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1. Introduction

With modern technological progress in measuring devices, sophisticated data are now easy to collect. These data are often
sets of functions such as curves, images or shapes, whose high-dimensional and correlated features impose tremendous
challenges on conventional statistical studies. Emerging as a promising field, functional data analysis (FDA), which deals
with the analysis of curves, has recently undergone intense development. The interested reader is referred to Ramsay and
Silverman [ 16] for a general introduction of FDA.

In this work, we focus on situations where curves are repeatedly recorded for each subject, e.g., mortality data [6] in which
age-specific lifetables are collected over years for various countries, and electroencephalography (EEG) data [9] observed for
patients at each visit. Such dependent types of curves or images now commonly arise in diverse fields including climatology,
demography, economics, epidemiology, and finance.

Our work is motivated by a longitudinal neuroimaging study containing repeated functional measurements derived from
diffusion tensor imaging (DT1); for a description, see [ 11,12]. DTI is a magnetic resonance imaging technique which provides
different measures of water diffusivity along brain white matter tracts; its use is instrumental, especially in diseases that
affect the brain white matter tissue such as multiple-sclerosis (MS); see, e.g., [ 1]. In this study, DTI brain scans are recorded
for many multiple-sclerosis (MS) patients to assess the effect of neurodegeneration on disability. At each visit, fractional
anisotropy (FA) was determined via DTI along the corpus callosum (CCA). One objective here is to better understand the
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demyelination process via its FA proxy and investigate possible differences therein between female and male patients. Point-
wise confidence intervals via estimation 42 point-wise standard errors are provided in [ 17]. It is unclear, however, what is
the performance of global inference on the true underlying mean profile,

In this paper, we develop simultaneous inference for the mean of repeated functional data. Our approach can handle the
within-subject correlation and provide global inference, which are the key advantages of our approach over available FDA
methods. There have been some recent attempts to study such repeated functional data in various settings. For example,
the importance of models for dependent functional data has been recognized in [7,9], in which the emphasis has been on a
general hierarchical model. Chen and Miiller [6] proposed a flexible longitudinally observed functional model and provided
consistency results and asymptotic convergence rates for the estimated model components. Zhu et al. [23] established the
uniform convergence rate and confidence band for each estimated individual effect curve in multivariate varying coefficient
models.

Simultaneous confidence bands (SCBs) are an important tool to address the variability in the unknown function and to
develop global test statistics for general hypothesis testing problems. In Wang et al. [ 19,20], smooth SCBs are developed
for the cumulative distribution functions. Gu and Yang [ 14] constructed SCBs for the link function in a single-index model
based on the oracally efficient kernel estimator. It is of particular interest in FDA to construct SCBs for mean functions.
For example, Bunea et al. [2] proposed an asymptotically conservative confidence set for the mean function of Gaussian
functional data. Song et al. [ 18] proposed an asymptotically correct SCBs for dense functional data using local linear
smoothing. Recently, polynomial splines have found successful applications in SCB construction. Ma et al. [15] suggested
spline SCBs for mean functions of sparse functional data based on polynomial spline smoothing. Gu et al. [ 13] investigated
a varying coefficient regression model for sparse functional data and proposed simultaneous confidence corridors for the
coefficient functions. Cao et al. [4,5] provided SCBs for mean and derivative functions of dense functional data, respectively.

In this paper, we derive SCBs for mean functions when curves are repeatedly recorded for each subject. Existing
methodologies for constructing SCBs in FDA often assume the independence of trajectories within each subject. Thus,
the within-subject effect is not reflected by the traditional covariance functions of the mean curve, We are unaware of
any methodology that provides exact SCBs for mean curves of repeatedly observed functional data. In this work, we use
polynomial splines to approximate the mean and covariance functions in the construction of the SCBs. We show that the
proposed spline SCBs are asymptotically correct and semiparametrically efficient in the sense that they are asymptotically
the same as if all random trajectories were observed entirely and without errors as in [5]. We further consider two-sample
inference for dependent functional data and extend our SCB construction procedure to a two-sample problem to test whether
the mean functions from two groups are different.

The dependence within the repeatedly observed curves adds extra difficulty for model implementation, e.g., the
estimation of within-subjects correlation, Misspecification of the correlation structure may lead to some efficiency loss. To
tackle this issue, it is desirable to make the structure as model-free as it can be, and nonparametric modeling is particularly
useful in this sense. In this paper we propose to estimate the variance-covariance functions nonparametrically. Our Monte
Carlo results show that the proposed bands have much more accurate coverage rates of the true function compared to the
“naive” method that ignores the within-subject dependence.

The paper is organized as follows. Section 2 states the model and introduces the estimates of mean functions for
repeated functional data. Section 3.1 describes the asymptotic distribution of the estimators in the framework of allowing
unknown dependence of the trajectories within subjects. Using this asymptotic result, we construct SCBs for mean functions.
Section 3.2 develops the SCBs to study the difference of mean functions from two populations. Section 4 discusses how o
estimate the components in the proposed bands. A simulation study is presented in Section 5. Section 6 contains applications
of our method to a diffusion tensor imaging data. Section 7 gives the concluding remarks. Further insights into the error
structure of spline estimators and technical proofs are collected in the Appendix.

2. The model and estimates
2.1. Modeling repeated functional measurements

We consider data {Xji(s) : s € X},i € {1,...,n}andj € {1, ..., m;}, where X;; is a repeated random curve on the compact
interval X, i is the subject index, and j is the repeated trajectory index for the ith subject. Assume that for allj € {1, ..., m;},
X;j are iid copies of the L, process X; defined on [0, 1], with mean function defined, for all s € [0, 1], by 1(s) = E{Xj;(s)}.

For the ith subject one has the Karhunen-Loéve representation of the process of Xji(s), i.., Xji(s) = u(s) + o1 &ijkdix(s),
where the random coefficients &3 s are referred to as the (jk)th functional principal component (FPC) scores of the ith subject.
For each fixed (i, j), the &s are uncorrelated with mean 0 and variance 1. For notational convenience, let ¢y = \/)E Viks
then Ay and v are the eigenvalues and eigenfunctions of the covariance operator with kernel Gj; (s, t) = cov{Xy;(s), Xy;(t)}.
respectively. Although the sequences {4 };",;zof {Djk };",:zof and the random coefficients &;;s exist; however, they are unknown
or unobservable.

Let Yi(s) = (Yi(s), Ya(5), - - -, Yim,(s))" foralli e {1,...,n}, and assume Yji(s) = Xji(s) + &;(s). where &;(s) are mean
Zero measurement errors. Suppose X;(s) = u(s) + n;j(s), where n;(s) characterizes individual curve variations from p(s).
Denote &(s) = (gi1(S), ... &m(s))" and 9;(s) = (1ia(s), - - -, Mim;(5)) 7. Suppose &;(s) and ;(s) are mutually independent.
Moreover, assume that #;(s) and &;(s) are iid copies of stochastic processes with mean vector 0 and covariance functions
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Gi(s, t)and Iy(s, t), respectively. Here G; (s, t) = {Gj; (s, t)}'r"'_1 is anm; x m; matrix of functions Gy (s, t) = cov{Xj(s), Xy (t)}.
Measurement errors &;(s) and &;(t) are assumed to be mdependentwhen s # t,and Ty(s, t) = Ty(s)1(s = t), where I;(s) is an
m x m matrix of functions of s and 1(-) is an indicator function. Hence, the covariance function X; (s, t) = cov {Yi(s), Yi(t)} =
Gi(s, t) +Ty(s)1(s = t).

