogorov’s forward equation (13) for almost every t ∈]u, s[.
Since s was chosen arbitrarily, this fact implies that the function P̄ satisfies property (ii)
stated in Theorem 3. �


To prove Theorems 3 and 4 we formulate and prove two lemmas. Lemmas 3 and 4 present
Kolmogorov’s forward equation in integral forms (14) and (17), which are equivalent to its
differential form (13). In particular, Theorem 4 follows from Lemma 4. Let u ∈ [T0, T1[,
s ∈]u, T1[, x ∈ X, and B ∈ B(X) be a (q, s)-bounded set. For any function P from P̂,

∫
B

q(y, t)P(u, x; t, dy) ≤
(

sup
y∈B,t∈]u,s[

q(y, t)

)
P(u, x; t, B) < ∞, t ∈]u, s[. (15)

In addition, for u, s, x , and B described above, if the function P satisfies the boundary
condition (12) and is absolutely continuous in t ∈]u, s[, then it is bounded in t ∈]u, s[,
which along with (15) implies that∫ t

u

∫
B

q(y, w)P(u, x;w, dy)dw < ∞, t ∈]u, s[. (16)
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Lemma 3 For arbitrary fixed u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and (q, s)-bounded set
B ∈ B(X), a function P from P̂ satisfies the equality

P(u, x; t, B) = I{x ∈ B} −
∫ t

u

∫
B

q(y, w)P(u, x;w, dy)dw

+
∫ t

u

∫
X

q(y, w, B\{y})P(u, x;w, dy)dw, t ∈]u, s[, (17)

if and only if it satisfies the boundary condition (12), is absolutely continuous in t ∈]u, s[,
and satisfies Kolmogorov’s forward equation (13) for almost every t ∈]u, s[.

Proof Suppose that a function P from P̂ satisfies the boundary condition (12), is absolutely
continuous in t ∈]u, s[, and satisfies Kolmogorov’s forward equation (13) for almost every
t ∈]u, s[ for u, s, x , and B described in the formulation of the lemma. Since every absolutely
continuous function is the integral of its derivative, equality (17) follows from integrating
equation (13) from u to t and using the boundary condition (12). In particular, both integrals
in equality (17) are finite because, in view of (16), the first integral is finite.

Now, suppose (17) holds for u, s, x , and B described in the formulation of the lemma.
Observe that, for fixed u, s, x , and B, the real valued function P(u, x; t, B) is a constant plus
the difference of two integrals from u to t of nonnegative integrable functions defined for
w ∈]u, s[. Since an integral of an integrable function is an absolutely continuous function of
the upper limit of integration and its derivative is equal to the integrand almost everywhere on
its domain (Royden (1988, Thms 10 on p. 107 and 14 on p. 110)), the function P(u, x; t, B)

is absolutely continuous in t ∈]u, s[, and Kolmogorov’s forward equation (13) holds for
almost every t ∈]u, s[ for the fixed u, s, x , and B. In addition, the absolute continuity of the
integrals in (17) implies that (12) holds. �


Lemma 4 Let u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and C ∈ B(X) be a (q, s)-bounded set. A
function P from P̂ satisfies for all B ∈ B(C) the boundary condition (12), is absolutely
continuous in t ∈]u, s[, and satisfies Kolmogorov’s forward equation (13) for almost every
t ∈]u, s[ if and only if it satisfies equality (14) for all t ∈]u, s[ and B ∈ B(C).

Remark 2 The sufficiency statements of Theorem 4 and Lemma 4 are not used in the proofs
in this section.

Proof of Lemma 4 The following version of Fubini’s theorem from Halmos (1950, Sec-
tion 36, Remark (3)) is used in the proof. Let (Z , S, μ) be a measure space with μ(Z) < ∞,

and let (Y, T) be a measurable space. Suppose that to almost every z ∈ Z there corresponds
a finite measure νz on T such that the function φ(z) := νz(B) is measurable in z for each
measurable subset B of Y . Then, for any non-negative measurable function g on Y ,

∫
Z

(∫
Y

g(y)νz(dy)

)
μ(dz) =

∫
Y

g(y)ν(dy), (18)

where, for each measurable subset B of Y ,

ν(B) :=
∫

Z
νz(B)μ(dz).
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Let us fix P ∈ P̂, u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and a (q, s)-bounded set C ∈ B(X).
To simplify notations, define

