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ABSTRACT

A land-use map at the regional scale is a heavy computation task yet is critical to most
landowners, researchers, and decision-makers, enabling them to make informed decisions for
varying objectives. There are two major difficulties in generating land classification maps at the
regional scale: the necessity of large data-sets of training points and the expensive computation
cost in terms of both money and time. Volunteered Geographic Information opens a new era
in mapping and visualizing the physical world by providing an open-access database valuable
georeferenced information collected by volunteer citizens. As one of the most well-known VGI
initiatives, OpenStreetMap (OSM), contributes not only to road network distribution information
but also to the potential for using these data to justify and delineate land patterns. Whereas,
most large-scale mapping approaches - including regional and national scales — confuse “land
cover”and “land-use’, or build up the land-use database based on modeled land cover data-sets,
in this study, we clearly distinguished and differentiated land-use from land cover. By focusing on
our prime objective of mapping land-use and management practices, a robust regional land-use
mapping approach was developed by integrating OSM data with the earth observation remote
sensing imagery. Our novel approach incorporates a vital temporal component to large-scale
land-use mapping while effectively eliminating the typically burdensome computation and
time/money demands of such work. Furthermore, our novel approach in regional scale land-use
mapping produced robust results in our study area: the overall internal accuracy of the classifier
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was 95.2% and the external accuracy of the classifier was measured at 74.8%.

1. Introduction
1.1. Land-use mapping at regional scale

Land-use maps derived from remote sensing imagery
play a vital role in monitoring human-environmental
interactions such as landscape changes, ecological ser-
vices (conservation), and urban planning and manage-
ment (Lambin et al. 2001; Agarwal et al. 2002; Weng
2002; Abdullah and Nakagoshi 2007; Sumarga and Hein
2014; Hegazy and Kaloop 2015). Whereas, land cover
maps represent the observed biophysical cover of the
Earth’s surface, land-use maps describe the arrange-
ments, activities, and inputs people undertake within a
particular land cover type to produce, modify or main-
tain it. These specified and precise aspects of land-use
patterns are indicative of the challenge in establishing
distinctive use attributes and accurately mapping them.
Ground-validated data are therefore essential to verify
remotely sensed data used to infer land-use character-
istics. In practice, there is a gap between remote sensing
earth observations and their translation into subjective
mapping products depicting how the land is used and

affected by human activity. Remotely sensed data-sets
can be used to monitor land cover dynamics, but are
insufficient on their own for deriving land-use char-
acteristics — the manner in which people utilize, and
thus modify the land on the ground. The latter is the
concept of “land-use”, which is distinct from, and often
confused with, the term “land cover”. Land-use reflects
and results from anthropogenic activities on the Earth’s
surface. The distinction between land cover and land-
use poses a challenge and elicits a strategy, for mapping
and monitoring the landscape changes and processes.
In modern history, ecosystems are strongly affected
by anthropogenic factors (Folke, Holling, and Perrings
1996; Vitousek et al. 1997), including agriculture, build-
ing construction and urban expansion, forest timber
extraction, and preservation systems (national and state
parks) (Matson et al. 1997; Hartley 2002). Macrosystems
of forests, croplands, and waterways are driven by human
need and associated activities (Foley et al. 2005). The
interactions between and the effects of different land-use
types may be forces of landscape-wide importance. For
example, in the Southeastern United States, significant
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expansions of urban areas may convert forested land to
urban uses, and pine plantation (forestry) may come
from cropland (Wear and Greis 2002, 2013). These kinds
of landscape conversions could represent macrosystem
changes, depending on scale and extent, and can have
immediate and local implications for landowners and
management practices.

Although land-use mapping techniques are well stud-
ied and have been applied to mapping most developed
areas from different perspectives and at local scales
(Lambin et al. 2001; Bryan, Barry, and Marvanek 2009;
Bateman et al. 2013; Lawler et al. 2014), it is challeng-
ing to map heterogeneous land-use at a regional scale
with high spatial resolution. At the macrosystems scale,
it becomes more difficult to map land-use due to the
lack of training samples and validation points, and the
necessity of heavy computing tasks. However, despite
these obstacles, successful regional scale land-use map-
ping projects have been accomplished. The Australian
Collaborative Land-use Mapping Program mapped
land-use in the 17.3 million km? of Queensland using
a Markov chain Monte Carlo machine learning tech-
nique (Lesslie, Barson, and Smith 2006; Bryan, Barry,
and Marvanek 2009). The integration of remote sensing
data with Volunteered Geographic Information (VGI)
data platforms such as Open Street Map (OSM) and
cloud computing platforms such as Google Earth Engine
(GEE), provides a significant resource for land cover and
land-use mapping and related research. Moreover, the
combining of remote sensing data and OSM constitutes
a powerful tool to monitor, characterize, and quantify
the landscape. The product will be an important source
of information for researchers and policy-makers for
investigating land parcels.