It is assumed throughout this paper that we examine the equally spaced dense design, i.e., Y;(s) is measured at the same
N location points s = £/N with £ € {1,...,N}, for all i. For the ith subject and jth repeated trajectory, its sample path
{(£/N, Yi)}_, is a noisy realization of the continuous time stochastic process X;i(s) in the sense that Yz = X;j (£/N) +
& (£/N).
’ Combining the above representation leads to the following model for repeated functional measurements:

og
Yie = i (€/N) + ) £ (€/N) + £ (€/N), (1)
k=1
whereie {1,...,n},je{1,...,m}and £ € {1, ..., N}. The problem addressed here is the estimation of . and its SCB.

2.2. Spline estimators

A polynomial spline of order p > 0 on [0, 1] with knot sequence wyp =0 < wy < -+ < wy, < 1 = awy, 11, is afunction
that is a polynomial of degree p — 1 on each of the intervals [w}, wj1] with] € {0, SNu)L and globally has p — 2 times
continuous derivatives for p > 1. The collection of spline functions of a particular order D and knot sequence form a linear
space denoted by #P~2). We propose to approximate the mean function x via a B-spline basis expansion, viz.

Ny
us)~ Y BBs), (2)
J=1-p
where By is the jth B-spline basis function of order p defined in [8]. The approximation sign in (2) will be replaced by a strict
equality with a fixed and known N,, when u belongs to the spline space HP~2. If u is not restricted to #?~2), it is natural
to let N, increase with the sample size, allowing a more accurate approximation when the sample size increases. Following
(2), we can estimate g, hence p(s) with any given N,, by solving the following least squares problem:

2
n

(Bips---»By,)=  argmin ZE mEYuf—Z BB (¢/N) ¢ . (3)

(,B,_p,,_.‘ BN, )en"u”: 1 e=1 T j=1 J=1-p
Therefore, the spline estimator of p(s) is
Ny
is)= )" BBs)- (4)
J=1-p

The idea of using basis expansions can be applied more generally to other basis systems for function approximation such
as polynomial bases and Fourier bases. We focus in this paper on B-splines because of the good approximation properties of
splines and computational simplicity of the B-spline basis.

3. Simultaneous confidence bands (SCBs)

In the following, for 1 < j < max;<j<,m; = m, we define
Y] =Yy &) =& & H = &j, ¢} = i if Y is observed;
YI.T =0, &, =0, £ =0, ¢l =0 ifY;ismissing.
Hence, for notation simplicity, we do not distinguish Yy, &ii, £ij and @k from Y. E,Jk, s,j and ¢Jk, respectively. Without loss of
generality, we take X = [0, 1] and assume m; = mforalli € {1,...,n}.
3.1. Asymptotic properties of the spline estimator

First we study the asymptotic properties of the spline estimator given in (4). Define the average of all entries in G (s, t) as

_ 1 &
G(s,t) = m Z Gﬁv[s, t).
Jir=1
Let £(s), s € [0, 1], be a standardized Gaussian process satisfying

E(C(s)} =0, E{’(s) =1, EQ()() =G "%, 5)Gs, 006 (e, 1)
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foralls,t € [0, 1]. Forany @ € (0, 1), we denote Q;_, the 100 x (1 — «)th percentile of the absolute maxima distribution of
(s), i.e., Pr{supsc 17 1£(S)| < Q1—o} = 1—a.Letz,_, be the 100 x (1 — a)th percentile of the standard normal distribution.

If Y;(s) were observed without any measurement errors, one could estimate the mean function u by setting, for all
se[0,1],

fi(s) = 2 qu(s) (5)

:1)1

For the general case when m; £ m,

ls) = - Z Ex,j(s

Since j(s) is computed from an unknown quantity Xj;(s), itis also called the “infeasible estimator” in Cao etal. [5]. Theorem 1
shows that the difference between the spline estimator /i in (4) and the “infeasible estimator” i in (5) converges to zero
at the rate /i, which is the same rate of convergence in the parametric setting. Thus, we have the oracle efficiency of the
nonparametric estimator fi.

Theorem 1. Suppose Assumptions (A1)-(A5) in the Appendix hold. For any a < (0, 1), asn — oo, the “infeasible estimator” ji
converges to p uniformly at the /n rate, viz.

{ sup T |ls) — u(S)] Els, 52 < Qs ] g
sef0,1]

and for all s € [0, 1],
Pr[\/_l,u,{S) u(s)G(s, )" < Z1—a;’2} - 1—q,

while the spline estimator [i is asymptotically equivalent to [ up to order ./n, i.e,
sup it |(s) - f(s)] = oe(1).

s<[0,

The oracle efficiency in Theorem 1 immediately indicates the following result, which can be used to construct SCBs or
point-wise confidence intervals for u(s) atany s [0, 1].

Corollary 1. Under Assumptions (A1)-(A5) in the Appendix, for any @ € (0, 1), asn — oo, an asymptotic 100 x (1 — a)% SCB
for (s), is given, for all s € [0, 1], by

A(s) £n712C(s, ) Qi_a, (6)
and an asymptotic 100 x (1 — a)% point-wise confidence interval for p(s), is given, for all s € [0, 1], by

a(s) En2G(s, 5) 21 ap2.

3.2. SCBs for the difference of two mean functions

The aforementioned SCBs for one sample mean function can be extended to the two-sample case. In this section, we
consider the inference of the difference of mean regression functions from two populations. Analogous to the previous
notations, we denote two samples indicated by d € {1, 2}, which satisfy

Yo = uD /Ny + ) Rei) (€/N) + € (@/N)
k=1

wherei € {1,...,n4},j € {1,...,mg}and £ € {1,...,N}. Define the ratio of two-sample sizes as T = n;/n; and assume
thatt — v > 0asn; — oQ.
Ford € {1, 2}, let 2(9 be the spline estimate of mean function x(¥) as given in (4), and define

Mg

- 1
(d) s (d)
G'(s, t) = = E Gﬂ, (s, t).

4 =1
Next let {(s) be a standardized Gaussian process on [0, 1] such that E{Zgi(s)} = 0, E{¢7(s)} = 1and, for alls, t € [0, 1],
GO(s, t) + tG2s, t)
HGO(s, 5) + TGA(s, S)HG(t, £) + TGt E)}]1/2

E {Zairr(S)aine(t)} =
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Denote Qgifr, 1—. the (1 — a)th quantile of the absolute maximum deviation of gi(s) with s € [0, 1], as above. We mimic the
two-sample t-test and state the following theorem whose proof is analogous to that of Theorem 1.

Theorem 2. If Assumptions (A1)-(A5) in the Appendix are modified for each group accordingly, then for any « € (0, 1), as
n—00,7T—1>0,

o 1!2 |{#{1} a2 My ,u(Z})(s)| e e
5[0, 1] {(G) 4+ £G@)(s, 5)}1/2 S ]

Theorem 2 yields the following simultaneous asymptotic SCB for p(V(s) — u®)(s) with s € [0, 1].

