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A B S T R A C T

In the present study, the attitudes of freely-falling conical graupel with a realistic range of densities are in-
vestigated numerically by solving the transient Navier-Stokes equations and the body dynamics equations re-
presenting the 6-degrees-of-freedom motion. This framework allows us to determine the position and orientation
of the graupel in response to the hydrodynamic force of the flow fields. The results show more significant
horizontal movements than those cases with a fixed bulk density of ice assumed in our previous study. This is
because the real graupel particles possess the density less than the bulk density of ice, which, in turn, leads to a
relatively small mass and a relatively small set of moments of inertia. We demonstrate that, with the six degrees
of freedom considered together, when Reynolds number is small, a typical damped oscillation occurs, whereas
when Reynolds number is high, amplifying oscillation may occur which leads to more complicated and un-
predictable flying attitudes such as tumbling. The drag coefficients obtained in the present study agree with the
previous studies and can be approximated by that of spheres of the same Reynolds numbers. We also show that
conical graupel can perform significant horizontal translations which can be on the order of 1 km in 1 h.

1. Introduction

Graupel (or soft hails) are the precursor of hailstones and often
conical in shape. In cloud physics, graupel is defines as an ice particle
grown mainly by the riming process and with a size< 5 mm
(Pruppacher and Klett, 1997). Further growth of graupel will lead to the
formation of hailstones. The riming process refers to the collision of ice
particles with supercooled water droplets that subsequently freeze on
the ice surface (Pruppacher and Klett, 1997; Wang, 2013). Riming is a
phase change process and hence is accompanied by the release of latent
heat. Rapid riming of graupel can cause very fast latent heat release and
influence the cloud development via rapid heating in the cloud. The
riming rate depends on the collision efficiency (Wang, 1983) between
the graupel and the supercooled droplets which, in turn, depends
greatly on the fall attitude of the graupel. The fall of the graupel gen-
erates a flow field around it and that field controls whether or not the
droplet can collide with the graupel.

Aside from forming hailstones that can cause severe damage to
crops and properties, collision of graupel and ice crystals is thought to
be a major electrification mechanism of thunderclouds (Takahashi,
1978 and Williams and Zhang, 1996). How fast electric charges can
accumulate in the cloud depends greatly on the collision efficiency
which again depends mainly on the flow field of the falling graupel.

The flow field of a falling ice particle is affected greatly by its shape
and size. A small ice particle falls smoothly and the flow field is la-
minar. As the particle increases in size, the flow field becomes in-
creasingly turbulent. Highly nonspherical ice particles such as hex-
agonal ice columns, hexagonal ice plates and conical graupel can
perform wide translational and rotational, even tumbling movements
(e.g., Field et al., 1997; Hashino et al., 2016; Vincent et al., 2016;
Chueh et al., 2017). Chueh et al. (2017) reported some preliminary
numerical results of the fall of conical graupel in order to understand
their basic fall attitudes. They obtained results that are qualitatively
consistent with experimental results of the vertical wind tunnel study
by Pflaum et al. (1978; 1979; 1980). However, the graupel density used
in Chueh et al. (2017) is assumed to be constant (i.e., that of solid ice)
which is unrealistic. It is known that graupel density vary greatly with
size and hence the mass and therefore the fall velocity of the graupel
(Pruppacher and Klett, 1997). All these will ultimately impact the fall
attitude of the graupel.

The aim of the present paper is to allow the graupel density to vary
according to the size so that the results of the present simulations
having the realistic density values and thus the more realistic mass and
moment of inertia of the graupel can reflect the physics of the freely
falling conical graupel particles. We will also perform more thorough
analyses of the flow fields in order to better understand the fall
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behavior, especial those related to tumbling which is a very important
fall mode of graupel especially when they become larger.

This paper is organized as follows. In Section 2, the mathematical
and physical background of the governing equations and the mathe-
matical expressions used to generate the conical graupel shape are
presented. This is followed by the results and their discussions of the
motions of these particles. Finally, the conclusions and outlook will be
given in the final section.

2. Physics and mathematics of the flow field calculations

Following the previous study by Chueh et al. (2017), we use the
same equation to depict the x-z-cross-section of the graupel shape first
proposed by Wang (1982). This equation is:
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where x and z are the horizontal and vertical coordinates whereas a and
c are used to control the horizontal and vertical semi-axis lengths, re-
spectively. The parameter λ, whose value varies between 1 and ∞,
serves to control the sharpness of the apex of the conical graupel. For
more details about this expression and the shape it generates, see Wang
(1982).

