
SHMEMGraph:EfficientandBalancedGraph
ProcessingUsingOne-sidedCommunication

HuansongFu∗ ManjunathGorentlaVenkata† ShaekeSalman∗ NeenaImam† WeikuanYu∗

FloridaStateUniversity∗ OakRidgeNationalLaboratory†

{fu,salman,yuw}@cs.fsu.edu {manjugv,imamn}@ornl.gov

Abstract—State-of-the-art synchronous graph processing
frameworksfacebothinefficiencyandimbalanceissuesthat
cause their performance to be suboptimal. These issues
includetheinefficiencyofcommunicationandtheimbalanced
graphcomputation/communicationcostsinaniteration. We
proposetoreplacetheirconventionaltwo-sidedcommunication
modelwiththeone-sidedcounterpart.Accordingly,wedesign
SHMEMGraph,anefficientandbalancedgraphprocessing
frameworkthatisformulatedacrossaglobal memoryspace
andtakesadvantageoftheflexibilityandefficiencyofone-sided
communicationforgraph processing. Throughanefficient
one-sidedcommunicationchannel,SHMEMGraphutilizesthe
high-performanceoperations with RDMA while minimizing
theresourcecontentionwithinacomputernode.Inaddition,
SHMEMGraphsynthesizes a number of optimizationsto
address both computation imbalance and communication
imbalance.Byusingagraphof1billionedges,ourevaluation
showsthatcomparedtothestate-of-the-artGeminiframework,
SHMEMGraphachievesanaverageimprovementof35.5%
intermsofjobcompletiontimeforfiverepresentativegraph
algorithms.

I.INTRODUCTION

Graphprocessinghasemergedasaveryattractivepractice
fordataanalytics.Asthesizeofgraphdatakeepsexplod-
ing,theybecomeincreasinglyhardtobefitintoasingle
machine[26],[8].Therefore,distributedgraphprocessing
frameworksbecomethe mainfocusforlarge-scalegraph
processing[21],[20],[10],[25],[24],[26],[7],[28].In
particular,Gemini[28]isarecenteffortwhosecomputation-
centricdesignhasimprovedpreviousworksbyatleastan
orderofmagnitude.
However,theexistingdistributedandsynchronousgraph

processingframeworksstillsufferfromseriousinefficiency
andimbalanceissues.Firstofall,despiteafewearlyat-
tempts,thestate-of-the-artgraphprocessingframeworksare
stillunabletoefficientlyutilizethehigh-performanceinter-
connectsandcapabilitiessuchasRemoteDirect Memory
Access(RDMA). Moreover,thereexistsanimbalanceissue
insynchronousgraphprocessingthatrendersitsperformance
tobesuboptimal.Thisproblemarisesfromtwosources:
computationandcommunication.Forexample,inaniteration
oftheBulk-SynchronousParallel(BSP)model,differentpairs
ofnodeshaveunevencomputationandcommunicationneeds
andthereforehaveunmatchedprogresses.Thiscreatesidleness
forcertainnodesanddelaysthecompletionofthecurrent
iteration.Thecauseforthisissueisconvolutedandhardto
beeradicated.However,ourinvestigationindicatesthat,ifwe

canrelaxthestrictsynchronizationbarrierimposedbythetwo-
sidedcommunicationandleverageitsone-sidedcounterpart,
wecangreatlyreducethenodeidlenessanddelays.
Tothisend,weproposeSHMEMGraph,amoreefficientand
balancedgraphprocessingframeworkthatusesone-sidedop-
erationstoexchangeremotely-accessiblegraphdatabetween
differentnodesinashared-memorystyle1.Severalbenefits
comeswithsuchadesign.Firstly,thememory-styleaddressing
matchesupthedistributedin-memorygraphprocessingbetter
thantheconventionalview.Secondly,theone-sidedoperations
thatareusedintheshared memory modelcanimprove
thecommunicationefficiencyofdistributedgraphprocessing,
especiallywithRDMA.Thirdly,byleveragingtheflexibility
ofone-sidedoperations,theaforementionedimbalanceissues
canbemitigatedthroughmoreflexibleandfine-grainedload
balancing,whichisprohibitivelydifficultwiththetraditional
two-sidedcommunication.
Inthispaper,wewillshowSHMEMGraph’sdesignoverthe
state-of-the-artGeminiframework[28]asproof-of-concept.
SHMEMGraphaddressestheinefficiencyandimbalanceis-
suesbyincorporatingseveralnoveltechniques.Firstofall,
itsbasiccommunicationchannelusesonlyonesinglethread
toconductone-sidedPutfortransferringdata,whichismore
efficientandscalablethantheexistingsolutions.Secondly,we
dividethelongandimbalancedcomputationprocessintofiner-
grainedpiecessothattheycanbebetteroverlappedandcause
lessnodeidleness.Thirdly,wefurtherexploittheflexibility
ofone-sidedGettoimplementacommunicationbalancing
mechanismtofurtherreducethedelayingtime.
Inthispaper, wefirstbrieflycoverthebackgroundin

SectionII.Thenwepresentthemotivationanddesignofour
workinSectionIIIandIV.Afterthat, Weshowevaluation
resultsinSectionVanddiscussrelatedworksinSectionVI.

II.BACKGROUND

A.DistributedGraphProcessing

Inthispaper,wefocusonvertex-centricgraphprocess-
ing,whereagraphconsistsofmanyverticesconnectedby
directed/undirectededges.Here,webrieflydescribethebasic
executionandprogrammingmodelsoftheexistingdistributed
graphprocessingframeworks.

1TheacronymSHMEM,inthiscontext,representsSHared MEMory
ratherthanSymmetricHierarchical MEMoryalthoughwehavealsoused
OpenSHMEM[6]forSHMEMGraph.



Synchronous(orbulk-synchronous)andasynchronousare
twomajorexecutionmodelsforgraphprocessing.Theyare
distinguishedbywhetherweputasynchronizationbarrierbe-
tweeneachiterationofprocessing.Althoughtheasynchronous
modelposesnoglobalsynchronizationbarrier,itoftenin-
curscostlylockcontentionandlacksmessagebatching.As
aresult,itsperformanceisgenerallylesscompetitiveand
sometimesunabletoensurecorrectconvergenceforcertain
graphalgorithms[12],[26],[28].Mostoftheexistinggraph
processingframeworkssupporteitherbothmodels(e.g.[20],
[10],[24]),oronlythesynchronousone(e.g.[21],[11],[28]).
Ingeneral,eachiterationinthesynchronousmodelconsists
ofthreephases:preparation,communicationandprocessing.
Eachphaseisconductedinparallelondifferentnodesandcan
bepipelinedtoallowoverlappingwithotherphases.

Therearevariousprogrammingmodelsforwritinggraph
algorithms,buttheygenerallyinvolveavertexprogramwhich
definesthewaytoprepare,communicateandprocessver-
tices/edges.Dependingonthedirectionofinitiatingthecom-
municationalongtheedges,mostoftheprogrammingmodels
areeitherpush-based(sourceverticesconductcomputation
andsendupdatestodestinationvertices)[21],[26],[18],
pull-based(destinationverticesfetchsourcedataandupdate
themselves)[20],[10],[11],orhybridpush/pull[25],[28],
[3]. Althougheverysynchronousgraphprocessingframe-
workmayhavevaryingamountofworkforeachprepara-
tion/communication/processingphase,itisuniversallyimpor-
tanttobalanceeachnode’scostinthesamephaseinorderto
achievegoodparallelismandlessresourceidling.