Corollary 2. If Assumptions (A1)-(A5) in the Appendix are modified for each group accordinglyand ¢ — t > 0asn; — oo,
then for any @ € (0, 1), a 100 x (1 — )% asymptotically correct confidence band for ;") — u(?) is given, for all s € [0, 1], by

(A — A@X(s) £ 0} Quir1-a (CV + 7C) (5, 9)) /2.

4. Estimation of the components in SCBs

This section presents procedures to implement the SCBs given in Corollaries 1 and 2. Given any dataset {(£/N,

Yy,;)}f_';'; 1,41 from Model (1), the spline estimator fi(s) can be easily obtained from (A.1) once the basis functions are

determined. In the following we describe how to estimate the unknown function G and the quantiles Q;_, and Quiff, 1—ae-
4.1, Estimating the variance-covariance functions

We gwe estlmatmg formulas based on general repeated dataset (m; # m). Define r; = 1{Y; is observed}, so that
Yl = Y iymi =nm.Forall £, &' € {1,... N} with £ # £/, let

Cor = — Z Z?’y{ysz i (/N)Yje — 1 (€ z"N)

1111

We pre-estimate the covariance function Gj(s, t) using the tensor product spline approach by Cao et al. [5]. The pilot spline
estimator of Gj(s, t) is defined as

Ng
Gi(s.t)=_ byB(s)By(t), (7)
J=1-p
where N is the number of interior knots used to build the tensor product B-spline basis and the spline coefficients
2

N
by}, ,= argmin > {Copr— )" byB (¢/N)By (€/N)
KGRI oy 1-pyJ'<Ng
Next we consider the eigenfunction decomposition of fiﬂ- (s,t),ie,forallje{1,...,m},

- E (€/N. £ /N (€/N) = Al (€/N)

so that we obtain the estimated eigenvalues iﬁt and eigenfunctions fijk. Following Yao et al. [22], the FPC scores & can be
approximated by

N
. : . A .
Gie= 1 > Ag (Yie — A(E/N )i (¢/N) .
=1
Note that Gy (s, t) = Y 22, > pr E(E1jk&aju Jojk(s)eyie(t) for j # j, so we can estimate Gy (s, t) by

p Z Esuk%’k’ﬁf’;k S)gyw(t).

A= Filsr
ZI 1°'y U i=1 k=1k'=1

Thus, G(s, s) can be estimated using G(s, 5) = Z}}zjﬁjr(s, s)/m2,
_ The following theorem shows that G(s, t) and G(s, t) are asymptomatically equivalent. Hence, we replace G(s, s)in (6) by
G(s, s) when constructing SCB.
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Theorem 3. If Assumptions (A1)-(A5) in the Appendix hold, then
sup Ié{sy t) - 6{51 t)l = Op(l)-
5,t€[0,1]

The proof of Theorem 3 is given in the Appendix.

4.2, Estimating the quantiles

We generate independent R™-valued Gaussian vectors, Zy , = (Zm,, ... ,ka‘b)T such that cov(Zjp, Zix,p) = coV(&qjk,
&ipk) = Vip o COV(Zip, Ziw p) = 0if k # K for all b € {1, ..., by}. Here by is a preset large integer, the default of which is
1000. Let

b5)=8597 =33 Zusdials)

j=1 k=1

One takes the maximal absolute value for each copy of Z‘b (s) and estimates Q,_, by the empirical quantile 0,_, of these
maximum values.

In the two-sample case, we generate independent R™?-valued Gaussian vectors, Zﬁ {Z1k by - - ,Z,{:Jk,b)T, d e (1,2},
satisfying

d
cov(Z, kbszj{rk}b) ijr Y Cov(Z, J’kb)_

ifk #£ k' forallb € {1, ..., by}. Similarly to g’b, we define

. (1) 2(2) —12 ;Mmoo A
G5 = €448 o9} ZE I+ = 3 Y 22000

j=1 k=1 j=1 k=1
We obtain Qdmj_a by taking the empirical quantile of these maximum values of Edm‘b (s).

4.3. Selecting k and spline knots

To take into account the truncation error in generating the critical value, we choose the number of eigenfunctions using
the following criterion. Forj € {1, ..., m}, let
£ Tj

ch —argmln Z)ij/ZAJk>095 )
T | =1 k=1

\_Nhere Ajty -y Agry are the first T; estimated positive eigenvalues, Denote k = (k, ..., kp), Where :cjf‘ < kj < Tj, for
je{l,...,m}.Foragiven, let

bals) = 85,572 Yzl |

j=1 k=1

and we take the maximal absolute value for each copy of Eb,x (s), then define Q;_, , by the empirical quantile lfh _a.x Of these
maximum values. Finally, we estimate Q,_, by 01— = max,0; —a.x 10 reduce the effect of the truncation and provide a
better coverage.

For knot selection in our procedure, we use equally spaced knots and select only the number of interior knots. According
to Assumption (A3) in the Appendix, the number of knots in estimating u(s) is taken to be N, = [n"/@” In (n)], in which
la] denotes the integer part of a. Meanwhile, the estimator Gﬂ{s t)in (7) is calculated with the number of knots N =
[2n'/2P) In{In(n)}]. Similar knots selections are suggested in Cao et al. [5]. These choices of knots also satisfy Assumption
(A3) in the Appendix.

5. Simulation
5.1. Example 1: empirical coverage rates of the SCBs

In this example, we conduct a study to investigate the performance of the proposed SCBs under various correlation
structure settings. Our data are generated from the following model

6
Yie = i (€/N) + ) Eixde (€/N) + i, ®)
k=1
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0.0 0.2 0.4 0.6 0.8 1.0

Fig. 1. The estimated mean function {(middle dashed line), the true mean function (middle solid line) and its 95% “ORA" band constructed using the true
correlation structure (upper and lower solid lines), the 95% “NP” band via the nonparametrically estimated variance—covariance function (upper and lower
dotted lines), and the 95% “naive” band assuming independence within the repeatedly observed curves (upper and lower dot-dashed lines).

wherei € {1,...,n},je{1,....m}, € € {1,...,N}, u(s) = 10 +sin {27 (5 — 1/2)}, ¢x_1(5) = cos (kwrs) and ¢x(s) =
sin (krs) fork € {1, 2}. We generate the FPC scores & = (&, - .-, gimjk)—r ~ N(0, M), Azk_g = Ax = 0.5% fork € {1, 2},
and g = (sm, R s,-,,,fg)T ~ AN(0,0.1?Q). We consider the following settings for the correlation matrix @ = {Qﬂ;}fj}ﬂ :
Case 1. Independent (IND): 2 = 1(j =J').

Case 2. Autoregressive (AR-1): 25 = 1(j = j) 4+ pV711(j #j), p = 0.2.

Case 3. Toeplitz (TOEP): 2y = 1(j =J) + p|j—y|1( # j'). where p;_y; = pr with 0.1" + 0.05 forallr € {1,...,m; — 1}.

The number of subjects n is taken to be 30,60 and 120, and the number of observations per curve is assumed to be
N = n. The number of repeatedly observed curves for each subject is m; € {3, 5, 7} with two different missing rates: 0 (fully
observed) and {0, 0.2/m;, ..., 0.2(m; — 1)/m;}, i.e., jth repeatedly observed curve is missing with probability 0.2(j — 1)/m;.
These settings mimic the real data structure in Section 6. We consider two nominal levels, namely 1 — o = 0.95 and 0.99,
and carry out 500 simulation replications.

