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ABSTRACT

A land-use map at the regional scale is a heavy computation task yet is critical to most 
landowners, researchers, and decision-makers, enabling them to make informed decisions for 
varying objectives. There are two major difficulties in generating land classification maps at the 
regional scale: the necessity of large data-sets of training points and the expensive computation 
cost in terms of both money and time. Volunteered Geographic Information opens a new era 
in mapping and visualizing the physical world by providing an open-access database valuable 
georeferenced information collected by volunteer citizens. As one of the most well-known VGI 
initiatives, OpenStreetMap (OSM), contributes not only to road network distribution information 
but also to the potential for using these data to justify and delineate land patterns. Whereas, 
most large-scale mapping approaches – including regional and national scales – confuse “land 
cover” and “land-use”, or build up the land-use database based on modeled land cover data-sets, 
in this study, we clearly distinguished and differentiated land-use from land cover. By focusing on 
our prime objective of mapping land-use and management practices, a robust regional land-use 
mapping approach was developed by integrating OSM data with the earth observation remote 
sensing imagery. Our novel approach incorporates a vital temporal component to large-scale 
land-use mapping while effectively eliminating the typically burdensome computation and 
time/money demands of such work. Furthermore, our novel approach in regional scale land-use 
mapping produced robust results in our study area: the overall internal accuracy of the classifier 
was 95.2% and the external accuracy of the classifier was measured at 74.8%.

1. Introduction

1.1. Land-use mapping at regional scale

Land-use maps derived from remote sensing imagery 

play a vital role in monitoring human–environmental 

interactions such as landscape changes, ecological ser-

vices (conservation), and urban planning and manage-

ment (Lambin et al. 2001; Agarwal et al. 2002; Weng 

2002; Abdullah and Nakagoshi 2007; Sumarga and Hein 

2014; Hegazy and Kaloop 2015). Whereas, land cover 

maps represent the observed biophysical cover of the 

Earth’s surface, land-use maps describe the arrange-

ments, activities, and inputs people undertake within a 

particular land cover type to produce, modify or main-

tain it. These specified and precise aspects of land-use 

patterns are indicative of the challenge in establishing 

distinctive use attributes and accurately mapping them. 

Ground-validated data are therefore essential to verify 

remotely sensed data used to infer land-use character-

istics. In practice, there is a gap between remote sensing 

earth observations and their translation into subjective 

mapping products depicting how the land is used and 

affected by human activity. Remotely sensed data-sets 

can be used to monitor land cover dynamics, but are 

insufficient on their own for deriving land-use char-

acteristics – the manner in which people utilize, and 

thus modify the land on the ground. The latter is the 

concept of “land-use”, which is distinct from, and often 

confused with, the term “land cover”. Land-use reflects 

and results from anthropogenic activities on the Earth’s 

surface. The distinction between land cover and land-

use poses a challenge and elicits a strategy, for mapping 

and monitoring the landscape changes and processes.

In modern history, ecosystems are strongly affected 

by anthropogenic factors (Folke, Holling, and Perrings 

1996; Vitousek et al. 1997), including agriculture, build-

ing construction and urban expansion, forest timber 

extraction, and preservation systems (national and state 

parks) (Matson et al. 1997; Hartley 2002). Macrosystems 

of forests, croplands, and waterways are driven by human 

need and associated activities (Foley et al. 2005). The 

interactions between and the effects of different land-use 

types may be forces of landscape-wide importance. For 

example, in the Southeastern United States, significant 
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expansions of urban areas may convert forested land to 

urban uses, and pine plantation (forestry) may come 

from cropland (Wear and Greis 2002, 2013). These kinds 

of landscape conversions could represent macrosystem 

changes, depending on scale and extent, and can have 

immediate and local implications for landowners and 

management practices.

Although land-use mapping techniques are well stud-

ied and have been applied to mapping most developed 

areas from different perspectives and at local scales 

(Lambin et al. 2001; Bryan, Barry, and Marvanek 2009; 

Bateman et al. 2013; Lawler et al. 2014), it is challeng-

ing to map heterogeneous land-use at a regional scale 

with high spatial resolution. At the macrosystems scale, 

it becomes more difficult to map land-use due to the 

lack of training samples and validation points, and the 

necessity of heavy computing tasks. However, despite 

these obstacles, successful regional scale land-use map-

ping projects have been accomplished. The Australian 

Collaborative Land-use Mapping Program mapped 

land-use in the 17.3 million km2 of Queensland using 

a Markov chain Monte Carlo machine learning tech-

nique (Lesslie, Barson, and Smith 2006; Bryan, Barry, 

and Marvanek 2009). The integration of remote sensing 

data with Volunteered Geographic Information (VGI) 

data platforms such as Open Street Map (OSM) and 

cloud computing platforms such as Google Earth Engine 

(GEE), provides a significant resource for land cover and 

land-use mapping and related research. Moreover, the 

combining of remote sensing data and OSM constitutes 

a powerful tool to monitor, characterize, and quantify 

the landscape. The product will be an important source 

of information for researchers and policy-makers for 

investigating land parcels.