G(1)(t, B) :=
∫

X
q(z, t, B\{z})P(u, x; t, dz), t ∈]u, s[, B ∈ B(C), (19)

G(2)(t, B) :=
∫

X
δz(B)q(z, t)P(u, x; t, dz), t ∈]u, s[, B ∈ B(C), (20)

where δz(·) is the Dirac measure on (X,B(X)),

δz(B) := I{z ∈ B}, B ∈ B(X). (21)

Observe that, for j = 1, 2, the function G( j)(t, ·) is a measure on (C,B(C)) for every
t ∈]u, s[, and G( j)(·, B) is a measurable function on ]u, s[ for every B ∈ B(C).

Let t ∈]u, s[, v ∈]u, t[, and B ∈ B(C). Consider (Z , S, μ) = (X,B(X), P(u, x; v, ·))
and (Y, T) := (C,B(C)). For νz(·) = q+(z, v, ·), which is finite for all z ∈ Z since q is a

Q-function, and for g(y) = I{y ∈ B}e− ∫ t
v q(y,θ)dθ , formula (18) yields

∫
X

(∫
B

e− ∫ t
v q(y,θ)dθq(z, v, dy\{z})

)
P(u, x; v, dz) =

∫
B

e− ∫ t
v q(y,θ)dθ G(1)(v, dy).

(22)
Necessity. For all B ∈ B(C), let the function P satisfy the boundary condition (12),

be absolutely continuous in t ∈]u, s[, and satisfy Kolmogorov’s forward equation (13) for
almost every t ∈]u, s[. Equation (13) can be rewritten as

∂

∂t
P(u, x; t, B) = −G(2)(t, B) + G(1)(t, B). (23)

Formula (15) means that G(2)(t, B) < ∞ for all t ∈]u, s[. This inequality and (23) imply
that, for j = 1, 2,

G( j)(t, C) < ∞ for almost every t ∈]u, s[. (24)

For j = 1, 2, consider the non-negative functions H ( j) : (]u, s[×B(C)) → R+,

H ( j)(t, B) :=
∫ t

u
G( j)(w, B)dw, t ∈]u, s[, B ∈ B(C). (25)

In view of Lemma 3,

P(u, x; t, B) = I{x ∈ B} + H (1)(t, B) − H (2)(t, B), t ∈]u, s[, B ∈ B(C). (26)

Equality (16), which implies (27) for j = 2, and (26) yield

H ( j)(t, B) < ∞, j = 1, 2, t ∈]u, s[, B ∈ B(C). (27)

Observe that, for any measure p(·) on (C,B(C)) and w ∈ [u, t[,
∫

B
(1 − e− ∫ t

w q(y,θ)dθ )p(dy) =
∫

B

(∫ t

w

q(y, v)e− ∫ t
v q(y,θ)dθ dv

)
p(dy)

=
∫ t

w

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ p(dy)dv, (28)

where the first equality is correct since
∫ t

w

q(y, v)e− ∫ t
v q(y,θ)dθ dv = 1 − e− ∫ t

w q(y,θ)dθ , y ∈ X, (29)

123



Ann Oper Res

and the last one is obtained by changing the order of integration in y and v and applying
Fubini’s theorem. Let j = 1, 2, t ∈]u, s[, and B ∈ B(C). Then

H ( j)(t, B) −
∫ t

u

∫
B

e− ∫ t
w q(y,θ)dθ G( j)(w, dy)dw

=
∫ t

u

∫
B
(1 − e− ∫ t

w q(y,θ)dθ )G( j)(w, dy)dw

=
∫ t

u

(∫ t

w

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ G( j)(w, dy)dv

)
dw

=
∫ t

u

∫ v

u

(∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ G( j)(w, dy)

)
dwdv,

=
∫ t

u

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ H ( j)(v, dy)dv, (30)

where the first equality follows from (25), the second equality follows from (28) with p(·) =
G( j)(w, ·), the third equality is obtained by changing the order of integration in w and v,
and the last one is obtained from formula (18) by setting (Z , S, μ) := (]u, v[,B(]u, v[), λ),

where λ is the Lebesgue measure, (Y, T) := (C,B(C)), νz(·) = G( j)(z, ·), which, in view

of inequality (24) is finite for almost every z ∈ Z , and g(y) = I{y ∈ B}q(y, v)e− ∫ t
v q(y,θ)dθ .