B.Gemini

Gemini[28]isadistributedandsynchronousgraphpro-
cessingframeworkwithacomputation-centricdesign.Gemini
usesalow-overheadedge-cutpartitioningstrategytodistribute
graphdata,whichbalanceseachnode’sworkloadbycon-
sideringthenumberofverticesandthenumberofoutgoing
edgesoriginatedfromthosevertices.Inaddition,Gemini’s
hybridmodeladaptivelychooseseitherdensemode(similar
topush)orsparsemode(similartopull)ineachiteration,
basedonthecurrentgraphdensity(i.e.numberofactive
vertices).GeminialsoprovidesNUMAawareness,making
workerthreadstoprimarilyworkonlocalNUMAnodesand
secondarilyonremoteones.Ontopofthat,Gemini’sinter-
nodecommunicationisconductedusing MPIsend/receive
operationsinaround-robinfashion,whereeverynodesends
datatoanothernodeinapredeterminedorder.Ineachround
(onlyconceptually,nosynchronizationbarrierisenforced),
eachnodesendsdatatoacertainnodeandreceivesdata
fromanother.Geminigreatlymitigatesthecomputationbot-
tleneckandhasgoodoverlappingbetweencomputationand
communication.Asaresult,itachievesordersofmagnitude
ofperformanceimprovementcomparedtoitspriorworks.

III.INEFFICIENCYANDIMBALANCEOFTHEEXISTING
FRAMEWORK

Inthissection,wewillusethestate-of-the-artGemini
frameworktoinvestigatetheimbalanceproblemanditsoverall
jobperformanceimpact.Inourexperiment,werunPageR-
ankfor10iterationsonthetwitter-2010graphon4nodes,
whichisatypicalworkloadusedbymanypreviousworks
tostudygraphprocessingproblems[16],[23],[28].Note
that,theproblemsarenotlimitedtoafewapplicationsin
aspecificframework,theyareduetofundamentallimitations
ofsynchronousgraphprocessing,partitioningstrategies,etc.
ThedetailedexperimentalsetupcanbefoundinSectionV.

A.CommunicationInefficiency

Formanygraphapplications,theprocessingofgraphdata
usuallygeneratesalargeamountofdatatobeexchanged
betweendifferentnodes.Although manygraphprocessing
frameworksproposevarioustechniquestooverlapthecom-
municationandcomputation,slowcommunicationcanoften
resultinalargeportionoftimespentincommunicationand
thusprolongsthejobcompletiontime.Forexample,when
runningsmallgraphs(e.g.enwiki-2013, witharound100
millionedges),Geminispendsadominantportionoftimeon
communication[28].Inthatcase,theefficiencyofthecom-
municationwilllargelydeterminethejobperformance.For
largergraphs,thecommunicationcostscanbebetterhidden
behindcomputation,buttheefficiencyofcommunicationstill
mattersbecausethegraphoftenbecomessparseraftermultiple
iterationsandthecomputationcannothidethecommunication
wellanymore.Althoughadvancednetworkcapabilitysuchas
RemoteDirectMemoryAccess(RDMA)hasshowntobeable
tosignificantlyboostthecommunicationefficiencyformany
distributedsystems,unfortunatelyhowever,thestate-of-the-art
graphprocessingframeworkshavenotyettakenfulladvantage
ofitdespiteafewearlyattemptswhichadoptaless-efficient
communicationchanneldesign(discussedinSectionVI).

B.TheImbalanceProblem

Inthesynchronousmodelofgraphprocessing,everynode
synchronizesattheendofaprocessingiteration.Therefore,
theslowestnodetocompletewilldeterminethetimeduration
forthecurrentprocessingiteration.Ideally,ineachitera-
tion,thesameparallelportionateachnodecostsaboutthe
same,asshowninFig.1(a).Inthatcase,everynodewill
synchronizeroughlyatthesametime.Thereisverylittle
idlenessandtheparallelismgetsmaximized.However,inreal
world,theprogressesofcertainnodesareoftenimbalanced.
Aparticularnodecanbedelayed,whichfurtherdelaysthe
completionofthecurrentprocessingiterationandtheoverall
jobperformance.Fig.1(b)showsanexample,wherethedata
sending/receivingfromnode0tonode1getsdelayed.As
showninthefigure,comparedtotheidealcase,thedelay
createsidlenessonnode2andprolongsthecompletionofthe
currentprocessingiterationbythesameamount.Suchanode-
to-nodeimbalancehaslargelybeenoverlookedbypriorarts
whosemainfocushasbeentheoverallimbalanceinawhole



Time = 1

Time = 2

(a) The ideal case.

Time = 1

Time = 2

Time = 3

(b) The imbalanced case.

Time = 1

Time = 2

Time = 3

Time = 4

Time = 5

(c) The combined effect with two stacked
delays.

Time = 1

Time = 2

Time = 3

Time = 4

(d) The suboptimal solution to the com-
bined effect.

Fig. 1: Illustration of the imbalance problem in graph processing.

processing iteration [10], [7]. Note that, For a node that causes
imbalance, its faster round may not remedy its slower round
since the delay also affects another node.

Even worse, however, there is acombined effect of im-
balancewhere the slower rounds from different nodes are
affecting the job performance altogether. As illustrated in
Fig. 1(c), the data transferring from node 0 to node 1 and
the one from node 3 to node 1 both get delayed. As a result,
the two delays are stacked together at node 1, adding twice
as much delays to the completion of the iteration. In Gemini,
this combined effect is avoided by launching many receiving
threads on every node. Each thread receives data from one of
the other participating nodes, as shown in Fig. 1(d). However,
this approach is suboptimal as it is both costly and incomplete:
firstly, each node needs to launch the same number of threads
as the total number of participating nodes, making the system
harder to scale out; secondly, as shown in Fig. 1(d), one of
the delays is still carried over to the final completion, leaving
the performance still being affected.

1) Causes of Imbalance:In general, the delay shown in
Fig 1(b) can be originated from the preparation or communi-
cation phases as mentioned before. We refer to these two types
of imbalance ascomputation imbalanceandcommunication
imbalance. The processing phase has much less impact in
the case of Gemini due to much less computation work to
do, though it may has a larger imbalance issue in another
framework. Next, we study the reasons behind the two major
types of imbalance, along with cost analysis.

Computation Imbalance:Although most graph partition-
ing strategies make their best efforts in evenly distributing
graph data among the nodes, significant computation imbal-
ance still exists. Many reasons are accountable for that. First
and most importantly, a common partitioning strategy can
only balance the total computation cost of each node in each
iteration, but not the computation costs of them in eachround.
Take Gemini’s partitioning strategy for example, it partitions
the graphs based on each node’spartitioning weightthat is
calculated from the number of a node’s owned vertices and
their outgoing edges. As shown in Fig. 2(a), where we plot the
partitioning weights for different node-to-node computation
work in each round in our motivating experiment, the total
partitioning weights for different nodes in the experiment are
well balanced. However, the partitioning weights in each round
are imbalanced drastically (as seen in the variationσ). The
reason is that, the partitioning strategy cannot coordinate the
amount of connected edges for every pair of nodes, thus being

unable to balance the partitioning weights in each round. The
cost analysis of this issue in shown in Fig. 2(b). As we
compare Fig. 2(a) with Fig. 2(b), large partitioning weights
are directly associated with the long computation costs. There
are some significant nonconformity though, which is due to
significant larger number of outgoing edges that Node 2 owns
for Node 0 and 3 (but it owns much less vertices so its
partitioning weight is evened out). Therefore, it needs more
memory accesses for writing the data to message buffer, which
makes its computation cost higher than expected.