Supervised classification has been proven to be an 

efficient tool for mapping land patterns and land changes 

accompanying the spatial and temporal configuration of 

landscape heterogeneity (Congalton 1991). However, it 

becomes ineffective/inapplicable at regional scale and 

for fine resolution mapping because the training data 

(i.e. ground-validated data) collection process is costly 

and time-consuming, and is difficult to automate. The 

processing and collecting time of classification in situ 

training sites significantly slows down the use of such 

methods in the applications of mapping regional land 

patterns.

1.2. Volunteered Geographic Information as a 

source of training data

VGI marks a new era in mapping and visualizing our 

world, and its data and applications have grown signif-

icantly during the last decade (Elwood 2008; Haklay, 

Singleton, and Parker 2008; Zook et al. 2010). OSM is 

one of the well-supported VGIs and has been studied and 

applied in multiple disciplines, but there remain large 

quantities of information that need to be investigated. 

OSM has unique advantages, allowing its use to be fit-

ting a wider range of applications as compared to the 

official geographic databases. OSM has the capability to 

create superior maps when considering temporal change 

trajectories by providing “up-to-date” data (Estima and 

Painho 2013). From a geographic perspective, this is sig-

nificant because scaling has always been a major issue 

in the mapping and monitoring of the Earth. For the 

research undertaken in this study, OSM is an attractive 

choice to achieve the research objectives because of the 

growing coverage of big spatial data and cloud comput-

ing capabilities (Zook et al. 2010).

OSM contains not only road network data, but also 

land-use information, which might be derived from a 

combination of other ground-level features. Previous 

studies have shown that OSM is a valuable and struc-

tured data source for mapping land cover and land-use 

by providing high positional accuracy in comparison 

with the corresponding commercial data-sets (Estima 

and Painho 2013, 2015; Jokar et al. 2013; See et al. 2013, 

2015; Johnson and Iizuka 2016). For improving the value 

and potential of collecting and mapping, OSM provides a 

VGI platform, to which many volunteers can contribute 

and collaborate. Moreover, the achieved OSM data-sets 

enable the study of past land changes based on mul-

ti-temporal trajectories (Neis, Zielstra, and Zipf 2012).

Recent studies have investigated the spatial distribu-

tion balance of OSM-trained classification maps. A total 

76% agreement was found in a study based in Portugal, 

and 64% and 77% agreement was found in two cities 

in Germany as compared with the corresponding offi-

cial land-use/cover databases (Estima and Painho 2013; 

Jokar, Helbich, et al. 2015; Jokar, Mooney, et al. 2015). 

However, most OSM land cover and land-use mapping 

applications have focused on urban areas at the local 

scale, and without using earth observation databases for 

cross-referencing. Moreover, to produce more accurate 

and reliable mapping of land-use patterns, the temporal 

features of the land should also be considered. There 

was no study that considered and analyzed the temporal 

land changes, which are critical for reflecting human 

activities. Different land-use types have distinctive time 

series signals that can be derived from earth observation 

images. For example, the land-use type of residential 

areas typically is not characterized by rapid or seasonal 

changes, whereas cropland and managed forestlands 

land-use types have a high temporal variation which 

can be observed in their respective time series signals.

1.3. Incorporating OpenStreetMap with earth 

observations

Remote sensing techniques have been widely used for 

observing and monitoring landscape changes, terrestrial 

features, and can extensively decrease the time and cost 

for large-scale mapping. Moreover, the Web 2.0 brings 

a revolution of how people collect, map, and analyze 
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geo-located data (Haklay, Singleton, and Parker 2008). 

For earth observation data-sets, GEE is a newly devel-

oped mapping and analysis platform which enables 

large-scale spatial analysis by its special infrastructure 

and automatically parallelized computation techniques 

(Johansen, Phinn, and Taylor 2015; Padarian, Minasny, 

and McBratney 2015; Patel et al. 2015). By storing and 

bringing together large amounts of earth observation 

data on Earth Engine’s server, GEE can analyze big data 

“on-the-fly” (Yu and Gong 2012). Personal databases 

can also be uploaded to the server as additional assets 

to achieve time series generating, zonal statistics, spec-

tral analysis, and many machine learning classification 

techniques.