For v ∈]u, t[, by setting (Z , S, μ) := (X,B(X), P(u, x; v, ·)), (Y, T) := (C,B(C)),

νz(·) := q(z, v)δz(·), and g(y) := I{y ∈ B}e− ∫ t
v q(y,θ)dθ , formula (18) yields∫

B
e− ∫ t

v q(y,θ)dθ G(2)(v, dy) =
∫

X

(∫
B

e− ∫ t
v q(y,θ)dθq(z, v)δz(dy)

)
P(u, x; v, dz). (31)

Therefore, for all t ∈]u, s[ and B ∈ B(C),

H (2)(t, B) =
∫ t

u

∫
B

e− ∫ t
v q(y,θ)dθ G(2)(v, dy)dv +

∫ t

u

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ H (2)(v, dy)dv

=
∫ t

u

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ P(u, x; v, dy)dv +

∫ t

u

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ H (2)(v, dy)dv

=
∫ t

u

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ δx (dy)dv +

∫ t

u

∫
B

q(y, v)e− ∫ t
v q(y,θ)dθ H (1)(v, dy)dv,

=
(

I{x ∈ B} − I{x ∈ B}e− ∫ t
u q(x,θ)dθ

)

+
(

H (1)(t, B) −
∫ t

u

∫
B

e− ∫ t
v q(y,θ)dθ G(1)(v, dy)dv

)

= I{x ∈ B} + H (1)(t, B)

−
(

I{x ∈ B}e− ∫ t
u q(x,θ)dθ +

∫ t

u

∫
X

∫
B

e− ∫ t
v q(y,θ)dθ q(z, v, dy\{z})P(u, x; v, dz)dv

)
,

(32)

where the first equality follows from (30) with j = 2, the second equality follows from (21)
and (31), the third equality follows from (21), (26), and (27), the fourth equality follows from
(28) with p(·) = δx (·) and w = u and (30) with j = 1, and the last one follows from (22).
Thus, (26) and (32) imply (14).

Sufficiency. Assume that the function P satisfies (14) for all t ∈]u, s[ and B ∈ B(C). As
follows from Lemma 3, it is sufficient to show that (17) holds for all B ∈ B(C). In view of
equality (22), formula (14) can be rewritten as
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P(u, x; t, B) = I{x ∈ B}e− ∫ t
u q(x,θ)dθ +

∫ t

u

∫
B

e− ∫ t
v q(y,θ)dθ G(1)(v, dy)dv. (33)

Let t ∈]u, s[ and B ∈ B(C). Since
∫ t

w

q(y, v)e− ∫ v
w q(y,θ)dθ dv = 1 − e− ∫ t

w q(y,θ)dθ , y ∈ X, w ∈ [u, t[, (34)

it follows from (34) and Fubini’s theorem that, for any measure p(·) on (C,B(C)),

∫
B
(1 − e− ∫ t

w q(y,θ)dθ )p(dy) =
∫ t

w

∫
B

q(y, v)e− ∫ v
w q(y,θ)dθ p(dy)dv, w ∈ [u, t[. (35)

Observe that formula (35) differs from (28). Next,
∫ t

u
G(1)(w, B)dw −

∫ t

u

∫
B

e− ∫ t
w q(y,θ)dθ G(1)(w, dy)dw

=
∫ t

u

(∫ t

w

∫
B

q(y, v)e− ∫ v
w q(y,θ)dθ G(1)(w, dy)dv

)
dw

=
∫ t

u

∫ v

u

(∫
B

q(y, v)e− ∫ v
w q(y,θ)dθ G(1)(w, dy)

)
dwdv

=
∫ t

u

(∫
B

q(y, v)

∫ v

u
e− ∫ v

w q(y,θ)dθ G(1)(w, dy)dw

)
dv, (36)

where the first equality follows from (35) with p(·) = G(1)(w, ·), the second equality is
obtained by interchanging the order of integration in w and v, and the last one is obtained
from (18) by setting (Z , S, μ) = (]u, v[,B(]u, v[), λ), where λ is the Lebesgue measure,
(Y, T) := (C,B(C)), νz(B) = ∫

