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Abstract—State-of-the-art synchronous graph processing
frameworks face both inefficiency and imbalance issues that
cause their performance to be suboptimal. These issues
include the inefficiency of communication and the imbalanced
graph computation/communication costs in an iteration. We
propose to replace their conventional two-sided communication
model with the one-sided counterpart. Accordingly, we design
SHMEMGraph, an efficient and balanced graph processing
framework that is formulated across a global memory space
and takes advantage of the flexibility and efficiency of one-sided
communication for graph processing. Through an efficient
one-sided communication channel, SHMEMGraph utilizes the
high-performance operations with RDMA while minimizing
the resource contention within a computer node. In addition,
SHMEMGraph synthesizes a number of optimizations to
address both computation imbalance and communication
imbalance. By using a graph of 1 billion edges, our evaluation
shows that compared to the state-of-the-art Gemini framework,
SHMEMGraph achieves an average improvement of 35.5%
in terms of job completion time for five representative graph
algorithms.

I. INTRODUCTION

Graph processing has emerged as a very attractive practice
for data analytics. As the size of graph data keeps explod-
ing, they become increasingly hard to be fit into a single
machine [26], [8]. Therefore, distributed graph processing
frameworks become the main focus for large-scale graph
processing [21], [20], [10], [25], [24], [26], [7]. [28]. In
particular, Gemini [28] is a recent effort whose computation-
centric design has improved previous works by at least an
order of magnitude.

However, the existing distributed and synchronous graph
processing frameworks still suffer from serious inefficiency
and imbalance issues. First of all, despite a few early at-
tempts, the state-of-the-art graph processing frameworks are
still unable to efficiently utilize the high-performance inter-
connects and capabilities such as Remote Direct Memory
Access (RDMA). Moreover, there exists an imbalance issue
in synchronous graph processing that renders its performance
to be suboptimal. This problem arises from two sources:
computation and communication. For example, in an iteration
of the Bulk-Synchronous Parallel (BSP) model, different pairs
of nodes have uneven computation and communication needs
and therefore have unmatched progresses. This creates idleness
for certain nodes and delays the completion of the current
iteration. The cause for this issue is convoluted and hard to
be eradicated. However, our investigation indicates that, if we
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can relax the strict synchronization barrier imposed by the two-
sided communication and leverage its one-sided counterpart,
we can greatly reduce the node idleness and delays.

To this end, we propose SHMEMGraph, a more efficient and
balanced graph processing framework that uses one-sided op-
erations to exchange remotely-accessible graph data between
different nodes in a shared-memory style !. Several benefits
comes with such a design. Firstly, the memory-style addressing
matches up the distributed in-memory graph processing better
than the conventional view. Secondly, the one-sided operations
that are used in the shared memory model can improve
the communication efficiency of distributed graph processing,
especially with RDMA. Thirdly, by leveraging the flexibility
of one-sided operations, the aforementioned imbalance issues
can be mitigated through more flexible and fine-grained load
balancing, which is prohibitively difficult with the traditional
two-sided communication.

In this paper, we will show SHMEMGraph’s design over the
state-of-the-art Gemini framework [28] as proof-of-concept.
SHMEMGraph addresses the inefficiency and imbalance is-
sues by incorporating several novel techniques. First of all,
its basic communication channel uses only one single thread
to conduct one-sided Put for transferring data, which is more
efficient and scalable than the existing solutions. Secondly, we
divide the long and imbalanced computation process into finer-
grained pieces so that they can be better overlapped and cause
less node idleness. Thirdly, we further exploit the flexibility
of one-sided Get to implement a communication balancing
mechanism to further reduce the delaying time.

In this paper, we first briefly cover the background in
Section II. Then we present the motivation and design of our
work in Section III and IV. After that, We show evaluation
results in Section V and discuss related works in Section VL

II. BACKGROUND
A. Distributed Graph Processing

In this paper, we focus on vertex-centric graph process-
ing, where a graph consists of many vertices connected by
directed/undirected edges. Here, we briefly describe the basic
execution and programming models of the existing distributed
graph processing frameworks.

'The acronym SHMEM, in this context, represents SHared MEMory
rather than Symmetric Hierarchical MEMory although we have also used
OpenSHMEM [6] for SHMEMGraph.



Synchronous (or bulk-synchronous) and asynchronous are
two major execution models for graph processing. They are
distinguished by whether we put a synchronization barrier be-
tween each iteration of processing. Although the asynchronous
model poses no global synchronization barrier, it often in-
curs costly lock contention and lacks message batching. As
a result, its performance is generally less competitive and
sometimes unable to ensure correct convergence for certain
graph algorithms [12], [26], [28]. Most of the existing graph
processing frameworks support either both models (e.g. [20],
[10], [24]), or only the synchronous one (e.g. [21], [11], [28]).
In general, each iteration in the synchronous model consists
of three phases: preparation, communication and processing.
Each phase is conducted in parallel on different nodes and can
be pipelined to allow overlapping with other phases.