GEE has been studied for its strong ability for map-

ping landscape at the regional scale in both time and 

space. Yang generated a Mayan forest land cover map by 

building OSM-derived training samples into a high-di-

mensional Landsat-based Random Forest classifier of 

the whole Yucatan Peninsula, and then delineated land 

patterns with road networks (Yang 2017). GEE was also 

applied to monitoring land changes at the regional scale 

based on Landsat 30-m spatial resolution (Soulard et al. 

2016; Azzari and Lobell 2017). The major objective of 

this research is to incorporate OSM into regional land-

use mapping using GEE to investigate and quantify 

land-use types in the Southeastern United States. The 

broader aim of this study is to develop an integrative 

and innovative regional scale mapping strategy that can 

be replicated for similar research purposes. Overall, the 

methodology presented here seeks to improve land-use 

mapping strategies by reducing economic and temporal 

burdens, and contribute to the science of monitoring 

human–environment interactions.

2. Study area

This study focuses on the land-use patterns of the heter-

ogeneous Southeastern United States. The Southeastern 

United States has high landscape heterogeneity, with 

heavily managed forestlands, highly developed agri-

culture lands, and multiple metropolitan areas. Human 

activities are transforming and altering land patterns and 

structures in both negative and positive manners. Based 

on EPA ecoregion descriptions (Omernik and Griffith 

2014), land cover in the Southeastern United States is a 

mosaic of cropland, pasture, woodland and forests, and 

wetlands. For this research, the study area consists of one 

Landsat scene of Worldwide Reference System II (WRS-

2) Row 17 Path 39 (Figure 1). This Landsat scene is an 

illustrative example of land patterns of the Southeastern 

United States, which covers an area of approximately 

185 km2. The heterogeneous landscape in the study area 

consists of a mixture of highly developed cropland, plan-

tation forests, multiple metropolitan areas, and indus-

trial and commercial lands. Human land-use activities 

and management practices are transforming landscape 

patterns and processes in the region, resulting in both 

negative and positive consequences for stakeholders and 

ecosystems.

3. Methodology

This research proposes a methodology to produce a 

regional scale land-use map by extracting training data 

from OSM. Random Forest is chosen as the classifier 

because it has become a widely used algorithm for remote 

sensing image classification (Breiman 2001). Random 

Forest has the ability to handle high-dimensional ras-

ter databases (Senf, Hostert, and van der Linden 2012), 

which suits the framework of this research.

3.1. Data sources

3.1.1. OpenStreetMap data structure

OSM is a fully free and openly accessible map of road 

network data. All OSM data were downloaded from 

the Geofabrik website http://download.geofabrik.de. 

Community volunteers collect and submit geographic 

information to the global OSM database (Ciepluch  

et al. 2009). OSM data quality has been broadly assessed 

with consistently positive reviews. Girres and Touya 

(2010) performed a spatial analysis of the quality of OSM 

street network representations in the UK and France, 

respectively, through a comparison to ground-truth 

data obtained from the corresponding national map-

ping agency. Both case studies found that on average, 

the quality of the data was reasonably good but exhib-

ited a significant spatial heterogeneity. Neis, Zielstra, and 

Zipf (2012) analyzed how the quality of the OSM street 

Figure 1.  study area in southern Georgia and north florida 
delineated by the landsat tile of Wrs-ii path 17 row 39. 
Underlying map shows the epa level iii ecoregions (epa). this 
map was created using arcGis® software by esri. arcGis® and 
arcmap™ are the intellectual property of esri and are used 
herein under license. copyright © esri. all rights reserved. for 
more information about esri® software, please visit http://www.
esri.com
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variety of human-made land-use types, and the quantity 

of data points is large enough to suffice for the necessary 

inputs for large-scale classification mapping.

The OSM-Landuse, OSM-Nature, and OSM-Places 

were reclassified and converted into five major land-use 

types: “residential”, “forestry”, “cropland”, “commercial/

industrial”, and “waterbody”. Although it is noted that 

the “waterbody” class may not be a land-use type, it is 

included as it accounts for a significant proportion of 

Florida land cover. Furthermore, the inclusion of the 

“waterbody” class in the land-use map serves to avoid 

the classification bias. Users may also decide to apply 

different classification frameworks based on the specific 

research questions and understanding of the study area 

attributes.

3.1.2. Earth observations

Earth observation is one of the most essential tools 

for monitoring the earth’s surface and its dynamics at 

regional to global scales. Although earth observation 

data and remote sensing techniques allow for extensive 

mapping of characteristics of the land surface, it can be 

financially burdensome and time-consuming for map-

ping at large scale in both time and space. GEE provides 

online access to worldwide coverage of a vast of remote 

sensing data-sets. The GEE API is currently available 

upon request to a number of groups for testing and 

applying large-scale mapping on the cloud server.

