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Abstract—Energy management is indispensable in the smart
grid, which integrates more renewable energy resources, such as
solar and wind. Because of the intermittent power generation
from these resources, precise power forecasting has become very
crucial to achieve efficient energy management. In this paper,
we propose a novel adaptive learning hybrid model (ALHM) for
precise solar intensity forecasting based on meteorological data.
We first present a time-varying multiple linear model (TMLM)
to capture the linear and dynamic property of the data. We
then construct simultaneous confidence bands (SCB) for variable
selection. Next we apply the genetic algorithm back propagation
neural network (GABP) to learn the nonlinear relationships in the
data. We further propose ALHM by integrating TMLM, GABP
and the adaptive learning online hybrid algorithm (ALOHA). The
proposed ALHM captures the linear, temporal and nonlinear
relationships in the data, and keeps improving the predicting
performance adaptively online as more data collected. Simulation
results show that ALHM outperforms several benchmarks in both
short-term and long-term solar intensity forecasting.

Index Terms—Solar intensity forecasting, online adaptive
learning, local linear estimation, artificial neural network, genetic
algorithm back propagation neural network.

I. INTRODUCTION

In recent years, Smart Grid (SG) has become an irreversible
tendency in many countries all over the world. The advanced
techniques from many fields, including industrial informatics,
power electronics and automatic control make SG a sustainable
power grid, which integrates more renewable energy sources,
such as solar and wind [1], [2]. Because of the intermittency of
renewable power generation, energy management is thus very
important to improve the reliability, efficiency and utility of
a SG [3]-[5]. It is mentioned in [5] that energy management
efficiency can be greatly improved if the renewable energy
generation can be predicted more accurately [6]-[8]. Thus,
predicting renewable energy generation in the SG has attracted
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TABLE I
NOTATION
Symbol Description
Y solar intensity
X meteorological variables
Xp the pth meteorological variables
X vector of meteorological variables
Bp coefficient of the pth meteorological variable
E vector of meteorological variable coefficients
€ error of linear model
X(t) vector of meteorological variables at time ¢
E (t) vector of meteorological variable coefficients at time ¢
Y (t) the actual value of solar intensity at time ¢
Y (t) the predicted solar intensity at time ¢
Y (t) corrected predicted solar intensity at time ¢
€ (t) the error of linear model at time ¢
B(t) estimated value of 5(t)
en(t) the error of hybrid model at time ¢
E(") nonlinear part of prediction model
B'(t) derivative of 5(t)
h bandwidth for local linear estimation
h estimated value of h
K(-) kernel function
n number of total observations
3, (t) estimated value of 3(t) under the bandwidthh
B’;l(t) derivative of ), ()
A(t) covariance function
([X],]Y]) training data set
w weights of GABP training by [X,]
0 thresholds of GABP
e mean square error of GABP

great interests [9], [10], mainly focusing on predicting solar
power for their wide range of utilization.

Solar power generation from solar panels are proportional
to solar intensity, power generated per unit area. Therefore,
predicted solar power can be acquired by predicting solar
intensity, which is related to meteorological variables. Many
recent works focus on the meteorological-data-based solar
intensity forecasting problem by presenting different meth-
ods [2], [11].The work of [2] provides acceptable predicting
results using SVM regression, and the author of [11] proposes
the Hybrid Fuzzy Inference System algorithm (HyFIS) as solar
intensity forecast mechanism But it lacks a deep analysis of
the solar power generation and weather data.

Learning techniques are also used to predict solar intensity,
capturing the relationships between solar intensity and the me-
teorological variables. Artificial neural network (ANN) [12]-
[14] is also a commonly used learning algorithm for complex
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Fig. 1. Construction of the adaptive learning hybrid model.

function approximation, and it has a group of members, includ-
ing the Radial Basis Function Neural Network (RBFNN), Back
Propagation neural network (BPNN), and the self-organizing
neural network (SONN).

BPNN an capture the relationships quickly, which makes
it a better choice over many other ANNs, such as RBFNN
with slower action. Besides, the computing loads can be
reduced through optimization [15]. This allows it to work
with a simpler structure comparing to other ANNSs using
deep learning, such as SONN. So BPNN can theoretically
approximate any function at arbitrary precision [16] under a
relatively simple mechanism. However, it is easy for BPNN to
fall into the local minimum problem during training process.
Fortunately, genetic algorithm provides a suitable way to solve
the problem, which forms genetic algorithm back propagation
neural network (GABPNN, abbreviated as GABP). Although
GABP is famous for function approximation, the relationship
between solar intensity and meteorological variables is too
complicated to capture all the linear, nonlinear even temporal
relations. Therefore, if the linear and temporal factors can be
departed from the data, GABP can focus on the remaining
nonlinear relationship, and its performance could be further
improved as well. In this case, a basic three-layer structure
is preferred for faster training and it avoids the complicated
process of searching for a suitable structure of the GABP.