Supervised classification has been proven to be an
efficient tool for mapping land patterns and land changes
accompanying the spatial and temporal configuration of
landscape heterogeneity (Congalton 1991). However, it
becomes ineffective/inapplicable at regional scale and
for fine resolution mapping because the training data
(i.e. ground-validated data) collection process is costly
and time-consuming, and is difficult to automate. The
processing and collecting time of classification in situ
training sites significantly slows down the use of such
methods in the applications of mapping regional land
patterns.

1.2. Volunteered Geographic Information as a
source of training data

VGI marks a new era in mapping and visualizing our
world, and its data and applications have grown signif-
icantly during the last decade (Elwood 2008; Haklay,
Singleton, and Parker 2008; Zook et al. 2010). OSM is
one of the well-supported VGIs and has been studied and
applied in multiple disciplines, but there remain large
quantities of information that need to be investigated.

OSM has unique advantages, allowing its use to be fit-
ting a wider range of applications as compared to the
official geographic databases. OSM has the capability to
create superior maps when considering temporal change
trajectories by providing “up-to-date” data (Estima and
Painho 2013). From a geographic perspective, this is sig-
nificant because scaling has always been a major issue
in the mapping and monitoring of the Earth. For the
research undertaken in this study, OSM is an attractive
choice to achieve the research objectives because of the
growing coverage of big spatial data and cloud comput-
ing capabilities (Zook et al. 2010).

OSM contains not only road network data, but also
land-use information, which might be derived from a
combination of other ground-level features. Previous
studies have shown that OSM is a valuable and struc-
tured data source for mapping land cover and land-use
by providing high positional accuracy in comparison
with the corresponding commercial data-sets (Estima
and Painho 2013, 2015; Jokar et al. 2013; See et al. 2013,
2015; Johnson and lizuka 2016). For improving the value
and potential of collecting and mapping, OSM provides a
VGI platform, to which many volunteers can contribute
and collaborate. Moreover, the achieved OSM data-sets
enable the study of past land changes based on mul-
ti-temporal trajectories (Neis, Zielstra, and Zipf 2012).

Recent studies have investigated the spatial distribu-
tion balance of OSM-trained classification maps. A total
76% agreement was found in a study based in Portugal,
and 64% and 77% agreement was found in two cities
in Germany as compared with the corresponding offi-
cial land-use/cover databases (Estima and Painho 2013;
Jokar, Helbich, et al. 2015; Jokar, Mooney, et al. 2015).
However, most OSM land cover and land-use mapping
applications have focused on urban areas at the local
scale, and without using earth observation databases for
cross-referencing. Moreover, to produce more accurate
and reliable mapping of land-use patterns, the temporal
features of the land should also be considered. There
was no study that considered and analyzed the temporal
land changes, which are critical for reflecting human
activities. Different land-use types have distinctive time
series signals that can be derived from earth observation
images. For example, the land-use type of residential
areas typically is not characterized by rapid or seasonal
changes, whereas cropland and managed forestlands
land-use types have a high temporal variation which
can be observed in their respective time series signals.

1.3. Incorporating OpenStreetMap with earth
observations

Remote sensing techniques have been widely used for
observing and monitoring landscape changes, terrestrial
features, and can extensively decrease the time and cost
for large-scale mapping. Moreover, the Web 2.0 brings
a revolution of how people collect, map, and analyze



geo-located data (Haklay, Singleton, and Parker 2008).
For earth observation data-sets, GEE is a newly devel-
oped mapping and analysis platform which enables
large-scale spatial analysis by its special infrastructure
and automatically parallelized computation techniques
(Johansen, Phinn, and Taylor 2015; Padarian, Minasny,
and McBratney 2015; Patel et al. 2015). By storing and
bringing together large amounts of earth observation
data on Earth Engine’s server, GEE can analyze big data
“on-the-fly” (Yu and Gong 2012). Personal databases
can also be uploaded to the server as additional assets
to achieve time series generating, zonal statistics, spec-
tral analysis, and many machine learning classification
techniques.