Communication Imbalance:Similar to the computation
imbalance, the communication imbalance stems from the
uneven node-to-node communication needs. The imbalanced
numbers of edges that each node connects to another node will
generate uneven amount of sending data among them in each
round, which is hard to solve using the existing partitioning
strategies. In addition, the outcome of the computation will
have an effect on communication imbalance since each node
can generate different amount of sending data, depending on
the algorithm, graph topology etc. Fig. 2(c) shows the sizes of
transferring data in each round and in total. We can see that
the sizes vary significantly. Especially, the excessive number
of outgoing edges on Node 2 has a huge impact on its commu-
nication need. Moreover, even the total communication costs
of each node are not well balanced due to the unpredictability
of the computation outcome.

There are also other reasons for computation and com-
munication imbalance, which contribute to the variations in
Fig. 2(b) and Fig. 2(d) as well. For example, some input
graph data do not havecontinuousnumbers for vertices,
i.e. a large portion of the vertices range do not appear in
the edges. Simple edge-cut partitioning [28] may lead to a
very biased distribution of vertices/edges for these graphs
because it partitions vertices based on the total range of
vertex numbers. Other common factors include local resource
contention, network congestion, node heterogeneity etc.

2) Implications to Overall Job Performance:Till now, we
have only shown the direct effect of the imbalance issue in
each round, but not yet seen its implication to the overall
job performance. It is hard to get things into perspective
using the job completion time because there is hardly an ideal
case without the imbalance issue that we can compare with.
However, we find that since the imbalance issue causes delays
by creating idleness for certain nodes, we can understand the
overall cost and room for improvement by quantifying theidle
time. To put it formally, without computation/communication



Node 0 Node 1 Node 2 Node 3

(a) Imbalanced partitioning weights in
each round.

Node 0 Node 1 Node 2 Node 3

(b) Imbalanced computation costs in
each round.

Node 0 Node 1 Node 2 Node 3

(c) Imbalanced transferring sizes in
each round and in total.

Node 0 Node 1 Node 2 Node 3

(d) Imbalanced communication costs
in each round and in total.

Fig. 2: Cause and effect of computation and communication imbalance.

Irecv Ifinal Tprep+Tproc

(a) Idle time on an in-house cluster.

Irecv Ifinal Tprep+Tproc

(b) Idle time on Titan.

Total idle time Total execution time

(c) Variation of idle time on Node 1.

Fig. 3: Overall performance impact of the imbalance problem.

overlapping, the time for each node to complete a processing
iteration equals toTprep+Tcomm+Tproc+If inal, whereTprep,
TcommandTprocare the times for preparation, communication
and processing phases, respectively, andIf inalis the idle time
in waiting for other nodes at the end of iteration. Additionally,
when communication is overlapped with computation, the
completion time becomesTprep+Irecv+Tproc+If inal, where
Tcommis replaced byIrecv, which is the idle time in waiting for
receiving data. Without further condensing or overlapping the
TprepandTproccosts (also extremely difficult), a realistic goal
for optimizations should aim for reducing each node’sIrecv
andIf inaland also balancingTprepandTprocbetween different
nodes as good as possible.
The first two figures in Fig. 3 have shown the two types

of idle time of each node for our motivating experiment
on two systems, which have very different computation and
communication costs for Gemini (detailed discussion can be
found in Section V). From the figure, we can see that for
both systems, the imbalance problem has caused large and
skewed idle times, which have seriously affected the overall
job performance. In addition, compared to in-house cluster, the
idle time is less pronounced on Titan because the computation
takes more time there so better computation/communication
overlapping has been made possible.
The third figure (Fig. 3(c)) shows the relation between

total idle time of the most affected node (Node 1) and total
execution time of each iteration. We run 20 iterations of
PageRank to show it at a longer time-span. We can see that
the two lines have similar trend, which shows the correlation
of the idle time and iteration’s execution time.The very few
occasions where the two lines do not match (e.g. Iteration 6) is
when the node itself has encountered additional certain delays
so it is much less affected by other nodes in that iteration. Also,
both lines are highly fluctuating due to random system/network
overheads.Such performance variation has made designing
countermeasures even more challenging because even if we

can eliminate the major causes for imbalance, we still need to
deal with the variations in order to provide more stable and
predictable performance for graph processing applications.

IV. DESIGN OFSHMEMGRAPH

In this section, we present the design of SHMEMGraph,
a graph processing framework that cleverly leverages the
efficiency and flexibility of one-sided operations to mitigate
the negative performance impact of aforementioned issues.

A. Overview

The overarching goal of SHMEMGraph is to support vari-
ous distributed and synchronous graph processing frameworks
and provide more balanced and efficient computation and
communication for them. Fig. 4 shows the comparison be-
tween the architectures of traditional graph processing frame-
works and SHMEMGraph. The traditional one (Fig. 4(a))
shows the most representative architecture of the existing
distributed graph processing frameworks, where each node
processes their graph partitions stored in local memory and
uses certain types of RPC methods (even with RDMA) to
transfer graph data or computation results to other nodes. In
contrast, SHMEMGraph (Fig. 4(b)) has three new/modified
components for achieving its design goals. Firstly, the basic
one-sided communication channel in SHMEMGraph conducts
one-sided operations on the global memory space that stores
graph data, computation output etc. The basic channel uses a
single thread to remotely write data to other nodes using one-
sidedPut. This facilitates the efficient utilization of RDMAand
also resolves the combined effect of the imbalance issue at
a much lower cost. Secondly, SHMEMGraph breaks some
overlong phases of preparation, communication and processing
all into finer-grained pieces. Thisfine-grained data serving
mechanism helps SHMEMGraph reduce the delay resulting
from computation imbalance. Thirdly, SHMEMGraph further
leverages the one-sidedGetto implement acommunication



(a) Traditional. (b) SHMEMGraph.

Fig. 4: Architectures of traditional graph processing frameworks and SHMEMGraph.

balancingmechanism, which counters the performance impact
of communication imbalance and saves unnecessary idle time
in waiting for the receiving data.
Note that, such a design is effective for any graph pro-
gramming model (i.e. push, pull or hybrid) as they all have
similar interdependent preparation, communication and pro-
cessing phases. The actual amount of work in each phase may
differ, which will determine how much a certain framework
will benefit from our techniques. For example, for some
frameworks that have very few or no processing work af-
ter communication [21], [15], the fine-grained data serving
will be unable to provide much improvement, whereas the
communication balancing will be more effective due to larger
portion of communication work in an iteration. In addition, the
basic communication channel of SHMEMGraph is especially
helpful for systems that have the combined effect of imbalance
(e.g. Gemini), but can still provide improvement for any other
graph processing frameworks that need to send batch messages
between all participating nodes (true for most cases).

