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Abstract—Energy management is indispensable in the smart
grid, which integrates more renewable energy resources, such as
solar and wind. Because of the intermittent power generation
from these resources, precise power forecasting has become very
crucial to achieve efficient energy management. In this paper,
we propose a novel adaptive learning hybrid model (ALHM) for
precise solar intensity forecasting based on meteorological data.
We first present a time-varying multiple linear model (TMLM)
to capture the linear and dynamic property of the data. We
then construct simultaneous confidence bands (SCB) for variable
selection. Next we apply the genetic algorithm back propagation
neural network (GABP) to learn the nonlinear relationships in the
data. We further propose ALHM by integrating TMLM, GABP
and the adaptive learning online hybrid algorithm (ALOHA). The
proposed ALHM captures the linear, temporal and nonlinear
relationships in the data, and keeps improving the predicting
performance adaptively online as more data collected. Simulation
results show that ALHM outperforms several benchmarks in both
short-term and long-term solar intensity forecasting.

Index Terms—Solar intensity forecasting, online adaptive
learning, local linear estimation, artificial neural network, genetic
algorithm back propagation neural network.

I. INTRODUCTION

In recent years, Smart Grid (SG) has become an irreversible

tendency in many countries all over the world. The advanced

techniques from many fields, including industrial informatics,

power electronics and automatic control make SG a sustainable

power grid, which integrates more renewable energy sources,

such as solar and wind [1], [2]. Because of the intermittency of

renewable power generation, energy management is thus very

important to improve the reliability, efficiency and utility of

a SG [3]–[5]. It is mentioned in [5] that energy management

efficiency can be greatly improved if the renewable energy

generation can be predicted more accurately [6]–[8]. Thus,

predicting renewable energy generation in the SG has attracted

Manuscript received Aug. 31, 2017; revised Nov. 28, 2017; accepted Dec.
17, 2017. This work is supported in part by the NSF of China under Grants
No. 51607087, and in part by the NSF under Grants DMS-1736470 and CNS-
1702957, and by the Wireless Engineering Research and Education Center
(WEREC) at Auburn University, Auburn, AL, USA.

Y. Wang and Y. Shen are with Department of Electrical Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing, China. S. Mao
and R. M. Nelms are with the Department of Electrical and Computer
Engineering, Auburn University, Auburn, AL, USA. Guanqun Cao is with the
Department of Mathematics and Statistics, Auburn University, Auburn, AL,
USA. Email: yuwang15@nuaa.edu.cn, xubanqiu@163.com, smao@ieee.org,
gzc0009@auburn.edu, nelmsrm@auburn.edu.

Copyright c©2018 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Digital Object Identifier XXXX/YYYYYY

TABLE I
NOTATION

Symbol Description

Y solar intensity
X meteorological variables
Xp the pth meteorological variables
~X vector of meteorological variables
βp coefficient of the pth meteorological variable
~β vector of meteorological variable coefficients
ǫl error of linear model
~X(t) vector of meteorological variables at time t
~β(t) vector of meteorological variable coefficients at time t
Y (t) the actual value of solar intensity at time t

Ŷ (t) the predicted solar intensity at time t

Ỹ (t) corrected predicted solar intensity at time t
ǫl(t) the error of linear model at time t

~̂β(t) estimated value of ~β(t)
ǫh(t) the error of hybrid model at time t
E(·) nonlinear part of prediction model
~β′(t) derivative of ~β(t)
h bandwidth for local linear estimation

ĥ estimated value of h
K(·) kernel function
n number of total observations

~̂βh(t) estimated value of ~β(t) under the bandwidthh

~̂β′

h
(t) derivative of ~̂βh(t)

Λ(t) covariance function

([ ~X], [Y ]) training data set

ω weights of GABP training by [ ~Xo]
θ thresholds of GABP
e mean square error of GABP

great interests [9], [10], mainly focusing on predicting solar

power for their wide range of utilization.

Solar power generation from solar panels are proportional

to solar intensity, power generated per unit area. Therefore,

predicted solar power can be acquired by predicting solar

intensity, which is related to meteorological variables. Many

recent works focus on the meteorological-data-based solar

intensity forecasting problem by presenting different meth-

ods [2], [11].The work of [2] provides acceptable predicting

results using SVM regression, and the author of [11] proposes

the Hybrid Fuzzy Inference System algorithm (HyFIS) as solar

intensity forecast mechanism But it lacks a deep analysis of

the solar power generation and weather data.

Learning techniques are also used to predict solar intensity,

capturing the relationships between solar intensity and the me-

teorological variables. Artificial neural network (ANN) [12]–

[14] is also a commonly used learning algorithm for complex
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Fig. 1. Construction of the adaptive learning hybrid model.

function approximation, and it has a group of members, includ-

ing the Radial Basis Function Neural Network (RBFNN), Back

Propagation neural network (BPNN), and the self-organizing

neural network (SONN).

BPNN an capture the relationships quickly, which makes

it a better choice over many other ANNs, such as RBFNN

with slower action. Besides, the computing loads can be

reduced through optimization [15]. This allows it to work

with a simpler structure comparing to other ANNs using

deep learning, such as SONN. So BPNN can theoretically

approximate any function at arbitrary precision [16] under a

relatively simple mechanism. However, it is easy for BPNN to

fall into the local minimum problem during training process.

Fortunately, genetic algorithm provides a suitable way to solve

the problem, which forms genetic algorithm back propagation

neural network (GABPNN, abbreviated as GABP). Although

GABP is famous for function approximation, the relationship

between solar intensity and meteorological variables is too

complicated to capture all the linear, nonlinear even temporal

relations. Therefore, if the linear and temporal factors can be

departed from the data, GABP can focus on the remaining

nonlinear relationship, and its performance could be further

improved as well. In this case, a basic three-layer structure

is preferred for faster training and it avoids the complicated

process of searching for a suitable structure of the GABP.

On the other hand, because of the highly complicated rela-

tionship between solar intensity and meteorological variables,

it is not possible to capture all the linear and nonlinear

relations based on limited amount of data for any method.

