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Abstract

Live-cell microscopy is quickly becoming an indispensable technique for studying the dy-

namics of cellular processes. Maintaining the specimen in focus during image acquisition is

crucial for high-throughput applications, especially for long experiments or when a large sam-

ple is being continuously scanned. Automated focus control methods are often expensive,

imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption

of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for au-

tomatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in

a microfluidic device were collected and used to train a convolutional neural network to clas-

sify images according to their z-position. We studied the effect on prediction accuracy of the

various hyperparameters of the neural network, including downsampling, batch size, and z-bin

resolution. The network was able to predict the z-position of an image with ±1µm accuracy,

outperforming human annotators. Finally, we used our neural network to control microscope

focus in real-time during a 24 hour growth experiment. The method robustly maintained the

correct focal position compensating for 40µm of focal drift and was insensitive to changes in

the field of view. About ∼100 annotated z-stacks were required to train the network making our

method quite practical for custom autofocus applications.

1 Introduction

Biologists now routinely use live-cell imaging to monitor the dynamics of the cell’s state, to track

real-time biochemical processes in vivo, and to read out cellular phenotypes from time-lapse mi-

croscopy images [1, 2, 3]. From these experiments, it has become apparent that cell populations

inevitably display significant cell-to-cell variability in cellular state, as quantified by protein and RNA

expression levels [4, 5, 6]. Of particular interest, populations are often observed to contain cells

exhibiting rare phenotypes, i.e., small subpopulations with a distinct state [7, 8, 9]. Studying the

dynamics of these small populations is indispensable for understanding the probabilistic principles

behind how cells make transitions to these rare, but stable, phenotypic states [10, 11, 12, 13, 14].

The challenge in live-cell imaging is to record large populations such that rare phenotypes are

sufficiently sampled for statistical analysis, perhaps requiring 105–106 total cells per experiment.

With advanced optical instruments and computer-controlled stages, time-lapse microscopy is

a viable method for capturing high-throughput data regarding cellular phenotypes [15, 16]. Ad-
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ditionally, data-intensive computing methodologies are now available that can analyze the large

volumes of imaging data that are generated [17]. One challenge to bringing high-throughput mi-

croscopy into every biology lab is its performance on less sophisticated equipment. Keeping the

cells of interest in focus during time-lapse experiments and/or continuous movement is difficult

[18]. Due to thermal drift, uneven slide surfaces, diverse cell sizes, and cell motion in 3D space,

there is not a single focal plane that will accommodate the entire experiment [19, 20]. In order to

maintain image sharpness throughout the experiment, focus need to be corrected before each im-

age is acquired. Manual control of focal position is not practical for experiments running for hours

or when specimens are in continuous motion. Instead, automated focusing is needed to establish

the best focus in the absence of human intervention [21].

Autofocus methods can be broadly classified into two categories: active and passive autofocus.

Active autofocus uses knowledge of the physical characteristics of the system to obtain defocus

information, and then correct the defocus accordingly [22]. Typically, electromagnetic waves, such

as a laser or infrared light, are applied to maintain the distance between object of interest and lens

[20]. This approach is able to provide real-time correction, however, what it actually measures is

the distance between the reflective surface and lens, rather than the specimen itself [19]. There-

fore, any variations in thickness of the sample or coverslip can introduce error in determining the

correct focal plane [21]. Moreover, active autofocus methods require calibration before focal length

can be determined, which makes it impractical for many image acquisition processes [23].

In contrast, passive autofocus is based on image analysis, and thus requires little knowledge

of the specific imaging system [22, 24]. In passive autofocus, a predefined focal reference is first

determined, typically by taking a series of images at multiple z-positions on both sides of best focus

of the sample. The images are then processed and high frequency contents or edge information is

extracted from the z-stacks to establish the focal position [20]. Since passive autofocus is based on

the information of the sample being imaged, it is generally more reliable than active autofocus [21].

Nevertheless, passive autofocus suffers from limitations that are intrinsically hard to overcome.

Low image intensity or low contrast may prevent it from being accurately analyzed [20]. In addition,

because multiple images at different z-positions need to be acquired and processed in order to

determine the relative focus, it takes longer to refocus the sample. Therefore, passive autofocus

is not ideal for tracking changing objects or for high-throughput imaging acquisitions.