B. One-sided Communication Channel

The basic design of SHMEMGraph’s one-sided communi-
cation channel is shown in Fig. 5. For each node, only one
communication thread is launched, which usesPutto directly
write data to the exposedreceiving bufferon other nodes. The
exposed memory also holds thesending buffersandlength
arrays, which will be discussed later. Same as Gemini, the
exposed buffer is associated with certain NUMA node so
that both local reads and writes to those buffers are local to
their corresponding NUMA nodes. We favorPutoverGet
here becausePutinvolves lighter synchronization overheads:
it has only one additional call for the buffer locking apart from
Put, whereas forGet, there are more calls for purposes such
as repetitive availability inquiry, buffer locking/unlocking,
receiving notification besides the actualGet.
After the preparation work is done and the sending buffer
is filled, the sender thread conducts an atomic Compare-And-
Swap (CAS) operation to the corresponding length array on
the receiver node. This single CAS serves three purposes:
notifying about data arrival, informing about data size and
locking the receiving buffer. If there is no conflict going on,
the CAS writes the data length to corresponding location

in the length array. The conflict is when another CAS has
modified the same location before. The receiver checks the
length array to get informed about both the arrival and length
of the receiving data. The receiving data has a completion flag
at the end of the valid data portion to confirm the completion
of transferring. Note that, although each receiving buffer is
uniquely associated with a certain sender, avoiding race con-
dition using locks is still necessary due to the communication
balancing, which will be discussed later.
To maximize computation/communication overlapping,
SHMEMGraph also adopts a round-robin inter-node commu-
nication procedure similar to the original Gemini. However,
SHMEMGraph conducts the processing phase out-of-order
in order to avoid the combined effect of imbalance. The
receiver node does not block itself waiting for data from
an anticipated node. Instead, when the receiver does not get
data from the buffer for the anticipated node, it continues to
check the subsequent buffers. Upon data being received, the
receiver node continues to do processing and will skip the
corresponding receiving buffer the next time. If the data from
the most anticipated node is processed, it will mark the next
unprocessed node as the new anticipated node.

Put

CAS

Fig. 5: SHMEMGraph’s basic one-sided communication chan-
nel using a single thread.

C. Fine-grained Data Serving

On top of the basic one-sided communication channel,
SHMEMGraph further tackles the computation imbalance by
dividing the imbalanced and long data serving procedure of
preparation, communication and processing phases all into
finer-grained pieces. As shown in Fig 6, in this particular
round, the sending data from Node 0 to Node 3 is divided into



fine-grained chunks. Upon completion of preparation phase,
each individual chunk will be (1) written to the sending buffer,
(2) sent to the remote receiving buffer, and (3) processed by
the remote node upon being received.
In principle, the data serving procedure between a certain

pair of node is chosen to be fine-grained if there is signifi-
cant computation imbalance in current round. In the case of
Gemini, the condition is when (1) the partitioning weight of
the corresponding send/receive pair significantly exceeds the
partitioning weight of other pairs on the same node,or(2) the
number of outgoing edges associated with the corresponding
sending data significantly exceeds the average number in the
current iteration. More specifically, the sending data from node
n1ton2is to be fine-grained if:

W(n1,n2)

W
(n1,N)
avg

×
E(n1,n2)

Eavg
>δ (1)

where W(n1,n2) represents the partitioning weight of the

send/receive pair from noden1ton2,W
(n1,N)
avg represents the

average partitioning weight of all the pairs from Noden1,

defined asW
(n1,N)
avg =∑

i<N,i=n1
i=0 W(n1,i)/(N−1). In addition,

E(n1,n2)is the number of outgoing edges fromn1ton2andEavg
is the average number of outgoing edges for any pairs of nodes,
calculated asEavg=∑

i<N
i=0E

(i,N)/N. Then,δis the threshold to
determine how much we should tolerate for minor imbalance,
which is set to 1.5 empirically. Both factors in the equation
contribute equally to the decision as a lower computation cost
may be negated by a higher one.
In addition, because we cannot calculate the weights and

edges by creating another computation phase which will
add significant overheads, we collect the values along with
preparation phase and use them as the predicting values for
the next iteration (Eavgis made available to all nodes at
the end of current iteration). For the first iteration, we use
the values collected in the initialization phase. We do not
simply apply fine-grained mode for all cases because only the
imbalanced computation will cause significant delays. Also,
we find that aggressively dividing the data serving procedure
can cause adverse performance behavior due to increased
operation overheads and resource contention.
Moreover, the length array is expanded to a two-dimensional
array when the fine-grained data serving is enabled. Each
original array entry is further extended to an array of lengths.
The size for the sub-array is determined by the total length
of each buffer and the length of each chunk, calculated as
Sbu f f er/Schunk. The chunk sizeSchunkis an important tuning
parameter in SHMEMGraph and is set empirically to 4 MB.
After writing a chunk, the sender will conduct CAS on the
corresponding position in the length array on the receiver side.
The sender without fine-grained data serving will write the
total length to the head of the array. The receiver looks up
the length array and process the received chunks afterwards.
In order to reduce frequent switch between different buffers
and the lookup cost, the receiver will wait for a short while
and then switch to the next buffer if no data arrives. Each

node maintains a number of indicators to keep track of the
processed chunks. If the receiving buffer is not fine-grained,
the indicator will be at either the head or the tail position of
the array, indicating empty or full, respectively.

Fig. 6: Illustration of fine-grained data serving, where sending
data from Node 0 to Node 3 is chosen to be divided.

D. Communication Balancing

The communication balancing mechanism allows the nodes
that are faster in finishing their own sending data to speed
up their data receiving progress. Based on the preparation
progress on the sender node, two balancing approaches are
used: fetching the sending buffer or fetching the unprocessed
vertices. As shown in Fig 7, SHMEMGraph uses the one-sided
Getfor fetching data from other nodes. After a communication
thread has finished sending all its data, it starts to remotely
read data from another node that has not sent any data to
this one. If it is currently receiving data from another node,
i.e., the corresponding length array for that node has been
locked, it will skip that node. Therefore, before fetching, the
communication thread will also conduct a CAS to try to lock
the corresponding length array entry. This prevents conflict
in writing to the same buffer and avoids unnecessarily trans-
mitting repetitive data. Similar to the basic communication
channel, the receiver node will start fetching from its most
anticipated sender node that has not yet sent data.
When balancing, a node first checks if the sending buffer
on the target node has available data. It does that by checking
the corresponding length array on the target node. Then the
node fetches the corresponding data if it is available. If not, the
node then checks if the active vertices on the target node can
be fetched. The active vertices are prepared and stored in the
global memory space by the target node at the beginning of
each iteration. To avoid expensive communication overheads
and shipped computation cost that may negate the benefit of
communication balancing, we set a thresholdsTwhich is the
upperbound for the number of active vertices that deserves
to be fetched. In the case for Gemini, we setsTto be

Vi
10,

whereViis the number of total vertices that Nodeiowns. This
value is chosen based on the general performance difference
of sparse and dense modes in Gemini. Here, SHMEMGraph
effectively exploits Gemini’s adaptive mode switching within
a single iteration: pull active vertices even in the push model.

Get

Fig. 7: Illustration of communication balancing.



V.EVALUATION

WehavefullyimplementedSHMEMGraphontopof
Geminiusingboth Cand C++. Sincethread-safetyis
implementation-dependentandsometimesnotprovidedbythe
one-sidedcommunicationlibraries,wehavealsoimplemented
acommunicationdelegator[9]thatrunsalongsidewiththe
graphprocessingengineandusesshared memorytopass
databetweenitselfandthegraphprocessingengine. We
havemanagedtoshipmostofthetechniquesoftheoriginal
SHMEMGraphtothedelegator.
WehaveextensivelyevaluatedtheperformanceofSHMEM-

GraphagainstGemini.Notethat,wehaveconfirmedonour
testbedthatboth GeminiandSHMEMGraphcanachieve
morethananorderof magnitudebetterperformanceover
otherdistributedgraphprocessingframeworkssuchasPower-
Graph[10]andPowerLyra[7].Suchresultsareexpectedtobe
similartotheresultsreportedintheGemini’spaper[28].Due
tospacelimitation,inthissectionwewillonlyfocusonthe
comparisonbetweenSHMEMGraphandGeminitoseehow
muchSHMEMGraphcanfurtherimprovethestate-of-the-art
Geminiframework.Next,wewillsummarizeandanalyzeour
experimentalresultsindetail.