For each setting, we construct the spline SCBs in three different ways: (i) using the “naive” independent correlation
structure (IND); (ii) using the proposed nonparametric method (NP); (iii) using the “oracle” method with the true correlation
structure (ORA). We adopt quadratic spline (p = 3) and cubic spline (p = 4) smoothing for each case, respectively. The
coverage of the “IND”, “NP” and “ORA" bands is evaluated on grids {1/N, ..., 99/N, 1} and is checked whether the true
function is covered entirely by the SCBs at these points. The “ORA” bands using the true correlation structure is expected to
be the best among the three type of bands and serve as a benchmark.

Tables 1-2 summarize the empirical coverage probabilities of three different types of bands given different missing
rates and spline orders. In Tables 1-2, one sees that in most of the cases the coverage probabilities of the bands improve
with sample size. In addition, as expected, the coverage percentages of the “oracle” bands are the closest to the nominal
levels since they are constructed using the correct correlation structure. For different missing mechanisms and spline
orders, the “NP” bands constructed using the nonparametrically estimated variance-covariance functions are comparable
to the “oracle” bands, and are much better than the “IND” bands using independence correlation structure when the true
correlation is not independent. For the “NP” bands, the differences between the coverage probabilities and the nominal levels
are acceptable when n is large enough, which implies that the proposed nonparametric method is very robust when the true
correlation structure is unknown. In contrast, when the true correlation is not independent, the “naive” bands obtained
using the independent correlation structure have significantly smaller coverage rates than the nominal levels regardless of
the sample sizes and the number of repeatedly observed curves.

Fig. 1 displays a typical comparison between two 95% SCBs constructed using the independence structure, fully nonpara-
metric structure and the true “TOEP” correlation structure. This plot is based on one sampled replication withn = 120,p = 4
and m; = 3.InFig. 1, one sees that the “IND”, “ORA" and “NP” produce the same estimator for the true curve ¢, however, the
“IND” band is very different from the “ORA” and “NP” bands. From Fig. 1, one can see that the true curve u lies completely
inside the “ORA” and “NP” bands, but it cannot be covered entirely by the “IND" bands.

5.2. Example 2: two-sample testing

We conduct a numerical study to evaluate the empirical size and power of hypothesis tests for the mean functions
from two groups of repeatedly observed trajectories. We compare the SCBs constructed using the proposed nonparametric
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Table 1
Empirical coverage rates of the bands under various correlation structures with missing rate = 0.
Correlation P n o m; =3 m; =25 m; =
IND NP ORA IND NP ORA IND NP ORA
30 0.05 0.934 0.930 0.934 0.926 0.920 0.916 0.944 0.938 0.942
0.01 0.978 0.978 0.978 0.994 0.976 0.994 0.994 0.986 0.994
3 60 0.05 0.946 0.938 0.948 0.960 0.954 0.958 0.970 0.966 0.970
0.01 0.998 1.000 0.994 0.996 0.996 0.996 0.994 0.990 0.992
120 0.05 0.950 0.954 0.948 0.948 0.946 0.948 0.944 0.946 0.946
IND 0.01 0.992 0.992 0.990 0.994 0.992 0.992 0.992 0.992 0.990
30 0.05 0.956 0.946 0.960 0.930 0.938 0.928 0.944 0.938 0.946
0.01 0.992 0.986 0.992 0.990 0.988 0.990 0.986 0.984 0.988
4 60 0.05 0.952 0.952 0.954 0.946 0.942 0.952 0.948 0.936 0.944
0.01 0.990 0.996 0.990 0.992 0.986 0.990 0.994 0.994 0.996
120 0.05 0.966 0.960 0.964 0.930 0.930 0.930 0.948 0.952 0.954
0.01 0.996 0.996 0.996 0.990 0.984 0.990 0.986 0.986 0.984
30 0.05 0.884 0.924 0.926 0.864 0.916 0.934 0.864 0.920 0.952
0.01 0.958 0.966 0972 0.966 0.988 0.984 0.974 0.992 0.998
3 60 0.05 0.892 0.922 0.946 0.876 0.928 0.948 0.870 0.922 0.940
0.01 0.968 0.980 0.984 0.960 0.986 0.994 0.958 0.976 0.994
120 0.05 0.926 0.964 0.970 0.874 0.934 0.948 0.894 0.946 0.958
AR-1 0.01 0.992 0.998 0.998 0.960 0.986 0.990 0.966 0.992 0.986
30 0.05 0.884 0918 0.932 0.856 0.896 0.920 0.870 0916 0.950
0.01 0.952 0.980 0.976 0.956 0.968 0.988 0.954 0.982 0.990
4 60 0.05 0.882 0.930 0.950 0.888 0.928 0.950 0.888 0.940 0.954
0.01 0.980 0.988 0.994 0.970 0.980 0.988 0.964 0.984 0.996
120 0.05 0.900 0.940 0.954 0.886 0.940 0.962 0.854 0.934 0.966
0.01 0.976 0.986 0.986 0972 0.984 0.968 0.968 0.984 0.990
30 0.05 0.926 0.934 0.934 0.864 0918 0.928 0.826 0.900 0914
0.01 0.980 0.984 0.990 0.960 0.972 0.978 0.944 0974 0.978
3 60 0.05 0.886 0.920 0.924 0.846 0.908 0.922 0.850 0912 0.940
0.01 0.960 0.976 0.976 0.948 0.976 0.980 0.966 0.982 0.988
120 0.05 0.904 0.930 0.944 0.876 0.924 0.952 0.852 0.930 0.954
TOEP 0.01 0.974 0.988 0.992 0.964 0.982 0.994 0.966 0.990 0.992
20 0.05 0.890 0.910 0.920 0.870 0.916 0.920 0.856 0.920 0.940
0.01 0.958 0.978 0.978 0.956 0.978 0.980 0.966 0.976 0.976
4 60 0.05 0.892 0912 0.926 0.852 0914 0.928 0.858 0.930 0.950
0.01 0.964 0.970 0.980 0.956 0.982 0.976 0.948 0.976 0.980
120 0.05 0.900 0.934 0.942 0.874 0.942 0.946 0.866 0.938 0.962

0.01 (]:9'?0 0.990 0.990 0.968 0.984 0.994 0.960 0.990 0.996

variance-covariance functions with the “naive” bands developed under the independence assumption. To mimic the two-
sample testing problem, we consider the following hypotheses:

Ho : Vseo L) = u@(s) & Ha: Fsero, 1y 1(s) # 1P (s). (9

We generate two groups of data from the model given in (8) with u(Y)(s) = 10 + sin {27 (s — 1/2)} + & and u?)(s) =
10 + sin {27 (s — 1/2)}, and all the remaining settings are the same as in Example 1. The constant § takes 10 values, namely
& € {0,0.03,0.06, ...,0.27}. Indeed, large values of § shift the mean of the first group data further away from the second,
therefore making the difference between ;") and (%) more easily detectable. We choose n; = n, = 60, take a cubic spline
(p = 4), and N = 60 observation points on each curve. For each subject, the noisy trajectory is repeatedly observed three
times with the true correlation structures:“AR-1"(p = 0.2) and “TOEP"(p, = 0.1" + 0.05for all r € {1, 2, 3}). The missing
rate is {0, 0.2/3, 0.4/3} for each individual at repeated time 1, 2, 3. We run 500 Monte Carlo simulations.