3



As a long-standing topic over the years, autofocus in high-throughput microscopy has been ap-

proached by a number of methods, most of which provide satisfying solutions under well-defined

circumstances [25]. Still, these methods are designed for a single type of imaging mode, and thus

not applicable to other imaging systems. In recent years, deep learning has become a promising

approach for inference across various fields, such as speech recognition, visual object recogni-

tion, object detection, drug discovery, and genomics [26]. It allows computational models with

multiple processing layers to learn features of data by extracting information from multiple levels

[26]. Specifically, deep convolutional neural networks (CNNs) are especially helpful in visual ob-

ject recognition and object detection, for instance, annotation of cellular cryo-electron tomograms,

classification of cancer tissues using hyperspectral imaging, cell segmentation in fluorescence mi-

croscopy images, and autofocusing in digital holographic microscopy [27, 28, 29, 30, 31]. CNNs

are essentially neural networks that employ the convolution operation as one of its layers. Typ-

ically, a CNN consists of a feature extraction layer that extracts features from input data and a

classification layer that classifies the feature map, the weights of which are determined through

a training process [26]. The feature extraction layer consists of pairs of convolution and pooling

layers in tandem, where the convolution layer performs convolution operation on input data, and

the pooling layer reduces the dimension of the input data. The output of CNNs is generated from

the classification layer, which in most cases employs an ordinary multi-class classification neural

network.

In this paper we demonstrate a deep learning approach to use convolutional neural networks

as an autofocus method for bright-field and phase-contrast microscopy. A benefit of the proposed

method is that the z-position of an image can be determined solely from the information in the

image itself, without the necessity of using other z-plane images. Thus, real-time control of focus

can be realized, which allows high-throughput data acquisition from time-lapse and fast-tracking

microscopy. Using the proposed method we achieved accurate control of the focal position in

bright-field microscopy of yeast cells, and the method was shown to be robust against noise,

optical artifacts, and features other than cells.
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2 Results

2.1 Autofocus neural network structure, training, and testing

To infer the focal position of a yeast cell culture during live-cell microscopy, we built and trained a

convolutional neural network (CNN) using z-stacks of yeast cells growing in a microfluidic device.

Our network is shown in Fig. 1a and uses a variation on a well-studied CNN architecture for image

classification [32, 33]. The CNN consists of two convolution blocks followed by two fully connected

layers. Each convolution block consists of a convolution, an activation, and a max-pooling layer.

The first convolution layer maps image regions to 32 features with a kernel size of 10×10×1 with

a stride of 1 and zero padding to preserve the image size. A rectified linear unit (ReLU) activation

function is applied to the convolution output to provide a nonlinearity. Finally, a 5×5 max-pooling

layer with a stride of 5×5 downsamples the spatial domain of the features. The second convolution

layer maps the downsampled features from the first block to 64 larger-scale features with a kernel

size of 10×10×32 and, similarly, ReLU activation and 5×5 max-pooling are performed afterwards.

The first fully connected layer maps the feature output from the second convolution block to

1024 classification neurons. It is followed by ReLU activation and a dropout layer to minimize over-

fitting [34]. The dropout probability was set to 0.5. The last fully connected layer maps the output

of neurons from the previous layer to a variable number of neurons that predict the discretized

z-position of the image, using one neuron for each possible z-bin. Finally, a softmax layer gives

the z-position probabilities. For reference, a model using 4X downsampling and 41 z-bins has 6.8

million parameters.

We collected 431 z-stacks of yeast cells (see Fig. 1b) from five independent growth experi-

ments for use in training and testing the neural network (see Methods). Each z-stack spanned

∼30µm of focal distance using 31 images collected ∼1µm apart in the z dimension. We manually

curated each z-stack and recorded the z-slice that was considered in focus, usually near image

15. We randomly partitioned the z-stacks into training (80%) and testing (20%) data sets.

To train the network, we followed the typical procedure for image classification [32]. Briefly, we

used stochastic gradient descent on mini-batches containing 10–50 images to optimize the multi-

nomial logistic regression. We initialized all weights in the neural network with random Gaussian

distributed values with mean 0.0 and standard deviation 0.1, truncated at two standard deviations.
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All biases were initially set to 0.1. To generate each image in the mini-batch, we randomly selected

an image from the training data set and then extracted a random 1000×1000 pixel region from it.