On the other hand, because of the highly complicated rela-
tionship between solar intensity and meteorological variables,
it is not possible to capture all the linear and nonlinear
relations based on limited amount of data for any method.
Therefore, a model capable of online adaptive learning would
be highly desirable in predicting solar intensity as more data
are collected. Motivated by this, we start from the basic
multiple linear regression (MLR), because it shows some
linearity between solar intensity and meteorological variables.
We then present a hybrid forecasting model integrating a time-
series local linear model and a three-layer GABP, capturing
the linearity, temporal and nonlinear nature of the data re-
spectively. Based on this hybrid model, we further propose
an innovative adaptive learning hybrid model, which performs
variable selections, and learns adaptively from the new data
and thus increases the predicting accuracy to a very high level.

The main contribution of this paper is the proposal of

the adaptive learning hybrid model for meteorological-data-
based solar intensity forecasting. Firstly, it is based on the
integration of the time-varying multiple linear model and a
simple structure GABP, which dig out useful information
inside the meteorological data and filter out the redundant
data. The time-varying multiple linear model captures the
linear relationships and time-varying features, and the three-
layer GABP learns the nonlinear relationships in the data with
faster training and searching. These two methods are good
complement to each other to guarantee satisfactory predictions.
Also, it is capable of online and adaptive learning which
improves the predicting performance. This superior quality
makes it possible to provide more accurate predictions as more
data collected, even the initial training data size is limited.
Furthermore, our model can also be adaptive to other data-
based forecasting problem, which is not restrict to the place
and time scale, such as predicting wind power, power grid
load, traffic volumes, and stock prices.

The remainder of this paper is organized as follows. We
present statistical formulation and several forecasting models
in Section II. We propose the adaptive learning online hybrid
algorithm in Section III. Performance evaluation is presented
in Section IV. Section V concludes this paper.

II. MODEL CONSTRUCTION

In this section, we first introduce the basic linear regression
model for predictions from the original statistical formulation.
And the general time-varying multiple linear model and learn-
ing model are then derived from this, which can improve fore-
casting precision from the temporal and nonlinear properties
of the data respectively. Besed on these models, we finally
propose the adaptive learning hybrid model. Construction of
adaptive learning hybrid model is shown in Fig. 1.

A. Statistical Formulation

In the meteorological-data-based solar intensity forecasting
problem, solar intensity is considered to be connected to
several meteorological variables such as temperature, humidity
and precipitation. However, the connection appears to be very
complicated in most weather conditions. So the problem is
normally formulated statistically as follows

Y|X ~ P(-, f(X)), (1)

where P(-,0) represents a stochastic increasing family of
function with parameter 6 as the covariate of X, and f(-)
is an unknown smooth function. Unfortunately, the analytic
expression of f(-) is too complex to acquire in the solar
intensity forecasting problem, where solar intensity Y and
meteorological variables X are linked together through f(-),
written as Y = f ()? ). Therefore, an alternative option is to
explore suitable models which approximate f(-) as much as
possible, given a data set including meteorological variables
and solar intensity.
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B. Multiple Linear Model

In traditional statistical analysis, the multiple linear re-
gression model (MLR) is a fundamental method to quickly
generate a linear function between variables and response.
It is quite effective in representing a linear relationship, but
is not possible to represent any non-linearity. Because it
shows fairly strong linearity between solar intensity and some
meteorological variables, the overall performance of MLR in
predicting solar intensity is acceptable and even good for some
sunny days. The MLR model is written as follows,

Y = XT3+ ¢, )

where X = (1,X1,...X,-1)T and g = (Boy---Bp-1)T
are both p x 1 vectors; Y represents the solar intensity,
X1,...,X,_1 are meteorological variables, E are coefficients,
and ¢; is error term in the linear model.

C. Time-varying Multiple Linear Model

MLR is constructed using the spatial linearity between solar
intensity and weather variables, however, the meteorological
data is often recorded in time series. And it usually shows
a strong correlation between two adjacent data points in a
time series. For example, the solar radiation at noon is closely
related to that at 11:00 in the same day. And this relation grows
stronger as time intervals get shorter. Therefore, processing
the weather data as time series accords with the natural
generations. Based on MLM in (2), we can write the time-
varying MLM model in time series as follows,

Y(t)=XT®)B(t) +e(t),t €R, (3)

where solar intensity Y, meteorological variables X , coeffi-
cients ﬁ and the error ¢; in (2) are transformed to continuous
time series by adding time indicator (¢). It contains both spatial
and temporal features. Based on this, we further propose the

local linear model to acquire the estimated coefficients g(t)
and make variable selections in Section III.