The spatial and temporal covariates used in the land-

use classification for this research include multi-temporal 

land reflectance, forest canopy height, DEM, mean-EVI, 

and the land ownership. The spatial and temporal covar-

iates are important indicators of land-use, ecosystems, 

and the remotely sensed inputs are consistently and 

accurately derived. All the data used for the land-use 

map produced in this research were up-to-date, subset to 

the boundaries of the study area, and resampled to 30-m 

spatial resolution. Additionally, all the data used as spa-

tial and temporal covariates cover the entire study area 

and can be extended to the global scale, thereby making 

the research methods reproducible for other regions of 

interest, given there are similar research objectives. The 

earth observation images used here consist of a singular 

time step Landsat images and multi-temporal composite 

satellite images. The temporal heterogeneity of the data-

sets combines to reflect the characteristics of the land-

scape of the study area. Furthermore, the heterogeneous 

data allows learning a supervised algorithmic model (ie 

Random Forest) in order to extract relevant thematic 

classes of land-use/land cover from the satellite imagery. 

Classification is performed on a data-set consisting of 

the following five major sources (Table 1).

(1)  Landsat 8 Top-of-Atmosphere (TOA) (Chander, 

Markham, and Helder 2009) of 2016: this 

composite image reflects the greenest pixel 

during the whole period based on NDVI. 

network in different regions of Germany had changed 

between the years 2007–2011. This multi-temporal study 

demonstrated that the quality and accuracy of OSM data 

have improved over time, and more recent studies con-

firm this assessment (Neis, Zielstra, and Zipf 2012).

The OSM database contains a full coverage of the 

area of interest for this research, with the following sub-

data-sets: OSM-Places, OSM-Railways, OSM-Roads, 

OSM-Waterways, OSM-Buildings, OSM-Landuse, and 

OSM-Nature. In this study, the OSM feature classes 

applied for mapping land-use patterns include OSM-

Places, OSM-Landuse, and OSM-Nature.

The OSM-Landuse feature class is used to describe 

the human use of land, presented as a polygon class con-

sisting of forests, residential areas, and some industrial 

areas. Figure 2 shows the composition of OSM-Landuse 

labels. In the study area of Landsat scene Path 17 Row 29, 

there are 26 different types of land-use labels on land sur-

face, which illustrate how human activities affect land-

scapes. Labels of “residential” contribute 43% (675 sites), 

followed by “commercial” (14% − 214 sites) and “farm” 

(11% − 175 sites). OSM-Nature is used to describe natu-

ral physical land features, including ones that have been 

modified by humans, which covers most waterbody and 

conservation areas. In OSM-Nature, all the waterbodies, 

parks, and recreation areas are represented as polygons. 

As shown in Figure 3, labels of “water” contribute 75% 

(2259 sites), follows by “forest” (17% − 503 sites) and 

“park” (8% − 228 sites). The OSM-Places feature class 

includes urban and suburb landmarks and attractions, 

with the following place labels for the study area shown 

in Figure 4: labels of “helmet” contribute 66% (585 sites); 

followed by “island” (24% − 211 sites;) and “village” (3% 

− 30 sites). Based on the general statistics of the data 

structure of OSM labels, it was determined that OSM-

Nature, OSM-Places, and OSM-Landuse represent a 

Figure 2. Breakdown of osm-landuse labels of study area.
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nongovernment agencies are integrated for 

landownership type mapping. Landowners 

are classified as public and private. There are 

six sub-types of public ownership, which are 

federally protected, federal, state-protected, 

state, military, and local. In addition, there 

are four sub-types of private ownership: non-

government organization, private, family, and 

corporate. The ownership classification strategy 

is made, based on different management objec-

tives, as well as landowner skills, budgets, and 

interests. The U.S. Protected Areas (PADUS) 

is the primary data source to identify public 

ownership.

To summarize, Figure 5 shows the examples of covar-

iates used to generate land-use maps: including Shuttle 

Radar Topography Mission (SRTM) digital elevation 

at 30-m resolution (Figure 5(a)), MODIS13 Mean EVI 

of 2015 at 250-m resolution (Figure 5(b)), Forest can-

opy height at a resolution of 1 km (Figure 5(c)), and 

Landsat 8 calibrated Top-of-Atmosphere (TOA) with 

Fmask quality band to remove the cloud contaminations 

(Figure 5(d)).