Therefore, a model capable of online adaptive learning would

be highly desirable in predicting solar intensity as more data

are collected. Motivated by this, we start from the basic

multiple linear regression (MLR), because it shows some

linearity between solar intensity and meteorological variables.

We then present a hybrid forecasting model integrating a time-

series local linear model and a three-layer GABP, capturing

the linearity, temporal and nonlinear nature of the data re-

spectively. Based on this hybrid model, we further propose

an innovative adaptive learning hybrid model, which performs

variable selections, and learns adaptively from the new data

and thus increases the predicting accuracy to a very high level.

The main contribution of this paper is the proposal of

the adaptive learning hybrid model for meteorological-data-

based solar intensity forecasting. Firstly, it is based on the

integration of the time-varying multiple linear model and a

simple structure GABP, which dig out useful information

inside the meteorological data and filter out the redundant

data. The time-varying multiple linear model captures the

linear relationships and time-varying features, and the three-

layer GABP learns the nonlinear relationships in the data with

faster training and searching. These two methods are good

complement to each other to guarantee satisfactory predictions.

Also, it is capable of online and adaptive learning which

improves the predicting performance. This superior quality

makes it possible to provide more accurate predictions as more

data collected, even the initial training data size is limited.

Furthermore, our model can also be adaptive to other data-

based forecasting problem, which is not restrict to the place

and time scale, such as predicting wind power, power grid

load, traffic volumes, and stock prices.

The remainder of this paper is organized as follows. We

present statistical formulation and several forecasting models

in Section II. We propose the adaptive learning online hybrid

algorithm in Section III. Performance evaluation is presented

in Section IV. Section V concludes this paper.

II. MODEL CONSTRUCTION

In this section, we first introduce the basic linear regression

model for predictions from the original statistical formulation.

And the general time-varying multiple linear model and learn-

ing model are then derived from this, which can improve fore-

casting precision from the temporal and nonlinear properties

of the data respectively. Besed on these models, we finally

propose the adaptive learning hybrid model. Construction of

adaptive learning hybrid model is shown in Fig. 1.

A. Statistical Formulation

In the meteorological-data-based solar intensity forecasting

problem, solar intensity is considered to be connected to

several meteorological variables such as temperature, humidity

and precipitation. However, the connection appears to be very

complicated in most weather conditions. So the problem is

normally formulated statistically as follows

Y | ~X ∼ P (·, f( ~X)), (1)

where P (·, θ) represents a stochastic increasing family of

function with parameter θ as the covariate of ~X , and f(·)
is an unknown smooth function. Unfortunately, the analytic

expression of f(·) is too complex to acquire in the solar

intensity forecasting problem, where solar intensity Y and

meteorological variables ~X are linked together through f(·),
written as Y = f( ~X). Therefore, an alternative option is to

explore suitable models which approximate f(·) as much as

possible, given a data set including meteorological variables

and solar intensity.
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B. Multiple Linear Model

In traditional statistical analysis, the multiple linear re-

gression model (MLR) is a fundamental method to quickly

generate a linear function between variables and response.

It is quite effective in representing a linear relationship, but

is not possible to represent any non-linearity. Because it

shows fairly strong linearity between solar intensity and some

meteorological variables, the overall performance of MLR in

predicting solar intensity is acceptable and even good for some

sunny days. The MLR model is written as follows,

Y = ~XT ~β + ǫl, (2)

where ~X = (1, X1, . . . Xp−1)
T and ~β = (β0, . . . βp−1)

T

are both p × 1 vectors; Y represents the solar intensity,

X1, ..., Xp−1 are meteorological variables, ~β are coefficients,

and ǫl is error term in the linear model.

C. Time-varying Multiple Linear Model

MLR is constructed using the spatial linearity between solar

intensity and weather variables, however, the meteorological

data is often recorded in time series. And it usually shows

a strong correlation between two adjacent data points in a

time series. For example, the solar radiation at noon is closely

related to that at 11:00 in the same day. And this relation grows

stronger as time intervals get shorter. Therefore, processing

the weather data as time series accords with the natural

generations. Based on MLM in (2), we can write the time-

varying MLM model in time series as follows,

Y (t) = ~XT (t)~β(t) + ǫl(t), t ∈ R, (3)

where solar intensity Y , meteorological variables ~X , coeffi-

cients ~β and the error ǫl in (2) are transformed to continuous

time series by adding time indicator (t). It contains both spatial

and temporal features. Based on this, we further propose the

local linear model to acquire the estimated coefficients ~̂β(t)
and make variable selections in Section III.

D. Hybrid Learning Model

Although the time series has been added to the MLR model,

the nonlinear relationships in the weather data are not reflected

well. To further improve the accuracy, a new function E(·) is

added to (3) to construct a new model as

Y (t) = ~XT (t)~β(t) + E( ~XT (t), ~XT (t)~β(t)) + ǫh(t), t ∈ R,
(4)

where E( ~XT (t), ~XT (t)~β(t)) represents part of the modeling

error ǫl(t) from (3), which can be revealed by some learning

model, and the remaining error in the model is ǫh(t), which

is expected to be less than ǫl(t) in (3). ~XT (t)~β(t) here is

the predicted solar intensity from the previous time-varying

linear model. E(·) is a function of ~XT (t) and ~XT (t)~β(t),
which means the model learns the nonlinear relationship from

both weather variables and the predicted solar intensity. As

introduced in Section I, GABP is a good option to get a precise

E(·). We present the utilization of GABP in Section III-C.

Although GABP is able to reveal any function in any data set,

it becomes more difficult to reach the real function when more

data and relationships are included, because the structure of

GABP becomes more complicated. By separating the nonlin-

ear part of the error, it not only reduces the complexity of the

data, but also takes full advantage of the linear relationship,

which can be strong sometimes in the meteorological data (See

Section IV). Therefore, E(·) here is taken as the error caused

by nonlinear relationship.