Fig. 2 illustrates the empirical frequencies of rejecting #, against § using our method and the naive “IND"” method. For
each correlation structure, we compare the performance of the “IND” bands and the “NP” bands. When § = 0, these relative
frequencies represent the size of the test. The relative frequency for the proposed method is around 7% regardless of the
true correlation structures, which is fairly close to the set significant level of 5%. This shows that our estimate of the null
distribution is approximately correct. However, when § = 0, the relative frequency for “IND” is about 12% under both AR-1
and TOEP correlation structures, which is much larger than the set significance level. This implies that the “IND” is too liberal
to maintain its sizes at the nominal level. In addition, one sees that increasing values of 5 improves the power of detecting
the alternatives for both methods. In fact, the power of our method increases more rapidly than that of the “IND” method,
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Table 2
Empirical coverage rates of the bands under various correlation structures with missing rate {0, 0.2/m;, ..., 0.2(m; — 1)/m;}.
Correlation r n o m;=3 m;=>5 m; =
IND NP ORA IND NP ORA IND NP ORA
30 0.05 0914 0.910 0914 0.932 0.922 0.934 0.930 0.900 0.932
0.01 0.986 0.978 0.984 0.984 0.986 0.986 0.984 0.980 0.982
3 60 0.05 0.928 0.936 0.932 0.932 0.930 0.928 0.922 0914 0.920
0.01 0.984 0.982 0.982 0.978 0974 0.978 0.988 0.982 0.984
120 0.05 0.942 0.936 0.940 0.940 0.934 0.936 0.940 0.938 0.940
IND 0.01 0.980 0.980 0.982 0.984 0.986 0.984 0.990 0.990 0.996
30 0.05 0.920 0912 0.922 0.940 0916 0.942 0912 0.908 0918
0.01 0.976 0.972 0.978 0.972 0.986 0.972 0.992 0.984 0.992
4 60 0.05 0.938 0.926 0.932 0.932 0.926 0.934 0.932 0.912 0.922
0.01 0.986 0.988 0.988 0.994 0.984 0.990 0.980 0.982 0.978
120 0.05 0.952 0.958 0.954 0.942 0.936 0.944 0.926 0.922 0.926
0.01 0.994 0.990 0.994 0.988 0.988 0.990 0.984 0.992 0.988
30 0.05 0.868 0.904 0.926 0.858 0.896 0.922 0.844 0.908 0.928
0.01 0.956 0.962 0.976 0.970 0.976 0.988 0.946 0.976 0.988
3 60 0.05 0.894 0.928 0.938 0.842 0.900 0.944 0.848 0.902 0.920
0.01 0.958 0.970 0.982 0.964 0.984 0.988 0.938 0.970 0.980
120 0.05 0.892 0.922 0.942 0.890 0.936 0.948 0.846 0.920 0.942
AR-1 0.01 0.972 0.984 0.986 0.956 0.980 0.982 0.958 0.972 0.988
30 0.05 0.882 0912 0.922 0.826 0.866 0.896 0.840 0.880 0912
0.01 0.960 0.970 0.976 0.940 0.960 0.974 0.946 0.956 0.976
4 60 0.05 0.868 0.904 0.932 0.848 0.892 0916 0.844 0.910 0.932
0.01 0.868 0.982 0.932 0.934 0.964 0.982 0.954 0.964 0.984
120 0.05 0.918 0.940 0.950 0.876 0.926 0.940 0.864 0.926 0.940
0.01 0974 0.990 0.990 0.962 0.986 0.994 0.950 0.974 0.974
30 0.05 0.852 0.896 0.896 0.932 0.922 0.934 0.826 0.890 0.904
0.01 0.952 0.974 0.978 0.984 0.986 0.986 0.934 0.974 0.980
3 60 0.05 0.888 0914 0.920 0.932 0.930 0.928 0.836 0914 0.932
0.01 0.954 0.964 0.976 0.978 0974 0.978 0.944 0.986 0.982
120 0.05 0.906 0.932 0.942 0.940 0.934 0.936 0.842 0.922 0.942
TOEP 0.01 0.964 0.984 0.990 0.984 0.986 0.984 0.948 0.978 0.986
30 0.05 0.888 0914 0.926 0.862 0.900 0918 0.814 0.880 0.898
0.01 0.966 0.976 0.980 0.944 0.970 0.972 0.934 0.970 0.972
4 60 0.05 0.900 0.922 0.942 0.860 0.922 0.948 0.874 0.920 0.934
0.01 0.976 0.986 0.994 0.958 0.968 0.978 0.952 0.976 0.984
120 0.05 0.888 0.926 0.944 0.890 0932 0.946 0.848 0914 0.942

0.01 0.966 0.988 0.988 0.966 0.984 0.990 0.948 0.974 0.984

and the power of both methods reaches 1 simultaneously at around § = 0.27 regardless of the true correlation structures.
In summary, given that Type I errors are generally considered more serious than Type II errors, our method is preferable to
the “IND” method.

6. Empirical examples
6.1. Estimation and SCBs for the mean function of DTI data

In this section, we apply our proposed method to the DTI study of Goldsmith et al. [ 11,12]. In this study, DTI brain scans
are recorded for many MS patients at several visits with the goal of assessing the effect of neurodegeneration on disability.
The dataset is publicly available from the refund package in the R software, which consists of 100 subjects. The number of
visits per subject ranged from 2 to 8, with a median of 3, and was approximately annual. In this dataset, we consider the DTI
measure called FA along CCA for case group. After deleting incomplete data, we use the remaining 332 observations in our
analysis. For illustration, the left panel in Fig. 3 shows 50 subjects’ trajectories for the FA profiles.

Let Yj;(s) denote the FA value observed for the ith patient, the jth visit at the sth location, with s € [0, 93], where
i e {1,...,100} and j € {1,...,m;}. Applying cubic spline smoothing to the dataset, we obtain the estimated overall
mean function of FA values ji. To construct the SCB, we first estimate the variance-covariance functions using the proposed
nonparametric method in Section 4. To explore the comparison of the bands under different structure assumptions, in the
right panel of Fig. 3 we show the proposed 95% SCB (upper and lower dashed lines).
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is repeatedly observed three times with missing rate {0, 0.2/3, 0.4/3}. The dotted line represents the performance of the naive method using the “IND"
assumption and the solid line represents the performance of the proposed method using the nonparametrically estimation variance-covariance function.
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Fig. 3. Left: Sample FA profiles along CCA. Right: Cubic spline estimator (middle solid line) ji(s) and its 95% “NP" bands (upper and lower dashed lines)
using the nonparametrically estimated variance—covariance function.

6.2. Two-sample test for the difference between male and female FA

We further compare the FA values of female and male subjects. We focus on the same 100 subjects analyzed in Section 6.1
and consider male and female subjects as two different populations. Our hypotheses of interest are

Ho : Vseroo3 pm(S) = wr(s) € Ha: Jsepo,om im(S) # ue(s),

where 1ey(s) and pe(s) are the mean functions of mortality rates for males and females with sample sizes n; = 66, n, = 34.