(GEE ID: LANDSAT/LC8_L1T_ANNUAL_

GREENEST_TOA). This is a multi-temporal 

data-set consisting of Landsat scenes with 

cloud removal by Fmask algorithm (Zhu and 

Woodcock 2012).

(2)  Global forest canopy height version of 2005 

(Simard et al. 2011): this data-set represents 

the canopy height on global level by incorpo-

rating the Geoscience Laser Altimeter System 

(GLAS) and ancillary data. (GEE ID: NASA/

JPL/global_forest_canopy_height_2005).

(3)  MOD13_EVI (Huete et al. 2002): the MODIS 13 

EVI product was designed to minimize canopy 

background variations and maintain the sensi-

tivity over dense vegetation conditions at a spa-

tial resolution of 250 m every 16 days. (GEE ID: 

MODIS/MOD13Q1).

(4)  Shuttle Radar Topography Mission (SRTM): the 

DEM data from SRTM are produced to provide 

consistent, high-quality data with a resolution 

of 90 m (Jarvis et al. 2008). (GEE ID: CGIAR/

SRTM90_V4).

(5)  Land Ownership Types: geospatial land 

ownership data sources from federal and 

Figure 3. Breakdown of osm-nature labels of study area. Figure 4. Breakdown of osm-place labels of study area.

Table 1. spatial and temporal input covariates for random forest classifier.

Database name Objective Google Earth Engine ID Spatial resolution Temporal resolution

landsat 8 top reflectance reflectance lanDsat/lc8_l1t_annUal_Greenes 
t_toa

30 m 16-day

forest canopy height canopy height nasa/Jpl/global_forest_canopy_
height_2005

1 km composite

moDis 13 eVi eVi moDis/moD13Q1 250 m 16-day
srtm (shuttle radar topography mission) Dem cGiar/srtm90_V4 90 m composite
seUs land ownership type ownership users/yangdi1031/se_ownership_

masked
250 m composite
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training samples. There are total number of 3068 points 

from OSM and 380 from Google Earth visualization. It is 

found that the spatial distribution of OSM-Landuse and 

OSM-Nature clustered in a great degree, which might 

cause bias for the classifier (see Figures 6(a) and (b)). We 

therefore added the layer of OSM-Places.

Another challenge arose from the imbalanced class 

distribution of different extracted featured from OSM. 

Thus, a layer of managed forest from Google Earth 

visual interpretation was added. Google Earth was used 

because it provides higher spatial resolution with a time 

span of more than 20  years. Therefore, more spatial 

information can be acquired about what types of land 

practices occur during the spatio-temporal validation 

of this study. Further details about the training sample 

setting strategy is depicted in Figure 8, which shows the 

workflow reflecting the conversion of OSM features to 

land-use labels. In this study, for our study area, there are 

3068 training samples collected from OSM features, and 

380 from visual interpretation from Google Earth over 

3.2. Mapping strategy

3.2.1. Training samples setup

The randomly selected training points were converted 

into a Keyhole Markup Language file. Each chosen 

point centered at a 30 × 30 m polygon, one-pixel image 

size. The chosen points and associated polygons were 

overlaid in Google Earth virtual globe for visualization. 

The selected points were identified and assigned classes 

based on the OSM feature types and their surrounding 

areas. The points were then split into training and testing 

data-sets for model validation. To avoid the imbalance 

caused by polygon weight within the training sample 

(Visconti et al. 2013), OSM-Nature and OSM-Landuse 

polygons feature classes were converted into points fea-

tures based on their respective geographic centroids. In 

Figure 6, the spatial distribution of the training samples 

of each feature including OSM-Nature, OSM-Landuse, 

OSM-Places, and Google Earth visualization samples 

are shown, and Figure 7 shows the visualization of all 

Figure 5. examples of covariates used to generate land-use maps: (a) shuttle radar topography mission (srtm) digital elevation at 30-m 
resolution; (b) moDis13 mean eVi of 2015 at 250-m resolution; (c) forest canopy height at 1-km resolution; (d) landsat 8 calibrated 
top-of-atmosphere (toa) with fmask quality band to remove the cloud contaminations. Background image and map courtesy 
of Google map (2017). “florida, U.s.” map. Google maps. Google, available from: https://www.google.com/maps/@30.1671351,-
82.8317191,8.92z?hl=en [accessed march 24, 2017].
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•  To implement advanced pixel-based supervised 

classifier with high accuracy.

•  To estimate and measure the variable importance, 

and

•  To compare out-of-bag error to independent vali-

dation to avoid classification bias.