There are various programming models for writing graph
algorithms, but they generally involve a vertex program which
defines the way to prepare, communicate and process ver-
tices/edges. Depending on the direction of initiating the com-
munication along the edges, most of the programming models
are either push-based (source vertices conduct computation
and send updates to destination vertices) [21], [26], [18],
pull-based (destination vertices fetch source data and update
themselves) [20], [10], [11], or hybrid push/pull [25], [28],
[3]. Although every synchronous graph processing frame-
work may have varying amount of work for each prepara-
tion/communication/processing phase, it is universally impor-
tant to balance each node’s cost in the same phase in order to
achieve good parallelism and less resource idling.

B. Gemini

Gemini [28] is a distributed and synchronous graph pro-
cessing framework with a computation-centric design. Gemini
uses a low-overhead edge-cut partitioning strategy to distribute
graph data, which balances each node’s workload by con-
sidering the number of vertices and the number of outgoing
edges originated from those vertices. In addition, Gemini’s
hybrid model adaptively chooses either dense mode (similar
to push) or sparse mode (similar to pull) in each iteration,
based on the current graph density (i.e. number of active
vertices). Gemini also provides NUMA awareness, making
worker threads to primarily work on local NUMA nodes and
secondarily on remote ones. On top of that, Gemini’s inter-
node communication is conducted using MPI send/receive
operations in a round-robin fashion, where every node sends
data to another node in a predetermined order. In each round
(only conceptually, no synchronization barrier is enforced),
each node sends data to a certain node and receives data
from another. Gemini greatly mitigates the computation bot-
tleneck and has good overlapping between computation and
communication. As a result, it achieves orders of magnitude
of performance improvement compared to its prior works.

ITI. INEFFICIENCY AND IMBALANCE OF THE EXISTING
FRAMEWORK

In this section, we will use the state-of-the-art Gemini
framework to investigate the imbalance problem and its overall
job performance impact. In our experiment, we run PageR-
ank for 10 iterations on the twitter-2010 graph on 4 nodes,
which is a typical workload used by many previous works
to study graph processing problems [16], [23], [28]. Note
that, the problems are not limited to a few applications in
a specific framework, they are due to fundamental limitations
of synchronous graph processing, partitioning strategies, etc.
The detailed experimental setup can be found in Section V.

A. Communication Inefficiency

For many graph applications, the processing of graph data
usually generates a large amount of data to be exchanged
between different nodes. Although many graph processing
frameworks propose various techniques to overlap the com-
munication and computation, slow communication can often
result in a large portion of time spent in communication and
thus prolongs the job completion time. For example, when
running small graphs (e.g. enwiki-2013, with around 100
million edges), Gemini spends a dominant portion of time on
communication [28]. In that case, the efficiency of the com-
munication will largely determine the job performance. For
larger graphs, the communication costs can be better hidden
behind computation, but the efficiency of communication still
matters because the graph often becomes sparser after multiple
iterations and the computation cannot hide the communication
well anymore. Although advanced network capability such as
Remote Direct Memory Access (RDMA) has shown to be able
to significantly boost the communication efficiency for many
distributed systems,unfortunately however, the state-of-the-art
graph processing frameworks have not yet taken full advantage
of it despite a few early attempts which adopt a less-efficient
communication channel design (discussed in Section VI).

B. The Imbalance Problem

In the synchronous model of graph processing, every node
synchronizes at the end of a processing iteration. Therefore,
the slowest node to complete will determine the time duration
for the current processing iteration. Ideally, in each itera-
tion, the same parallel portion at each node costs about the
same, as shown in Fig. 1(a). In that case, every node will
synchronize roughly at the same time. There is very little
idleness and the parallelism gets maximized. However, in real
world, the progresses of certain nodes are often imbalanced.
A particular node can be delayed, which further delays the
completion of the current processing iteration and the overall
job performance. Fig. 1(b) shows an example, where the data
sending/receiving from node 0 to node 1 gets delayed. As
shown in the figure, compared to the ideal case, the delay
creates idleness on node 2 and prolongs the completion of the
current processing iteration by the same amount. Such a node-
to-node imbalance has largely been overlooked by prior arts
whose main focus has been the overall imbalance in a whole
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(a) The ideal case. (b) The imbalanced case.
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Fig. 1: Illustration of the imbalance problem in graph processing.

processing iteration [10], [7]. Note that, For a node that causes
imbalance, its faster round may not remedy its slower round
since the delay also affects another node.

Even worse, however, there is a combined effect of im-
balance where the slower rounds from different nodes are
affecting the job performance altogether. As illustrated in
Fig. 1(c), the data transferring from node 0 to node 1 and
the one from node 3 to node 1 both get delayed. As a result,
the two delays are stacked together at node 1, adding twice
as much delays to the completion of the iteration. In Gemini,
this combined effect is avoided by launching many receiving
threads on every node. Each thread receives data from one of
the other participating nodes, as shown in Fig. 1(d). However,
this approach is suboptimal as it is both costly and incomplete:
firstly, each node needs to launch the same number of threads
as the total number of participating nodes, making the system
harder to scale out; secondly, as shown in Fig. 1(d), one of
the delays is still carried over to the final completion, leaving
the performance still being affected.