TABLEI:Graphdatausedintheexperiments.

Name Type No.ofvertices No.ofedges
enwiki-2013 continuous 4,206,289 101,311,614
twitter-2010 continuous 41,652,230 1,468,365,182
uk-2007-05 continuous 105,896,555 3,738,733,648
com-friendster non-continuous 65,608,366 1,806,067,135

A.ExperimentalSetup

Unlessotherwisespecified,allexperimentsareconducted
onanin-houseclusterof21servernodescalledInnovation.
EachmachineinInnovationclusterisequippedwith10dual-
socketIntelXeon(R)coresand64GBmemory.Hyperthread-
ingisenabledtoimprovethegraphcomputationperformance.
AllnodesareconnectedthroughanFDRInfiniBandinter-
connectwiththeConnectX-3NIC.Inaddition,wehavealso
evaluatedSHMEMGraphontheTitansupercomputeratOak
RidgeNationalLaboratory[2].Titanisahybrid-architecture
CrayXK7system,whichconsistsof18,688nodesandeach
nodeisequippedwitha16-coreAMDOpteronCPUand
32GBofDDR3memory.
WeuseOpen MPI[1]v3.0.0forboththread-safe(MPI)

andnon-thread-safe(OpenSHMEM)one-sidedoperations,
whereastherecentOpenSHMEMspecification1.4hasalso
addedthreadsafetyfeature.Notethat,althoughCray MPI
isconsideredpreferredonTitan,weonlymanagedtoget
SHMEMGraphbutnotGeminitoworkwithit.Therefore,
forTitanweuseOpenMPItocompareGeminiandSHMEM-
GraphbutwillshowSHMEMGraph’sperformanceusingboth
OpenMPIandCrayMPI(v7.6.3).
Weusefourrepresentativegraphworkloadsforourex-

periments,includingthreegraphswithcontinuousvertices
from WebGraph+LLP[5],[4]andanon-continuousgraph
fromSNAP[17](verticesrangeis2xlargerthanactual
numberofvertices).Thenumberofverticesandedgesare

showninTableI.Weevaluatefiverepresentativegraphalgo-
rithmsprovidedbytheoriginalGemini,includingPageRank
(PR),ConnectedComponents(CC),SingleSourceShortest
Path(SSSP),BetweennessCentrality(BC)andBreadth-First
Search(BFS).Foreachresultreported,wetesttheexperiment
atleast5timesandgettheaverage.Forresultsthatwedonot
specifywhichsetupisused,theyaretheresultsofrunning10
iterationsofPageRankontwitter-2010on4nodes.

B.OverallPerformanceImprovement

Firstofall,wecomparetheoveralljobperformanceof
GeminiandSHMEMGraphforeachindividualgraphal-
gorithm.AsshowninTableII,SHMEMGraphisableto
outperformGeminiforalltestcases,includingdifferentgraph
algorithms,graphdatatypeandtestbedsystem.Thereare
twogeneraltrendsintheseresults.Firstly,forsmallergraphs,
SHMEMGraphhasalargerimprovementforalgorithmsthat
haveabetterportionoftheirprocessingiterationsrunning
withhighgraphdensity.TakePageRankforexample,which
doesnotchangedensitythroughoutcompletion,ithasthe
mostsignificantimprovementforenwiki-2013.Thisisbecause
smallgraphswithlowdensityhaveverylittlecommunication
andcomputationworksthatalsopermitlittleroomforim-
provement.However,forlargergraphs,algorithmswithmore
iterationsrunningwithlowdensityseemoreimprovement
fromSHMEMGraph.Thisisbecauseathigherdensity,ittakes
muchlongerforcomputationthancommunication,resultingin
lessbenefitfromimprovedcommunication.Themajorperfor-
manceimprovementbecomesthemitigationoftheimbalance.
Moreover,ingeneral,SHMEMGraphhasalargerimprove-

mentonInnovationclusterthanontheTitansupercomputer.
ThisisbecausecomputationonTitantakesmuchlongerdueto
lesscomputationthreadsbeingused(16comparedto40)and
thelackofNUMAlocality(Titanneedsdifferentpreparation
forthread-to-corebinding).Asaresult,thecommunication
forgraphsofhighdensityiscompletelyhiddenbehindthe
longcomputation.Therefore,evencommunicationbalancing
willnothavemucheffectandSHMEMGraphcanonlybenefit
fromthefine-graineddataserving.
Inaddition,onTitanwehavealsoevaluatedSHMEMGraph

usingCray MPI. AsshowninTableIII, where werun
thefivealgorithmsontheenwiki-2013graphon4nodes,
SHMEMGraphperformsslightlybetterwithCray MPIon
Titan. Wehavefoundthatthemaincontributingfactorhere
isthefaster MPIRMAoperationsofCray MPIoverOpen
MPIonTitan.Thisisalsoreflectedbythefactthatalgorithms
withmorecommunicationworkhavelargerimprovement(e.g.
13.6%forPRbut6.7%forSSSP).
Finally,wecanseethatSHMEMGraphcanalsomitigate

theimbalancecausedbysuboptimalpartitioningofthenon-
continuousgraph.However,thoseresultsarestillnotasgood
astwitter-2010whichhassimilarsize.Thereisextremely
longcomputationoncertainnodewherealotofverticesare
converged.Inthatcase,evenourbalancingtechniquescould
nothelpeither.Thisindicatesthatthereisstillneedfora
betterpartitioningstrategytodealwiththistypeofgraphs.



TABLEII:Comparisonofjobcompletiontime(second)on4nodes.

Graphdata:enwiki-2013
System:Innovation System:Titan
PR CC SSSP BC BFS PR CC SSSP BC BFS

Gemini 0.43 0.29 0.44 2.25 1.19 Gemini 0.76 0.69 4.94 1.73 0.89
SHMEMGraph 0.24 0.21 0.34 1.91 1.05 SHMEMGraph 0.59 0.60 4.33 1.51 0.83
Improvement 44.2% 26.3% 23.1% 15.1% 11.8% Improvement 22.4% 13.0% 12.3% 12.7% 6.7%

Graphdata:twitter-2010
System:Innovation System:Titan
PR CC SSSP BC BFS PR CC SSSP BC BFS

Gemini 2.45 1.32 2.79 1.64 0.74 Gemini 8.23 8.61 15.73 3.33 1.21
SHMEMGraph 1.9 0.86 1.73 1.03 0.48 SHMEMGraph 7.16 7.44 12.76 2.87 0.92
Improvement 22.4% 34.8% 38.0% 37.2% 35.1% Improvement 13.0% 13.6% 18.9% 13.8% 24.0%

Graphdata:uk-2007-05
System:Innovation System:Titan
PR CC SSSP BC BFS PR CC SSSP BC BFS

Gemini 1.12 1.82 4.42 5.62 2.58 Gemini 4.44 5.82 28.97 9.31 3.65
SHMEMGraph 1.01 1.44 4.17 5.01 2.22 SHMEMGraph 4.07 5.09 27.14 8.63 3.23
Improvement 9.8% 23.4% 5.7% 10.9% 14.0% Improvement 8.3% 12.5% 6.3% 7.3% 11.5%

Graphdata:com-friendster
System:Innovation System:Titan
PR CC SSSP BC BFS PR CC SSSP BC BFS

Gemini 7.21 4.79 9.75 2.22 0.91 Gemini 29.85 19.05 82.17 6.13 2.41
SHMEMGraph 6.13 4.33 8.63 1.91 0.68 SHMEMGraph 24.01 16.58 76.33 5.29 2.07
Improvement 15.0% 9.6% 11.5% 14.0% 25.3% Improvement 19.6% 13.0% 7.1% 13.7% 14.1%

TABLEIII:PerformanceofSHMEMGraph(second)when
usingOpenMPIorCrayMPI.