We then randomly flipped and rotated this image to augment the data set and to compensate for

global illumination effects. Finally, the image was downsampled by 2–10X. To perform the opti-

mization we used the Adam algorithm [35] with a training rate of 10−4, β1 = 0.9, and β2 = 0.999.

We took the cross entropy between the neural network output and the annotated focal position

as the loss function. Each CNN model was trained for 100,000 steps, which was roughly 20X

coverage of the training data.

To evaluate each model we used the testing data set. We extracted the center 1000×1000

pixel region from each image in the testing data set and downsampled it to be consistent with the

neural network model being tested. The processed images were evaluated by the trained neural

network and the inferred focal position of the image was taken to be the center of the z-bin with the

highest predicted probability. We then calculated the distribution of errors between the annotated

and predicted focal positions for the entire testing data set. Overall, the CNN was able to infer the

focal position of an image remarkably well. Using the best model, half of all the test images were

predicted within ±1µm of the annotated z-position.

2.2 The effect of downsampling on inference accuracy

Next, we began to study the effect on prediction accuracy of the various hyperparameters of the

CNN model. To investigate the effect of both feature size and resolution on CNN accuracy, we

evaluated three different image downsampling factors: 2X, 4X, and 10X (see Fig. 2a-c). In the full

resolution image, a large yeast cell with a diameter of 6µm would be ∼100 pixels across. For 2X

downsampling this corresponds to a diameter of 50/10/2 pixels in the various convolution layers,

25/5/1 for 4X downsampling, and 10/2/0.4 for 10X downsampling. We trained a new CNN model

using data downsampled with each of these three values.

We analyzed the full test data set using each of the trained neural network models. The errors

for models trained with different downsampling factors are plotted in Fig. 2d. The mean error

stays relatively consistent when varying downsampling. However, the error distribution is wider for

downsampling of 10X and 2X than downsampling of 4X. Figure 2e shows the mean squared error
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for the inference. The model trained with a downsampling of 4X exhibited a lower mean squared

error than with the models trained with 10X and 2X. Notably, in the 4X downsampling model a

typical cell with an initial diameter of 60-100 pixels will be represented by a spatial domain of

around ∼1 square pixel in the final convolution layer. It appears that this represents a reasonable

choice when deciding on the construction of a CNN for classifying cells. In the 10X downsampling

model, cells occupy less than a single pixel so multiple neighboring cells become averaged before

the classification layer is applied. In the 2X downsampling model cells would occupy a roughly

2×2 pixel area, which also appears to be less optimal, perhaps because of the increase in the

number of parameters that need to be optimized.

We also tested the effect of varying batch size on the models. For the models trained with

downsampling of 10X and 4X, the mean squared error increases with decreasing batch size,

which also can be seen from the larger distributions in Fig. 2d. With larger batch sizes the gra-

dient is calculated from more training data, which helps improve training performance in general.

Even though models trained with larger batch size give better results, the training time increases

significantly with batch size, as shown in Fig. 2f. It took more than 100 hours to train our models

with a batch size of 50. In addition, for a specific batch size the training time also increases with

reduced downsampling.

2.3 Inference accuracy depends upon the z-bin size

A key advance in our study is the classification of images into z-position bins. Thus, the number

and spacing of the bins may have a large effect on the accuracy of our method. To investigate

whether and how bin size affects the z-position prediction of our CNN, we tested various bin sizes

ranging from 1µm to 5µm. All of the bins spanned the range -20µm to +20µm, covering the entire

focal distance of our z-stacks. Thus, the output of the final classification layer ranged from 9–41

categories. We assumed that the inferred z-position was the center of the predicted z-bin.