1) Causes of Imbalance: In general, the delay shown in
Fig 1(b) can be originated from the preparation or communi-
cation phases as mentioned before. We refer to these two types
of imbalance as computation imbalance and communication
imbalance. The processing phase has much less impact in
the case of Gemini due to much less computation work to
do, though it may has a larger imbalance issue in another
framework. Next, we study the reasons behind the two major
types of imbalance, along with cost analysis.

Computation Imbalance: Although most graph partition-
ing strategies make their best efforts in evenly distributing
graph data among the nodes, significant computation imbal-
ance still exists. Many reasons are accountable for that. First
and most importantly, a common partitioning strategy can
only balance the total computation cost of each node in each
iteration, but not the computation costs of them in each round.
Take Gemini’s partitioning strategy for example, it partitions
the graphs based on each node’s partitioning weight that is
calculated from the number of a node’s owned vertices and
their outgoing edges. As shown in Fig. 2(a), where we plot the
partitioning weights for different node-to-node computation
work in each round in our motivating experiment, the total
partitioning weights for different nodes in the experiment are
well balanced. However, the partitioning weights in each round
are imbalanced drastically (as seen in the variation ). The
reason is that, the partitioning strategy cannot coordinate the
amount of connected edges for every pair of nodes, thus being

unable to balance the partitioning weights in each round. The
cost analysis of this issue in shown in Fig. 2(b). As we
compare Fig. 2(a) with Fig. 2(b), large partitioning weights
are directly associated with the long computation costs. There
are some significant nonconformity though, which is due to
significant larger number of outgoing edges that Node 2 owns
for Node 0 and 3 (but it owns much less vertices so its
partitioning weight is evened out). Therefore, it needs more
memory accesses for writing the data to message buffer, which
makes its computation cost higher than expected.

Communication Imbalance: Similar to the computation
imbalance, the communication imbalance stems from the
uneven node-to-node communication needs. The imbalanced
numbers of edges that each node connects to another node will
generate uneven amount of sending data among them in each
round, which is hard to solve using the existing partitioning
strategies. In addition, the outcome of the computation will
have an effect on communication imbalance since each node
can generate different amount of sending data, depending on
the algorithm, graph topology etc. Fig. 2(c) shows the sizes of
transferring data in each round and in total. We can see that
the sizes vary significantly. Especially, the excessive number
of outgoing edges on Node 2 has a huge impact on its commu-
nication need. Moreover, even the total communication costs
of each node are not well balanced due to the unpredictability
of the computation outcome.

There are also other reasons for computation and com-
munication imbalance, which contribute to the variations in
Fig. 2(b) and Fig. 2(d) as well. For example, some input
graph data do not have continuous numbers for vertices,
i.e. a large portion of the vertices range do not appear in
the edges. Simple edge-cut partitioning [28] may lead to a
very biased distribution of vertices/edges for these graphs
because it partitions vertices based on the total range of
vertex numbers. Other common factors include local resource
contention, network congestion, node heterogeneity etc.

2) Implications to Overall Job Performance: Till now, we
have only shown the direct effect of the imbalance issue in
each round, but not yet seen its implication to the overall
job performance. It is hard to get things into perspective
using the job completion time because there is hardly an ideal
case without the imbalance issue that we can compare with.
However, we find that since the imbalance issue causes delays
by creating idleness for certain nodes, we can understand the
overall cost and room for improvement by quantifying the idle
time. To put it formally, without computation/communication
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Fig. 3: Overall performance impact of the imbalance problem.

overlapping, the time for each node to complete a processing
iteration equals t0 Tprep + Teomm + Tproc + 1 final, Where Tprep,
Tomm and Ty, are the times for preparation, communication
and processing phases, respectively, and If;,, is the idle time
in waiting for other nodes at the end of iteration. Additionally,
when communication is overlapped with computation, the
completion time becomes Tprep + lrecy + Tproc + Ifina where
Teomm 1s replaced by Ire,, which is the idle time in waiting for
receiving data. Without further condensing or overlapping the
Tprep and Tppoe costs (also extremely difficult), a realistic goal
for optimizations should aim for reducing each node’s Iecy
and /finq and also balancing Tpep and Tpp between different
nodes as good as possible.

The first two figures in Fig. 3 have shown the two types
of idle time of each node for our motivating experiment
on two systems, which have very different computation and
communication costs for Gemini (detailed discussion can be
found in Section V). From the figure, we can see that for
both systems, the imbalance problem has caused large and
skewed idle times, which have seriously affected the overall
job performance. In addition, compared to in-house cluster, the
idle time is less pronounced on Titan because the computation
takes more time there so better computation/communication
overlapping has been made possible.

The third figure (Fig. 3(c)) shows the relation between
total idle time of the most affected node (Node 1) and total
execution time of each iteration. We run 20 iterations of
PageRank to show it at a longer time-span. We can see that
the two lines have similar trend, which shows the correlation
of the idle time and iteration’s execution time.The very few
occasions where the two lines do not match (e.g. Iteration 6) is
when the node itself has encountered additional certain delays
so it is much less affected by other nodes in that iteration. Also,
both lines are highly fluctuating due to random system/network
overheads.Such performance variation has made designing
countermeasures even more challenging because even if we

can eliminate the major causes for imbalance, we still need to
deal with the variations in order to provide more stable and
predictable performance for graph processing applications.