D. Hybrid Learning Model

Although the time series has been added to the MLR model,
the nonlinear relationships in the weather data are not reflected
well. To further improve the accuracy, a new function E(-) is
added to (3) to construct a new model as

Y(t) = X" ()5(1) + E(XT(8), X" ()B(1) + enlt),t € R,
“4)
where E(XT(t), XT (t)53(t)) represents part of the modeling
error ¢;(t) from (3), which can be revealed by some learning
model, and the remaining error in the model is € (¢), which
is expected to be less than ¢(¢) in (3). X7 (¢)3(t) here is
the predicted solar intensity from the previous time-varying
linear model. E(-) is a function of X7 () and X7 ()3(t),
which means the model learns the nonlinear relationship from
both weather variables and the predicted solar intensity. As
introduced in Section I, GABP is a good option to get a precise
E(-). We present the utilization of GABP in Section III-C.
Although GABP is able to reveal any function in any data set,

it becomes more difficult to reach the real function when more
data and relationships are included, because the structure of
GABP becomes more complicated. By separating the nonlin-
ear part of the error, it not only reduces the complexity of the
data, but also takes full advantage of the linear relationship,
which can be strong sometimes in the meteorological data (See
Section IV). Therefore, F(-) here is taken as the error caused
by nonlinear relationship.

E. Adaptive Learning Hybrid Model

In the data-based solar intensity forecasting problem, we
have built the model exploring different characteristics of the
data, including linearity, time series and non-linearity. It is
also very important for the model to keep learning online as
more data collected, so that the model becomes more and more
accurate. The predicting model should also be adaptive for
different places and different time scales, because different
places have different climates with different related function
between weather variables and solar intensity. And in different
applications, it requires predictions on multiple time scales
from minutes to day-ahead. For short time predictions, the data
size needs to be controlled as well to guarantee the computing
time shorter than the time interval. With the ability of adaptive
online learning, it is possible to reduce the forecasting errors
gradually in any type of data for different time scales. To
capture the above characteristics, we thus propose the adaptive
learning online hybrid algorithm in Section III-D to realize
online adaptive learning.

III. ADAPTIVE LEARNING ONLINE HYBRID ALGORITHM

In this section, we present the forecasting algorithms solving
the functions in the models stated above. We begin from
proposing local linear estimation followed by SCB construc-
tion and variable selection. Then we present GABP and
propose the adaptive learning online hybrid algorithm.

A. Local Linear Estimation

Because MLR is a well-developed model, we begin from
proposing the local linear estimation (LLE) to solve the time-
varying coefficients 5() in the time-varying MLM.

It is noted that in (3), ﬁ(t) is a continuous-time function.
Therefore, for t; close to ¢, we have 3(t;) = B(t) + (t; —
t)3(t), and thus for any time #; close to ¢ , we can rewrite (3)
to have the local linear model as [17]

Y(t:) = XT(t) (B0 + (ti — )B' (1)) + e(t;), t; €t £ h,
)

where the bandwidth A is the size of the local neighborhood.
This model divides the time series into periods and creates
linear models using local data. This way, we treat the data as
a continuous-time series, and exploit the strong correlations
between close time periods in weather data. And then we
present the least squares method for linear regression to
identify the time-varying coefficients 5 (t). Because a closer
neighbor would have a stronger effect, while a further neighbor
weaker, we need to add weights on the terms. Usually a kernel
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function K (-) is assigned to each point, which is a symmetric
density function defined on [-1,1] [17]. Here, we use a popular
Epanechnikov kernel.

[ 3(1—a?)/4, if |a] <1
K(a){ 0, if |a| > 1,

which decays fast for remote data point. Then we have the
following weighted least squares problem to solve.

min :
ti€tth

A _(6)

At each time ¢, we solve for coefficients 53, (t) and 5;’1(75)

under the bandwidth h. Suppose the total number of observa-

tions is n, we can pick ¢; simply as ¢; = i/n, 1 <i <mn, and

denote Y'(t;) as y; and X(tz) as Z;. From [18], we can solve
(6) by calculating the following matrices Sy (¢) and Ry (¢):

s =Yzt (50) k(") s

i=1

Ry (1) = Zy (“;t>kf< (") o ®

where £ =0,1,2,..

<Bh(t)> <So(t) SlT(t)>_1<R0(t)) ©
hB, (t) Si(t) Sa(t) Ri(t))

To solve problem (6) for the complete model using (7)
to (9), we need to fix bandwidth h. And h is the bandwidth
which determines the size of data used to estimate for a local
linear model at time ¢. If h is too small, many useful points
are not included and the relevant information would miss
which may cause a huge error. While, if it is too large, more
remote points are included and much unnecessary information
would follow, which increases the computation complexity
and reduce the smoothness of the model at the same time.
Therefore, it is important to choose a proper h.

For constant bandwidth selection considered in the model,
we adopt the generalized cross-validation (GCV) tech-
nique [19]. Similar to the coefficients 5 estimated from the
observed data [X] and [Y]. Thus, a square hat matrix H(h)

exist for Y = H(h)Y [20], depending on the bandwidth. Then
we can choose the bandwidth h by

.. We then have

Y - 7P
n(1 —w{H(h)}/n)? } ’ (10)

where, tr(-) is the trace of the matrix.
Therefore, we can get the estimated Y (¢) as:

h = argmin {

V(t) = XT()By(t) + (6 — B0 ts € t £ b (1D)

B. Simultaneous Confidence Band and Variable Selection

In linear regression, confidence intervals indicate the possi-
ble coverage of the coefficient B under a typical probability.
Similarly, we can construct the coverage for the time-varying
coefficients 3(t), which turns to be a band through time, the

> W)X )00 onx ().

simultaneous confidence band. The mathematical details to
construct SCB is shown in the Appendix.