Figure 3a shows the probability of a particular focal position inference given a label, for the

highest resolution model with a bin size of 1µm (41 categories). Near the center of the focal

plane, the correct bin has the highest probability in all cases with a lower amount of probability

appearing in the ±1 bins. Near the edges of the z-stack the probability becomes more spread out
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as these images become more difficult to distinguish. The model has the highest accuracy when

the cells are near the focal plane. Figure 3b shows the probability map for the lowest resolution

model with a bin size of 5µm (9 categories). Here, the model is able to accurately infer the single

correct bin, except when the actual z-position approaches the boundary between two bins. But

the localization error is overall greater because the width of the bins is greater.

Figure 3c-d show the inference error by bin size. The width of the error distribution and the

mean squared error both increase monotonically with bin size. If the z-bin resolution dropped

below the information content of the images we would expect there to be a minimum in the mean

squared error. However, for our z-stack resolution even a one-to-one mapping between z-slices

and bins produces good accuracy. It appears that there are sufficient differences between z-slices

separated by a single step to accurately differentiate them. With higher resolution z-stacks further

improvement in the positional inference could likely be achieved by the model.

2.4 The effect of training data set size on CNN performance

In the previous sections, we used our complete training data set consisting of 345 z-stacks to train

the CNN. However, it would be useful to know the minimum number of z-stacks needed to achieve

good focal position inference. Thus, we trained additional CNNs using only a subset of the training

data in order to investigate how the size of training data set affects the accuracy of trained CNNs.

We randomly selected 50, 100, 150, 200, 250 and 300 z-stacks from the complete training data

set to train the new models.

The prediction errors of these trained neural networks are shown in Fig. 4a. The width of

the error distribution drops at ∼100 z-stacks. Similarly, the mean squared error (Fig. 4b) also

drops sharply at ∼100 z-stacks and then continues to slowly decrease as more z-stacks are used.

Therefore, while the CNN trained with the full training data set outperforms the networks trained

with smaller data sets, it is possible to train a network to high accuracy with ∼100 z-stacks. The

collection and annotation of unique z-stacks represents a significant fraction of the total effort to

build an autofocus CNN model. Collecting data incrementally until the model’s accuracy con-

verges, rather than collecting a large data set up front, appears to be a reasonable strategy.
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2.5 Comparison of neural network and human focusing performance

To independently evaluate the performance of CNNs, we compared the accuracy of our autofocus

CNN with four human annotators (H1–H4). We used for the computer (CNN) the best CNN model

from the previous sections (4X downsampling, batch size 50, bin size 1, trained with 345 z-stacks).

The evaluation was conducted using two separate tests: (1) identify the best in-focus image given

a full z-stack, and (2) determine the numerical z-position of an individual image without using the

z-stack for context. For training, the human annotators were given a ∼10 minute lesson on the

appearance of in-focus images as assigned by the original annotator. Additionally, each was given

five example z-stacks with annotations showing the z-position relative to the focal plane to use as

a reference during the tests.

For the first test, we provided both computer and human annotators with 100 z-stacks and

asked them to estimate which z-plane was the most in focus. We recorded the difference between

the estimated focal position and that determined by the original annotator. As shown in Fig. 5a,

the CNN performed well in determining the correct in-focus image given an entire z-stack. Even

though this was the easier of the two tests for the human annotators, since they could scan up and

down in the z-stack to compare images, the CNN performance equaled the best human annotator

and exceeded the other three. Moreover, in some cases, the human annotators showed a bias in

determining the focal plane, while the computer showed minimum bias in the test.

To control for potential bias by the human annotators due to differences in interpreting what

in-focus cells look like, we later tested the human annotators again on the same 100 z-stacks as

the first test but in a random order. We calculated the difference in predictions between the two

experiments for each human to study the estimation variance regardless of the original z-position

annotation. These results are shown in Fig. 5b. The overall error and the variance of the human

annotators went down relative to the first experiment. However, both were still greater than for the

CNN model.