IV. DESIGN OF SHMEMGRAPH

In this section, we present the design of SHMEMGraph,
a graph processing framework that cleverly leverages the
efficiency and flexibility of one-sided operations to mitigate
the negative performance impact of aforementioned issues.

A. Overview

The overarching goal of SHMEMGraph is to support vari-
ous distributed and synchronous graph processing frameworks
and provide more balanced and efficient computation and
communication for them. Fig. 4 shows the comparison be-
tween the architectures of traditional graph processing frame-
works and SHMEMGraph. The traditional one (Fig. 4(a))
shows the most representative architecture of the existing
distributed graph processing frameworks, where each node
processes their graph partitions stored in local memory and
uses certain types of RPC methods (even with RDMA) to
transfer graph data or computation results to other nodes. In
contrast, SHMEMGraph (Fig. 4(b)) has three new/modified
components for achieving its design goals. Firstly, the basic
one-sided communication channel in SHMEMGraph conducts
one-sided operations on the global memory space that stores
graph data, computation output etc. The basic channel uses a
single thread to remotely write data to other nodes using one-
sided Put. This facilitates the efficient utilization of RDMAand
also resolves the combined effect of the imbalance issue at
a much lower cost. Secondly, SHMEMGraph breaks some
overlong phases of preparation, communication and processing
all into finer-grained pieces. This fine-grained data serving
mechanism helps SHMEMGraph reduce the delay resulting
from computation imbalance. Thirdly, SHMEMGraph further
leverages the one-sided Get to implement a communication
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Fig. 4: Architectures of traditional graph processing frameworks and SHMEMGraph.

balancing mechanism, which counters the performance impact
of communication imbalance and saves unnecessary idle time
in waiting for the receiving data.

Note that, such a design is effective for any graph pro-
gramming model (i.e. push, pull or hybrid) as they all have
similar interdependent preparation, communication and pro-
cessing phases. The actual amount of work in each phase may
differ, which will determine how much a certain framework
will benefit from our techniques. For example, for some
frameworks that have very few or no processing work af-
ter communication [21], [15], the fine-grained data serving
will be unable to provide much improvement, whereas the
communication balancing will be more effective due to larger
portion of communication work in an iteration. In addition, the
basic communication channel of SHMEMGraph is especially
helpful for systems that have the combined effect of imbalance
(e.g. Gemini), but can still provide improvement for any other
graph processing frameworks that need to send batch messages
between all participating nodes (true for most cases).

B. One-sided Communication Channel

The basic design of SHMEMGraph’s one-sided communi-
cation channel is shown in Fig. 5. For each node, only one
communication thread is launched, which uses Put to directly
write data to the exposed receiving buffer on other nodes. The
exposed memory also holds the sending buffers and length
arrays, which will be discussed later. Same as Gemini, the
exposed buffer is associated with certain NUMA node so
that both local reads and writes to those buffers are local to
their corresponding NUMA nodes. We favor Put over Get
here because Put involves lighter synchronization overheads:
it has only one additional call for the buffer locking apart from
Put, whereas for Get, there are more calls for purposes such
as repetitive availability inquiry, buffer locking/unlocking,
receiving notification besides the actual Get.

After the preparation work is done and the sending buffer
is filled, the sender thread conducts an atomic Compare-And-
Swap (CAS) operation to the corresponding length array on
the receiver node. This single CAS serves three purposes:
notifying about data arrival, informing about data size and
locking the receiving buffer. If there is no conflict going on,
the CAS writes the data length to corresponding location

in the length array. The conflict is when another CAS has
modified the same location before. The receiver checks the
length array to get informed about both the arrival and length
of the receiving data. The receiving data has a completion flag
at the end of the valid data portion to confirm the completion
of transferring. Note that, although each receiving buffer is
uniquely associated with a certain sender, avoiding race con-
dition using locks is still necessary due to the communication
balancing, which will be discussed later.

To maximize computation/communication overlapping,
SHMEMGraph also adopts a round-robin inter-node commu-
nication procedure similar to the original Gemini. However,
SHMEMGraph conducts the processing phase out-of-order
in order to avoid the combined effect of imbalance. The
receiver node does not block itself waiting for data from
an anticipated node. Instead, when the receiver does not get
data from the buffer for the anticipated node, it continues to
check the subsequent buffers. Upon data being received, the
receiver node continues to do processing and will skip the
corresponding receiving buffer the next time. If the data from
the most anticipated node is processed, it will mark the next
unprocessed node as the new anticipated node.
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Fig. 5: SHMEMGraph’s basic one-sided communication chan-
nel using a single thread.

C. Fine-grained Data Serving

On top of the basic one-sided communication channel,
SHMEMGraph further tackles the computation imbalance by
dividing the imbalanced and long data serving procedure of
preparation, communication and processing phases all into
finer-grained pieces. As shown in Fig 6, in this particular
round, the sending data from Node 0 to Node 3 is divided into



fine-grained chunks. Upon completion of preparation phase,
each individual chunk will be (1) written to the sending buffer,
(2) sent to the remote receiving buffer, and (3) processed by
the remote node upon being received.