GEE has been studied for its strong ability for map-
ping landscape at the regional scale in both time and
space. Yang generated a Mayan forest land cover map by
building OSM-derived training samples into a high-di-
mensional Landsat-based Random Forest classifier of
the whole Yucatan Peninsula, and then delineated land
patterns with road networks (Yang 2017). GEE was also
applied to monitoring land changes at the regional scale
based on Landsat 30-m spatial resolution (Soulard et al.
2016; Azzari and Lobell 2017). The major objective of
this research is to incorporate OSM into regional land-
use mapping using GEE to investigate and quantify
land-use types in the Southeastern United States. The
broader aim of this study is to develop an integrative
and innovative regional scale mapping strategy that can
be replicated for similar research purposes. Overall, the
methodology presented here seeks to improve land-use
mapping strategies by reducing economic and temporal
burdens, and contribute to the science of monitoring
human-environment interactions.

2, Study area

This study focuses on the land-use patterns of the heter-
ogeneous Southeastern United States. The Southeastern
United States has high landscape heterogeneity, with
heavily managed forestlands, highly developed agri-
culture lands, and multiple metropolitan areas. Human
activities are transforming and altering land patterns and
structures in both negative and positive manners. Based
on EPA ecoregion descriptions (Omernik and Griffith
2014), land cover in the Southeastern United States is a
mosaic of cropland, pasture, woodland and forests, and
wetlands. For this research, the study area consists of one
Landsat scene of Worldwide Reference System II (WRS-
2) Row 17 Path 39 (Figure 1). This Landsat scene is an
illustrative example of land patterns of the Southeastern
United States, which covers an area of approximately
185 km?. The heterogeneous landscape in the study area
consists of a mixture of highly developed cropland, plan-
tation forests, multiple metropolitan areas, and indus-
trial and commercial lands. Human land-use activities
and management practices are transforming landscape
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Figure 1. Study area in southern Georgia and north Florida
delineated by the Landsat tile of WRS-Il Path 17 Row 39.
Underlying map shows the EPA level Ill Ecoregions (EPA). This
map was created using ArcGIS® software by Esri. ArcGIS® and
ArcMap™ are the intellectual property of Esri and are used
herein under license. Copyright © Esri. All rights reserved. For
more information about Esri” software, please visit http://www.
esri.com

patterns and processes in the region, resulting in both
negative and positive consequences for stakeholders and
ecosystems.

3. Methodology

This research proposes a methodology to produce a
regional scale land-use map by extracting training data
from OSM. Random Forest is chosen as the classifier
because it has become a widely used algorithm for remote
sensing image classification (Breiman 2001). Random
Forest has the ability to handle high-dimensional ras-
ter databases (Senf, Hostert, and van der Linden 2012),
which suits the framework of this research.

3.1. Data sources

3.1.1. OpenStreetMap data structure

OSM is a fully free and openly accessible map of road
network data. All OSM data were downloaded from
the Geofabrik website http://download.geofabrik.de.
Community volunteers collect and submit geographic
information to the global OSM database (Ciepluch
etal. 2009). OSM data quality has been broadly assessed
with consistently positive reviews. Girres and Touya
(2010) performed a spatial analysis of the quality of OSM
street network representations in the UK and France,
respectively, through a comparison to ground-truth
data obtained from the corresponding national map-
ping agency. Both case studies found that on average,
the quality of the data was reasonably good but exhib-
ited a significant spatial heterogeneity. Neis, Zielstra, and
Zipf (2012) analyzed how the quality of the OSM street
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network in different regions of Germany had changed
between the years 2007-2011. This multi-temporal study
demonstrated that the quality and accuracy of OSM data
have improved over time, and more recent studies con-
firm this assessment (Neis, Zielstra, and Zipf 2012).

The OSM database contains a full coverage of the
area of interest for this research, with the following sub-
data-sets: OSM-Places, OSM-Railways, OSM-Roads,
OSM-Waterways, OSM-Buildings, OSM-Landuse, and
OSM-Nature. In this study, the OSM feature classes
applied for mapping land-use patterns include OSM-
Places, OSM-Landuse, and OSM-Nature.

The OSM-Landuse feature class is used to describe
the human use of land, presented as a polygon class con-
sisting of forests, residential areas, and some industrial
areas. Figure 2 shows the composition of OSM-Landuse
labels. In the study area of Landsat scene Path 17 Row 29,
there are 26 different types of land-use labels on land sur-
face, which illustrate how human activities affect land-
scapes. Labels of “residential” contribute 43% (675 sites),
followed by “commercial” (14% — 214 sites) and “farm”
(11% — 175 sites). OSM-Nature is used to describe natu-
ral physical land features, including ones that have been
modified by humans, which covers most waterbody and
conservation areas. In OSM-Nature, all the waterbodies,
parks, and recreation areas are represented as polygons.
As shown in Figure 3, labels of “water” contribute 75%
(2259 sites), follows by “forest” (17% — 503 sites) and
“park” (8% — 228 sites). The OSM-Places feature class
includes urban and suburb landmarks and attractions,
with the following place labels for the study area shown
in Figure 4: labels of “helmet” contribute 66% (585 sites);
followed by “island” (24% — 211 sites;) and “village” (3%
— 30 sites). Based on the general statistics of the data
structure of OSM labels, it was determined that OSM-
Nature, OSM-Places, and OSM-Landuse represent a