The SCB provides a dynamic and comprehensive view on
ﬁ(t) In linear regression, the confidence interval provides a
measure of the overall quality of the regression line [20]. In
local linear model, the SCB illustrates the overall pattern of
B (t) and the accuracy of the model. Confidence bands with
smaller width imply a better model with smaller variability,
while very wide confidence bands are limited in using. Note
that the SCB is constructed under a complete analysis on the
continuous-time assumption, which is not merely the connec-
tions of the point-wise confidence intervals. More importantly,
the SCB indicate whether the coefficients 3(t) are truly time-
varying or not. Specifically, if a horizontal line is covered
by the SCB of a Sj(t), we accept the hypothesis that /3 (t)
is constant and not time-varying. This provides a good way
to select time-varying variables. Normally, the variables with
narrow SCBs, which does not cover any horizontal line, are
preferred and kept in the model. The selected variables are
then used in (5) to make predictions.

C. Genetic Algorithm Back Propagation Neural Network

It is discussed in Section II-D that E(-) is required to
compensate the error capturing the nonlinear relations between
the previous predicted errors and the meteorological data.
Here, we apply GABP to acquire a satisfactory F(-).

As stated in Section I, BPNN can theoretically approximate
any nonlinear function at arbitrary precision under a three-
layer structure. The major drawback of BPNN is that it some-
times ends in local optimum during iterative calculations. The
genetic algorithm (GA) is then used to solve this local mini-
mum problem. GA is a parallel stochastic searching method,
initially proposed to simulate the natural genetic mechanism
in biological evolution theory, can reach the optimal value
quickly and precisely. It is thus a good complement to BPNN.
By optimizing the initial weights and thresholds of BPNN
through GA, it forms the algorithm of GABP [21].

Considering both the nonlinear representation and the com-
putation speed, we choose three-layer GABP with single
hidden layer as our learning model. Given training data, GABP
learns the function E(-) in (4), and corrects the predicted solar
intensity to be Y (t) by

Y(t)=Y(t)+EX (), Y1),
where Y'(t) is predicted solar intensity from TMLM.

12)

D. Adaptive Learning Online Hybrid Algorithm

Based on (12), we update the predicted solar intensity to
Y (t) from Y (t). However, it cannot guarantee the predicting
errors to reduce for new data. Therefore, we further propose
the adaptive learning online hybrid algorithm (ALOHA) to
improve the forecasting accuracy as more data collected.

For a group of new data at time ¢, the predictions are made
using (11) and (12) for HLM and TMLM respectively, we can
write the predicting errors from these two models as:

alt) =Y (1) = Y1),
en(t) = [Y (1) — Y (2,

13)
(14)
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Algorithm 1: The Adaptive Learning Online Hybrid Al-
gorithm for Solar Intensity Predictions

—

1 Based on the historical data ([X],[Y]),, choose proper

bandwidth A from (10) and get the coefficients ((t)
from (9) to construct the TMLM by (11);

2 Use ([X],[Y]), to train GABP, obtain HLM by (12) and
record its weights w, and the thresholds 6,. Find the
predicting MSE e, using (15);

3 For a new group of meteorological data X (t) at time ¢,
get the predicted solar intensity Y (¢) from (11), and then
acquire the corrected Y (t) from (12);

4 Obtain the errors from two models €;(¢) and €y ()
from (13) and (14). If €, (t) > €(t), go to the next step;
else jump to Step §;

5 Use w, and 6, as initials to train GABP again on the
data ([X], [Y]), by adding X (1), Y (t) to ([X],[Y]),:

6 Obtain the new predicting MSE e,,. If e,, < e,, go to the
next step; else jump to Step §;

7 Update ([X],[Y])e, wo, 8o and e, with ([X],[Y])n, wn,
0,, and e,, respectively;

8 Keep ([X],[Y])o» wos 0 and ¢, unchanged, and repeat
from Step 3 until all new data are processed.

where Y (t) and ¢(t) are the predicted solar intensity and
predicting error in TMLM respectively, and Y (¢) and e,
are those in HLM respectively. The effect of GABP can be
demonstrated by comparing €, (t) with ¢ (t). If €, (t) < €(¢),
it means that the trained GABP successfully reduces the
predicted error, and thus, GABP does not need to learn this
new data further; if €;(¢) > ¢ (¢), it means that the current
GABP fails to reveal the non-linearity in the new data and even
causes larger predicting error, and thus the data is added to
the previous data set to train GABP again. This allows GABP
to make better predictions next time when similar data is
encountered in future. In this way, the predicting performance
of the model improves gradually as more data collected.