In principle, the data serving procedure between a certain
pair of node is chosen to be fine-grained if there is signifi-
cant computation imbalance in current round. In the case of
Gemini, the condition is when (1) the partitioning weight of
the corresponding send/receive pair significantly exceeds the
partitioning weight of other pairs on the same node, or (2) the
number of outgoing edges associated with the corresponding
sending data significantly exceeds the average number in the
current iteration. More specifically, the sending data from node
nj to mp is to be fine-grained if:

wlmn2)  plmn)
W Eee "

where W(":m) represents the partitioning weight of the
send/receive pair from node n; to np, Wa(:g' N) represents the
average partitioning weight of all the pairs from Node ny,
defined as W) = yi<N#m (i) /(N — 1). In addition,
avg i=0

EM12) is the number of outgoing edges from ny to ny and Eg,e
is the average number of outgoing edges for any pairs of nodes,
calculated as Egye = Y=Y ECN) /N. Then, § is the threshold to
determine how much we should tolerate for minor imbalance,
which is set to 1.5 empirically. Both factors in the equation
contribute equally to the decision as a lower computation cost
may be negated by a higher one.

In addition, because we cannot calculate the weights and
edges by creating another computation phase which will
add significant overheads, we collect the values along with
preparation phase and use them as the predicting values for
the next iteration (Eg, is made available to all nodes at
the end of current iteration). For the first iteration, we use
the values collected in the initialization phase. We do not
simply apply fine-grained mode for all cases because only the
imbalanced computation will cause significant delays. Also,
we find that aggressively dividing the data serving procedure
can cause adverse performance behavior due to increased
operation overheads and resource contention.

Moreover, the length array is expanded to a two-dimensional
array when the fine-grained data serving is enabled. Each
original array entry is further extended to an array of lengths.
The size for the sub-array is determined by the total length
of each buffer and the length of each chunk, calculated as
Shuffer /Schunk- The chunk size Scpnk is an important tuning
parameter in SHMEMGraph and is set empirically to 4 MB.
After writing a chunk, the sender will conduct CAS on the
corresponding position in the length array on the receiver side.
The sender without fine-grained data serving will write the
total length to the head of the array. The receiver looks up
the length array and process the received chunks afterwards.
In order to reduce frequent switch between different buffers
and the lookup cost, the receiver will wait for a short while
and then switch to the next buffer if no data arrives. Each

node maintains a number of indicators to keep track of the
processed chunks. If the receiving buffer is not fine-grained,
the indicator will be at either the head or the tail position of
the array, indicating empty or full, respectively.

prepared unprepared
ri
[ Node 0
[ Node 1
and indicators
[ Node 2 i Node 3

Fig. 6: Illustration of fine-grained data serving, where sending
data from Node O to Node 3 is chosen to be divided.

D. Communication Balancing

The communication balancing mechanism allows the nodes
that are faster in finishing their own sending data to speed
up their data receiving progress. Based on the preparation
progress on the sender node, two balancing approaches are
used: fetching the sending buffer or fetching the unprocessed
vertices. As shown in Fig 7, SHMEMGraph uses the one-sided
Get for fetching data from other nodes. After a communication
thread has finished sending all its data, it starts to remotely
read data from another node that has not sent any data to
this one. If it is currently receiving data from another node,
i.e., the corresponding length array for that node has been
locked, it will skip that node. Therefore, before fetching, the
communication thread will also conduct a CAS to try to lock
the corresponding length array entry. This prevents conflict
in writing to the same buffer and avoids unnecessarily trans-
mitting repetitive data. Similar to the basic communication
channel, the receiver node will start fetching from its most
anticipated sender node that has not yet sent data.

When balancing, a node first checks if the sending buffer
on the target node has available data. It does that by checking
the corresponding length array on the target node. Then the
node fetches the corresponding data if it is available. If not, the
node then checks if the active vertices on the target node can
be fetched. The active vertices are prepared and stored in the
global memory space by the target node at the beginning of
each iteration. To avoid expensive communication overheads
and shipped computation cost that may negate the benefit of
communication balancing, we set a threshold st which is the
upperbound for the number of active vertices that deserves
to be fetched. In the case for Gemini, we set st to be %,
where V; is the number of total vertices that Node i owns. This
value is chosen based on the general performance difference
of sparse and dense modes in Gemini. Here, SHMEMGraph
effectively exploits Gemini’s adaptive mode switching within
a single iteration: pull active vertices even in the push model.
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Fig. 7: Ilustration of communication balancing.




V. EVALUATION

We have fully implemented SHMEMGraph on top of
Gemini using both C and C++. Since thread-safety is
implementation-dependent and sometimes not provided by the
one-sided communication libraries, we have also implemented
a communication delegator [9] that runs alongside with the
graph processing engine and uses shared memory to pass
data between itself and the graph processing engine. We
have managed to ship most of the techniques of the original
SHMEMGraph to the delegator.