Fig. 4 depicts the cubic spline SCBs constructed using the nonparametrically estimated variance-covariance function at
0.95 (upper and lower dotted lines) and 0.999 confidence level (upper and lower dashed lines), with the center dashed-
dotted line representing the spline estimator fiy(Ss) — ftr(s) and a solid line representing zero. The 99.9% SCB goes below
the zero line except around CCA tract locations 0,15 and 80, the difference between male and female FA is significant at
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Fig. 4. Cubic spline estimator jim(s) — fi(s) (dashed-dotted line) and the corresponding 95% (upper and lower dotted lines) and 99.9% “NP" band (upper
and lower dashed lines) using the nonparametrically estimated variance-covariance function. The solid line represents zero reference.

level 0.001. It is fairly clear from Fig. 4 that females have a lower FA measurement than males at the same location. Fig. 4 also
suggests that the variation of the discrepancy is constant over the range of tract locations. Similar findings on the discrepancy
of FA profiles for difference gender patients have also been reported in Scheipl et al. [17].

7. Conclusions

In this paper, we target the inference of mean functions for repeatedly observed functional data. We allow for dependence
of the trajectories within subjects and obtain both the global and local asymptotic distributions of the spline estimator. SCBs
are developed to quantify and visualize the variability of the estimator and to make global inferences on the shape of the
population mean function. In longitudinal analysis, one primary hypothesis is to test if the pattern of observations over time
is constant within a time interval. Our paper provides a method to test this hypothesis. Note that the hypothesis of no time
effect states that all the ] mean functions are identical. Under this assumption, the asymptotic null distribution is obtained.
The proposed SCBs based on the asymptotic distribution can be used to test this hypothesis. If this 100 x (1 — )% SCB covers
the zero line, one cannot reject the null hypothesis of no time effect, with p-value not greater than .

In the development of the bands for repeated functional data, the presence of within-subjects dependence poses
new challenges for us, and we propose a fully nonparametric method to estimate the covariance function to avoid
misspecification. The advantages of our approach are: first, compared with the “naive” band that assumes iid trajectories,
the proposed SCB has excellent coverage rate of the true mean function regardless of the within-subjects structures, and
thus it can be applied flexibly to both independent and dependent functional data; second, it provides valuable insights
into the correlation structures of dependent functional data as in practice the true correlation structure is usually unknown;
third, this approach can be easily extended from the one-/two-sample case to a multi-sample testing problem; fourth, when
estimating covariance function and within-subjects correlation, it does not require complex fitting algorithms, and the bands
can be usually constructed within fractions of a second.
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Appendix
Let k be the number of eigenfunctions and x can be a positive integer or infinity. We use C to denote a generic

positive constant unless otherwise stated. For any vector a = (a;,...,a) € RX set |allc = max(|a], ..., |a|) and
lal: = (lail" + --- + l@|")V/" for all r € [1, 00). For any function ¢ on [0, 1], denote [|¢ll, = SupPsc(p 1y I¢(S)I. For
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functions ¢, ¢ € L5[0, 1], write (¢, @),y = Z?:@ (£/N) ¢ (£/N) /N the empirical inner product with corresponding norm
I|¢I|%,N = (@, d)an-

A.1. Assumptions

In this paper we restrict our attention to splines with equally spaced knots. Denote @y = Jh,,0 < J < N,, and let
h, = 1/(N, + 1) be the distance between neighboring knots.

For any v € (0, 1] and nonnegative integer g, let C*"[0, 1] be the space of functions with v-Hélder continuous gth order
derivatives on [0, 1], i.e.,

cq'“[0,11=|¢:||¢||q,,,= sup |r—s|—“|¢“”(r)—¢@(s3|<oo].

t#s,t,5€[0,1]

The technical assumptions we need are as follows:

(A1) The regression function u belongs to cP~ 1[0, 1], i.e., u® " e ¢®1[0, 1].

(A2) If Ijj(s)is the (j, j')th entry of I(s), then I}y (s) € c®*[0, 1] for some v € (0, 1].

(A3) As n — 0o, N"'n¥/@ 5 0and N = 0O(n°) for some # > 1/(2p); the number of interior knots N,, satisfies
N;'N — 00,N;Pn'/? — 0,N~'2N,* In(n) — 0.

(A4) There exists (; > 0 such thag, for j,j’ € {1,...,m)}, Gj(s,s) = Csforalls € [0,1]; fork € {1,...,«} and
je{1,....m}, ¢u(s) € ™[0, 11. Xk, Idjklloo < ooand asn — o0, hy ) " I llo,, = o(1) for a sequence {iy},—,
of increasing integers, with k, — « asn — oo and the constant v € (0, 1] as in Assumption (A2). In particular,
Z::xn+1 llpillc = 0(1)forallj € {1, ..., m}. The eigenvalue sequence {4 }Eﬁzl has afinite sum, i.e., ) ;o Ajk < 00.

(A5) There exist i, n; > 4, such that E|&|" + E|gj;|™ < ooforalli ee {1,...,n},j e {1,...,m}, k € {1,...,k},
and £ € {1,...,N}. The number x of nonzero eigenvalues is finite or « is infinite while the random vectors
&, = (Eiky - -, Emk) ' areiid fori e Nandk € {1,...,k}.

Assumptions (A1)-(A2) are typical for spline smoothing; see [4,5,21]. Assumption (A3) concerns the relationship among
the number of subjects, the number of observations for each subject and the number of knots of B-splines. Assumption (A4)
ensures that the principal components have collectively bounded smoothness. Assumption (A5) is necessary for applying
Gaussian approximation of the error process.

A.2. Error decomposition for spline estimators

In this section, we break the estimation error fi(s) — p(s) into three terms, We begin by discussing the representation of
the spline estimator /(s) in (4). Let B(s) = (B1p(5), - - -, B, (S))". Xy« (w,+p) = (B(1/N), ..., B(N/N))" and

V=X"X/N = {(Bj, BJ’)Z‘N )?;’:1—;}'

Applying elementary algebra to the spline estimator /i(s) defined in (4), one finds

a(s) = NT'Bs)VXTY, (A1)

whereY = (Y.1,...,Y.x)Tand Y., = Y Yie/(nm)forall £ € {1,...,N}.
Projecting the relationship in model (1) onto the linear subspace of ]R”ﬂﬂ’ spanned by {B (£/N)}"_,, we obtain the
following decomposition:

fi(s) = i(s) + &s) + &(s), (A.2)

where
Nu
fi(s)= Y _ BB(s). &s) = Z aBy(s), &(s) = Zsk(s) &(s) = Z iy By(5), (A3)
J=1-p J=1-p J=1-p
and vectors (31_p, . ,éN# )", (@1—p, - .., Gn,)" and (Tg,1—p, .., Tk, )" in (A.3) are solutions to (3) with Yy, replaced by
1 (£/N), ;i (£/N) and gk (E,’N} respectively
Alternatively, ji(s) = N-'B(sW"'X"u, &(s) = B(s)V™ 1XTe,J’N $k(S) = B(s)V™ 1XT¢H‘N forallk e {1,...,«}, where

= (u(1/N), ..., u(N/N))T is the signal vector, e = (.1, ..., &) where, forall£ € {1,...,N},

1
— Z 2 &ij (£/N)

i=1 j=1

is the noise vector, and vector ¢ = Y ;Y /" &/ (nm) with ¢ = (¢ (1/N), ..., ¢ (N/N))T.
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The next three lemmas concern ji(s), &s) and £(s) given in (A.2).
Lemma A.1. Under Assumptions (A1) and (A3), sup,o ;,n"/* |a(s) — pu(s)| = o(1).