Besides learning from new data, it is also important to avoid
the new data from lowering the overall predicting performance.
It is thus necessary to filter out the new data which may
cause worse overall predicting performance. The mean square
error (MSE) is a good way to quantify the overall predicting
performance of a model, defined as

n

e=_ Z(El(i) —a(4))?,

i=1

5)

where ¢; is the actual error of TMLM, ¢; is the error from
GABP, and n is number of the whole historical training data.

Denote the initial training data as ([X],[Y]),, and record
the trained GABP’s weights as w,, thresholds as 6,, and the
MSE of the predictions as e, on ([)_(:], [Y])o. For a new data,
if e,(t) > €(t), it is added to ([X],[Y]), forming a new
training data, denoted as ([X],[Y])n, and the original w, and
thresholds 6, are taken as the initials of the new training. And
new GABP’s weights w,,, thresholds 6,,, and MSE e,, of the
predictions on ([X],[Y]), are obtained after the training. e,,

is then compared to the old one e,. If e, > e,, it means
the MSE of predictions increases and the overall predicting
performance decreases. And thus, the new data is filtered out,
and the previous ([X],[Y]), remains as the historical training
data, and w,, 0, and e, remain the same. If ¢, < e, it
means that with new data added, the MSE of predictions
decreases, and the overall predicting performance improves.
So the historical training data is updated as ([X],[Y]),, and
GABP is updated accordingly to be w,, and 6,,, and the new
MSE is e,,. For every new data, follow the above steps to
guarantee the overall predicting accuracy increases until the
limit of the model, where GABP digs out all the possible
non-linearity in the meteorological data.

By establishing the above two restrictions, it selects only
beneficial data, so that the GABP evolves to be better and bet-
ter. The steps of ALOHA is described in Algorithm 1.Through
the combination of MLR, LLE and GABP, ALOHA firstly
generates acceptable predictions on solar intensity given any
historical data in any time scales. Then, as more data collected,
ALOHA is able to make more precise predictions with the help
of the online adaptive GABP learning, and the more data it
learns, the better ALOHA predicts on the solar intensity. It is
thus very desirable for predicting power generation from solar
energy and many other renewable energy resources.

IV. PERFORMANCE EVALUATION

In this section, we present the trace-driven simulation
results from different models and algorithms proposed in
previous sections, and compare the performances of them for
meteorological-data-based solar intensity forecasting. Then we
compare performances between the model ALHM and two
benchmarks for different time scales.

A. Data Description

We apply the proposed methods using the real data from
the UMASS Trace Repository [22], which records the solar
intensity in watts/m?, and the data of several meteorological
metrics from Jan. 2015 to Feb. 2017. It recorded the meteoro-
logical data every five minutes. Many meteorological variables
were observed in details. We consider five main variables,
including temperature, humidity, dew point, wind speed, and
precipitation. We predict daily solar intensity averaged on the
day time when the solar intensity is nonzero, based on the
averaged meteorological variables. It is note that the model
we propose can be applied to any time scale, our major results
are based on daily predictions, because daily power generation
forecasting is necessary for power management, especially for
some power grids with a large part of power generation from
renewable energy resources. We also evaluate our model under
the shortest time scale of 5 minutes, compare to two other
benchmarks in Section IV-E.

The data is departed into two parts, one of which is used
as the initial training data to build forecasting models, and the
other is used to test the forecasting accuracy. Here, we pick the
data of two years from Jan., 2015 to Dec., 2016 as the training
data, and the data of January and February in 2017 as the test
data. The daily solar intensity from 2015 to 2016 is plotted
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Fig. 2. Daily solar intensity for 2015 and 2016.

in Fig. 2, which shows an apparent seasonal pattern. It is also
interesting to see a similar pattern for daily observations, and
similar patterns can also be found for other meteorological
variables. Figure 2 also shows a strong correlation between
two consecutive days, which offers a basis for applying LLE
in building TMLM.

The proposed models are constructed based on the data, and
the performances of them on predicting daily solar intensity
are compared. Then we compare the outstanding ALHM on
two benchmarks for both daily and 5-minute predictions.

B. Predicting Performance of TMLM
1) TMLM Construction: We first write the TMLM model:

5
G = Bo(i/n) + > Bp(i/n)ay, fori=1,..n,  (16)
p=1
where ¢; is the predicted solar intensity, x,;, p = 1,...,5,
represent the series of temperature in Fahrenheit, humidity in
percentage, dew point in Fahrenheit, wind speed in miles per
hour, and precipitation in inches respectively, and n = 731
in the training data; 5o(-) is the intercept and 3, () are the
associated coefficients for x,, ;. The meteorological variables
are centered on their averages so that the intercept Bo (+) can be
interpreted as the expected solar intensity. And we quantify the
forecasting accuracy of a model by mean absolute percentage
error (MAPE) and root mean square error (RMSE):

a7

1 n /\i _ 2
MAPE =~ ju x 100%,
n Yi
=1

?

(18)

where y; is the real solar intensity at <.