We have extensively evaluated the performance of SHMEM-
Graph against Gemini. Note that, we have confirmed on our
testbed that both Gemini and SHMEMGraph can achieve
more than an order of magnitude better performance over
other distributed graph processing frameworks such as Power-
Graph [10] and PowerLyra [7]. Such results are expected to be
similar to the results reported in the Gemini’s paper [28]. Due
to space limitation, in this section we will only focus on the
comparison between SHMEMGraph and Gemini to see how
much SHMEMGraph can further improve the state-of-the-art
Gemini framework. Next, we will summarize and analyze our
experimental results in detail.

TABLE I: Graph data used in the experiments.

Name Type No. of vertices | No. of edges
enwiki-2013 continuous 4,206,289 101,311,614
twitter-2010 continuous 41,652,230 1.468,365,182
uk-2007-05 continuous 105,896,555 3,738,733,648

com-friendster non-continuous 65,608,366 1,806,067,135

A. Experimental Setup

Unless otherwise specified, all experiments are conducted
on an in-house cluster of 21 server nodes called Innovation.
Each machine in Innovation cluster is equipped with 10 dual-
socket Intel Xeon(R) cores and 64 GB memory. Hyperthread-
ing is enabled to improve the graph computation performance.
All nodes are connected through an FDR InfiniBand inter-
connect with the ConnectX-3 NIC. In addition, we have also
evaluated SHMEMGraph on the Titan supercomputer at Oak
Ridge National Laboratory [2]. Titan is a hybrid-architecture
Cray XK7 system, which consists of 18,688 nodes and each
node is equipped with a 16-core AMD Opteron CPU and
32GB of DDR3 memory.

We use Open MPI [1] v3.0.0 for both thread-safe (MPI)
and non-thread-safe (OpenSHMEM) one-sided operations,
whereas the recent OpenSHMEM specification 1.4 has also
added thread safety feature. Note that, although Cray MPI
is considered preferred on Titan, we only managed to get
SHMEMGraph but not Gemini to work with it. Therefore,
for Titan we use Open MPI to compare Gemini and SHMEM-
Graph but will show SHMEMGraph’s performance using both
Open MPI and Cray MPI (v7.6.3).

We use four representative graph workloads for our ex-
periments, including three graphs with continuous vertices
from WebGraph+LLP [5], [4] and a non-continuous graph
from SNAP [17] (vertices range is 2x larger than actual
number of vertices). The number of vertices and edges are

shown in Table 1. We evaluate five representative graph algo-
rithms provided by the original Gemini, including PageRank
(PR), Connected Components (CC), Single Source Shortest
Path (SSSP), Betweenness Centrality (BC) and Breadth-First
Search (BFS). For each result reported, we test the experiment
at least 5 times and get the average. For results that we do not
specify which setup is used, they are the results of running 10
iterations of PageRank on twitter-2010 on 4 nodes.

B. Overall Performance Improvement

First of all, we compare the overall job performance of
Gemini and SHMEMGraph for each individual graph al-
gorithm. As shown in Table II, SHMEMGraph is able to
outperform Gemini for all test cases, including different graph
algorithms, graph data type and testbed system. There are
two general trends in these results. Firstly, for smaller graphs,
SHMEMGraph has a larger improvement for algorithms that
have a better portion of their processing iterations running
with high graph density. Take PageRank for example, which
does not change density throughout completion, it has the
most significant improvement for enwiki-2013. This is because
small graphs with low density have very little communication
and computation works that also permit little room for im-
provement. However, for larger graphs, algorithms with more
iterations running with low density see more improvement
from SHMEMGraph. This is because at higher density, it takes
much longer for computation than communication, resulting in
less benefit from improved communication. The major perfor-
mance improvement becomes the mitigation of the imbalance.

Moreover, in general, SHMEMGraph has a larger improve-
ment on Innovation cluster than on the Titan supercomputer.
This is because computation on Titan takes much longer due to
less computation threads being used (16 compared to 40) and
the lack of NUMA locality (Titan needs different preparation
for thread-to-core binding). As a result, the communication
for graphs of high density is completely hidden behind the
long computation. Therefore, even communication balancing
will not have much effect and SHMEMGraph can only benefit
from the fine-grained data serving.

In addition, on Titan we have also evaluated SHMEMGraph
using Cray MPL. As shown in Table III, where we run
the five algorithms on the enwiki-2013 graph on 4 nodes,
SHMEMGraph performs slightly better with Cray MPI on
Titan. We have found that the main contributing factor here
is the faster MPI RMA operations of Cray MPI over Open
MPI on Titan. This is also reflected by the fact that algorithms
with more communication work have larger improvement (e.g.
13.6% for PR but 6.7% for SSSP).

Finally, we can see that SHMEMGraph can also mitigate
the imbalance caused by suboptimal partitioning of the non-
continuous graph. However, those results are still not as good
as twitter-2010 which has similar size. There is extremely
long computation on certain node where a lot of vertices are
converged. In that case, even our balancing techniques could
not help either. This indicates that there is still need for a
better partitioning strategy to deal with this type of graphs.



TABLE II: Comparison of job completion time (second) on 4 nodes.