Eq. (1) generates only the xz-cross-section of the graupel. To obtain
a 3D conical body, we revolve this cross-section about the z-axis which
yields the following 3D mathematical expression:
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which is a special case of the conical bodies with elliptical cross-sec-
tions descried by Wang (1999).

Using Eq. (2) and assuming various combinations of a, c and λ, we
can generate conical graupel of different sizes and shapes (Wang,
1982). The parametrical combinations we use in the present study are
the same as that in Chueh et al. (2017).

For the fall of hydrometeors in clouds, the scale is small enough so
that the compressibility of air plays no important role (Pruppacher and
Klett, 1997; Wang, 2013). Thus we only need to consider in-
compressible flow for the present study. For isothermal, incompressible
flow of a Newtonian air fluid, the mass and momentum transport are
described as follows:

∇⋅ =u 0, (3)
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where u stands for the air velocity vector containing three components
representing u1, u2, and u3 in x, y, z direction, respectively, p the
pressure, ρa the air density, ν the kinematic viscosity of air, and g the
gravity. The boundary conditions are the same as in Hashino et al.
(2016):

= =u i0 ( 1, 2, 3) at graupel particle surface,i (5)

= =∞u u constant at the inlet of the outmost boundary from graupel,3

(6)

∂
∂

=u
z

0 at the outlet of the outmost boundary from graupel,3

(7)

= = ∂
∂

= ∂
∂

=

=

u u u
x

u
y

i0, 0 (

1, 2, 3) at the lateral side of outmost boundary from graupel,

i i
1 2

(8)

The physical meaning of these boundary conditions can be found in
Chueh et al. (2017). The boundary condition (5) is the nonslip condi-
tion for the dynamic mesh considered here.

In this study, conical graupel particles with diameters of 0.5, 1, 2, 3,

4, 5 mm are investigated. As mentioned before, graupel becomes hail-
stones when they are larger than 5 mm. The present study assumes that
the atmospheric environment is that pressure is 800 hPa and tem-
perature is −8 °C. In such an environment, the temperature is in the
warm range (from 248 to 278 K) where graupel particles are typically
found (Pruppacher and Klett, 1997). The atmospheric environment is
the same as those used previously in Wang and Kubicek (2013),
Hashino et al. (2014, 2016), and Chueh et al. (2017). The graupel's far
stream velocity u∞ values were set to the terminal fall velocities esti-
mated based on the empirical velocity-mass relationship for conical
graupel by Locatelli and Hobbs (1974). The values are calculated based
on a mathematical equation in their Table 1.

The motion of the graupel in the present study is not pre-de-
termined; its position and orientation at each time step is determined by
the hydrodynamic forces calculated at the previous time step (see
Snyder et al., 2003). To achieve this, we employed the six degrees of
freedom (6 DoFs) solver in the computational fluid dynamics package
ANSYS Fluent (http://www.ansys.com/Products/Fluids/ANSYS-
Fluent) which uses forces and moments acting on the graupel in
order to compute the translational and angular motion of the center of
gravity of an object. All the details about how we calculate the moment
of inertia of the conical graupel and how it works inside ANSYS Fluent
can be found in Chueh et al. (2017). The numerical schemes we use
here are also the same as that described in Hashino et al. (2016) and
Chueh et al. (2017).

In the present study, the method of creating a mesh with the curved
shape of the conical graupel is the same as the one used by Kubicek and
Wang (2012), Wang and Kubicek (2013), and Chueh et al. (2017), and
is briefly outlined as follows. First we calculate the graupel surface
coordinates by using Eq. (1) for the half of the x-z-cross section and then
revolve the half-curved cross section 360° about z axis to yield the 3D
conical shape. This is done by using ANSYS DesignModeler.

The dynamic conical graupel simulation (Chueh et al., 2017) re-
quires changing the mesh around the conical graupel at every time step
as the graupel falls. However, re-meshing the computational domain at
every time step can significantly slow down the computation, making
the simulation inefficient and difficult to perform. In order to increase
the computational efficiency, we do not re-mesh the whole computa-
tional domain at every time step, but rather re-generate the mesh for
only few sub-domains close to the graupel surface, which was used in
Cheng et al. (2015), Hashino et al. (2016) and Chueh et al. (2017) for
the freely falling hexagonal plates, ice columns, and conical graupel,
respectively. The mesh used here is adapted to suit the need of the
changing graupel orientation and environmental flow field, ensuring
that we can preserve adequate accuracy of the computed flow fields and
at the same time enhance the computational efficiency, as described for
the benefits of the use of the adaptive grids (see, e.g., Chueh et al.,
2010, 2013).