E. Adaptive Learning Hybrid Model

In the data-based solar intensity forecasting problem, we

have built the model exploring different characteristics of the

data, including linearity, time series and non-linearity. It is

also very important for the model to keep learning online as

more data collected, so that the model becomes more and more

accurate. The predicting model should also be adaptive for

different places and different time scales, because different

places have different climates with different related function

between weather variables and solar intensity. And in different

applications, it requires predictions on multiple time scales

from minutes to day-ahead. For short time predictions, the data

size needs to be controlled as well to guarantee the computing

time shorter than the time interval. With the ability of adaptive

online learning, it is possible to reduce the forecasting errors

gradually in any type of data for different time scales. To

capture the above characteristics, we thus propose the adaptive

learning online hybrid algorithm in Section III-D to realize

online adaptive learning.

III. ADAPTIVE LEARNING ONLINE HYBRID ALGORITHM

In this section, we present the forecasting algorithms solving

the functions in the models stated above. We begin from

proposing local linear estimation followed by SCB construc-

tion and variable selection. Then we present GABP and

propose the adaptive learning online hybrid algorithm.

A. Local Linear Estimation

Because MLR is a well-developed model, we begin from

proposing the local linear estimation (LLE) to solve the time-

varying coefficients ~β(t) in the time-varying MLM.

It is noted that in (3), ~β(t) is a continuous-time function.

Therefore, for ti close to t, we have ~β(ti) = ~β(t) + (ti −
t)~β′(t), and thus for any time ti close to t , we can rewrite (3)

to have the local linear model as [17]

Y (ti) = ~XT (ti)(~β(t) + (ti − t)~β′(t)) + ǫ(ti), ti ∈ t± h,
(5)

where the bandwidth h is the size of the local neighborhood.

This model divides the time series into periods and creates

linear models using local data. This way, we treat the data as

a continuous-time series, and exploit the strong correlations

between close time periods in weather data. And then we

present the least squares method for linear regression to

identify the time-varying coefficients ~β(t). Because a closer

neighbor would have a stronger effect, while a further neighbor

weaker, we need to add weights on the terms. Usually a kernel
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function K(·) is assigned to each point, which is a symmetric

density function defined on [-1,1] [17]. Here, we use a popular

Epanechnikov kernel.

K(a) =

{

3(1− a2)/4, if |a| ≤ 1
0, if |a| > 1,

which decays fast for remote data point. Then we have the

following weighted least squares problem to solve.

min :
∑

ti∈t±h

(Y (ti)− ~XT (ti)(~β(t)−(ti−t)~β′(t)))K

(

ti − t

h

)

.

(6)

At each time t, we solve for coefficients ~̂βh(t) and ~̂β′
h(t)

under the bandwidth h. Suppose the total number of observa-

tions is n, we can pick ti simply as ti = i/n, 1 ≤ i ≤ n, and

denote Y (ti) as yi and ~X(ti) as ~xi. From [18], we can solve

(6) by calculating the following matrices Sk(t) and Rk(t):

Sk(t) =
n
∑

i=1

~xi~x
T
i

(

ti − t

h

)k

K

(

ti − t

h

)

/(nh) (7)

Rk(t) =

n
∑

i=1

~xiyi

(

ti − t

h

)k

K

(

ti − t

h

)

/(nh), (8)

where k = 0, 1, 2, . . .. We then have

( ~̂βh(t)

h~̂β′
h(t)

)

=

(

S0(t) S
T
1 (t)

S1(t) S2(t)

)−1(

R0(t)

R1(t)

)

. (9)

To solve problem (6) for the complete model using (7)

to (9), we need to fix bandwidth h. And h is the bandwidth

which determines the size of data used to estimate for a local

linear model at time t. If h is too small, many useful points

are not included and the relevant information would miss

which may cause a huge error. While, if it is too large, more

remote points are included and much unnecessary information

would follow, which increases the computation complexity

and reduce the smoothness of the model at the same time.

Therefore, it is important to choose a proper h.

For constant bandwidth selection considered in the model,

we adopt the generalized cross-validation (GCV) tech-

nique [19]. Similar to the coefficients ~β estimated from the

observed data [ ~X] and [Y ]. Thus, a square hat matrix H(h)

exist for ~̂Y = H(h)~Y [20], depending on the bandwidth. Then

we can choose the bandwidth h by

ĥ = arg min

{

|~̂Y − ~Y |2
n(1− tr{H(h)}/n)2

}

, (10)

where, tr(·) is the trace of the matrix.

Therefore, we can get the estimated Ŷ (t) as:

Ŷ (ti) = ~XT (ti)(~̂βĥ(t) + (ti − t)~̂β′
ĥ
(t)), ti ∈ t± ĥ. (11)

B. Simultaneous Confidence Band and Variable Selection

In linear regression, confidence intervals indicate the possi-

ble coverage of the coefficient β̂ under a typical probability.

Similarly, we can construct the coverage for the time-varying

coefficients β̂(t), which turns to be a band through time, the

simultaneous confidence band. The mathematical details to

construct SCB is shown in the Appendix.

The SCB provides a dynamic and comprehensive view on
~β(t). In linear regression, the confidence interval provides a

measure of the overall quality of the regression line [20]. In

local linear model, the SCB illustrates the overall pattern of
~β(t) and the accuracy of the model. Confidence bands with

smaller width imply a better model with smaller variability,

while very wide confidence bands are limited in using. Note

that the SCB is constructed under a complete analysis on the

continuous-time assumption, which is not merely the connec-

tions of the point-wise confidence intervals. More importantly,

the SCB indicate whether the coefficients ~β(t) are truly time-

varying or not. Specifically, if a horizontal line is covered

by the SCB of a βk(t), we accept the hypothesis that βk(t)
is constant and not time-varying. This provides a good way

to select time-varying variables. Normally, the variables with

narrow SCBs, which does not cover any horizontal line, are

preferred and kept in the model. The selected variables are

then used in (5) to make predictions.

C. Genetic Algorithm Back Propagation Neural Network

It is discussed in Section II-D that E(·) is required to

compensate the error capturing the nonlinear relations between

the previous predicted errors and the meteorological data.