PR CC SSSP BC BFS
OpenMPI 0.59 0.6 4.33 1.51 0.83
CrayMPI 0.51 0.54 4.04 1.39 0.75

C.Scalability

Forscalabilitytest,wefirstlyverifyhowSHMEMGraph
canoutperformthewell-knownsingle-threadoptimizedgraph
processingimplementation[22].TableIVshowstheresults.
Thesingle-threadimplementationruns20iterationssotheir
resultisdividedby2.ThetableshowsthatSHMEMGraph
outperformsthesingle-threadimplementationat4threads.
Sinceourworkdoesnotinvolveoptimizationsforcomputation
efficiencyorintra-nodeworkbalancing,theresultisexpected
tobesimilartotheoriginalGemini[28].Thisvalidatesthat
SHMEMGraph’soptimizationsoncommunicationandinter-
nodebalancingarenotcontradictorytotheexistingstrengths
oftheoriginalframeworksthatitbuildsupon.
Moreover,weevaluatethescale-outabilityofSHMEM-

Graph. Weincreasethenumberofnodesbeingusedforthe
sameexperiment.Tohaveabetterdisplay,wenormalize
thejobcompletiontimestoeachalgorithm’ssinglenode
performance.AsshowninFig.8,SHMEMGraphcanscaleout
nicelyformostofthealgorithmsto8nodes.Forcomputation-
intensivealgorithmssuchasPRandCC,thescalingto
8nodesisbetterduetobetterdistributionofcomputation
costs.After8nodes,theperformancescalingstallsoreven
worsensbecausenowtheinter-nodecommunicationoccupies
mostofthetotalcostandbothfine-graineddataserving
andcommunicationbalancingarenotabletohelpwiththe
performance.Thisindicatesthattheinefficiencyinsteadof
theimbalancebecomesthemainperformancebottleneckfor
graphprocessingatscaleanddespitetheuseofRDMA,there
isstillroomformoreoptimizations.

TABLEIV:ComparisonofSHMEMGraphandoptimized
single-threadimplementation(second).

No.ofthread 1 2 4
Single-thread - 52.7 -
SHMEMGraph 109.1 54.3 26.1

D.DesignchoicesandPerformanceTuning

Toinvestigatetheimpactoftheindividualdesigns,we
enableeachcomponentofSHMEMGraphindividually.Fig.11
showstheresultsforthethreegraphswithcontinuousver-
tices.ThreecasesofSHMEMGraphareevaluated:theba-
sicone-sidedcommunicationchannel(SHMEMGraph-basic),
thefine-graineddataservingontopofthebasicchannel
(SHMEMGraph-FDS)andthecommunicationbalancingon
topoftheabovetwo(SHMEMGraph-CB).Fromthefigure,
wecanseethatallcomponentscontributetotheperformance
tocertaindegrees.Firstly,thebasicone-sidedcommunication
channelhasthe mostconsistentperformanceimprovement
comparedtotheoriginalGemini.Secondly,thefine-grained
dataservingleadstolargerimprovementintheteststhat
havealargerdegreeofcomputationimbalance(e.g.PageRank
forenwiki-2013andmostofthealgorithmsintwitter-2010).
Thirdly,thecommunicationbalancingdeliversmoreconsis-
tentimprovementthanthefine-graineddataserving.Thisis
becausethecommunicationbalancingnotonlywellmitigates
alargerdegreeofimbalanceinsomecases,butalsoreduces
idletimeforothersbyremotefetchingactivevertices.
1)TuningFine-grainedChunkSize:Fig.9showsthe
resultstuningthefine-grainedchunksizeSchunk. Weplot
Gemini’sperformanceside-by-sideforcomparison.256MB
isthelargestchunkingsizeforthetestinggraph(twitter-
2010). Wecanseethatthejobcompletiontimereaches
thelowestpointwhenthechunksizeis4 MB.Afterthat,
thereareincreasinglysignificantoverheadsfromboththe
numberofcommunicationoperationsandthreadcoordination



Scalability

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

N
or
ma
li
z
e
d	  
Ti
me
	  

Number	  of	  nodes

PR CC

SSSP BC

BFS

Tuning	  fine-‐grained	  value

1.7

1.9

2.1

2.3

2.5

25612864 32 16 8 4 2 1 0.5

J
o
b	  
C
o
m
pl
et
i
o
n	  
Ti
m
e

Fine-grained	  Data	  Size	  (MB)

Gemini

SHMEMGraph

Fig.8:Scalability. Fig.9:TuningSchunk

Delegator

0

1

2

3

4

5

6

1 2 4 8 16

Ti
m
e	  
(
s)

Node

Gemini

SHMEMGraph-delegator

.

Design	  choices

0.4

0.5

0.6

0.7

0.8

0.9

1

PR CC SSSP BC BFS

N
or
ma
li
z
e
d	  
Ti
me
	  t
o	  
G
e
mi
ni

Gemini SHMEMGraph-basic

SHMEMGraph-FDS SHMEMGraph-CB

0.4

0.5

0.6

0.7

0.8

0.9

1

PR CC SSSP BC BFS

N
or
ma
li
z
e
d	  
Ti
me
	  t
o	  
G
e
mi
ni

Gemini SHMEMGraph-basic

SHMEMGraph-FDS SHMEMGraph-CB

Fig.10:Performanceofdelegator.

Design	  choices

0.4

0.5

0.6

0.7

0.8

0.9

1

PR CC SSSP BC BFS

N
or
ma
li
z
e
d	  
Ti
me
	  t
o	  
G
e
mi
ni

Gemini SHMEMGraph-basic

SHMEMGraph-FDS SHMEMGraph-CB

0.4

0.5

0.6

0.7

0.8

0.9

1

PR CC SSSP BC BFS

N
or
ma
li
z
e
d	  
Ti
me
	  t
o	  
G
e
mi
ni

Gemini SHMEMGraph-basic

SHMEMGraph-FDS SHMEMGraph-CB

(a)enwiki-2013.

Design	  choices

0.4

0.5

0.6

0.7

0.8

0.9

1

PR CC SSSP BC BFS

N
or
ma
li
z
e
d	  
Ti
me
	  t
o	  
G
e
mi
ni

Gemini SHMEMGraph-basic

SHMEMGraph-FDS SHMEMGraph-CB

0.4

0.5

0.6

0.7

0.8

0.9

1

PR CC SSSP BC BFS

N
or
ma
li
z
e
d	  
Ti
me
	  t
o	  
G
e
mi
ni

Gemini SHMEMGraph-basic

SHMEMGraph-FDS SHMEMGraph-CB

0.4

0.5

0.6

0.7

0.8

0.9

1

PR CC SSSP BC BFS

N
or
ma
li
z
e
d	  
Ti
me
	  t
o	  
G
e
mi
ni

Gemini SHMEMGraph-basic

SHMEMGraph-FDS SHMEMGraph-CB

(b)twitter-2010. (c)uk2007-05.