Proof. Applying Lemma A4, || — fi] o < Cp—1,1hE,. Since Assumption (A3) implies that O(h?,n'/?) = o(1), the desired result
is obtained. O

Lemma A.2. Under Assumptions (A2)~(A5), supse( 1y1"/2 |é(s)| = 0p(1).
Proof. Let Z,(s) = B(s\V"'X"Z/N,whereZ = (Z.1,,...,Z.n,) WithZ ., = Y12 i Ziee/(nm). By (A9), |IZ — el =
Ogs.(nf~1), while
—1yT
VX @ o], < 12 el max (5.1),,

< ClZ— el max #{€:B;(£/N) > O} N~ < C|IZ —e]|, h,
—P=I=Ny

Note that [|Z; — &llec = SUPspo,1;/B(S)VIN~'XT (Z — ). According to Lemma A.3 in Cao et al. [5], [V""[loc = Ogs.(N,.).

Thus, |Z; — &lles < CIIV"[|so]|Z — e|looh,, = 0gs.(nP~1). Observe next thatV-IN-1XTZ is (N, + p)-dimensional normal with
covariance matrix

N2 ~'XTvar @) XV~' = N2V~ X "diag{var(Z., .), . .., var(Z.y . )}XV ",

bounded above by max;-,yvar(Z. ,)[n"!N~'V-'W~||,, < C/(Nnh,,).
To bound the tail probabilities of entries of V"'N~'XT Z, applying the Borel-Cantelli Lemma, one obtains [V 'N~'X" Z|
= Oy {(Nnh, /Inn)~"/2}. Hence, we have [|n'/2Z, o = Ogs(N~"2h;"*In"?>n)and |n'/2¢|, = Ogs(nf~1/2 + N~1/2n,'/?
n'2n) = 045 (1). Thus, Lemma A.2 follows from Assumption (A3). O

Lemma A.3. Under Assumptions (A2)-(A5), supycio 11"/?|£(s) — fa(s) — u(s)| = 0p(1) and, for all & (0, 1),

| sup n'/?|&(s)|G(s, s)"V? < Q a} - 1—a.
s5€[0,1]
Proof. Let [;(s) = n'2(nm)~13 ", 30 Zik e dj(s) for all k € {1, «}, and define
—1/2
- 1 K n m K ~ _ K ~
)=z D0 D D Eleudineuls)pe(s)p D Luls) = G5, 5)7"2 3 Zuls).
kk'=1 i=1 jj'=1 k=1 k=1

It is clear that Z(s) is a Gaussian process with mean 0, variance 1 and covariance function given, for all s, t € [0, 1], by

EC(s)¢(t) = G(s, s)/*C(t, t)"/*C(s, t).

Thus, Z(s) has the same distribution as £(s) over s € [0, 1]. .
According to Lemma A4, [$jklloc < Cppll@iklloo. lPjk — Biklloc < Covlidjkllovhy, forallk € {1,...,«}andj € {1,...,m}.
Applying (A.10) and Assumptions (A3), (A4), one finds

B 1 m K -
E|n"? sup G(s,s) "2 ﬁZEZfﬁk{ﬁbjk{sj_ﬁbjk(s)}
i1 j—1

se[0,1] —1 k=1

1 n m Kn K
<> > (2 Elgiellgiellonh), + Y Elil g ||oo)

i=1 j=1 \k=1 k=kn+1

m kp m 'S
<D dikdloshy + D D ligiklloo | = o0(1).
j=1 k=1

j=1 k=xp+1
Hence,

n K

w2 sup G5, )72 |30 30 Y Eelduls) — sl = on(1) (A4)
i=1 j=1

s5€[0,1] —1 k=1
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In addition, (A.8) and Assumptions (A3), (A4) entail that

1 n m K m 'y
En*2 sup Gis,s)™ | — Y DD (Zike — &) = P2 Y 7S " ligelloo = 0(1).

sl im1 =1 k=1 =1 k=1

Therefore,

n'/? sup G(s,s) /2 EZE(Z”” — &ij)pi(s)| = op(1). (A5)

S€l0:1) i=1 j=1 k=1

Note that ji(s) — u(s) — &(5) = 2o, 21, Yok Eiicl bie(s) — Bye(s)) /(nm),

V205, 9'2E(8) — () — () = = 30 D ik — Gl

i=1 j=1 k=1
Hence, according to (A.4) and (A.5),

Vi sup G(s,5)7 |f(s) — u(s) — &(s)| = 0p(1),

5[0,1]
sup [£(s) —n'/2G(s, s)2{fi(s) — u(s)}| = op(1),
s5[0,1]
which leads to the desired results. O
Proof of Theorem 1. Theorem 1 follows directly from the decomposition in (A.2) and Lemmas A.1-A.3.

Proof of Theorem 3. Theorem 3 can be derived directly from Lemmas A.9 and A.10.

A.3. Technical lemmas
This section contains some technical details used in the proofs of Lemmas A.1-A.3.

Lemma A.4([8], p. 149). There is an absolute constant C;_;, > 0, v € (0 1] such that for every ¢ € cP~1"[0, 1], there exists a
functiong € HP-2[0, 1] satisfying g — Plloo < Cp—1.0 6P o .+~

Lemma A.5 ([10], Theorem 4). Let H : [0,00) — [0, oc) be a continuous function such that the function x3~VH(x) is
nondecreasing for some y > 0 and x~/2 In{H(x)} is nonincreasing. Suppose that & : £ — R™ is a random vector defined
in p-space (£2, A, Pr) with E(£) = 0, cov (§) = =. Assume E {H (|€ll,)} < oc. Then one can construct a p-space (2o, Ag, Pro)
and two sequences of independent random vectors {£;} and {W;} with Pry of; = Prof, Pro oW; = N (0, X) foralli € {1, ...,n},

such that for any z > 0,
Cin
>Z)<—7,
~ H(Gz)

s - o

where positive constants Cy, G, depend on the distribution of &.
Let & = (§ik, - -, Eimk) | and &g = (i1e, ..., &ime) ' forallie {1,...,n},ke{1,...,«}and € € {1,...,N}.