Here, we apply GABP to acquire a satisfactory E(·).
As stated in Section I, BPNN can theoretically approximate

any nonlinear function at arbitrary precision under a three-

layer structure. The major drawback of BPNN is that it some-

times ends in local optimum during iterative calculations. The

genetic algorithm (GA) is then used to solve this local mini-

mum problem. GA is a parallel stochastic searching method,

initially proposed to simulate the natural genetic mechanism

in biological evolution theory, can reach the optimal value

quickly and precisely. It is thus a good complement to BPNN.

By optimizing the initial weights and thresholds of BPNN

through GA, it forms the algorithm of GABP [21].

Considering both the nonlinear representation and the com-

putation speed, we choose three-layer GABP with single

hidden layer as our learning model. Given training data, GABP

learns the function E(·) in (4), and corrects the predicted solar

intensity to be Ỹ (t) by

Ỹ (t) = Ŷ (t) + E( ~X(t), Ŷ (t)), (12)

where Ŷ (t) is predicted solar intensity from TMLM.

D. Adaptive Learning Online Hybrid Algorithm

Based on (12), we update the predicted solar intensity to

Ỹ (t) from Ŷ (t). However, it cannot guarantee the predicting

errors to reduce for new data. Therefore, we further propose

the adaptive learning online hybrid algorithm (ALOHA) to

improve the forecasting accuracy as more data collected.

For a group of new data at time t, the predictions are made

using (11) and (12) for HLM and TMLM respectively, we can

write the predicting errors from these two models as:

ǫl(t) = |Ŷ (t)− Y (t)|, (13)

ǫh(t) = |Ỹ (t)− Y (t)|, (14)
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Algorithm 1: The Adaptive Learning Online Hybrid Al-

gorithm for Solar Intensity Predictions

1 Based on the historical data ([ ~X], [Y ])o, choose proper

bandwidth ĥ from (10) and get the coefficients ~̂β(t)
from (9) to construct the TMLM by (11);

2 Use ([ ~X], [Y ])o to train GABP, obtain HLM by (12) and

record its weights ωo and the thresholds θo. Find the

predicting MSE eo using (15);

3 For a new group of meteorological data ~X(t) at time t,

get the predicted solar intensity Ŷ (t) from (11), and then

acquire the corrected Ỹ (t) from (12);

4 Obtain the errors from two models ǫl(t) and ǫh(t)
from (13) and (14). If ǫh(t) > ǫl(t), go to the next step;

else jump to Step 8;

5 Use ωo and θo as initials to train GABP again on the

data ([ ~X], [Y ])n by adding ~X(t), Y (t) to ([ ~X], [Y ])o;

6 Obtain the new predicting MSE en. If en < eo, go to the

next step; else jump to Step 8;

7 Update ([ ~X], [Y ])o, ωo, θo and eo with ([ ~X], [Y ])n, ωn,

θn and en respectively;

8 Keep ([ ~X], [Y ])o, ωo, θo and eo unchanged, and repeat

from Step 3 until all new data are processed.

where Ŷ (t) and ǫl(t) are the predicted solar intensity and

predicting error in TMLM respectively, and Ỹ (t) and ǫh
are those in HLM respectively. The effect of GABP can be

demonstrated by comparing ǫh(t) with ǫl(t). If ǫh(t) < ǫl(t),
it means that the trained GABP successfully reduces the

predicted error, and thus, GABP does not need to learn this

new data further; if ǫh(t) ≥ ǫl(t), it means that the current

GABP fails to reveal the non-linearity in the new data and even

causes larger predicting error, and thus the data is added to

the previous data set to train GABP again. This allows GABP

to make better predictions next time when similar data is

encountered in future. In this way, the predicting performance

of the model improves gradually as more data collected.

Besides learning from new data, it is also important to avoid

the new data from lowering the overall predicting performance.

It is thus necessary to filter out the new data which may

cause worse overall predicting performance. The mean square

error (MSE) is a good way to quantify the overall predicting

performance of a model, defined as

e =
1

n

n
∑

i=1

(ǫl(i)− ǫ̂l(i))
2, (15)

where ǫl is the actual error of TMLM, ǫ̂l is the error from

GABP, and n is number of the whole historical training data.

Denote the initial training data as ([ ~X], [Y ])o, and record

the trained GABP’s weights as ωo, thresholds as θo, and the

MSE of the predictions as eo on ([ ~X], [Y ])o. For a new data,

if ǫh(t) ≥ ǫl(t), it is added to ([ ~X], [Y ])o forming a new

training data, denoted as ([ ~X], [Y ])n, and the original ωo and

thresholds θo are taken as the initials of the new training. And

new GABP’s weights ωn, thresholds θn, and MSE en of the

predictions on ([ ~X], [Y ])n are obtained after the training. en

is then compared to the old one eo. If en ≥ eo, it means

the MSE of predictions increases and the overall predicting

performance decreases. And thus, the new data is filtered out,

and the previous ([ ~X], [Y ])o remains as the historical training

data, and ωo, θo and eo remain the same. If en < eo, it

means that with new data added, the MSE of predictions

decreases, and the overall predicting performance improves.

So the historical training data is updated as ([ ~X], [Y ])n, and

GABP is updated accordingly to be ωn and θn, and the new

MSE is en. For every new data, follow the above steps to

guarantee the overall predicting accuracy increases until the

limit of the model, where GABP digs out all the possible

non-linearity in the meteorological data.

By establishing the above two restrictions, it selects only

beneficial data, so that the GABP evolves to be better and bet-

ter. The steps of ALOHA is described in Algorithm 1.Through

the combination of MLR, LLE and GABP, ALOHA firstly

generates acceptable predictions on solar intensity given any

historical data in any time scales. Then, as more data collected,

ALOHA is able to make more precise predictions with the help

of the online adaptive GABP learning, and the more data it

learns, the better ALOHA predicts on the solar intensity. It is

thus very desirable for predicting power generation from solar

energy and many other renewable energy resources.