All data used in this study as inputs for the classi-

fier are completely embedded in GEE. In other words, 

the GEE IDs of each database used in this study are 

accessible by via GEE platform, and can be used for to 

reproduce the methodology presented here and for other 

study regions. Moreover, the use of GEE enables regional 

land cover mapping to be accomplished with greater 

ease than other platforms, as many spatial and tempo-

ral covariates are already available in the GEE server 

and the calculation itself is parallelized automatically 

to optimize the computing time cost. In addition, the 

spatial resolution can be resampled easily to match or fit 

time (3448 in total). The training samples extracted from 

OSM were re-classified into five classes: (1) residential, 

(2) managed forest, (3) cropland, (4) commercial/indus-

trial, and (5) waterbody. The training sample set of this 

study is visualized in Figure 7, which represents the spa-

tial distribution of the training points geographically and 

illustrates the degree of urbanization.

3.2.2. Supervised classification

The classifier of Random Forest is considered for clas-

sification of multi-source remote sensing data mapping 

in this study because it was proved to perform relatively 

well for the integration of imagery data and collaborate 

the environmental covariates into classifier to improve 

its accuracy in such a complex landscape (Rodriguez-

Galiano et al. 2012). For classifying land-use at the 

regional scale, Random Forest has several advantages 

over the others and the most notable ones (Breiman 

2001) are:

Figure 6. spatial distribution of rf training from osm and Google earth engine: (a) centroid center of osm-landuse feature; (b) 
centroid center of osm-nature feature; (c) managed forest sites from Google earth visualization; (d) centroid center of osm-place 
feature. the base map was developed by esri using Here data, Delorme basemap layers, openstreetmap contributors, esri basemap 
data, and select data from the Gis user community. in north america coverage is provided from level 14 (1: 36k scale) through level 
16 (1:9k scale). http://goto.arcgisonline.com/maps/World_light_Gray_Base. this map was created using arcGis® software by esri. 
arcGis® and arcmap™ are the intellectual property of esri and are used herein under license. copyright © esri. all rights reserved. for 
more information about esri® software, please visit http://www.esri.com
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(2)  Validate with Google Earth on both time and 

space for the training data-set.

(3)  Collaborate the spatial and temporal covari-

ates as inputs for Random Forest classifier, run 

Random Forest classifier using GEE API, and 

analyze the classification accuracy for each clas-

sification type.

(4)  Extract the forest land from the resulting map 

at Step (3), superimpose rasterized OSM road 

networks, and run cluster analysis to generate 

land-use map.

4. Results and discussion

4.1. Land-use classification results

The results of the Random Forest classifier show land 

mosaics that describe the proportion of the study area 

that were classified into each land-use type. The land-

scape of the Landsat scene Path 17 Row 39, consisting of 

185 km2, is comprised of 62% forestland (2.41 × 106 ha), 

followed by 16% cropland, 3% commercial/industrial 

lands, and 8% residential areas. Using GEE, the total 

processing time was 126 s for the entire study area. This 

process could be extended extensively to be applied at a 

larger scale, such as continental and even global.

The map of the dominant land-use types in the study 

area is shown in Figure 9 and the internal validation 

error matrix is provided as Table 2. Figure 9 depicts 

the land-use patterns of the study area. Managed for-

est dominates much of the study region, surrounded by 

with other databases. To convert the uploaded training 

samples from OSM to GEE, a fusion table was generated 

representing the geometry and class types of the training 

samples extracted from OSM. Therefore, the OSM train-

ing sample used for this study are embedded in GEE for 

use by other users. The four-step procedure for mapping 

land-use is summarized below:

(1)  Explore the data-sets of OSM-Nature, OSM-

Landuse, and OSM-Places, set the land-use 

classification strategy based on research objec-

tive, and reclassify and generate the training 

sample data-set.

Figure 7.  spatial distribution of training sites over study 
area. the base map was developed by esri using Here data, 
Delorme basemap layers, openstreetmap contributors, esri 
basemap data, and select data from the Gis user community. 
in north america coverage is provided from level 14 (1: 36k 
scale) through level 16 (1:9k scale). http://goto.arcgisonline.
com/maps/World_light_Gray_Base. this map was created 
using arcGis® software by esri. arcGis® and arcmap™ are the 
intellectual property of esri and are used herein under license. 
copyright ©esri. all rights reserved. for more information about 
esri® software, http://www.esri.com

Figure 8. Workflow of training sample setting.