Landuse Layer Labels

= basin = brownfield

= cemetery « churchyard
= commercial = conservation
= construction = farm

= farmland = farmyard
= grass = greenfield
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= landfill

= military
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= plant_nursery = quarry
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Figure 2. Breakdown of OSM-Landuse labels of study area.

variety of human-made land-use types, and the quantity
of data points is large enough to suffice for the necessary
inputs for large-scale classification mapping.

The OSM-Landuse, OSM-Nature, and OSM-Places
were reclassified and converted into five major land-use
types: “residential’, “forestry”, “cropland’, “commercial/
industrial”, and “waterbody”. Although it is noted that
the “waterbody” class may not be a land-use type, it is
included as it accounts for a significant proportion of
Florida land cover. Furthermore, the inclusion of the
“waterbody” class in the land-use map serves to avoid
the classification bias. Users may also decide to apply
different classification frameworks based on the specific
research questions and understanding of the study area
attributes.

3.1.2. Earth observations

Earth observation is one of the most essential tools
for monitoring the earth’s surface and its dynamics at
regional to global scales. Although earth observation
data and remote sensing techniques allow for extensive
mapping of characteristics of the land surface, it can be
financially burdensome and time-consuming for map-
ping at large scale in both time and space. GEE provides
online access to worldwide coverage of a vast of remote
sensing data-sets. The GEE API is currently available
upon request to a number of groups for testing and
applying large-scale mapping on the cloud server.

The spatial and temporal covariates used in the land-
use classification for this research include multi-temporal
land reflectance, forest canopy height, DEM, mean-EVI,
and the land ownership. The spatial and temporal covar-
iates are important indicators of land-use, ecosystems,
and the remotely sensed inputs are consistently and
accurately derived. All the data used for the land-use
map produced in this research were up-to-date, subset to
the boundaries of the study area, and resampled to 30-m
spatial resolution. Additionally, all the data used as spa-
tial and temporal covariates cover the entire study area
and can be extended to the global scale, thereby making
the research methods reproducible for other regions of
interest, given there are similar research objectives. The
earth observation images used here consist of a singular
time step Landsat images and multi-temporal composite
satellite images. The temporal heterogeneity of the data-
sets combines to reflect the characteristics of the land-
scape of the study area. Furthermore, the heterogeneous
data allows learning a supervised algorithmic model (ie
Random Forest) in order to extract relevant thematic
classes of land-use/land cover from the satellite imagery.
Classification is performed on a data-set consisting of
the following five major sources (Table 1).

(1) Landsat 8 Top-of-Atmosphere (TOA) (Chander,
Markham, and Helder 2009) of 2016: this
composite image reflects the greenest pixel
during the whole period based on NDVL
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Table 1. Spatial and temporal input covariates for Random Forest classifier.

Database name Objective Google Earth Engine ID Spatial resolution ~ Temporal resolution

Landsat 8 TOP reflectance Reflectance LANDSAT/LC8_L1T_ANNUAL_GREENES 30m 16-day
T_TOA

Forest canopy height Canopy height ~ NASA/JPL/global_forest_canopy_ 1 km Composite
height_2005

MODIS 13 EVI EVI MODIS/MOD13Q1 250 m 16-day

SRTM (Shuttle radar topography mission) ~ DEM CGIAR/SRTM90_V4 90m Composite

SEUS land ownership type Ownership users/yangdi1031/se_ownership_ 250 m Composite
masked

Nature Layer Labels

= forest = park

= riverbank = water

Figure 3. Breakdown of OSM-Nature labels of study area.

)

3)

(4)

(5)

(GEE ID: LANDSAT/LC8_L1T_ANNUAL_
GREENEST_TOA). This is a multi-temporal
data-set consisting of Landsat scenes with
cloud removal by Fmask algorithm (Zhu and
Woodcock 2012).