2) Variable Selection by SCB: According to Algorithm 2
presented in Appendix, we select the bandwidth h = 0.25 and
get the coefficients §,(-). We show the SCB for temperature,
wind and precipitation in Fig. 3 to 5. Other SCBs are similar
to that for temperature, and thus not depicted here. In each

figure, the middle thick solid curve is the estimated series for
the variable; the upper and lower solid curves are the envelops
for the simultaneous confidence band for each variable. Based
on the SCBs, we can test whether a coefficients is significantly
associated with the solar intensity, which equals to test:

Hy : B,(t) = 0,¥t € [0,1]; v.s. Hy : B,(t) # 0,3t € [0, 1].

If the zero line is included in the SCB, we accept the
hypothesis that the coefficient is not significant and could be
omitted from the model; otherwise, we keep it in the model.
We can also test whether the coefficients are constant, by
attempting to include a constant horizontal line into the SCB.
This is equal to testing:

Hy : Bp(t) = cp, Vt € [0,1];v.s. Hy @ Bp(t) # ¢p, 3t € [0, 1],

where ¢, is a constant of each p. If the line is covered, we
accept that the coefficient is constant; otherwise, it is not.
As we center all the weather variables on their averages, the
SCB of the 3,(t) actually indicates the effect on the solar
intensity. In Fig. 3, the zero line is not covered, while in Fig. 4
and 5, the zero line is covered by the 95% SCB. Therefore, we
can conclude that for a level of 95%, temperature, humidity
and dew point have a strong effect on solar intensity, but
the effect from wind and precipitation are weak. Also, we
accept 31(t) to B4(t) as time-varying coefficients, because a
constant horizontal line cannot be covered entirely in those
SCBs. Therefore, we select three meteorological variables of
temperature, humidity and dew point, in the following models.

3) Performance Evaluation of TMLM: The updated TMLM
of three variables are used to predict the daily solar intensity
from Jan. 1 to Feb. 28 in 2017. The predicted solar intensity
data points are shown in Fig. 6, comparing to the actual
observations. The predicting MAPE is 21.16% and RMSE
is 28.65 watts/m?. This result of TMLM is better than
that of MLR with 24.72% and RMSE 33.49 watts/m?. For
the testing data of only 59 points, this overall performance
is acceptable, however, some points have relatively large
predicting errors, for example, the data from Day 6 to 8, Day
22 to 24, etc. Obviously, predictions from TMLM requires
further corrections.

C. Predicting Performance of HLM

The HLM model can be rewritten as

Gi = 0i + E(Z,9:) + Bo(i/n), fori=1,....n, (19)

where ¥; is the corrected solar intensity predictions by HLM,
E(+) is acquired from the trained GABP. The predicting results
on the testing data are shown in Fig. 7. The MAPE and RMSE
are calculated replacing ¢; by y; in (17) and (18) respectively.
From the figure, it can be seen that the predicting curve tracks
the actual solar intensity much better than the previous TMLM
model. The MAPE and RMSE of HLM are 14.18% and
20.93 watts/m? respectively, which are much smaller than
those from TMLM. However, there are still some inaccurate
predictions, i.e., Day 6, 23, 26, 35, 36 and 52. This implies
GABP does not learn these points well and the model HLM
needs further enhancement.
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Fig. 7. HLM-based solar intensity predictions vs. observations.

D. Predicting Performance of ALHM

According to Algorithm 1, we now apply the ALOHA to
construct ALHM. Figure 8 shows its predicting results, with
the MAPE 13.68% and the RMSE 20.16 watts/m?. The
predicting MAPE and RMSE for the presented models are
summarized and compared in Table II in the first 4 rows.
Comparing to the results from HLM, solar intensity predictions
of four days are corrected, including Day 23, 26, 36, and

L L L
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Fig. 5. 95% SCB for Precipitation.
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Fig. 8. ALHM-based solar intensity predictions vs. observations.

TABLE 11
PREDICTING PERFORMANCE ON MAPE (%) AND RMSE (watts/m?)
FOR DIFFERENT MODELS FROM JAN. 1 TO FEB. 28, 2017

Model | Algorithm | MAPE | RMSE
MLM | MLR | 2472 | 33.49
TMLM ‘ LLE, SCB ‘ 21.16 ‘ 28.65
HLM | GABP | 1418 | 20.93
ALHM | ALOHA | 1368 | 16.95

52. And the predicting accuracy has been improved slightly,
because the total testing data contains only 59 days, and 32
of them are already predicted very well.

Further, ALOHA is designed to learn from the inaccurate
data points which are also helpful in reducing the overall MSE.
In this case, there are only 3 days are added to the initial
training data, although 24 days are considered as inaccurate
points. This is because the ALOHA works very strictly in
choosing the most valuable new data. So ALHM is able to
improve gradually and adaptively. However, this does not
mean the model improves very slowly, because the training
process of GABP has some randomness. If the training path
fits the new data very well, the model improves fast and
greatly. To further evaluate the performance of ALOHA, we
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TABLE III
THE MONTHLY AVERAGE RMSE IN watts/m2 AND THE SIZE OF
TRAINING DATA FOR HLM, UHLM AND ALHM FROM SEP. 2016 TO FEB.