B e− ∫ v
z q(y,θ)dθ G(1)(z, dy), which, in view of equality (33)

and the property that the function P takes values in [0,∞[, is finite for B = C and for almost
every z ∈ Z , and g(y) = q(y, v)I{y ∈ B}. Therefore,

P(u, x; t, B) = I{x ∈ B} −
∫ t

u

∫
B

q(y, v)e− ∫ v
u q(y,θ)dθ δx (dy)dv

+
∫ t

u
G(1)(w, B)dw −

∫ t

u

(∫
B

q(y, v)

∫ v

u
e− ∫ v

w q(y,θ)dθ G(1)(w, dy)dw

)
dv

= I{x ∈ B} +
∫ t

u
G(1)(w, B) −

∫ t

u

∫
B

q(y, v)P(u, x; v, dy)dv,

where the first equality follows from (33), (35) with p(·) = δx (·), and (36), and the last one
is obtained by substituting P(u, x; v, dy)with (33). Thus, it follows from (19) and the above
equality that (17) holds for all B ∈ B(C). �


Proof of Theorem 4 The sufficiency statement of the theorem follows immediately from
Lemma 4, and the necessity statement of the theorem follows from Lemma 4 and Lebesgue’s
monotone convergence theorem, as explained below.

Necessity. Assume that, for all u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and (q, s)-bounded
sets C , properties (i) and (ii) stated in Theorem 3 hold for the function P . Assumption 3
and Lemma 1(a) imply that for each s ∈]T0, T1[ there exist (q, s)-bounded sets Bs

1, Bs
2, . . .

such that Bs
n ↑ X as n → ∞. Then, for all u ∈ [T0, T1[, s ∈]u, T1[, t ∈]u, s[, x ∈ X, and

B ∈ B(X),
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P(u, x; t, B) = lim
n→∞ P(u, x; t, B ∩ Bs

n) = lim
n→∞ I{x ∈ B ∩ Bs

n}e− ∫ t
u q(x,θ)dθ

+ lim
n→∞

∫ t

u

∫
X

∫
B∩Bs

n

e− ∫ t
w q(y,θ)dθq(z, w, dy\{z})P(u, x;w, dz)dw

= I{x ∈ B}e− ∫ t
u q(x,θ)dθ +

∫ t

u

∫
X

∫
B

e− ∫ t
w q(y,θ)dθ

q(z, w, dy\{z})P(u, x;w, dz)dw, (37)

where the first equality is correct since the sets Bs
n ↑ X as n → ∞, the second equality

follows from Lemma 4, and the last one follows from Lebesgue’s monotone convergence
theorem since the sets Bs

n ↑ X as n → ∞. Since the above equality holds for all t ∈]u, s[ for
each s ∈]u, T1[, formula (14) holds for all u ∈ [T0, T1[, t ∈]u, T1[, x ∈ X, and B ∈ B(X).
�

Proof of Theorem 3 In view of Lemma 2, we need to prove only the minimality and unique-
ness properties of P̄ among functions from P̂ satisfying properties (i) and (ii) stated in
Theorem 3. Let P be a function from P̂ satisfying these properties. Let u ∈ [T0, T1[,
t ∈]u, T1[, x ∈ X, and B ∈ B(X). In view of Theorem 4, formula (14) holds. Since the last
term in (14) is non-negative,

P(u, x; t, B) ≥ I{x ∈ B}e− ∫ t
u q(x,θ)dθ = P̄(0)(u, x; t, B),

where the last equality is (5). Assume that for some n = 0, 1, . . . ,

P(u, x; t, B) ≥
n∑

m=0

P̄(m)(u, x; t, B). (38)

Then, from (8), (14), and (38), P(u, x; t, B) ≥ ∑n+1
m=0 P̄(m)(u, x; t, B). Thus, by induction,

(38) holds for all n = 0, 1, . . . . Let n → ∞. Then (38) and (7) imply that P(u, x; t, B) ≥
P̄(u, x; t, B). Therefore, the function P̄ is theminimal function from P̂ satisfying properties
(i) and (ii) stated in Theorem 3.