IV. PERFORMANCE EVALUATION

In this section, we present the trace-driven simulation

results from different models and algorithms proposed in

previous sections, and compare the performances of them for

meteorological-data-based solar intensity forecasting. Then we

compare performances between the model ALHM and two

benchmarks for different time scales.

A. Data Description

We apply the proposed methods using the real data from

the UMASS Trace Repository [22], which records the solar

intensity in watts/m2, and the data of several meteorological

metrics from Jan. 2015 to Feb. 2017. It recorded the meteoro-

logical data every five minutes. Many meteorological variables

were observed in details. We consider five main variables,

including temperature, humidity, dew point, wind speed, and

precipitation. We predict daily solar intensity averaged on the

day time when the solar intensity is nonzero, based on the

averaged meteorological variables. It is note that the model

we propose can be applied to any time scale, our major results

are based on daily predictions, because daily power generation

forecasting is necessary for power management, especially for

some power grids with a large part of power generation from

renewable energy resources. We also evaluate our model under

the shortest time scale of 5 minutes, compare to two other

benchmarks in Section IV-E.

The data is departed into two parts, one of which is used

as the initial training data to build forecasting models, and the

other is used to test the forecasting accuracy. Here, we pick the

data of two years from Jan., 2015 to Dec., 2016 as the training

data, and the data of January and February in 2017 as the test

data. The daily solar intensity from 2015 to 2016 is plotted
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Fig. 2. Daily solar intensity for 2015 and 2016.

in Fig. 2, which shows an apparent seasonal pattern. It is also

interesting to see a similar pattern for daily observations, and

similar patterns can also be found for other meteorological

variables. Figure 2 also shows a strong correlation between

two consecutive days, which offers a basis for applying LLE

in building TMLM.

The proposed models are constructed based on the data, and

the performances of them on predicting daily solar intensity

are compared. Then we compare the outstanding ALHM on

two benchmarks for both daily and 5-minute predictions.

B. Predicting Performance of TMLM

1) TMLM Construction: We first write the TMLM model:

ŷi = β̂0(i/n) +

5
∑

p=1

β̂p(i/n)xp,i, for i = 1, ..., n, (16)

where ŷi is the predicted solar intensity, xp,i, p = 1, ..., 5,

represent the series of temperature in Fahrenheit, humidity in

percentage, dew point in Fahrenheit, wind speed in miles per

hour, and precipitation in inches respectively, and n = 731
in the training data; β̂0(·) is the intercept and β̂p(·) are the

associated coefficients for xp,i. The meteorological variables

are centered on their averages so that the intercept β̂0(·) can be

interpreted as the expected solar intensity. And we quantify the

forecasting accuracy of a model by mean absolute percentage

error (MAPE) and root mean square error (RMSE):

MAPE =
1

n

n
∑

i=1

|ŷi − yi|
yi

× 100%, (17)

RMSE =

√

√

√

√

1

n

n
∑

i=1

(ŷi − yi)2, (18)

where yi is the real solar intensity at i.
2) Variable Selection by SCB: According to Algorithm 2

presented in Appendix, we select the bandwidth h = 0.25 and

get the coefficients βp(·). We show the SCB for temperature,

wind and precipitation in Fig. 3 to 5. Other SCBs are similar

to that for temperature, and thus not depicted here. In each

figure, the middle thick solid curve is the estimated series for

the variable; the upper and lower solid curves are the envelops

for the simultaneous confidence band for each variable. Based

on the SCBs, we can test whether a coefficients is significantly

associated with the solar intensity, which equals to test:

H0 : βp(t) = 0, ∀t ∈ [0, 1]; v.s. H1 : βp(t) 6= 0,∃t ∈ [0, 1].

If the zero line is included in the SCB, we accept the

hypothesis that the coefficient is not significant and could be

omitted from the model; otherwise, we keep it in the model.

We can also test whether the coefficients are constant, by

attempting to include a constant horizontal line into the SCB.

This is equal to testing:

H0 : βp(t) = cp, ∀t ∈ [0, 1]; v.s. H1 : βp(t) 6= cp, ∃t ∈ [0, 1],

where cp is a constant of each p. If the line is covered, we

accept that the coefficient is constant; otherwise, it is not.

As we center all the weather variables on their averages, the

SCB of the βp(t) actually indicates the effect on the solar

intensity. In Fig. 3, the zero line is not covered, while in Fig. 4

and 5, the zero line is covered by the 95% SCB. Therefore, we

can conclude that for a level of 95%, temperature, humidity

and dew point have a strong effect on solar intensity, but

the effect from wind and precipitation are weak. Also, we

accept β1(t) to β4(t) as time-varying coefficients, because a

constant horizontal line cannot be covered entirely in those

SCBs. Therefore, we select three meteorological variables of

temperature, humidity and dew point, in the following models.

3) Performance Evaluation of TMLM: The updated TMLM

of three variables are used to predict the daily solar intensity

from Jan. 1 to Feb. 28 in 2017. The predicted solar intensity

data points are shown in Fig. 6, comparing to the actual

observations. The predicting MAPE is 21.16% and RMSE

is 28.65 watts/m2. This result of TMLM is better than

that of MLR with 24.72% and RMSE 33.49 watts/m2. For

the testing data of only 59 points, this overall performance

is acceptable, however, some points have relatively large

predicting errors, for example, the data from Day 6 to 8, Day

22 to 24, etc. Obviously, predictions from TMLM requires

further corrections.

C. Predicting Performance of HLM

The HLM model can be rewritten as

ỹi = ŷi + E(~xi, ŷi) + β̂0(i/n), for i = 1, ..., n, (19)

where ỹi is the corrected solar intensity predictions by HLM,

E(·) is acquired from the trained GABP. The predicting results

on the testing data are shown in Fig. 7. The MAPE and RMSE

are calculated replacing ŷi by ỹi in (17) and (18) respectively.