Figure 9.  the dominant land-use types of study area derived 
from earth observation data-sets and self-automated training 
samples from osm and Google earth. image is courtesy of 
Google earth© (2017). Google earth V 7.1.1.1888 (viewed march 
12, 2017). florida, Usa. 30°05’46.33”n, 82°14’14.11”W, elev. -11 
ft, eye alt 125 mi. sio, noaa, U.s. navy, nGa, GeBco. landsat/
copernicus [accessed December 30 2014]. https://www.google.
com/earth/index.html
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representable zoomed-in view of land-use mosaics 

located in Alachua County, Florida. Figure 10(a) is the 

Google Earth base map and Figure 10(b) is the land-use 

map of the same area, showing the detailed differentia-

tion of land-use types. The land-use mosaics in Figure 10 

demonstrates the lack of detailed accuracy of land-use 

classifications in the absence of “ground-level” training 

samples, such as those that were derived from OSM for 

this study. This highlights the significance and applica-

bility of the integration of OSM and earth observation 

remote sensing data-sets in achieving highly accurate 

land-use maps.

In this research, the out-of-bag error is 4.8%, yielding 

a total classification accuracy of 95.2% for the Random 

Forest classifier building technique. In comparison to 

the Google Earth base map, the results of this study 

indicate that the Random Forest classifier performed 

well in distinguishing residential and commercial areas, 

which often proves challenging. Furthermore, this land-

use classification and mapping strategy is able to detect 

residential areas that are under heavy canopy cover. In 

the forthcoming steps, landscape ecology tools are used 

to analysis the land-use patterns of the study area and 

investigate the drivers of the land-use changes.

4.2. Accuracy assessment

To perform accuracy assessment on our open land-use 

maps, we also performed an accuracy assessment for the 

OSM-derived training samples as an out-of-bag valida-

tion to get estimates of class noise levels in the training 

data (see Table 2). We constructed an error matrix from 

the results of our land practice map, and calculated the 

commission, omission, and the overall errors (Table 2). 

Table 3 shows the confusion matrices for both internal 

out-of-bag accuracy and external accuracy. Producer’s 

residential areas and with some residential land pen-

etrating forest cover. Urban build-up areas, including 

commercial/industrial, are seen scattered among other 

land-use types. Cropland/agriculture land-use is seen 

interwoven with residential land mainly in the western 

region of the image. However, smaller patches of agri-

cultural land-use are notably evidenced to be encroach-

ing on denser forest land cover. Figure 10 depicts a 

Table 2. the internal confusion matrix used to calculate the class noise levels in open land-use map.

Classification pixels Cropland
Commercial/

industrial Forestry Residential Waterbody Total
User’s accuracy 

(%)

cropland 347 0 17 2 0 366 94.8
commercial 0 439 10 7 0 456 96.3
forest 4 15 1380 40 12 1451 95.1
residential 0 0 4 230 10 244 94.3
Waterbody 0 1 2 0 42 45 93.3
total 351 455 1413 279 64 2562 −
producer’s accuracy (%) 98.9 96.4 97.7 82.4 65.6 − 95.2

Figure 10.  Zoomed-in view of alachua county, florida: (a) 
Google earth base map; (b) land-use map. image is courtesy 
of Google earth© (2017). Google earth V 7.1.1.1888 (viewed 
march 12, 2017). alachua county, florida, Usa. 29°42’03.94”n, 
82°38’16.24”W, elev. 76 ft, eye alt 11.12 mi. landsat/copernicus 
[november 19, 2016]. https://www.google.com/earth/index.
html

Table 3. the external confusion matrix used to calculate the class noise levels in open land-use map.

Classification pixels Cropland
Commercial/

industrial Forestry Residential Waterbody Total
User’s accuracy 

(%)
Commission 

error (%)

cropland 45 4 7 1 1 58 77.6 22.4
commercial 3 27 10 7 0 47 57.4 42.6
forest 4 0 43 6 2 55 78.2 21.8
residential 4 4 3 30 1 42 71.4 28.6
Waterbody 3 1 2 0 42 48 87.5 12.5
total 59 36 65 44 46 250 − −
producer’s accuracy (%) 76.3 75.0 66.2 68.2 91.3 − 74.8 −
omission error (%) 23.7 25.0 33.8 31.8 8.7 − − ?
Kappa index (%) 70.7 50.3 70.5 65.3 84.7 69.7 ?
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human land-use needs and associated activities. Land 

ownership is an important link between human and 

environmental factors, especially at the regional scale. 

At the macrosystems scale, forest ownership patterns 

explain different types of land management practices 

and trajectories of land-use change (Turner 1989).