Graph data: enwiki-2013
System: Innovation System: Titan
PR CC SSSP BC BEFS PR CC SSSP BC BES
Gemini 043 0.29 0.44 2.25 1.19 Gemini 0.76 0.69 494 1.73 0.89
SHMEMGraph 0.24 0.21 0.34 1.91 1.05 SHMEMGraph 0.59 0.60 433 1.51 0.83
Improvement 442% | 26.3% | 23.1% | 15.1% | 11.8% Improvement 224% | 13.0% | 123% | 127% | 6.7%
Graph data: twitter-2010
System: Innovation System: Titan
PR CC SSSP BC BEFS PR CC SSSP BC BES
Gemini 245 1.32 2.79 1.64 0.74 Gemini 8.23 8.61 15.73 3.33 1.21
SHMEMGraph 1.9 0.86 1.73 1.03 0.48 SHMEMGraph 1.16 744 12.76 2.87 0.92
Improvement 224% | 34.8% | 38.0% | 37.2% | 35.1% Improvement 13.0% | 13.6% | 18.9% | 13.8% | 24.0%
Graph data: uk-2007-05
System: Innovation System: Titan
PR CC SSSP BC BEFS PR CC SSSP BC BES
Gemini 1.12 1.82 442 5.62 2.58 Gemini 4.44 5.82 28.97 9.31 3.65
SHMEMGraph 1.01 1.44 417 5.01 222 SHMEMGraph 4.07 5.09 27.14 8.63 323
Improvement 08% | 234% | 5.7% 10.9% | 14.0% Improvement 8.3% 125% | 6.3% 1.3% 11.5%
Graph data: com-friendster
System: Innovation System: Titan
PR CC SSSP BC BEFS PR CC SSSP BC BES
Gemini 7.21 479 9.75 222 0.91 Gemini 29.85 19.05 R2.17 6.13 241
SHMEMGraph 6.13 433 8.63 1.91 0.68 SHMEMGraph 24.01 16.58 | 76.33 5.29 2.07
Improvement 15.0% | 9.6% 11.5% | 14.0% | 253% Improvement 19.6% | 13.0% | 7.1% 137% | 14.1%

TABLE III: Performance of SHMEMGraph (second) when
using Open MPI or Cray MPL

PR CC | SSSP | BC | BES
Open MPI || 0.59 | 0.6 433 | 1.51 | 0.83
Cray MPI || 051 | 054 | 404 [ 1.39 | 0.75

C. Scalability

For scalability test, we firstly verify how SHMEMGraph
can outperform the well-known single-thread optimized graph
processing implementation [22]. Table IV shows the results.
The single-thread implementation runs 20 iterations so their
result is divided by 2. The table shows that SHMEMGraph
outperforms the single-thread implementation at 4 threads.
Since our work does not involve optimizations for computation
efficiency or intra-node work balancing, the result is expected
to be similar to the original Gemini [28]. This validates that
SHMEMGraph’s optimizations on communication and inter-
node balancing are not contradictory to the existing strengths
of the original frameworks that it builds upon.

Moreover, we evaluate the scale-out ability of SHMEM-
Graph. We increase the number of nodes being used for the
same experiment. To have a better display, we normalize
the job completion times to each algorithm ’s single node
performance. As shown in Fig. 8, SHMEMGraph can scale out
nicely for most of the algorithms to 8 nodes. For computation-
intensive algorithms such as PR and CC, the scaling to
8 nodes is better due to better distribution of computation
costs. After 8 nodes, the performance scaling stalls or even
worsens because now the inter-node communication occupies
most of the total cost and both fine-grained data serving
and communication balancing are not able to help with the
performance. This indicates that the inefficiency instead of
the imbalance becomes the main performance bottleneck for
graph processing at scale and despite the use of RDMA, there
is still room for more optimizations.

TABLE IV: Comparison of SHMEMGraph
single-thread implementation (second).

and optimized

No. of thread 1 2 4
Single-thread - 52.7 -
SHMEMGraph | 109.1 543 2e.1

D. Design choices and Performance Tuning

To investigate the impact of the individual designs, we
enable each component of SHMEMGraph individually. Fig. 11
shows the results for the three graphs with continuous ver-
tices. Three cases of SHMEMGraph are evaluated: the ba-
sic one-sided communication channel (SHMEMGraph-basic),
the fine-grained data serving on top of the basic channel
(SHMEMGraph-FDS) and the communication balancing on
top of the above two (SHMEMGraph-CB). From the figure,
we can see that all components contribute to the performance
to certain degrees. Firstly, the basic one-sided communication
channel has the most consistent performance improvement
compared to the original Gemini. Secondly, the fine-grained
data serving leads to larger improvement in the tests that
have a larger degree of computation imbalance (e.g. PageRank
for enwiki-2013 and most of the algorithms in twitter-2010).
Thirdly, the communication balancing delivers more consis-
tent improvement than the fine-grained data serving. This is
because the communication balancing not only well mitigates
a larger degree of imbalance in some cases, but also reduces
idle time for others by remote fetching active vertices.