From the figure, it can be seen that the predicting curve tracks

the actual solar intensity much better than the previous TMLM

model. The MAPE and RMSE of HLM are 14.18% and

20.93 watts/m2 respectively, which are much smaller than

those from TMLM. However, there are still some inaccurate

predictions, i.e., Day 6, 23, 26, 35, 36 and 52. This implies

GABP does not learn these points well and the model HLM

needs further enhancement.
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Fig. 6. TMLM-based solar intensity predictions vs. observations.
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Fig. 7. HLM-based solar intensity predictions vs. observations.

D. Predicting Performance of ALHM

According to Algorithm 1, we now apply the ALOHA to

construct ALHM. Figure 8 shows its predicting results, with

the MAPE 13.68% and the RMSE 20.16 watts/m2. The

predicting MAPE and RMSE for the presented models are

summarized and compared in Table II in the first 4 rows.

Comparing to the results from HLM, solar intensity predictions

of four days are corrected, including Day 23, 26, 36, and
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Fig. 8. ALHM-based solar intensity predictions vs. observations.

TABLE II
PREDICTING PERFORMANCE ON MAPE (%) AND RMSE (watts/m2)

FOR DIFFERENT MODELS FROM JAN. 1 TO FEB. 28, 2017

Model Algorithm MAPE RMSE

MLM MLR 24.72 33.49

TMLM LLE, SCB 21.16 28.65

HLM GABP 14.18 20.93

ALHM ALOHA 13.68 16.95

52. And the predicting accuracy has been improved slightly,

because the total testing data contains only 59 days, and 32

of them are already predicted very well.

Further, ALOHA is designed to learn from the inaccurate

data points which are also helpful in reducing the overall MSE.

In this case, there are only 3 days are added to the initial

training data, although 24 days are considered as inaccurate

points. This is because the ALOHA works very strictly in

choosing the most valuable new data. So ALHM is able to

improve gradually and adaptively. However, this does not

mean the model improves very slowly, because the training

process of GABP has some randomness. If the training path

fits the new data very well, the model improves fast and

greatly. To further evaluate the performance of ALOHA, we
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TABLE III
THE MONTHLY AVERAGE RMSE IN watts/m2 AND THE SIZE OF

TRAINING DATA FOR HLM, UHLM AND ALHM FROM SEP. 2016 TO FEB.
2017

Month HLM Size UHLM Size ALHM Size

2016.09 28.63 609 27.54 639 28.38 611

2016.10 29.52 609 23.28 666 24.60 613

2016.11 27.86 609 20.46 692 21.33 616

2016.12 28.17 609 17.69 723 18.42 619

2017.01 26.35 609 16.05 754 16.88 621

2017.02 27.29 609 14.13 782 14.72 623

re-distribute the original data to have fewer training data and

more testing data.

We now select the data from Jan. 1, 2015 to Aug. 30, 2016

as the training data, and the left data from Sep. 1, 2016 to

Feb. 28, 2017 are used to evaluate predicting performance of

ALHM. Here, HLM decides the predicting function based on

the training data, while the Updating HLM (UHLM) updates

the training data for every new data, based on which the

predicting function is renewed every day.

The predicting RMSE of HLM, UHLM and ALHM are

compared month to month in Table III, where the sizes of

training data for different models are also listed. It can be

seen that HLM has the largest predicting errors because of

the fixed fewest training data. UHLM has the best predicting

accuracy and the largest training data. ALHM performs very

close to UHLM with much less training data. By comparing

ALHM to HLM, it confirms the gradual improvement of

ALHM in solar intensity predictions. Comparing to UHLM,

ALHM successfully holds the most influential data and control

the data size very well with comparable predicting accuracy.

Comparing to ALHM under the previous training data, the

average predicting RMSE from Jan. 1 to Feb. 28, 2017 reduces

from 16.95 watts/m2 to 15.89 watts/m2. The ALHM under

new initial training data performs better, learning only 14

new data online, comparing to the previous one of four more

months of data offline. This fully confirms the effectiveness

of adaptive online learning ability of ALHM.

To further illustrate the learning process of ALHM, we

show the decreasing of normalized predicting MSE through

the testing data of six months in Fig. 9. In the figure, every step

down of the curve indicates a learning happens. It is observed

that among the total 173 days, only 14 days of data are allowed

to be updated in the new training data, although 67 days of data

are considered inaccurate. This shows again the strict filtering

standard by ALOHA, and the learning ability of GABP.

E. Comparisons of ALHM to Two Benchmarks

We now compare ALHM to popular supervised learning

models used in meteorological-data-based solar intensity fore-

casting problem, such as ANN [12], [14] and SVM [2].

Based on the same initial training data of 2015 and 2016, the

predicting results using ANN and SVM are shown in Fig. 10
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Fig. 9. The overall predicting MSE of ALHM for 173 days.
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Fig. 10. ANN-based solar intensity predictions vs. observations.
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Fig. 11. SVM-based solar intensity predictions vs. observations.

and Fig. 11 respectively. The MAPE of SVM and ANN are

20.39% and 18.41% respectively, comparing to 13.68% for

ALHM. Based on the same training data, ALHM achieves

more precise predictions.

Then, we compare the performance of these models for
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Fig. 12. 5-min predictions from ALHM, ANN and SVM vs. observations on
Jan. 1, 2017.

short-time predictions. For ANN and SVM, we use the his-

torical data from Jan. 1 to Dec. 30, 2016 as training data. For

ALHM, we set the historical data from Jan. 1 to June 30, 2016

as initial training data, and the data from July 1 to Dec. 30,

2016 are used to improve the model. The models now predict

every 5 minutes for two days of Jan. 1 to Jan. 2, 2017. The

predicted daytime solar intensity of ALHM, ANN and SVM

for the two days are plotted in Fig. 12 and Fig. 13 respectively.

The solar intensity in Jan. 1 fluctuates more than Jan. 2.

Both figures show that ALHM predictions track the actual

solar intensity data much better than the other two models.

The MAPE for ALHM, ANN and SVM are 8.66%, 15.24%
and 16.87% respectively for Jan. 1, and 11.74%, 18.84% and

21.05% for Jan. 2.

Note that the predictions by SVM are not satisfactory,

because it lacks a deep analysis of the solar power generation

and weather data, by simply trying different SVM kernels.