In Southeastern United States, forest management 

is the main driving force of the forest structure, which 

affects forest ecosystem services (Becknell et al. 2015), 

and alters forest properties and processes. Southeastern 

forest system is a fire-dominated system with native trees 

adapted to short-period stand-clearing events. We clas-

sify forest management into four categories: production 

management ecological management, passive manage-

ment, and preservation management. The major forest 

management types are production and passive manage-

ment due to the dominant ownership of private own-

ers, logging companies, and investment institutions 

(e.g. Real Estate Investment Trusts (REITs) and Timber 

Investment Management Organizations (TIMOs)) 

(Zhang, Butler, and Nagubadi 2012). The land-use map 

produced at the regional scale will help landowners, gov-

ernors, and decision-makers for better understanding 

the land patterns, processes, and consequences produced 

by diverse land management practices.

5. Conclusions and perspectives

In this study, we proposed a strategy to mapping land-

use and management practices using cloud-computing 

and combining earth observations with OSM-derived 

training samples. OSM-Nature, OSM-Landuse, and 

OSM-Places were reclassified and converted into dif-

ferent major land-use class types. The mapping strategy 

can be designed based on your understanding of the 

land of your study of interest. Moreover, the map has 

more scientific sound, as it is ready for all those types 

of analysis from landscape ecology, biogeography. It can 

also be a base map for designated study as well.

OSM is an interesting new platform, which could 

be implemented in land cover mapping and assess-

ing, because of its geo-located features and labels. The 

combination of earth observations with OSM features 

will be a tool for large-scale mapping and will present 

great opportunities in the creation ideas because of 

its unique workflow to fulfill specific mapping needs. 

The advantages of incorporating and deriving training 

samples from OSM can significantly enlarge the amount 

of training samples. The Random Forest was used for 

classification of a multi-source remote sensing based on 

geo-located supervised training data-set derived from 

OSM. In experiments, Random Forest performed well 

with the out-of-bag validation accuracy of 95.2% and 

external validation accuracy of 74.8%. Results also show 

that the Random Forest algorithm yields accurate land-

use classifications at a regional scale, with 74.8% overall 

accuracy and a Kappa index of 69.7%. The time cost of 

accuracy (omission error) and user’s accuracy (commis-

sion error) were calculated for each land-use class. The 

internal validation produced the out-of-bag error during 

the training of Random Forest classifier. Rows represent 

the reference data and columns represent the classifica-

tion results. Producer’s accuracy and user’s accuracy are 

listed in the last row and column, respectively. The over-

all accuracy of the thematic map was 95.2%, and overall 

95.1% of the forestry pixels were correctly identified as 

forest. Waterbody shows the lowest user’s accuracy of 

93.3%, which is because of the light weight in the train-

ing samples, and VGI contributors define waterbody 

differently in OSM-Nature feature layer.

Accuracy assessment was carried out to evaluate the 

classification results. The reference test pixels were ran-

domly distributed in the study area. A total number of 

250 test points were used for evaluation. The external val-

idation was conducted with around 50 points per land-

use class random derived samples from Google Earth. 

The assessment result is shown in Table 3, depicting the 

error matrix and condition coefficient for the five classes. 

In Table 3, Kappa index analysis along with per-class is 

used for accuracy assessment as well. According to Table 

3, among the major land-use types, the Kappa index is 

69.7% with the overall accuracy of 74.8%. This means the 

Open Land-use map and virtual validated Google Earth 

map match at a moderately rank. Class-based analysis 

of user’s accuracies reveals that 77.6%, 78.2%, 71.4%, 

and 87.5% of the cropland, forestry, residential, and 

waterbody, respectively. Therefore, it was concluded that 

these major land-use classes could be used for land-use 

mapping purposes at a relatively good level of reliability. 

There was a low user’s accuracy on commercial lands, 

which was 57.4% because of the total number of mills 

(confuse with land-use type of forestry) located in the 

study area of the Southeastern Unites States.

The mapping strategy presented in this study is rec-

ommended mainly for mapping relatively broad land-use 

classes at large scale. Based on the level of noise tolerance 

of random classifier, this mapping strategy even has the 

potential to generate historical multi-temporal land-use 

maps for change detection and monitoring.

4.3. Implications for land management

Based on the results of this study, the estimated area of 

forestry, cropland and the other major land-use types 

could be calculated based on the land-use patterns map. 

The quantitative estimate of the landscape is an impor-

tant approach for the evaluation of the impact of the cur-

rent land-use and might aid in the assessment of human 

impact on nature resources. Moreover, by incorporating 

earth observation imagery, it will provide a structured 

and valuable source of data to monitor land change at 

the regional scale. Land management practices, usu-

ally driven by land ownership types and vice versa, can 

reflect the objective of ownership types including varied 
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applications of 3S technology in resources and environment 
management, landscape ecology, and land-use simulations.
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