In conclusion, let the transition function P̄ be regular. If there is another function P,which
satisfies properties (i) and (ii) stated inTheorem3and takes values in [0, 1], then, since P̄ is the
minimal solution, P(u, x; t, B) > P̄(u, x; t, B) for some u ∈ [T0, T1[, x ∈ X, t ∈]u, T1[,
and B ∈ B(X). In addition, P(u, x; t, X\B) ≥ P̄(u, x; t, X\B). Therefore, P(u, x; t, X) =
P(u, x; t, B) + P(u, x; t, X\B) > P̄(u, x; t, B) + P̄(u, x; t, X\B) = P̄(u, x; t, X) = 1,
and the inequality P(u, x; t, X) > 1 contradicts the property that P takes values in [0, 1]. �


Theorems 3 and 4 imply the following two corollaries.

Corollary 1 Under Assumption 3, the following statements hold:

(a) for all u ∈ [T0, T1[, s ∈]u, T1[, x ∈ X, and (q, s)-bounded sets B, the function
P̄(u, x; t, B) satisfies (17).

(b) the function P̄ is the minimal function in P̂ for which statement (a) holds. In addition,
if the transition function P̄ is regular, then P̄ is the unique function in P̂ with values in
[0, 1] for which statement (a) holds.

Proof In view of Lemma 3, any function P from P̂ satisfies statement (a) of the corollary if
and only if it satisfies properties (i) and (ii) stated in Theorem 3. Thus, the corollary follows
from Theorem 3. �
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Corollary 2 Let Assumption 3 hold. The function P̄ is the minimal function P in P̂ satisfying
equality (14) for all u ∈ [T0, T1[, t ∈]u, T1[, x ∈ X, and B ∈ B(X). In addition, if the
transition function P̄ is regular, then P̄ is the unique function in P̂ with values in [0, 1]
satisfying equality (14) for all u ∈ [T0, T1[, t ∈]u, T1[, x ∈ X, and B ∈ B(X).

Proof The corollary follows from Theorems 3 and 4. �


5 Kolmogorov’s forward equation for Q-functions bounded at each state

This section provides additional results on Kolmogorov’s forward equation when Assump-
tion 2 holds. Under Assumption 2 Kolmogorow’s forward equation is studied in Feinberg et
al. (2014, Theorems 4.1, 4.3), and Corollary 5 is a more general statement than Feinberg et
al. (2014, Theorem 4.3). In addition, Corollary 7 describes the minimality property of the
function P̄(T0, x; t, B) that is useful for applications to continuous-time Markov decision
processes. The following lemma and its corollary do not require any of Assumptions 1–4.

Lemma 5 Let u ∈ [T0, T1[, x ∈ X, and B be a q-bounded set. A function P ∈ P̂ satisfies
Kolmogorov’s forward equation (13) for almost every t ∈]u, s[ for all s ∈]u, T1[ if and only
if it satisfies this equation for almost every t ∈]u, T1[.
Proof The sufficiency statement of the lemma is straightforward since ]u, s[⊂]u, T1[ when
s ∈]u, T1[. Let a function P ∈ P̂ satisfy Kolmogorov’s forward equation (13) for almost
every t ∈]u, s[ for all s ∈]u, T1[, where u ∈ [T0, T1[, x ∈ X, and B ∈ B(X) is a q-bounded
set. Consider an arbitrary sequence sn ↑ T1 as n → ∞ with s1 > u. Let Y be the set of all
t ∈]u, T1[ such that (13) does not hold at point t . For n = 1, 2, . . . , the Lebesgue measure of
the sets Y∩]u, sn[ is 0 since each of these sets consists of points t ∈]u, sn[ at which (13) does
not hold. This implies that the Lebesgue measure of the set Y is 0. Therefore, the function P
satisfies Kolmogorov’s forward equation for almost every t ∈]u, T1[. �

Corollary 3 A function P ∈ P̂ satisfies for q-bounded sets B properties (i) and (ii) stated
in Theorem 3 if and only if the following two properties hold:

(a) for all u ∈ [T0, T1[, x ∈ X, and q-bounded sets B, the function P(u, x; t, B) satisfies the
boundary condition (12) and is absolutely continuous in t ∈]u, s[ for each s ∈]u, T1[;

(b) for all u ∈ [T0, T1[, x ∈ X, and q-bounded set B, the function P(u, x; t, B) satisfies
Kolmogorov’s forward equation (13) for almost every t ∈]u, T1[.