And ANN tries to capture the relationship between solar

intensity and meteorological variables directly. Although this

is theoretically available as discussed in Section I, it is very

difficult to realize in applications. But in ALHM, TMLM

focuses on linearity representation, and GABP focuses on

learning the nonlinear relationship. They function together

to achieve more accurate predictions. In conclusion, ALHM

outperforms ANN and SVM for both both daily and 5-min

predictions.

V. CONCLUSION

In this paper, we developed adaptive learning hybrid model

for meteorological-data-based solar intensity predictions. We

first presented the fundamental multiple linear model. Then

we propose the time-varying multiple linear model and hybrid

learning model, which improve the model from the aspects

of time series and intelligent learning. We then proposed

the adaptive learning hybrid model to learn the nonlinear

relationship in the data to further improve the predicting

accuracy. The proposed models were validated with trace-

driven simulations.
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Fig. 13. 5-min predictions from ALHM, ANN and SVM vs. observations on
Jan. 2, 2017.

APPENDIX

A. Construction of Simultaneous Confidence Band

The approach of SCB analysis assumes locally stationary

processes for both ~X(t) and ǫ(t) [23]. The locally stationary

process guarantees the stationary property for local time series,

and is useful for local linear estimation. It actually belongs to

a special class of non-stationary time series as

~xi = ~G(ti, Fi), ǫi = H(ti, Fi), i = 1, 2, ..., n, (20)

where ~G(ti, Fi) and H(ti, Fi) are measurable functions well

defined on ti ∈ [0, 1] , Fi = (..., ξi−1, ξi) with {ξi}i∈Z

are independent and identically distributed (i.i.d.) random

variables, and E(ǫi|~xi) = 0. Equation (20) can be interpreted

as physical systems with Fi (and xi and ǫi) as the inputs

(and the outputs respectively), and G and H representing the

underlying physical mechanism [24].

Based on the above assumptions, the central limit theorem

for ~̂β(t) states that: supposing nh → ∞ and nh7 → 0 [24],

then for any fixed t ∈ (0, 1),

(nh)1/2{~̂β(t)− ~β(t)− h2~β′′(t)µ/2} → N{0,Σ2(t)}, (21)

where

µ =

∫

R

x2K(x) dx, (22)

Σ(t) = (M−1(t)Λ(t)M−1(t))1/2, (23)

M(t) = E( ~G(t, F0) ~G(t, F0)
T ). (24)

The covariance matrix Λ(t) can be further approximated using

techniques proposed in (28).

Deriving from the central limit property and basic assump-

tions shown above, the 100(1−α)% asymptotic simultaneous

confidence tube of ~βC(t) can be constructed using:

β̃C,h̃(t) + q̂1−αΣ̂C(t)Bs, (25)

where β̃C,h̃(t) is the bias corrected estimator defined in (26),

Bs = {~z ∈ R
s : |~z| ≤ 1} is the unit ball, and s is the rank

of a matrix Cp×s, which we use for choosing different linear
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Algorithm 2: Construction of SCB for Time-varying Co-

efficients

1 Find a proper bandwidth ĥ from GCV selector (10);

2 Let h̃ = 2ĥ and calculate β̃C,h̃(t) using (26) and (6);

3 Obtain the estimated (1− α)th quantile q̂1−α via the

bootstrap method;

4 Estimate M̂(t) = S0(t
∗) and Λ̂(t) by (28), and calculate

Σ̂C(t) according to (27);

5 Construct the 100(1− α)% SCB of ~βC(t) using (25).

combinations of β(t), and ~βC(t) = CT ~β(t). We can construct

the SCB for different linear combinations of βk(t)’s by setting

a different matrix Cp×s. For example, if we set Cp×1 =

[1, 1, 0, ...0], we obtain the SCB of ~βC(t) = CT ~β(t) =
β1(t) + β2(t); if we set Cp×2 = [1, 0, 0, ...0; 0, 1, 0, ...0], the

SCB of β1(t) and β2(t) becomes a tube at any time t. This is

because when s = 2, the unit ball B2 becomes a unit circle.

Thus, we simply take s = 1 in (25), and the SCB is constructed

similarly to the confidence interval of the coefficients of the

multiple linear regression: β̂ ± tα/2,n−pse(β̂), where se(β̂)

is the standard error of β̂, and tα/2,n−p is the upper α/2
percentage point of the tn−2 distribution [20].

Similarly, the first term is the estimator of the time-varying

coefficients corrected for bias by

β̃C,h̃(t) = CT β̃h̃(t) = CT
(

2~̃βh̃/
√
2
(t)− ~̂βh̃(t)

)

, (26)

β̃ĥ(t) can also be acquired by solving (6) using a correspond-

ing kernel function K∗(a) = 2
√
2K(

√
2a) − K(a) and an

updated bandwidth h̃ = 2ĥ of the GCV selector ĥ.

The second term in (25) q̂1−α is actually the upper

α/2 percentage point of the normal distribution N{0,Σ2(t)}
defined in (21), while the third term Σ̂C(t) is the esti-

mated standard error. The method of wild bootstrap is ap-

plied to obtain q̂1−α. Firstly, generate a large number i.i.d.

vectors ~v1, ~v2, ..., N(0, Is), where ~vi ∈ R
p and Is de-

notes the s × s identity matrix, and then calculate q =
sup0≤t≤1|

∑n
i=1

~viK
∗((ti − t)/h̃)/(nh̃)|; repeat the previous

step for a large number of times (say, 5000) to acquire the

estimated 100(1− α)% quantile q̂1−α of q.

The estimate of the standard error Σ̂C(t) is defined as:

Σ̂C(t) = (CT M̂−1(t)Λ̂(t)M̂−1(t)C)1/2. (27)

We shall estimate M̂(t) and Λ̂(t) respectively. From the defi-

nition of M(t) in (24), it can be estimated by M̂(t) = S0(t
∗),

where S0(·) is defined in (7), and t∗ = max{h,min(t, 1−h)}.