Global forest canopy height version of 2005
(Simard et al. 2011): this data-set represents
the canopy height on global level by incorpo-
rating the Geoscience Laser Altimeter System
(GLAS) and ancillary data. (GEE ID: NASA/
JPL/global_forest_canopy_height_2005).
MOD13_EVI (Huete et al. 2002): the MODIS 13
EVI product was designed to minimize canopy
background variations and maintain the sensi-
tivity over dense vegetation conditions at a spa-
tial resolution of 250 m every 16 days. (GEE ID:
MODIS/MOD13Q1).

Shuttle Radar Topography Mission (SRTM): the
DEM data from SRTM are produced to provide
consistent, high-quality data with a resolution
of 90 m (Jarvis et al. 2008). (GEE ID: CGIAR/
SRTM90_V4).

Land Ownership Types: geospatial land
ownership data sources from federal and

Qur

Place Layer Labels
® city = county
= farm hamlet
u island " locality

m neighbourhood = suburb

= town mvillage

Figure 4. Breakdown of OSM-Place labels of study area.

nongovernment agencies are integrated for
landownership type mapping. Landowners
are classified as public and private. There are
six sub-types of public ownership, which are
federally protected, federal, state-protected,
state, military, and local. In addition, there
are four sub-types of private ownership: non-
government organization, private, family, and
corporate. The ownership classification strategy
is made, based on different management objec-
tives, as well as landowner skills, budgets, and
interests. The U.S. Protected Areas (PADUS)
is the primary data source to identify public
ownership.

To summarize, Figure 5 shows the examples of covar-
iates used to generate land-use maps: including Shuttle
Radar Topography Mission (SRTM) digital elevation
at 30-m resolution (Figure 5(a)), MODIS13 Mean EVI
of 2015 at 250-m resolution (Figure 5(b)), Forest can-
opy height at a resolution of 1 km (Figure 5(c)), and
Landsat 8 calibrated Top-of-Atmosphere (TOA) with
Fmask quality band to remove the cloud contaminations
(Figure 5(d)).
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Figure 5. Examples of covariates used to generate land-use maps: (a) Shuttle radar Topography Mission (SRTM) digital elevation at 30-m
resolution; (b) MODIS13 Mean EVI of 2015 at 250-m resolution; (c) Forest canopy height at 1-km resolution; (d) Landsat 8 calibrated
Top-of-Atmosphere (TOA) with Fmask quality band to remove the cloud contaminations. Background image and map courtesy
of Google Map (2017). “Florida, U.S”" Map. Google Maps. Google, Available from: https://www.google.com/maps/@30.1671351,-

82.8317191,8.92z?hl=en [Accessed March 24, 2017].

3.2. Mapping strategy

3.2.1. Training samples setup

The randomly selected training points were converted
into a Keyhole Markup Language file. Each chosen
point centered at a 30 x 30 m polygon, one-pixel image
size. The chosen points and associated polygons were
overlaid in Google Earth virtual globe for visualization.
The selected points were identified and assigned classes
based on the OSM feature types and their surrounding
areas. The points were then split into training and testing
data-sets for model validation. To avoid the imbalance
caused by polygon weight within the training sample
(Visconti et al. 2013), OSM-Nature and OSM-Landuse
polygons feature classes were converted into points fea-
tures based on their respective geographic centroids. In
Figure 6, the spatial distribution of the training samples
of each feature including OSM-Nature, OSM-Landuse,
OSM-Places, and Google Earth visualization samples
are shown, and Figure 7 shows the visualization of all

training samples. There are total number of 3068 points
from OSM and 380 from Google Earth visualization. It is
found that the spatial distribution of OSM-Landuse and
OSM-Nature clustered in a great degree, which might
cause bias for the classifier (see Figures 6(a) and (b)). We
therefore added the layer of OSM-Places.

Another challenge arose from the imbalanced class
distribution of different extracted featured from OSM.
Thus, a layer of managed forest from Google Earth
visual interpretation was added. Google Earth was used
because it provides higher spatial resolution with a time
span of more than 20 years. Therefore, more spatial
information can be acquired about what types of land
practices occur during the spatio-temporal validation
of this study. Further details about the training sample
setting strategy is depicted in Figure 8, which shows the
workflow reflecting the conversion of OSM features to
land-use labels. In this study, for our study area, there are
3068 training samples collected from OSM features, and
380 from visual interpretation from Google Earth over
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Figure 6. Spatial distribution of RF training from OSM and Google Earth Engine: (a) centroid center of OSM-Landuse feature; (b)
centroid center of OSM-Nature feature; (c) managed forest sites from Google Earth visualization; (d) centroid center of OSM-Place
feature. The base map was developed by Esri using HERE data, DeLorme basemap layers, OpenStreetMap contributors, Esri basemap
data, and select data from the GIS user community. In North America coverage is provided from Level 14 (1: 36k scale) through Level
16 (1:9k scale). http://goto.arcgisonline.com/maps/World_Light_Gray_Base. This map was created using ArcGIS’ software by Esri.
ArcGIS® and ArcMap™ are the intellectual property of Esri and are used herein under license. Copyright © Esri. All rights reserved. For
more information about Esri” software, please visit http://www.esri.com