For the second test, we presented the human annotators and the computer with 100 individual

images that were randomly drawn from the testing data set. We recorded their individual estimates

of the z-position of the image. Human annotators relied heavily on the reference z-stacks for this

test. Figure 5c shows the results of determining the z-position of an individual image without ac-
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cess to nearby context. This was a very difficult test for the human annotators and they generally

had a large degree of error. Here, the CNN performance exceeded that of all of the human anno-

tators, being both more accurate and more precise. Interestingly, the CNN was more precise than

the original human annotator who was one of the test subjects. If we assume that the annotator

had a similar level of imprecision when annotating the training images, it appears that these errors

average out during the training phase. Therefore, our trained CNN model was able to achieve

accurate and consistent position inference that outperformed manual focusing.

2.6 Comparison to other software-based focus inference methods

We wanted to compare the performance of our model to other software focus-inference methods.

We implemented three focus-scoring algorithms that summarize various features of an image (e.g.

the density of edges) to pick out the most “in-focus” image [39, 40, 41]. The details of the methods

are given in Supplementary Text S1. We calculated the score for each method for all z-slices in our

testing data set. Figure S2 shows the distribution of scores by z-position. Of the three methods

tested, only image quality assessment (IQA) was able to capture a relationship between image

features and z-position. We also tested the ability of each method to uniquely identify the focal

plane. Again, only IQA was able to reliably identify the focal plane in our z-stacks by finding the

z-slice with the maximum detail, as shown in Fig. S3a.

To compare the ability of the IQA and CNN methods to infer the z-position of an image, we

calculated the IQA profile for all of the z-stacks in our training set. We normalized each profile

individually against its maximum and assigned the z-position of the peak to be zero. We then

averaged all of these profiles to obtain a global IQA versus z-position profile. We used this profile to

infer the z-position of each image in our testing data set. We calculated the error as the difference

between the inferred and actual z-position, relative to the IQA estimated focal plane for that z-

stack. Figure S3b shows the IQA method has significantly greater error than our CNN method

when inferring the z-position of an image.

It is important to note two caveats in our comparison with the IQA method. (1) The IQA profile

is peaked at a z-position of zero so it cannot distinguish whether the image is above or below the

focal plane. We assumed in our analysis that some outside metric was available to correctly make
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this determination with 100% accuracy and always used the correct half of the IQA profile in our

error calculation. (2) The IQA peak value varies for different z-stacks so a global normalization

constant cannot be used. In our analysis, we calculated the maximum IQA score for each test-

ing z-stack before calculating the error. A real-world application of IQA would therefore require

collecting a new z-stack of the imaging region whenever the field of view experienced substantial

changes. However, even with these two advantages for IQA in our comparison our CNN model

still outperforms IQA in predicting the z-position of an image.

2.7 Using the neural network to automatically maintain focus during live-cell imag-

ing

We connected our best CNN model to the focal control of our microscope through a software

interface. The CNN processes the live microscopy images at a rate of 20 Hz to estimate the

current z-position position of the sample. The controller then automatically adjusts the objective

in real-time to maintain the estimate within ±1µm of the z-position locked-in by the user. Figure

6 shows the result of a 24 hour growth experiment. Here, we purposely allowed the temperature

of the environmental chamber to vary by 3◦C to induce expansion effects on the stage (see Fig.

S4). The stage position varies by 40µm during the 24 hour period, but the sample is maintained

in precisely the desired focal range.

Moreover, focus is well-controlled regardless of large changes that occur in the field of view.

Over the course of the 24 hour growth experiment the number of cells in the frame increases from

fifteen to many hundreds (see Supplementary Video S8). Additionally, because we did not affix

the cells to the coverslip in this experiment, cells and cell clusters move around and occasionally

drift into and out of frame. Focus is maintained within the set range regardless of these variations.

The CNN is robust to these changes because it does not predict focus using any specific features

but globally over the entire image.

Even though it performs well in the vast majority of cases, it is interesting to consider circum-

stances where the method infers the z-position incorrectly. In Supplementary Fig. S5 we show

three examples where the inference error is >5µm, the distance between cells on the bottom and

top of the chamber. In Fig. S5a the inference is incorrect because only a few cells are present in
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the central 1000X1000 region and the majority of these cells happen to be adhered to the ceiling

of the growth chamber. The inference of the z-position of the microscope is thus off by ∼5µm.