To obtain Λ̂(t), we first define two p×1 vectors ~Zi = ~xiǫ̂i and
~Wi =

∑m
j=−m

~Zi+j , a matrix Ωi = ~Wi
~WT

i /(2m+ 1), and a

function g(t, i) = K((ti − t)/τ)/
∑n

k=1
K(tk − t), where m

and τ can be simply chosen as m = ⌊n2/7⌋ and τ = n−1/7.

Then Λ̂(t) can be calculated by

Λ̂(t) =

n
∑

i=1

g(t, i)Ωi. (28)

All the above steps are summarized in Algorithm 2.

REFERENCES

[1] X. Fang, S. Misra, G. Xue, D. Buccella, and C. Yang, “Smart grid -
The new and improved power grid: A survey,” IEEE Commun. Surveys

& Tutorials, vol. 14, no. 4, pp. 944–980, Dec. 2012.
[2] N. Sharma, P. Sharma, D. Irwin, and P. Shenoy, “Predicting solar

generation from weather forecasts using machine learning,” in Proc.

IEEE SmartGridComm’11, Brussels, Belgium, Oct. 2011, pp. 528–533.
[3] Y. Wang, S. Mao, and R. Nelms, “On hierarchical power scheduling for

the macrogrid and cooperative microgrids,” IEEE Trans. Ind. Informat.,
vol. 11, no. 6, pp. 1574–1584, Dec. 2015.

[4] Y. Wang, S. Mao, and R. Nelms, “Distributed online algorithm for
optimal real-time energy distribution in the smart grid,” IEEE Internet

of Things J., vol. 1, no. 1, pp. 70–80, June 2014.
[5] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay, “Clustering-

based improvement of nonparametric functional time series forecasting:
Application to intra-day household-level load curves,” IEEE Power

Energy Mag., vol. 5, no. 1, pp. 411–419, Sept. 2014.
[6] R. Li, J. Li, and H. Li, “The short-term electric load forecasting grid

model based on MDRBR algorithm,” in Proc. IEEE 2006 IEEE Power

Engineering Society General Meeting, Montreal, Canada, June 2006, pp.
1–6.

[7] A. Tsikalakis and N. Hatziargyriou, “Artificial neural network for load
forecasting in smart grid,” in Proc. International Conference on Machine

Learning and Cybernetics, Qingdao, China, July 2010, pp. 3200–3205.
[8] V. Coelho, et al., “A self-adaptive evolutionary fuzzy model for load

forecasting problems on smart grid environment,” Elsevier Applied

Energy, vol. 169, pp. 567–584, May 2016.
[9] R. Huang, T. Huang, R. Gadh, and N. Li, “Solar generation prediction

using the ARMA model in a laboratory-level micro-grid,” in Proc. IEEE

SmartGridComm’12, Tainan, Taiwan, Nov. 2012, pp. 528–533.
[10] J. Shi, et al., “Genetic algorithm-piecewise support vector machine

model for short term wind power prediction” in Proc. 2010 World

Congress on Intelligent Control and Automation, Jinan, China, Aug.
2010, pp. 2254–2258.

[11] F. Silva, et al., “Application of a hybrid neural fuzzy inference system
to forecast solar intensity,” in Proc. 2016 International Workshop on

Database and Expert Systems Applications, Porto, Portugal, Sept. 2016,
pp. 161–165.

[12] C. Dumitru, A. Gligor, and C. Enachescu, “Solar photovoltaic energy
production forecast using neural networks” Procedia Technolog., vol. 22,
pp. 808–815, Dec. 2016.

[13] R. peña and A. Medina, “Using neural networks to forecast renewable
energy resources,” In Proc. Int. Conf. Neural Computation Theory and

Applications, Paris, France, Jan. 2011, pp. 401–404.
[14] A. Gensler, J. Henze, B. Sick, and N. Raabe, “Deep learning for

solar power forecasting - An approach using AutoEncoder and LSTM
neural networks,” in Proc. IEEE Int. Conf. Syst., Man, and Cybernetics,
Budapest, Hungary, Feb. 2017, pp. 1–8.

[15] F.-C. Chen, “Back-propagation neural network for nonlinear self-tuning
adaptive control,” in Proc. IEEE Int. Symp. Intell. Control, Albany, NY,
Sept. 1989, pp. 274–279.

[16] W. Jin, Z. Li, L. Wei, and H. Zhen, “The improvements of BP neural
network learning algorithm,” in Proc. Int. Conf. Signal Process., Beijing,
China, Aug. 2002, pp. 1647–1649.

[17] J. Fan and R. Gijbels, Local Polynomial Modelling and Its Applications,
London, UK: Chapman & Hall, 1996.

[18] R. L. Eubank, “Applied nonparametric regression,” Technometrics,
vol. 35, no. 2, pp. 225–226, Sept. 1999

[19] P. Craven and G. Wahba, “Smoothing noisy data with spline functions:
Estimating the correct degree of smoothing by the method of generalized
crossvalidation,” in Numerische Mathematik, vol. 31, no. 4, pp. 377–403,
Dec. 1978

[20] D. Montgomery, “Introduction to linear regression analysis,” in J. of the

Royal Statist. Societ, vol. 170, no. 3, pp. 856–857, Apr. 2007
[21] Y. Shu and J. Zeng, “A Back-propagation neural network model base

on Genetic Algorithm and the application,” J. Ningbo University., 2000.
[22] M. Liberatore and P. Shenoy, The UMass Trace Repository, [online]

Available: http://traces.cs.umass.edu/.
[23] D. Draghicescu, S. Guillas, and W. B. Wu, “Quantile curve estimation

and visualization for nonstationary time series,” in J. Comput. Graph.

Statist., vol. 18, no. 1, pp. 1–20, Aug. 2009
[24] Z. Zhou and W. B. Wu, “Simultaneous inference of linear models with

time varying coefficients,” J. Royal Stat. Soc.: Series B (Stat. Method.),
vol. 72, no. 4, pp. 513–531, Sept. 2010.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TII.2017.2789289

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