Lemma A.6. Under Assumption (A5), there are constants C;, G > 0, y1,%2 > 1, B € (0, 1/2) and independent Gaussian
random R™-valued vectors Zix s = (Zisk,g, - - - Zimkg) - Zie.e = (Zite,e - - - ,meg‘e)TﬁJr allie{1,...,nLke{1,...,«)},and
£e{1,...,N}, such that E(Zy ) = 0, cov(Zy ¢ ) = cov(&y ), E(Zip.) = 0, cov(Zis . ) = cov (gi) and

== B "
max Pr (1<u<n ZE* ZZM > Cin ) <Gn ™M, (A6)
S : B —¥2
Pr (11;1{;2(” max ;é'ug ,-X;ZM > Cn ) < Gn 2. (A7)
= = 2

Proof. Under Assumption (A5), E|&|™ < 400, 71 > 4, E|g;|™ < 400, 12 > 4, 5o there exists some g € (0, 1/2) such
that ¢, 72 > 2/B. Now let H(x) = x™, then E{H (I|E,k||2)} < 00. One constructs a p-space (£2p, Aqg, Prp) and two sequences

of independent random vectors {g,k} and {Z;k £} with Prg o ’;‘,k =Poégy,Prpo Z“ = N0, cov (§1k)] foralli e {1,...,n}
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and k € {1,...,«}. One also defines random vectors {Zj ¢} with ProZy; = Prg o ?".fk‘g = N0, cov (§1k)] and {Zy} is
independent from [.Efk}, foralli € {1,...,n}and k € {1, ..., «}. Lemma A.5 entails that there exist constants Cy; and Cy
which depend on the distribution of £, such that for z = Cyn¥,

u u
_ : p) _
SE) A M ER B 38 5
= 1= 2

i=1
Note that n; > 2/8, 1 = mp — 1 > 1.1If « is finite, then there are common constants C;, C; > 0 such that

u u
_ ] B -¥
Pl'(]l;‘l:l;(" z;gl.k X;ZM > Cyll ) <Gn M,
= = 2

which entails (A.6) because « is finite, If « is infinite but all the & s are iid, then Cyy, Ca, i are the same for all k, so the above
is again true.

Likewise, under Assumption (A5), if one lets H(x) = x", then E{H (lleyill;)} < oo. One can construct a p- space
(£29, Ag, Prg) and two sequences of independent random vectors [e,g] and {Z,g ¢}, with Prg o & = Proeq, Prgo Ziy, =
NTO, cov (eqo)]foralli e {1,...,n}and £ € {1,...,N}. One also define random vectors {Z; .} with ProZ;; . = Prg o Z.g‘s =
NTO0, cov (e1¢)] and [Z,-g‘e] is independent from {&;}, foralli € {1,...,n}and £ € {1,...,N}. Lemma A.5 entails that there
exist constants C; and C;, which depend on the distribution of £1¢, such that forz = Cin”,

_ Al = _
e | S - o] ) = g s S - Y|

now 1,8 > 2 implies that there is y» > 1such thatn;8 — 1 > y, and (A.7) follows, O

= C"J!‘B) < C2kﬂ1 q“ﬁ
2

> ( ﬂﬁ) = C2ﬂ1 qzﬁ

Lemma A.7. In Lemma A6, for Co = C1(1+ BCY o ,sP~1"71), one has

1 n m
- 7| — ofmf1
max E | ;;w Zixg)| = 0", (A8)
1 n m
- R f—1
1?{%[': m ;;{Slﬂ Zuf,e) Ogs.(nP77). (A9)
Also
o -1/2 -1
2 Z}Eflsukl o+ 1), (a10)
= 1=
Proof. Under Lemma A.6, the proof of (A.9) is trivial. Lemma A.6 entails thatF,Hu,k < G(n+u) forallk € {1,...,«x}and

t €{0,1,...},in which

Db Zue
i=1 i=1 2

where Gaussian random R™-valued vector Zix ¢ = (Zitk.t, - - - , Zimk.¢) ' . Taking expectation, one has

25& —szks

i=1

Fojuk :Pr{ > C1(n+u}ﬁ],

<Gn+0/7 + Ecj(n + 0’ (Fasu-1 — Frru)
2

oo wvn—1
<c,nﬁ+Ec,c2(n+u) npm+u)f' <nfq =1+,8Cn YN A u/m)P ”‘}

=0 v=1 U=wn—n

o0
<nfc, (1 +BGn~ """ xn Zuﬁ_"?") < (nf,

u=1

which proves E|Y i, (& —Zik.e )| = nf forallj € {1,...,m}andk € {1, ..., k}.Hence,E|}[_ (& —Zik.e )/(nm)] = O(nf~1)
forallje {1,...,m}and k € {1, ..., «}, which entails (A.8).

Observe that max;<j<mC(nm)~2var(}_ ,Zie) = O(n!). Therefore, there exists a positive constant G, such that
> L 1ElZjke|/(nm) = Cun~'2 forallj € {1, ..., m}, which entails (A.10). O
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Lemma A.8. Under Assumptions (A1)-(A5), foranyj,j’ € {1,...,m}andk,k’ € {1, ..., «}, one has
e — 2el = 0p(1), I didyie — ey lloo = 0p(1). (A.11)

Proof. Giveneachj € {1,...,m}and k € {1,...,«}, by Lemma A8 in Cao et al. [4] one has |iﬁ( — Ajkl = 0p(1) and
gk — dilloo = 0p(1). Hence, ||y — PikPjirlloo < 1@k — Pikllooll Py lloo + by — ke oo llpilloc = 0p(1). O

Lemma A.9. Under Assumptions (A1)~ (A5), foranyj € {1,...,m}, sup yyci0.112 |ﬁﬁ(s, t) — Gji(s, t)| = 0p(1).

Proof. We first define “oracle” smoother f;ﬁ(s, )= Z}vjﬂ _pﬁﬂrBj (s)By(t), where Ng is the number of interior knots used to
build the tensor product B-spline basis and the spline coefficients

2
N
T N, 2 = '
by ,_,= argmin Y 3Cw— Y byB (¢/N)By (€/N)¢ .
RICHERYH oy 1-p<JJ'<Ng

and
_ 1 n m
Cow=—2 " Wye —nE/N}Yye —p(€/N)}
i=1 j=1

forall £,¢" € {1,...,N} such that £ # ¢'. According to Proposition 2 in [3], we have that the difference between the
tensor product spline estimator Gj(s, t) and the “oracle” smoother is uniformly bounded atan o,(n~'/?)rate, i.e., SUP(s.r)ef0, 112

|Gji(s, £) — Gj(s, )| = op(n~"/2), foranyj € {1, ..., m}. Hence, the lemma is proved. O

Lemma A.10. Under Assumptions (A1)- (A5),forany1 <j#j <m, sup(s‘ne[u'“ﬂﬁﬁ(s, t) — Gj(s, t)] = op(1).

Proof. According to the definitions of Gy (s, t) and ﬁj,-v. one has

oo oo n
- 1 %
sup [Gyr(s, £) — Gy(s, )l < sup DY | E(Enpajue) — = > ke § op(s)ye(t)
(s,t)e[0,112 (s.0)el01 7 p—y i—1

00 00

+ sup D> [E(EreEre )| x [@i(s)bpie(t) — o) (0))

(5.0)€l0, 112 }—1 p—1

1 n . oo og .
S E(Sudyn) — o ;Eﬂkfij’k‘ > ligilloolidyielloo + Bk EEidye) Y Idudie — didie loo-

kk'=1 k=1

By Assumption (A4), Y ekt 1Pl ¢y lloo < 00, and Lemma A.8 leads to > kw1l @wdik — itk lloo = 0p(1). Noting that
Ajk = Ajio 12 — plloo = 0p(1) and [Igjx — Pjilloo = 0p(1),

R - .
i =5 D Ag Vie — AE/N))g(e/N),
=1
one has |&j — &kl = 0p(1). Hence, [E(&&ijw) — Y iy /n] = 0,(1). Lemma A9 is proved. O
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