Figure S5b show a case where there are two distinct populations in the field of view. Some cells

are on the floor of the growth chamber and some on the ceiling. This results in a bimodal softmax

distribution. The incorrect mode is slightly higher and the inference is thus incorrect. Figure S5c

shows the same population as in (b) but when imaging above the focal plane. The softmax distri-

bution is not bimodal in this case, but extremely broad due to the combination the two populations.

The inference thus becomes ambiguous. Overall, most inference errors observed in our data are

due to the cases where a significant fraction of the cells do not occupy the expected z-position.

2.8 Performance of the model on alternate cell types

Finally, to investigate the capability of our method to infer the focal position of cells with more

complex intracellular structures than yeast, we trained a CNN model to infer the focus of fixed

and stained Euglena cells (Carolina Biological Supply Company). These are oblong cells with

length ranging from 30–50µm. Because of the larger cell size, we used a 10X phase-contrast

objective to capture multiple cells per image. We collected 136 z-stacks in total, with each z-

stack spanning ∼600µm of focal distance using 51 images collected ∼12µm apart in z-direction

(Supplementary Fig. S6). We randomly partitioned the z-stacks into training (109) and testing

(27) data sets. Similar to the models trained for yeast cells, two neural networks were trained with

image downsampling of 4X and 2X (using 1000X1000 pixels regions) and a batch size of 50 and

22, respectively, for 100,000 steps.

We evaluated the trained neural networks using the testing data set. We used the CNN to

infer the z-position of each image and compared that with the annotated position. Supplementary

Figure S7 shows the probability of a particular z-position inference given a labeled z-position

(bin size 12µm). Both neural networks were able to reliably infer the z-position of an image.

The probability distribution at any labeled position is wider than for the yeast CNN due to the

significantly increased depth of field of the 10X objective. Despite making no changes to the

hyperparameters, our CNN method was able to properly learn to infer the focus of a new cell type

and imaging configuration.
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3 Conclusion

Autofocus is of great importance in high-throughput microscopy of microbial cells. It allows unat-

tended imaging over large length and time scales. In this work, we presented a convolutional

neural network (CNN) approach for inferring the focal position of microbial cells under bright-field

microscopy and for using the CNN output to reliably and accurately control a microscope in real-

time to maintain focus. We have developed this method to assist in collecting high-throughput,

live-cell imaging of yeast growing in a microfluidic device. Our method enables us to maintain

focus on the cell monolayer during long-duration imaging and while rapidly scanning the stage to

image the entire device, which may have height imperfections along its length.

In comparison with other autofocus approaches, our method does not require physical calibra-

tion nor the acquisition of z-stacks during imaging, and is robust to noise, optical artifacts, and

features other than cells (e.g. structures in the microfluidic device). Even though the presented

method provides some advantages over other forms of autofocus control, it is system specific in

terms of microscope objective, imaging mode, and cell type. It is unlikely that a trained CNN model

would work well if any of these variables were changed. Nevertheless, given that a relatively small

data set of 100 z-stacks is needed and an adequate CNN can be trained in a few days on a GPU,

construction of system specific autofocus models is quite practical.

Additionally, it should be possible, given a large and varied data set and a deeper neural

network, to train a single model to recognize focal position of many different systems. Likewise,

we have only tested our method on microbial systems with relatively homogeneous cells. A deeper

or more sophisticated neural network may be required to infer the focal position of more complex

cell types, such as neurons. Our method therefore provides a novel conceptual and practical

framework for automated focus control in high-throughput imaging of biological samples, and we

anticipate that this framework is generally applicable in the field of bright-field and phase-contrast

microscopy where unattended and real-time control of focal position is desired.

Finally, while our CNN model only infers the best single focal position for an entire image, by

using deconvolution techniques [36, 37] the focal position of all individual cells within the image

could also be obtained. Then, all cells within the field of view could be focused on and imaged

individually or complex spatially varying features could be tracked and followed in the z dimension.
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Such a method would assist in automatic high-throughput imaging of multiple cell layers within

complex biofilms or tissues.