2017
Month || HLM | Size || UHLM | Size || ALHM | Size
2016.09 || 28.63 | 609 || 27.54 | 639 || 28.38 | 611
2016.10 || 29.52 | 609 || 23.28 | 666 || 24.60 | 613
2016.11 || 27.86 | 609 || 20.46 | 692 || 21.33 | 616
2016.12 || 28.17 | 609 || 17.69 | 723 || 18.42 | 619
2017.01 || 26.35 | 609 || 16.05 | 754 || 16.88 | 621
2017.02 || 27.20 | 609 | 14.13 | 782 || 14.72 | 623

re-distribute the original data to have fewer training data and
more testing data.

We now select the data from Jan. 1, 2015 to Aug. 30, 2016
as the training data, and the left data from Sep. 1, 2016 to
Feb. 28, 2017 are used to evaluate predicting performance of
ALHM. Here, HLM decides the predicting function based on
the training data, while the Updating HLM (UHLM) updates
the training data for every new data, based on which the
predicting function is renewed every day.

The predicting RMSE of HLM, UHLM and ALHM are
compared month to month in Table III, where the sizes of
training data for different models are also listed. It can be
seen that HLM has the largest predicting errors because of
the fixed fewest training data. UHLM has the best predicting
accuracy and the largest training data. ALHM performs very
close to UHLM with much less training data. By comparing
ALHM to HLM, it confirms the gradual improvement of
ALHM in solar intensity predictions. Comparing to UHLM,
ALHM successfully holds the most influential data and control
the data size very well with comparable predicting accuracy.
Comparing to ALHM under the previous training data, the
average predicting RMSE from Jan. 1 to Feb. 28, 2017 reduces
from 16.95 watts/m? to 15.89 watts/m?. The ALHM under
new initial training data performs better, learning only 14
new data online, comparing to the previous one of four more
months of data offline. This fully confirms the effectiveness
of adaptive online learning ability of ALHM.

To further illustrate the learning process of ALHM, we
show the decreasing of normalized predicting MSE through
the testing data of six months in Fig. 9. In the figure, every step
down of the curve indicates a learning happens. It is observed
that among the total 173 days, only 14 days of data are allowed
to be updated in the new training data, although 67 days of data
are considered inaccurate. This shows again the strict filtering
standard by ALOHA, and the learning ability of GABP.

E. Comparisons of ALHM to Two Benchmarks

We now compare ALHM to popular supervised learning
models used in meteorological-data-based solar intensity fore-
casting problem, such as ANN [12], [14] and SVM [2].
Based on the same initial training data of 2015 and 2016, the
predicting results using ANN and SVM are shown in Fig. 10
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Fig. 11. SVM-based solar intensity predictions vs. observations.

and Fig. 11 respectively. The MAPE of SVM and ANN are
20.39% and 18.41% respectively, comparing to 13.68% for
ALHM. Based on the same training data, ALHM achieves
more precise predictions.

Then, we compare the performance of these models for
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Fig. 12. 5-min predictions from ALHM, ANN and SVM vs. observations on
Jan. 1, 2017.

short-time predictions. For ANN and SVM, we use the his-
torical data from Jan. 1 to Dec. 30, 2016 as training data. For
ALHM, we set the historical data from Jan. 1 to June 30, 2016
as initial training data, and the data from July 1 to Dec. 30,
2016 are used to improve the model. The models now predict
every 5 minutes for two days of Jan. 1 to Jan. 2, 2017. The
predicted daytime solar intensity of ALHM, ANN and SVM
for the two days are plotted in Fig. 12 and Fig. 13 respectively.
The solar intensity in Jan. 1 fluctuates more than Jan. 2.
Both figures show that ALHM predictions track the actual
solar intensity data much better than the other two models.
The MAPE for ALHM, ANN and SVM are 8.66%, 15.24%
and 16.87% respectively for Jan. 1, and 11.74%, 18.84% and
21.05% for Jan. 2.

Note that the predictions by SVM are not satisfactory,
because it lacks a deep analysis of the solar power generation
and weather data, by simply trying different SVM kernels.
And ANN tries to capture the relationship between solar
intensity and meteorological variables directly. Although this
is theoretically available as discussed in Section I, it is very
difficult to realize in applications. But in ALHM, TMLM
focuses on linearity representation, and GABP focuses on
learning the nonlinear relationship. They function together
to achieve more accurate predictions. In conclusion, ALHM
outperforms ANN and SVM for both both daily and 5-min
predictions.