Fig.11:EffectofSHMEMGraphdesigns.

onthereceivingnode.Wedonotevaluatenetworkbandwidth
herebecausetheperformanceadvantageoffine-graineddata
servingismainlythereducedidletimeonthereceivernodes,
butnotincreasedbandwidth.However,itwillbeinteresting
toseehowthisdesigncanfitinwithadifferenttypeof
communicationchannel,e.g.atwo-sidedRPC,wherewecan
furtherstudythebandwidthbehaviorandcomparison.
2)DelegatorPerformance:

Iterations

Node	  0 Node	  1 Node	  2 Node	  3 Node	  0 Node	  1 Node	  2 Node	  3

0

0.2

0.4

0.6

0.8

1

13579135791357913579

N
or
m
al
i
z
e
d	  
Ti
m
e

No.	  of	  Node	  and	  Iteration

Computation Idle-final Idle-recv

0

0.2

0.4

0.6

0.8

1

13579135791357913579

N
or
m
al
i
z
e
d	  
Ti
m
e

No.	  of	  Node	  and	  Iteration

Computation Idle-final Idle-recv

Wealsoevaluatetheperfor-
manceofSHMEMGraphwhenusingdelegatorinsteadof
communicationthread.AsshowninFig.10,insteadofsimilar
performanceimprovement,SHMEMGraphwithdelegatorhas
comparableorslightlybetterperformancethanthatofGemini.
Themainreasonistheoverheadsaddedbymemorycopying
betweendelegatorandtheprocessingengine.Thisnegates
thepreviousimprovementthattheoriginalSHMEMGraph
hasoverGemini.However,forresultson16nodes,Gemini
hasaconsiderableperformancedegradationduetolackof
communication/computationoverlappingwhenthecommuni-
cationworkdominatesthejobcompletiontime.Incontrast,
SHMEMGraphusingdelegatordoesnotshowsuchdegrada-
tionbecauseofitsimprovedcommunicationefficiency.

Iterations

Node	  0 Node	  1 Node	  2 Node	  3 Node	  0 Node	  1 Node	  2 Node	  3

0

0.2

0.4

0.6

0.8

1

13579135791357913579

N
or
m
al
i
z
e
d	  
Ti
m
e

No.	  of	  Node	  and	  Iteration

Computation Idle-final Idle-recv

0

0.2

0.4

0.6

0.8

1

13579135791357913579

N
or
m
al
i
z
e
d	  
Ti
m
e

No.	  of	  Node	  and	  Iteration

Computation Idle-final Idle-recv

(a)Gemini. (b)SHMEMGraph.

Fig.12:Mitigationofidletime.

E. MitigationofImbalance

TogainmoreinsightsintotheabilityofSHMEMGraph
inmitigatingtheimbalanceproblem,weshowtheidletimes
ofdifferentnodesduringthePageRankexperiment.Fig.12
showsthecomparisonbetweenGeminiandSHMEMGraph.
ItisclearlyshownthatSHMEMGrapheliminatesbothtwo
idletimestoalargeextent. Withthesameorevenlower
computationcostthanGemini,theeliminationofidlenessis

directlyreflectedontheoveralljobperformanceimprovement
ofSHMEMGraphasshowninprevioussections.
Notethat,thefigureshowsthetimeforeachphasenormal-
izedtothetotaltimespentontheiteration,soitisthelongest
idleportionineachiterationthatshowsthepotentialimprove-
mentwemayhave,butnottheaccumulativeidleportions
fromallnodes.Also,themitigationresultsindicatebutnot
completelyrepresenttheimprovementthatSHMEMGraphhas
overGemini.Forexample,thebenefitfromfastercomputation
duetolessthreadsbeingusedisnotreflectedinthem.

VI.RELATEDWORKS

Leveragingone-sidedcommunicationfordistributeddata
analyticsframeworks,includinggraphprocessingalgorithms
andframeworks,hasdrawnincreasingattentioninrecent
years[14],[13],[9],[19],[26],[18].Similartoourwork,
GraM[26]usesRDMAtoacceleratecommunicationfor
synchronousgraphprocessing.However,itsdesignforthe
RDMA-basedRPCisclosertothedelegatorimplementation
ofSHMEMGraph.ComparedtoSHMEMGraph’slightweight
one-sidedcommunicationchannel, GraM’sdesignbrought
ratherlargeoverheadsforbothmessagingbufferspaceand
thenumberofsending/receivingthreads. Moreover, Mizan-
RMA[18]explorestheuseof MPIRMAoperationsfor
Mizan[15].Incontrasttoaforementionedworks,ourbasic
one-sidedcommunicationchannelnotonlyleveragesRDMA,
butalsofurtherexploitstheflexibilityofone-sidedoperations
byprovidinganoptimalsolutiontothecombinedeffectof
imbalance.Inaddition,withoutcarefullyoverlappingnode-
to-nodecommunication/computationcostsandreducingidle
time,theaforementionedworksstillsufferfromvariousim-
balanceissuesdiscussedinthispaper.
Manystudieshavepointedoutthelimitationsofsyn-

chronousgraphprocessing[20],[10],[24],[7].Forex-
ample,GraphLab[20]suggestsusinga morenaturalway
toexpressasynchronousiterativecomputation.Ingeneral,
synchronous modelprovides messagebatching,goodcon-
vergencespeedandcomputation/communicationoverlapping.



Incontrast,asynchronousmodeleliminatessynchronization
barriers,allowsbothsync/asyncprocessing,butincurslock
contentionandlacksmessagebatching[27].Unfortunately,the
issueofnode-to-nodeimbalancehasbeenlargelyoverlooked,
despitethattheissueisrootedintheessentiallimitationof
synchronousprocessingaswell.Thisisbecausethisissuehas
beenhiddenwellbehindtheimbalanceintheoveralliteration
butbecamemoreobviousunderfiner-grainedoverlappingof
inner-roundcommunication/computationcosts,likeinGemini.
Similartoourwork,manystudiesattempttobalancethe

workbetweendifferentnodes[10],[7],buttheyaremore
concernedabouttheimbalancedcostsduetothepower-law
distributionofnaturalgraphs.Others[25],[28],[3]tryto
reducecomputationandcommunicationneedsbyusinga
hybridpush/pull model.Incontrast,basedonanexisting
hybridpush/pullmodelofGemini,ourworkmovesbeyond
computationinefficiencyandleveragesone-sidedPutandGet
formoreefficientanddynamiccommunicationaswell.

VII.CONCLUSION

Wehaveexaminedtheinefficiencyandimbalanceissuesfor
state-of-the-artdistributedandsynchronousgraphprocessing
frameworks. Wehaveproposedtobuildagraphprocessing
frameworkontopoftheglobalmemoryspaceandleveraged
one-sidedoperationsforitsinter-nodecommunication. We
haveimplementedaprototypecalledSHMEMGraphbasedon
Geminiandintegratedanumberofnoveldesignideasinorder
toaddresstheinefficiencyandimbalance.Wehaveevaluated
SHMEMGraphextensivelyonvariousgraphdataandgraph
algorithms.Theresultshavedemonstratedtheperformance
advantagesofSHMEMGraphoverGeminiandalsoitsability
totacklebothcomputationandcommunicationimbalance.