Proof For q-bounded sets B, property (i) stated in Theorem 3 coincides with property (a)
stated in the corollary. Lemma 5 implies that property (ii) stated in Theorem 3 holds for a
q-bounded set B if and only if property (b) stated in the corollary holds. �

Lemma 6 Under Assumption 2, a function P ∈ P̂ satisfies properties (i) and (ii) stated in
Theorem 3 if and only if it satisfies properties (a) and (b) stated in Corollary 3.

Proof Let the function P satisfy properties (i) and (ii) stated in Theorem 3. Since a q-
bounded set is (q, s)-bounded, it follows from Corollary 3 that properties (a) and (b) stated
in Corollary 3 hold.

Let properties (a) and (b) stated in Corollary 3 hold. Fix arbitrary u ∈ [T0, T1[, s ∈]u, T1[,
and x ∈ X. Lemma 4 implies that for every q-bounded set B equality (14) holds for all
t ∈]u, s[. In view of Assumption 2 and Lemma 1(a), there exist q-bounded sets B1, B2, . . .
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such that Bn ⊆ Bn+1, n = 1, 2, . . . , and X = ∪∞
n=1Bn . Let B ∈ B(X). Then Bn := Bn ∩ B,

n = 1, 2, . . . , are q-bounded sets. Therefore, for each set Bn, equality (14) holds for all
t ∈]u, s[. Since Bn ↑ B as n → ∞, Lebesgue’s monotone convergence theorem implies
that this formula also holds for B. Thus, in view of Theorem 4, the function P satisfies
properties (i) and (ii) stated in Theorem 3. �


The following corollary generalizes Feinberg et al. (2014, Theorem 4.1) since Assump-
tion 3 is weaker than Assumption 2. We remark that absolute continuity in t ∈]u,∞[ in
Feinberg et al. (2014, Theorem 4.1(i)) is meant in the sense that for each s ∈]u,∞[ the func-
tion is absolutely continuous in t ∈]u, s[. For T1 = ∞ this is equivalent to the absolutely
continuity assumed in property (a) stated in Corollary 3. For unbounded intervals, this type
of absolute continuity is sometimes called local absolute continuity.

Corollary 4 (cp. Feinberg et al. (2014, Theorem 4.1)) Let Assumption 3 hold. Then, the
function P̄ satisfies properties (a) and (b) stated in Corollary 3. In addition, property (a)
stated in Corollary 3 holds for all B ∈ B(X).

Proof In view of Lemma 2, the function P̄ satisfies properties (i) and (ii) stated in The-
orem 3. In particular, it satisfies these properties for the smaller class of q-bounded sets.
Thus, it follows from Corollary 3 that the function P̄ satisfies properties (a) and (b) stated
in Corollary 3. In addition, Lemma 2(a) implies that property (a) stated in Corollary 3 holds
for all B ∈ B(X). �


The following corollary generalizes Feinberg et al. (2014, Theorem 4.3). The difference is
that Corollary 5 states that P̄ is the minimal solution within the class of functions satisfying
the weakly continuity property, when B is a q-bounded set, while Feinberg et al. (2014,
Theorem 4.3) claims the minimality within the smaller class of functions satisfying the
weakly continuity property when B ∈ B(X).

Corollary 5 (cp. Feinberg et al. (2014, Theorem 4.3)) Let Assumption 2 hold. Then P̄ is the
minimal function in P̂ satisfying properties (a) and (b) stated in Corollary 3. Furthermore,
if the transition function P̄ is regular, then P̄ is the unique element of P̂ taking values in
[0, 1] and satisfying properties (a) and (b) stated in Corollary 3.

Proof In view of Lemma 1(b), the corollary follows from Theorem 3 and Lemma 6. �

The following two corollaries from Corollary 5 are useful for applying the results of

this paper to continuous-time jump Markov decision processes; see Feinberg et al. (2013,
Theorem 3.2).