1) Tuning Fine-grained Chunk Size: Fig. 9 shows the
results tuning the fine-grained chunk size Scpux. We plot
Gemini’s performance side-by-side for comparison. 256 MB
is the largest chunking size for the testing graph (twitter-
2010). We can see that the job completion time reaches
the lowest point when the chunk size is 4 MB. After that,
there are increasingly significant overheads from both the
number of communication operations and thread coordination
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Fig. 11: Effect of SHMEMGraph designs.

on the receiving node. We do not evaluate network bandwidth
here because the performance advantage of fine-grained data
serving is mainly the reduced idle time on the receiver nodes,
but not increased bandwidth. However, it will be interesting
to see how this design can fit in with a different type of
communication channel, e.g. a two-sided RPC, where we can
further study the bandwidth behavior and comparison.

2) Delegator Performance: We also evaluate the perfor-
mance of SHMEMGraph when using delegator instead of
communication thread. As shown in Fig. 10, instead of similar
performance improvement, SHMEMGraph with delegator has
comparable or slightly better performance than that of Gemini.
The main reason is the overheads added by memory copying
between delegator and the processing engine. This negates
the previous improvement that the original SHMEMGraph
has over Gemini. However, for results on 16 nodes, Gemini
has a considerable performance degradation due to lack of
communication/computation overlapping when the communi-
cation work dominates the job completion time. In contrast,
SHMEMGraph using delegator does not show such degrada-
tion because of its improved communication efficiency.
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Fig. 12: Mitigation of idle time.
E. Mitigation of Imbalance

To gain more insights into the ability of SHMEMGraph
in mitigating the imbalance problem, we show the idle times
of different nodes during the PageRank experiment. Fig. 12
shows the comparison between Gemini and SHMEMGraph.
It is clearly shown that SHMEMGraph eliminates both two
idle times to a large extent. With the same or even lower
computation cost than Gemini, the elimination of idleness is

directly reflected on the overall job performance improvement
of SHMEMGtraph as shown in previous sections.

Note that, the figure shows the time for each phase normal-
ized to the total time spent on the iteration, so it is the longest
idle portion in each iteration that shows the potential improve-
ment we may have, but not the accumulative idle portions
from all nodes. Also, the mitigation results indicate but not
completely represent the improvement that SHMEMGraph has
over Gemini. For example, the benefit from faster computation
due to less threads being used is not reflected in them.

VI. RELATED WORKS

Leveraging one-sided communication for distributed data
analytics frameworks, including graph processing algorithms
and frameworks, has drawn increasing attention in recent
years [14], [13], [9], [19], [26], [18]. Similar to our work,
GraM [26] uses RDMA to accelerate communication for
synchronous graph processing. However, its design for the
RDMA-based RPC is closer to the delegator implementation
of SHMEMGraph. Compared to SHMEMGraph’s lightweight
one-sided communication channel, GraM’s design brought
rather large overheads for both messaging buffer space and
the number of sending/receiving threads. Moreover, Mizan-
RMA [18] explores the use of MPI RMA operations for
Mizan [15]. In contrast to aforementioned works, our basic
one-sided communication channel not only leverages RDMA,
but also further exploits the flexibility of one-sided operations
by providing an optimal solution to the combined effect of
imbalance. In addition, without carefully overlapping node-
to-node communication/computation costs and reducing idle
time, the aforementioned works still suffer from various im-
balance issues discussed in this paper.

Many studies have pointed out the limitations of syn-
chronous graph processing [20], [10], [24], [7]. For ex-
ample, GraphLab [20] suggests using a more natural way
to express asynchronous iterative computation. In general,
synchronous model provides message batching, good con-
vergence speed and computation/communication overlapping.



In contrast, asynchronous model eliminates synchronization
barriers, allows both sync/async processing, but incurs lock
contention and lacks message batching [27]. Unfortunately, the
issue of node-to-node imbalance has been largely overlooked,
despite that the issue is rooted in the essential limitation of
synchronous processing as well. This is because this issue has
been hidden well behind the imbalance in the overall iteration
but became more obvious under finer-grained overlapping of
inner-round communication/computation costs, like in Gemini.

Similar to our work, many studies attempt to balance the
work between different nodes [10], [7], but they are more
concerned about the imbalanced costs due to the power-law
distribution of natural graphs. Others [25], [28], [3] try to
reduce computation and communication needs by using a
hybrid push/pull model. In contrast, based on an existing
hybrid push/pull model of Gemini, our work moves beyond
computation inefficiency and leverages one-sided Put and Get
for more efficient and dynamic communication as well.

VII. CONCLUSION

We have examined the inefficiency and imbalance issues for
state-of-the-art distributed and synchronous graph processing
frameworks. We have proposed to build a graph processing
framework on top of the global memory space and leveraged
one-sided operations for its inter-node communication. We
have implemented a prototype called SHMEMGraph based on
Gemini and integrated a number of novel design ideas in order
to address the inefficiency and imbalance. We have evaluated
SHMEMGraph extensively on various graph data and graph
algorithms. The results have demonstrated the performance
advantages of SHMEMGraph over Gemini and also its ability
to tackle both computation and communication imbalance.
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