AcknowledgmentWearethankfultoourshelpcontactDr.
MartinSchulzandtheanonymousshep/reviewersfortheir
comments,andAmitKumarNathforhishelponfinalizingthe
paper.ThisworkwassupportedinpartbyacontractfromOak
RidgeNationalLaboratoryandNationalScienceFoundation
awards1561041,1564647,and1744336.Thisresearchused
resourcesoftheOakRidgeLeadershipComputingFacility,
whichisaDOEOfficeofScienceUserFacilitysupported
underContractDE-AC05-00OR22725.

REFERENCES

[1] OpenMPI.https://www.open-mpi.org/.
[2]TitanSupercomputer.https://www.olcf.ornl.gov/titan/.
[3] M.Besta, M.Podstawski,L.Groner,E.Solomonik,andT.Hoefler.
Topushortopull:Onreducingcommunicationandsynchronization
ingraphcomputations. In26thInternationalSymposiumonHigh-
PerformanceParallelandDistributedComputing(HPDC17),2017.

[4]P.Boldi,M.Rosa,M.Santini,andS.Vigna.Layeredlabelpropagation:
Amultiresolutioncoordinate-freeorderingforcompressingsocialnet-
works.InS.Srinivasan,K.Ramamritham,A.Kumar,M.P.Ravindra,
E.Bertino,andR.Kumar,editors,Proceedingsofthe20thinternational
conferenceonWorldWideWeb,pages587–596.ACMPress,2011.

[5]P.BoldiandS.Vigna. The WebGraphframeworkI:Compression
techniques.InProc.oftheThirteenthInternationalWorldWideWeb
Conference,pages595–601,Manhattan,USA,2004.ACMPress.

[6]B.Chapman,T.Curtis,S.Pophale,S.Poole,J.Kuehn,C.Koelbel,and
L.Smith.Introducingopenshmem:Shmemforthepgascommunity.In
ProceedingsoftheFourthConferenceonPartitionedGlobalAddress
SpaceProgrammingModel,page2.ACM,2010.

[7]R.Chen,J.Shi,Y.Chen,andH.Chen.Powerlyra:Differentiatedgraph
computationandpartitioningonskewedgraphs.InProceedingsofthe
TenthEuropeanConferenceonComputerSystems,page1.ACM,2015.

[8] A.Ching,S.Edunov,M.Kabiljo,D.Logothetis,andS.Muthukrishnan.
Onetrillionedges:Graphprocessingatfacebook-scale.Proceedingsof
theVLDBEndowment,8(12):1804–1815,2015.

[9] H.Fu,M.G.Venkata,A.R.Choudhury,N.Imam,and W.Yu.High-
performancekey-valuestoreonopenshmem. InProceedingsofthe
17thIEEE/ACMInternationalSymposiumonCluster,CloudandGrid
Computing,pages559–568.IEEEPress,2017.

[10]J.E.Gonzalez,Y.Low,H.Gu,D.Bickson,andC.Guestrin. Pow-
ergraph:Distributedgraph-parallelcomputationonnaturalgraphs.In
OSDI,volume12,page2,2012.

[11]J.E.Gonzalez,R.S.Xin,A.Dave,D.Crankshaw,M.J.Franklin,and
I.Stoica.Graphx:Graphprocessinginadistributeddataflowframework.
InOSDI,volume14,pages599–613,2014.

[12] M.Han,K.Daudjee,K.Ammar, M.T.Özsu,X. Wang,andT.Jin.
Anexperimentalcomparisonofpregel-likegraphprocessingsystems.
ProceedingsoftheVLDBEndowment,7(12):1047–1058,2014.

[13]J.Jose,S.Potluri,H.Subramoni,X.Lu,K.Hamidouche,K.Schulz,
H.Sundar,andD.K.Panda. Designingscalableout-of-coresorting
withhybridmpi+pgasprogrammingmodels. InProceedingsofthe
8thInternationalConferenceonPartitioned GlobalAddressSpace
ProgrammingModels,page7.ACM,2014.

[14]J.Jose,S.Potluri,K.Tomko,andD.K.Panda. Designingscal-
ablegraph500benchmarkwithhybridmpi+openshmemprogramming
models.InInternationalSupercomputingConference,pages109–124.
Springer,2013.

[15]Z.Khayyat,K.Awara,A.Alonazi,H.Jamjoom,D. Williams,and
P.Kalnis. Mizan:asystemfordynamicloadbalancinginlarge-scale
graphprocessing.InProceedingsofthe8thACMEuropeanConference
onComputerSystems,pages169–182.ACM,2013.

[16] A.Kyrola,G.E.Blelloch,andC.Guestrin.Graphchi:Large-scalegraph
computationonjustapc.USENIX,2012.

[17]J.LeskovecandA.Krevl. SNAPDatasets:Stanfordlargenetwork
datasetcollection.http://snap.stanford.edu/data,June2014.

[18] M.Li,X.Lu,K.Hamidouche,J.Zhang,andD.K.Panda. Mizan-
rma:Acceleratingmizangraphprocessingframeworkwithmpirma.In
HighPerformanceComputing(HiPC),2016IEEE23rdInternational
Conferenceon,pages42–51.IEEE,2016.

[19] M.Li,X.Lu,S.Potluri,K.Hamidouche,J.Jose,K.Tomko,andD.K.
Panda.Scalablegraph500designwithmpi-3rma.InClusterComputing,
2014IEEEInternationalConferenceon,pages230–238.IEEE,2014.

[20] Y.Low,D.Bickson,J.Gonzalez,C.Guestrin,A.Kyrola,andJ. M.
Hellerstein. Distributedgraphlab:aframeworkformachinelearning
anddatamininginthecloud.ProceedingsoftheVLDBEndowment,
5(8):716–727,2012.

[21] G.Malewicz,M.H.Austern,A.J.Bik,J.C.Dehnert,I.Horn,N.Leiser,
andG.Czajkowski.Pregel:asystemforlarge-scalegraphprocessing.
InProceedingsofthe2010ACMSIGMODInternationalConferenceon
Managementofdata,pages135–146.ACM,2010.

[22]F.McSherry,M.Isard,andD.G.Murray.Scalability!butatwhatcost?
InHotOS,2015.

[23] A.Roy,I. Mihailovic,and W.Zwaenepoel. X-stream:Edge-centric
graphprocessingusingstreamingpartitions.InSOSP’13.

[24]B.Shao,H.Wang,andY.Li.Trinity:Adistributedgraphengineona
memorycloud.InProceedingsofthe2013ACMSIGMODInternational
ConferenceonManagementofData,pages505–516.ACM,2013.

[25]J.ShunandG.E.Blelloch. Ligra:alightweightgraphprocessing
frameworkforsharedmemory.InACMSigplanNotices,volume48,
pages135–146.ACM,2013.

[26] M. Wu,F.Yang,J.Xue, W.Xiao,Y. Miao,L. Wei,H.Lin,Y.Dai,
andL.Zhou. Gram:scalinggraphcomputationtothetrillions. In
ProceedingsoftheSixthACMSymposiumonCloudComputing,pages
408–421.ACM,2015.

[27]C.Xie,R.Chen,H.Guan,B.Zang,andH.Chen.Syncorasync:Timeto
fusefordistributedgraph-parallelcomputation.ACMSIGPLANNotices,
50(8):194–204,2015.

[28] X.Zhu,W.Chen,W.Zheng,andX.Ma.Gemini:Acomputation-centric
distributedgraphprocessingsystem.In12thUSENIXSymposiumon
OperatingSystemsDesignandImplementation(OSDI16),2016.