time (3448 in total). The training samples extracted from
OSM were re-classified into five classes: (1) residential,
(2) managed forest, (3) cropland, (4) commercial/indus-
trial, and (5) waterbody. The training sample set of this
study is visualized in Figure 7, which represents the spa-
tial distribution of the training points geographically and
illustrates the degree of urbanization.

3.2.2. Supervised classification

The classifier of Random Forest is considered for clas-
sification of multi-source remote sensing data mapping
in this study because it was proved to perform relatively
well for the integration of imagery data and collaborate
the environmental covariates into classifier to improve
its accuracy in such a complex landscape (Rodriguez-
Galiano et al. 2012). For classifying land-use at the
regional scale, Random Forest has several advantages
over the others and the most notable ones (Breiman
2001) are:

o To implement advanced pixel-based supervised
classifier with high accuracy.

« To estimate and measure the variable importance,
and

 To compare out-of-bag error to independent vali-
dation to avoid classification bias.

All data used in this study as inputs for the classi-
fier are completely embedded in GEE. In other words,
the GEE IDs of each database used in this study are
accessible by via GEE platform, and can be used for to
reproduce the methodology presented here and for other
study regions. Moreover, the use of GEE enables regional
land cover mapping to be accomplished with greater
ease than other platforms, as many spatial and tempo-
ral covariates are already available in the GEE server
and the calculation itself is parallelized automatically
to optimize the computing time cost. In addition, the
spatial resolution can be resampled easily to match or fit
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Figure 8. Workflow of training sample setting.

with other databases. To convert the uploaded training
samples from OSM to GEE, a fusion table was generated
representing the geometry and class types of the training
samples extracted from OSM. Therefore, the OSM train-
ing sample used for this study are embedded in GEE for
use by other users. The four-step procedure for mapping
land-use is summarized below:

(1) Explore the data-sets of OSM-Nature, OSM-
Landuse, and OSM-Places, set the land-use
classification strategy based on research objec-
tive, and reclassify and generate the training
sample data-set.

ommercial/industrial

Figure 9. The dominant land-use types of study area derived
from earth observation data-sets and self-automated training
samples from OSM and Google Earth. Image is courtesy of
Google Earth® (2017). Google Earth V 7.1.1.1888 (viewed March
12,2017). Florida, USA. 30°05'46.33"N, 82°14'14.11"W, elev. -11
ft, Eye alt 125 mi. SIO, NOAA, U.S. Navy, NGA, GEBCO. Landsat/
Copernicus [Accessed December 30 2014]. https://www.google.
com/earth/index.html

(2) Validate with Google Earth on both time and
space for the training data-set.

(3) Collaborate the spatial and temporal covari-
ates as inputs for Random Forest classifier, run
Random Forest classifier using GEE API, and
analyze the classification accuracy for each clas-
sification type.

(4) Extract the forest land from the resulting map
at Step (3), superimpose rasterized OSM road
networks, and run cluster analysis to generate
land-use map.

4. Results and discussion
4.1. Land-use classification results

The results of the Random Forest classifier show land
mosaics that describe the proportion of the study area
that were classified into each land-use type. The land-
scape of the Landsat scene Path 17 Row 39, consisting of
185 km?, is comprised of 62% forestland (2.41 x 10° ha),
followed by 16% cropland, 3% commercial/industrial
lands, and 8% residential areas. Using GEE, the total
processing time was 126 s for the entire study area. This
process could be extended extensively to be applied at a
larger scale, such as continental and even global.

The map of the dominant land-use types in the study
area is shown in Figure 9 and the internal validation
error matrix is provided as Table 2. Figure 9 depicts
the land-use patterns of the study area. Managed for-
est dominates much of the study region, surrounded by
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Table 2. The internal confusion matrix used to calculate the class noise levels in Open Land-use map.