We use Tait-Bryan angles (Landau and Lifshitz, 1969; Goldstein,
1980) associated with the orientations of the graupel to quantitatively
describe their orientation behavior as shown in Fig. 1a. The angles (i.e.,
θx, θy, and θz) are defined as the rotation about the global fixed x, y, and
z axes passing through the center of gravity of the graupel, respectively.

2.1. Initial perturbation

Like our previous three studies (Cheng et al., 2015; Hashino et al.,
2016; and Chueh et al., 2017), we produce an initial perturbation in the
flow field around the graupel to quickly initiate the unsteady motion of
the falling graupel. This is done by using an initial inclination angle of
20° counterclockwise around the y″ axis, as shown in Fig. 1(b). The
small initial inclination angle is intended to produce a correspondingly
small perturbation, which induces rotating oscillations of the falling
graupel. The definition of the positive sign of the initial inclination of
the conical graupel (i.e. θy=20°) can be found in Fig. 1(b). Then, a
steady flow solution is obtained for the inclined state of the graupel
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with a constant u∞ and serves as the initial condition of the freely
falling conical graupel simulation.

In the present study, we investigate the fall attitudes of the same set
of conical graupel particle sizes and shapes as specified by Chueh et al.
(2017). The shape parameters a, c and λ of the graupel as well as their
corresponding far field velocities, and the terminal velocities of the
graupel are given in Table 1. The negative Vt values indicate that
graupel are falling relative to the computational domain which is called
the computational “wind tunnel”. We divide the wind tunnel into a few
different computational zones similar to that used by Hashino et al.
(2016) and Chueh et al. (2017). The mesh of one of the computational
zones, the one closest to the outer boundary of the entire domain, is
always kept unchanged throughout every of the simulations performed
here, whereas the meshes of the rest zones either change or move with
the graupel at every time step, as the falling graupel changes its or-
ientation and position with time.

Because the motion of the graupel is unsteady and its velocity can
change substantially with changing fall attitude, there is a need to de-
fine two different Reynolds numbers so as to describe the instantaneous
motion in better clarity. We use the following two definitions of
Reynolds number. The regular Reynolds number is defined as

= ∞N du
ν

,Re (9)

where d is the diameter of the graupel representing its maximum width
in x and y directions, and u∞ is defined in Eq. (6). The quasi-steady state
Reynolds number is defined as.
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ν
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t
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where the relative terminal fall velocity values of Vt are obtained from
the simulations that already reach their individual steady-state fall
velocity values (Velz). The quasi-steady state Reynolds numbers are
considered as the actual ones that are calculated and listed in Table 1.

2.2. Graupel density determination

Direct measurements of graupel density are rare and the results
have considerable scatter mainly because many graupel are not of
standard conical shape and their grain structures may differ from each
other. The two sources we found that are useful to the present study are
Locatelli and Hobbs (1974) and Heymsfield and Kajikawa (1987), both
are based on observations. We decided to develop a scheme based on
the measurements of Locatelli and Hobbs (1974). We determined the
density of a graupel by dividing the graupel mass observed by Locatelli
and Hobbs (1974) by the volume calculated from Eq. (2). The results
are shown in Table 2. These values are much smaller than the constant
density 0.91668 g/cm3 of solid ice used in our previous study (Chueh
et al., 2017) but are more realistic, as most real graupel particles are
mixtures of solid and porous ice particles, and the density should be
smaller than that of solid ice.