4 Materials and Methods

4.1 Cell growth and microscopy

The Yeast GFP Clone Collection STE20/YHL007C fusion strain (courtesy of Dr. John Kim) was

used in this study. Yeast cells were initially cultured overnight in low-fluorescence synthetic defined

media without histidine (SD-H) at 30◦C. Cells were then loaded into a custom soft-lithography

microfluidic device with a ∼6µm tall growth chamber containing 10µm diameter pillars on a 50µm

grid to prevent chamber collapse. The device was fabricated according to standard protocols.

Yeast cells were continuously supplied with fresh SD-H media through the entire imaging process.

Images were acquired using an Axiovert 35 inverted microscope (Zeiss) equipped with a cus-

tom automated stage and environmental chamber. A Fluar 40X oil-immersion objective with 1.30

NA (Zeiss) was used during all microscopy. Images were captured using a Flea3 FL3-U3-32S2M-

CS camera (FLIR Systems) operating at 20 fps, 10 dB gain, and 50 ms exposure time. The image

size was 2080×1552 pixels with a resolution of ∼60 nm per pixel. The microscope, stage, camera,

and light source were controlled by custom software. Z-stacks were acquired at room temperature

and live-cell imaging was conducted at 30◦C.

4.2 Neural network implementation

The neural network was implemented using the TensorFlow framework [38]. In TensorFlow, com-

putation, shared state, and operations that mutate that state are represented by dataflow graphs.

Specifically, functional operators, such as matrix multiplication and convolution, as well as muta-

ble state and operations that update the state, are represented as nodes, while multi-dimensional

arrays (tensors) that are input to or output from nodes are represented as edges. All training runs

were executed on 4GB Tesla K20m GPUs (Nvidia).
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4.3 Data availability

The code for training the neural network and inferring the focal position of images is given in

Supplementary File S9. All training and testing data, along with the final neural network model, is

available for download from our website (http://www.robertslabjhu.info/home/data/).
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Figures

Figure 1: Autofocus convolutional neural network. (a) Architecture of the convolutional neural

network (CNN). Images of 1000×1000 pixels in size are downsampled before entering the neural

network. The CNN consists of two convolution blocks and two fully connected layers. (b) Sample

images from a z-stack. Each z-stack is composed of 31 images in steps of ∆z = 1µm, including

images below and above the focal plane (z = 0). The complete z-stack is shown in Fig. S1.

Figure 2: The effect of downsampling on CNN accuracy. (a-c) Images downsampled by (a)

10X, (b) 4X and (c) 2X from an original image of 1000×1000 pixels in size. (d) Error of CNNs

trained with different downsampling and batch sizes. The error is defined as the difference be-

tween the inferred and annotated z-position. Symbols give the mean error and bars are ±1 stan-

dard deviation. Blue dots, orange triangles, and green stars correspond to batch sizes of 10, 25

(22 for 2X downsampling) and 50, respectively. (e) Mean squared error (MSE) with symbols and

colors as described in (d). (f) Time taken to train each CNN.

Figure 3: Accuracy of CNNs with different z-bin sizes. (a-b) The probability of inferring a z-

position given the actual z-position using a CNN with a bin size of (a) 1 and (b) 5. (c) Error as a

function of bin size. Symbols give the mean error and bars are ±1 standard deviation. Blue dots,

orange triangles, and green stars correspond to downsampling of 10X, 4X and 2X, respectively. A

batch size of 50 was used for 10X and 4X downsampling, and batch size of 22 was used for 2X

downsampling. (d) Mean squared error (MSE) vs. bin size.

Figure 4: The relationship between accuracy and data set size. (a) Error as a function of

the number of z-stacks in the data set. Symbols give the mean error and bars are ±1 standard

deviation. (b) The mean squared error (MSE) vs. data set size.

Figure 5: Comparison of the accuracy of the CNN and human annotators. (a) Error of human

annotators (H1–H4) compared with the CNN in determining the in-focus image given a full z-stack

to analyze, relative to a reference annotation. (b) Error of human annotators in re-determining

the in-focus image relative to their previous annotation. (c) Error in determining the numerical

z-position of an image without using any additional context.

Figure 6: CNN controlled autofocusing during live-cell imaging of yeast. The (black) stage

position and (blue) sample focal position over the course of a 24 hour growth experiment.
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