Commercial/ User’s accuracy

Classification pixels Cropland industrial Forestry Residential Waterbody Total (%)
Cropland 347 0 17 2 0 366 94.8
Commercial 0 439 10 7 0 456 96.3
Forest 4 15 1380 40 12 1451 95.1
Residential 0 0 4 230 10 244 94.3
Waterbody 0 1 2 0 42 45 93.3
Total 351 455 1413 279 64 2562 -

Producer’s accuracy (%) 98.9 96.4 97.7 824 65.6 - 95.2

residential areas and with some residential land pen-
etrating forest cover. Urban build-up areas, including
commercial/industrial, are seen scattered among other
land-use types. Cropland/agriculture land-use is seen
interwoven with residential land mainly in the western
region of the image. However, smaller patches of agri-
cultural land-use are notably evidenced to be encroach-
ing on denser forest land cover. Figure 10 depicts a

Figure 10. Zoomed-in view of Alachua County, Florida: (a)
Google Earth base map; (b) land-use map. Image is courtesy
of Google Earth® (2017). Google Earth V 7.1.1.1888 (viewed
March 12, 2017). Alachua County, Florida, USA. 29°42'03.94"N,
82°38'16.24"W, elev. 76 ft, Eye alt 11.12 mi. Landsat/Copernicus
[November 19, 2016]. https://www.google.com/earth/index.
html

representable zoomed-in view of land-use mosaics
located in Alachua County, Florida. Figure 10(a) is the
Google Earth base map and Figure 10(b) is the land-use
map of the same area, showing the detailed differentia-
tion of land-use types. The land-use mosaics in Figure 10
demonstrates the lack of detailed accuracy of land-use
classifications in the absence of “ground-level” training
samples, such as those that were derived from OSM for
this study. This highlights the significance and applica-
bility of the integration of OSM and earth observation
remote sensing data-sets in achieving highly accurate
land-use maps.

In this research, the out-of-bag error is 4.8%, yielding
a total classification accuracy of 95.2% for the Random
Forest classifier building technique. In comparison to
the Google Earth base map, the results of this study
indicate that the Random Forest classifier performed
well in distinguishing residential and commercial areas,
which often proves challenging. Furthermore, this land-
use classification and mapping strategy is able to detect
residential areas that are under heavy canopy cover. In
the forthcoming steps, landscape ecology tools are used
to analysis the land-use patterns of the study area and
investigate the drivers of the land-use changes.

4.2. Accuracy assessment

To perform accuracy assessment on our open land-use
maps, we also performed an accuracy assessment for the
OSM-derived training samples as an out-of-bag valida-
tion to get estimates of class noise levels in the training
data (see Table 2). We constructed an error matrix from
the results of our land practice map, and calculated the
commission, omission, and the overall errors (Table 2).
Table 3 shows the confusion matrices for both internal
out-of-bag accuracy and external accuracy. Producer’s

Table 3. The external confusion matrix used to calculate the class noise levels in Open Land-use map.

Commercial/ User’s accuracy Commission

Classification pixels Cropland industrial Forestry  Residential =~ Waterbody  Total (%) error (%)
Cropland 45 4 7 1 1 58 77.6 224
Commercial 3 27 10 7 0 47 57.4 42.6
Forest 4 0 43 6 2 55 78.2 21.8
Residential 4 4 3 30 1 42 714 28.6
Waterbody 3 1 2 0 42 48 87.5 12.5
Total 59 36 65 44 46 250 - -
Producer’s accuracy (%) 76.3 75.0 66.2 68.2 91.3 - 74.8 -
Omission error (%) 23.7 25.0 33.8 31.8 8.7 — - ?
Kappa index (%) 70.7 50.3 70.5 65.3 84.7 69.7 ?
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accuracy (omission error) and user’s accuracy (commis-
sion error) were calculated for each land-use class. The
internal validation produced the out-of-bag error during
the training of Random Forest classifier. Rows represent
the reference data and columns represent the classifica-
tion results. Producer’s accuracy and user’s accuracy are
listed in the last row and column, respectively. The over-
all accuracy of the thematic map was 95.2%, and overall
95.1% of the forestry pixels were correctly identified as
forest. Waterbody shows the lowest user’s accuracy of
93.3%, which is because of the light weight in the train-
ing samples, and VGI contributors define waterbody
differently in OSM-Nature feature layer.

Accuracy assessment was carried out to evaluate the
classification results. The reference test pixels were ran-
domly distributed in the study area. A total number of
250 test points were used for evaluation. The external val-
idation was conducted with around 50 points per land-
use class random derived samples from Google Earth.
The assessment result is shown in Table 3, depicting the
error matrix and condition coefficient for the five classes.
In Table 3, Kappa index analysis along with per-class is
used for accuracy assessment as well. According to Table
3, among the major land-use types, the Kappa index is
69.7% with the overall accuracy of 74.8%. This means the
Open Land-use map and virtual validated Google Earth
map match at a moderately rank. Class-based analysis
of user’s accuracies reveals that 77.6%, 78.2%, 71.4%,
and 87.5% of the cropland, forestry, residential, and
waterbody, respectively. Therefore, it was concluded that
these major land-use classes could be used for land-use
mapping purposes at a relatively good level of reliability.
There was a low user’s accuracy on commercial lands,
which was 57.4% because of the total number of mills
(confuse with land-use type of forestry) located in the
study area of the Southeastern Unites States.