As a comparison, we also calculated graupel density based on the
mass-diameter relation given by Heymsfield and Kajikawa (1987, their
Table 2) for conical graupel for T < −0.5 °C and yielded the following
values: 0.210 g cm−3 (d= 0.5 mm), 0.193 (1.0), 0.177 (2.0), 0.169

Fig. 1. Definition of the coordinates and Tait-Bryan orientation angles in (a) 3D view and (b) on the xy-plane used in the present study. The global coordinates are represented in black by
the x, y and z. The x″, y″ and z″ axes passing through the center of gravity (COG) of the graupel particle in red are parallel to the global axes x, y and z respectively. The z′ axis
perpendicular to the x′ axis in blue is a line linking both COG and the apex of the graupel. The change in orientation from x″ to x′ conforms to the change from z″ to z′ so that x′ and z′

remain perpendicular to each other in the 3D space. θx, θy and θz are defined in green as the rotation angles around x′, y″ and z axes respectively. Note that the representation of the dotted
line segments for parts of the axes means that they are situated inside the graupel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 1
Dimension, far field and terminal velocity, and terminal velocities of the graupel in-
vestigated in this study. See the text for detailed definitions.

d (mm) u∞ (m s−1) Vt (m s−1) NRe (Normal) NReq (quasi-steady)

0.5 0.5 −0.17 15.6 21
1 0.97 −0.1754 60.7 71.6
2 1.67 −0.27 209 243
3 2.06 −0.3 387 443
4 2.32 −0.34 580 665
5 2.55 −0.48 797 948

Table 2
Graupel ice density values of the conical graupel particles considered
herein.

d (mm) Graupel ice density (g cm−3)

0.5 0.245
1 0.186
2 0.141
3 0.12
4 0.107
5 0.0977
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(3.0), 0.163 (4.0), and 0.159 (5.0). Comparing these values with that in
Table 2, we see that while there are differences, especially in the large
end, they are in the same order of magnitude. In addition, both show
decreasing density with increasing size. Given that there are many other
factors such as asymmetric shape, irregularities on the surface, and
internal inhomogeneity, we feel that values listed in Table 2 are ac-
ceptable.

More recently, Enzmann et al. (2011) developed a technique to
quantify graupel porosity. They developed a 3-D imaging system using
synchrotron-based micro-tomography to reconstruct graupel micro-
structures. Hopefully this technique can be applied by researchers to
determine more precisely graupel density in the future.

3. Results and discussions

3.1. Fall attitudes

The fall attitude of conical graupel had been studied previously. List
and Schemenauer (1971) used artificial conical graupel models to drop
into glycerin-water mixtures and salt solutions to study how they fall.
Kajikawa (1977) made direct observations of the fall attitudes of nat-
ural graupel. Their results differ in details mainly owing to the differ-
ences in particle shapes and surface roughness as noted by Kajikawa
(1977). However, the reported general behaviors are similar. The
conical graupel particles< 1 mm and NRe < 100 fell in stable, base
down orientation. When the particle diameters were ~3.5 mm, oscil-
lation began at NRe ~ 100 and the onset of tumbling at NRe ~ 700. In
terms of the fall attitudes of the freely falling conical graupel, these are
more or less consistent with the present results we will show subse-
quently.

As mentioned previously, Chueh et al. (2017) made the first theo-
retical study of the free fall behavior of conical graupel. They described
the fall attitudes of conical graupel covering the same shape and size
ranges as the present study. While the fall attitudes they reported were
qualitatively consistent with that observed in the laboratory, the
graupel density was held constant at 0.91668 g cm−3 and thus not as
realistic as it should be. In the present study, we investigate the fall
behavior of a group of conical graupel of the same sizes and shapes but
with varying density as described in the previous section, hence the
results are more realistic. In the following, we will summarize the new
results and also give a more through discussion of the fall attitudes and
other hydrodynamic properties of these conical graupel.

The present results show that the fall attitudes of this group of
graupel can be classified into 3 categories: (1) damped oscillation
(d = 0.5 mm); (2) persistent oscillation but no tumbling (d= 1 and
2 mm); (3) persistent tumbling (d≥ 3 mm). These will be described in
more detail in the following.

3.1.1. Damped oscillation (d = 0.5 mm)
Fig. 2 shows, from left to right, the pressure and z-speed distribu-

tions in the central x-z plane, and the streamtrace pattern of the steady
state flow field of a conical graupel of d= 0.5 mm falling at terminal
velocity. Such flow fields have been described in detail by Kubicek and
Wang (2012) and Wang and Kubicek (2013).

As mentioned before, we produced a small perturbation in the flow
field by tilting the graupel vertical axis 20°. The viscous effect of air
soon diminishes this small perturbation and the graupel returns to
upright orientation and falls vertically.