V. CONCLUSION

In this paper, we developed adaptive learning hybrid model
for meteorological-data-based solar intensity predictions. We
first presented the fundamental multiple linear model. Then
we propose the time-varying multiple linear model and hybrid
learning model, which improve the model from the aspects
of time series and intelligent learning. We then proposed
the adaptive learning hybrid model to learn the nonlinear
relationship in the data to further improve the predicting
accuracy. The proposed models were validated with trace-
driven simulations.
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APPENDIX
A. Construction of Simultaneous Confidence Band

The approach of SCB analysis assumes locally stationary
processes for both X (¢) and e(t) [23]. The locally stationary
process guarantees the stationary property for local time series,
and is useful for local linear estimation. It actually belongs to
a special class of non-stationary time series as

—

fi = G(t“Fl), €; — H(tz,Fl), Z = 1,27 ey ny, (20)

where G/(t;, F;) and H(t;, F;) are measurable functions well
defined on t; € [0,1] , F; = (...,&-1,&) with {&}iez
are independent and identically distributed (i.i.d.) random
variables, and E(e;|Z;) = 0. Equation (20) can be interpreted
as physical systems with F; (and z; and ¢;) as the inputs
(and the outputs respectively), and G and H representing the
underlying physical mechanism [24].

Based on the above assumptions, the central limit theorem

for g(t) states that: supposing nh — oo and nh” — 0 [24],
then for any fixed ¢ € (0, 1),

(nh)/2{5(t) — B(t) — 25" (t)u/2} — N{0, (1)}, @D)

where

u:/RgcQK(x) dz, (22)
S(t) = (M~ )ABHM T (#)?, (23)
M(t) = E(G(t, Fo)G(t, Fy)T). (24)

The covariance matrix A(t) can be further approximated using
techniques proposed in (28).

Deriving from the central limit property and basic assump-
tions shown above, the 100(1 — )% asymptotic simultaneous
confidence tube of gc(t) can be constructed using:

Bei(t) + di—aXo(t)Bs, (29)

where Bc 7. (t) is the bias corrected estimator defined in (26),
Bs = {Z € R® : |Z] < 1} is the unit ball, and s is the rank
of a matrix C),,, which we use for choosing different linear
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Algorithm 2: Construction of SCB for Time-varying Co-

efficients

1 Find a proper bandwidth / from GCV selector (10);

2 Let h = 2h and calculate BC ;. (t) using (26) and (6);

3 Obtain the estimated (1 — «)th quantile ¢;_,, via the
bootstrap method;

4 Estimate M (t) = So(¢*) and A(t) by (28), and calculate
S (t) according to (27);

5 Construct the 100(1 — )% SCB of ¢ (t) using (25).

combinations of 8(t), and B¢ () = CT 3(t). We can construct
the SCB for different linear combinations of /3 (¢)’s by setting
a different matrix Cpys. For example, if we set C,y1 =
[1,1,0,...0], we obtain the SCB of Bu(t) = CT(t) =
B1(t) + Ba2(t); if we set Cpxo = [1,0,0,...0;0,1,0,...0], the
SCB of $;(t) and [2(t) becomes a tube at any time ¢. This is
because when s = 2, the unit ball B, becomes a unit circle.
Thus, we simply take s = 1 in (25), and the SCB is constructed
similarly to the confidence interval of the coefficients of the
multiple linear regression: 3 + ta/z,n,pse(ﬁ), where se(B)
is the standard error of B, and tn/2n—p 1s the upper a2
percentage point of the ¢,,_o distribution [20].

Similarly, the first term is the estimator of the time-varying
coefficients corrected for bias by

Bealt) = CT3(0) = CT (2555 - i0) . 6)

B,;( ) can also be acquired by solving (6) using a correspond-
ing kernel function K*(a) = 22K (v/2a) — K(a) and an
updated bandwidth h = 2h of the GCV selector h.

The second term in (25) ¢1_, is actually the upper
/2 percentage point of the normal distribution N{0,%%(¢)}
defined in (21), while the third term ¢ (t) is the esti-
mated standard error. The method of wild bootstrap is ap-
plied to obtain §;_,. Firstly, generate a large number i.i.d.
vectors Uy, s, ..., N(0,Is), where v; € RP and I, de-
notes the s x s identity matrix, and then calculate ¢ =
supo<i<i| Sor, TiK*((t; —t)/h)/(nh)|; repeat the previous
step for a large number of times (say, 5000) to acquire the
estimated 100(1 — )% quantile ¢;_,, of g.

The estimate of the standard error ¢ (¢) is defined as:

Se(t) = (OAWN ($)C) 2,

We shall estimate M (t) and A(t) respectively. From the defi-
nition of M (t) in (24), it can be estimated by M () = So(t*),
where Sy (-) is defined in (7), and t* = max{h, min(¢, 1 —h)}.
To obtain A(t), we first define two p x 1 vectors Z; = #¢; and
W; = Py Ziyj, a matrix Q; = W; W /(2m + 1), and a
function g(t z) =K((t; —t)/7)/ >y K(tx — t), where m
and 7 can be simply chosen as m = [n?/7| and 7 = n~1/7,
Then A(t) can be calculated by

n

At)=>g(t,i).

i=1

("M~ 27)

(28)

All the above steps are summarized in Algorithm 2.
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