The mapping strategy presented in this study is rec-
ommended mainly for mapping relatively broad land-use
classes at large scale. Based on the level of noise tolerance
of random classifier, this mapping strategy even has the
potential to generate historical multi-temporal land-use
maps for change detection and monitoring.

4.3. Implications for land management

Based on the results of this study, the estimated area of
forestry, cropland and the other major land-use types
could be calculated based on the land-use patterns map.
The quantitative estimate of the landscape is an impor-
tant approach for the evaluation of the impact of the cur-
rent land-use and might aid in the assessment of human
impact on nature resources. Moreover, by incorporating
earth observation imagery, it will provide a structured
and valuable source of data to monitor land change at
the regional scale. Land management practices, usu-
ally driven by land ownership types and vice versa, can
reflect the objective of ownership types including varied

human land-use needs and associated activities. Land
ownership is an important link between human and
environmental factors, especially at the regional scale.
At the macrosystems scale, forest ownership patterns
explain different types of land management practices
and trajectories of land-use change (Turner 1989).

In Southeastern United States, forest management
is the main driving force of the forest structure, which
affects forest ecosystem services (Becknell et al. 2015),
and alters forest properties and processes. Southeastern
forest system is a fire-dominated system with native trees
adapted to short-period stand-clearing events. We clas-
sify forest management into four categories: production
management ecological management, passive manage-
ment, and preservation management. The major forest
management types are production and passive manage-
ment due to the dominant ownership of private own-
ers, logging companies, and investment institutions
(e.g. Real Estate Investment Trusts (REITs) and Timber
Investment Management Organizations (TIMOs))
(Zhang, Butler, and Nagubadi 2012). The land-use map
produced at the regional scale will help landowners, gov-
ernors, and decision-makers for better understanding
the land patterns, processes, and consequences produced
by diverse land management practices.

5. Conclusions and perspectives

In this study, we proposed a strategy to mapping land-
use and management practices using cloud-computing
and combining earth observations with OSM-derived
training samples. OSM-Nature, OSM-Landuse, and
OSM-Places were reclassified and converted into dif-
ferent major land-use class types. The mapping strategy
can be designed based on your understanding of the
land of your study of interest. Moreover, the map has
more scientific sound, as it is ready for all those types
of analysis from landscape ecology, biogeography. It can
also be a base map for designated study as well.

OSM is an interesting new platform, which could
be implemented in land cover mapping and assess-
ing, because of its geo-located features and labels. The
combination of earth observations with OSM features
will be a tool for large-scale mapping and will present
great opportunities in the creation ideas because of
its unique workflow to fulfill specific mapping needs.
The advantages of incorporating and deriving training
samples from OSM can significantly enlarge the amount
of training samples. The Random Forest was used for
classification of a multi-source remote sensing based on
geo-located supervised training data-set derived from
OSM. In experiments, Random Forest performed well
with the out-of-bag validation accuracy of 95.2% and
external validation accuracy of 74.8%. Results also show
that the Random Forest algorithm yields accurate land-
use classifications at a regional scale, with 74.8% overall
accuracy and a Kappa index of 69.7%. The time cost of



mapping a single Landsat scene is 126 s by GEE platform,
which covers 1.08 x 10° pixels. This mapping strategy
can be easily extended to a larger scale such as state level,
continental level, and, even, global level.

According to the temporal availability of our covar-
iates, the up-to-date land-use pattern mapping strategy
can be extended to a multi-temporal changes database. It
also has the capability to make predictions based on the
spatio-temporal land-use pattern changes and patch size
distributions. There is still a strong need for a continental
coverage land-use map with a higher temporal resolu-
tion, which will reflect the land-use transition processes
at shorter intervals. It is an urgent issue at present; On
the other hand, in order to abate the ecological impacts
caused by the rapidly increasing construction of road
networks, we need the better road network designs com-
bining both top-down and bottom-up processes, which
would retain and preserve large forest patches and decel-
erate the parcellation rate. The use of open-data source
will open our eyes of exploring the area that does not
have an official classification database. Researchers and
applicants can design their own mapping strategy based
on their mapping objectives. The open land map can
use single or multiple classifiers to fulfill the mapping
goals as well.
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