Fig. 3 shows the time behavior of a few key kinematic variables of
the fall motion of a graupel of d= 0.5 mm. The damped oscillation
phenomenon, e.g., cgx in (a), Velx in (c), θy in (e) and Ty in (f), is ob-
vious. They all demonstrate that the perturbation caused oscillation is
damped by the viscous effect of air. The rest of variables, such as cgy,
cgz, Vely and Velz exhibit little or non-oscillatory behavior, as they are
expected to be. In addition to oscillation, Fig. 3(a) also shows that the x-
y position of the graupel has moved away from the origin, especially in

the x-direction. The y-position changed little.
Fig. 4 shows the plot of torque acting on the graupel as a function of

the tilt angle. The starting tilt angle is 20° (the blue circle on the ex-
treme right). We see that the torque increases initially until the tilt
reaches the negative maximum as the graupel oscillates, then decreases
again as the graupel swings back. Eventually the torque settles in the
purple and red region in Fig. 4 as the oscillation is dwindling. We see
that the final stage of the torque variation with angle is consistent with
that predicted by the theory of Cox (1965) and that of potential flow for
small spheroids (see Hashino et al., 2016, for more details).

3.1.2. Persistent oscillation but no tumbling (d = 1 and 2 mm)
For larger conical graupel of d= 1 and 2 mm, the fall behavior

turns to that of persistent and periodic oscillation but no tumbling. We
shall use the case of d = 1 mm to illustrate this fall attitude.

Fig. 5 shows, from left to right, the pressure, z-velocity and
streamtrace fields, respectively, of a randomly chosen snapshot of the
unsteady flow field around the falling graupel of d= 1 mm. Unlike the
d= 0.5 mm case, this graupel now performs persistent periodic oscil-
latory motions in the horizontal plane during its fall. The magnitudes of
the pressure deviations and the size of the recirculation bubble are
larger than the d= 0.5 mm case, as they should be.

Note that the present unsteady flow case is different from the cases
reported in Wang and Kubicek (2013) where the graupel is held at a
fixed orientation, hence no flow field feedback on the motion of the
graupel is considered there. In the present case, the graupel is allowed
to adjust its position and orientation according to the hydrodynamic
force and torque acting on it, and therefore one should not expect the
flow field in the present case be the same as the graupel in Wang and
Kubicek (2013) even if the size, shape, and 3-D orientation of the two
graupel are completely the same at that moment.

Fig. 6 a group of plots of kinematic variables as a function of time.
Now the persistent periodic motion is most obvious in cgx, Velx, θy and
Ty. At the same time, we also see that there is also a corresponding
periodic motion in y-direction as demonstrated by the curves of cgy,
Vely, θx and Tx, although the amplitudes are smaller. The oscillation in
the y-direction exhibits an amplifying tendency. The same thing hap-
pens in the corresponding kinematic variables in the z-direction but the
amplitudes are even smaller. Obviously the zigzag motion in the x-di-
rection must have influenced the flow field such that the graupel's
motions in the y- and z-direction also become periodic.

We did not investigate the possibility that the amplifying oscillation
in the x- and z-direction would eventually lead to tumbling, as this
requires to run the calculation for much longer time. We will in-
vestigate this possibility in the future.

From Fig. 6(a), it also appears that cgy is increasingly negative, i.e.,
the y-position of the graupel deviates more and more from its original
place while cgx remains oscillatory at about the same x-coordinate.
Overall, this indicates that, as time goes on, the graupel will translate
horizontally further and further away from its original position. This
fact may be of some importance to cloud physics and we will expand
more on this point later.

Fig. 7 shows the calculated torque as a function of tilt angle. We see
that the relation is now quite different from that predicted by Cox
(1965) and the potential flow theory. This is not surprising as Cox's
theory only applies to very low Reynolds numbers while the potential
flow theory ignores the viscous effect totally. Both are not true for the
present case.

3.1.3. Persistent tumbling (d ≥ 3 mm)
For graupel of d≥ 3 mm, the fall attitude changes to persistent

tumbling. We will use the d= 5 mm graupel to illustrate such fall at-
titude. Fig. 8 shows a random frame of the pressure, z-velocity and
streamtrace fields in the central xz-plane of the flow field around a
falling conical graupel of d = 5 mm. Again, while the pattern may look
similar to that reported by Wang and Kubicek (2013), the reader is
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Fig. 2. A snapshot of the flow field in the central xz-plane around a falling conical graupel of d= 0.5 mm: (left) pressure distribution, (center) z-velocity distribution, and (right)
streamtraces.