Corollary 6 Under Assumption 2, the following statements hold:

(a) for all u ∈ [T0, T1[, x ∈ X, and q-bounded sets B ∈ B(X), the function P̄(u, x; t, B)

satisfies the equality in formula (17) for all t ∈]u, T1[.
(b) the function P̄ is the minimal function in P̂ for which statement (a) holds. In addition,

if the transition function P̄ is regular, then P̄ is the unique function in P̂ with values in
[0, 1] for which statement (a) holds.

Proof Lemma 3 and Corollary 3 imply that statement (a) of the corollary holds for a function
P from P̂ if and only if the function P satisfies properties (a) and (b) stated in Corollary 3.
Therefore, this corollary follows from Corollary 5.
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When x is fixed and u = T0, formula (17) is an equation in two variables t and B. Hence,
for simplicity, we write P(t, B) instead of P(T0, x; t, B) in (17) for any function P from P̂
when x is fixed and u = T0, and (17) becomes

P(t, B) = I {x ∈ B} +
∫ t

T0
ds

∫
X

q(y, s, B\{y})P(s, dy) −
∫ t

T0
ds

∫
B

q(y, s)P(s, dy).

(39)
For fixed x ∈ X and u = T0, the function P̄(t, ·) is the marginal probability distribution of
the process {Xt : t ∈ [T0, T1[} at time t given XT0 = x . Under Assumption 2, the following
corollary describes the minimal solution of (39) and provides a sufficient condition for its
uniqueness.

Corollary 7 Fix an arbitrary x ∈ X. Under Assumption 2, the following statements hold:

(a) for all t ∈]T0, T1[ and q-bounded sets B ∈ B(X), the function P̄(t, B) satisfies (39);
(b) P̄(t, B), where t ∈]T0, T1[ and B ∈ B(X), is the minimal non-negative function that

is a measure on (X,B(X)) for fixed t, is measurable in t for fixed B, and for which
statement (a) holds. In addition, if P̄(t, X) = 1 for all t ∈]T0, T1[, then P̄(t, B) is the
unique non-negative function with values in [0, 1] and satisfying the conditions stated
in the first sentence of this statement.

Proof Statement (a) of the corollary follows immediately from Corollary 6(a) when u = T0.
To prove statement (b), consider a non-negative function P(t, B), where t ∈]T0, T1[ and
B ∈ B(X), that satisfies the conditions given in the first sentence of statement (b) of this
corollary. Define the function f (u, z; t, B) ∈ P̂ ,

f (u, z; t, B) =
{

P(t, B), if u = T0 and z = x,

P̄(u, z; t, B), otherwise.
(40)

Then, it follows from Corollary 6(a) and (40) that the function f satisfies the property given
in Corollary 6(a). Thus, Corollary 6(b) and (40) imply

P(t, B) = f (T0, x; t, B) ≥ P̄(T0, x; t, B) = P̄(t, B), t ∈]T0, T1[, B ∈ B(X). (41)

To show the uniqueness property, let the function P take values in [0, 1]. Then, P(t, B) >

P̄(t, B) for some t ∈]T0, T1[ and B ∈ B(X). This fact and (41) imply that

P(t, X) = P(t, B) + P(t, X\B) > P̄(t, B) + P̄(t, X\B) = P̄(t, X) = 1.

This contradicts the property that the function P takes values in [0, 1]. Therefore, P(t, B) =
P̄(t, B) for all t ∈]T0, T1[ and B ∈ B(X). �


The following corollary states a simple condition when the function P̄(t, B) is the unique
solution of Kolmorogov’s forward equation.

Corollary 8 Let the function q(z, t) be bounded on the set X×[T0, T1[. Then P̄(u, z; t, X) =
1 for all u ∈ [T0, T1[, t ∈]u, T1[, and z ∈ X. In addition, for each x ∈ X the conclusions of
Corollary 7 hold.

Proof Observe that X is a q-bounded set if the function q(z, t) is bounded on the set X ×
[T0, T1[. This fact immediately implies that Assumption 2 holds. In addition, it follows from
Corollary 6(a) that P̄(u, z; t, X) = 1 for all u ∈ [T0, T1[, t ∈]u, T1[, and z ∈ X. In particular,
P̄(t, X) = P̄(T0, x; t, X) = 1 for all t ∈]T0, T1[. Thus, the assumptions of Corollary 7 hold,
and so do its conclusions. �
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