Fig. 3. Time variation of a few key kinematic variables for a falling conical graupel of d= 0.5 mm: (a) the x and y positions of COG, cgx and cgy, respectively, (b) the z position of COG, cgz,
(c) x and y-components of the graupel velocity velx and vely, (d) velz, (e) Tait-Bryan angles θx, θy and θz, (f) torques Tx, Ty, Tz.
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reminded that the graupel in the present study is falling freely and the
flow field's feedback on the graupel motion is in action, hence the flow
fields may differ significantly even if the size, shape and orientation of
the two graupel are completely the same at an instant.

Fig. 9 shows the time variation of kinematic variables of the 5 mm
graupel. We now see that the fall attitude of this graupel differs sig-
nificantly from the previous two categories. Fig. 9(a) shows that both
cgx and cgy move away from the origin more and more as time goes on,
implying that the graupel translates a significant distance horizontally.
This sideway translation is far greater than that in the 1 mm case.

The tumbling motion triggers complex motion modes. Fig. 9(c)
shows that Velx and Vely change significantly with time. The changes for
larger particles are greater than that for smaller particles (note that the
scales in different charts are different), for example, the graupel of
d= 5 mm reaches maximum velocity of ~0.4 m s−1 in x direction and
~0.25 m s−1 in y direction, while it is< 0.001 m s−1 for 0.5 mm
and< 0.01 m s−1 for 1 mm graupel in both directions. The larger
changes for larger graupel is apparently associated with the tumbling
motion. We see that the variation of Velx lags that of Vely, implying that
the change in the latter induces the response of the former. There is also
a more subtle response in Velz (Fig. 9(d)) which appears to stabilize
after t~ 1.3 s.

Fig. 9(e) shows the time variation of the three Tait-Bryan angles. It
can be seen that the while θy is oscillatory throughout the simulation,
both θx and θz go off the scale after t ~ 0.4 s. The latter indicates that
the graupel becomes unstable and begins to tumble at this time.

To see clearer this behavior, we replot the time variation of θx and
θy using different scales as shown in Fig. 10. Here we see that θx curve
starts to go upward with values> 360° after t ~ 0. 4 s, indicating that it
tumbles over and over many cycles until t ~ 1.3 s when it begins to
tumble in opposite direction.

Fig. 11 shows the change of torque with time of the falling 5 mm
graupel. The torque behavior is much more complex than the two
previous cases. Before tumbling occurs, the torque behaves more or less
like that of the 1 mm graupel (blue circles) shown in Fig. 7, i.e., it al-
ready deviates significantly from the predictions by Cox (1965) and
potential flow theories. As time goes on, however, the difference be-
come greater (cyan, green and purple circles) and the nonlinear nature
of the relation (the “S” shape of the curve) between the torque and

Fig. 4. The torque on the graupel as a function of θy. Different colors represent different
time periods (in seconds) as indicated in the legend box. (For interpretation of the re-
ferences to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Same as Fig. 2 except for d= 1 mm.
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angle becomes more and more pronounced. Eventually tumbling occurs
after t~ 0.4 s (red circles) and the torque stops to be a single-valued but
turns into a multivalued function of the tilt angle.

Tumbling of graupel was reported in the wind tunnel experimental
studies of graupel by Pflaum et al. (1978). Since graupel is the precursor
of hailstones and most of hailstones are roughly spheroidal (and thus
lack the sharp apex like the conical graupel), we theorize that this may
be the result of tumbling starting from the graupel when the latter
become large enough.

In the above we have reported the kinematics of the tumbling. To
understand the tumbling dynamics of conical graupel, we will need to
make more careful analysis of the flow fields. We plan to perform this
task and report the results in the near future.

Note that all the results reported above in Eqs. (1), (2) and (3) are
based on the initial tilt θy = 20° which is a very modest tilt. What if the
initial tilt angle is larger than 20°? We have not yet made calculations
on such cases but we feel it is likely to behave more or less the same, or
perhaps tumbling will occur to graupel smaller than 3 mm. This will be
left for future studies.

3.2. Horizontal displacement

The horizontal displacement of hydrometeors due to their fall atti-
tude is a topic that is rarely treated in conventional cloud microphysics.
It is usually assumed that an ice crystal falls vertically and collide with
supercooled cloud drops when it is undergoing riming growth, even
though it is widely known ice crystals and snowflakes may perform
significant zigzag motions especially those of larger sizes. Such sub-
stantial horizontal movements may impact both cloud physics and
cloud dynamics, for example, how large they will grow after a certain
time period and where they can distribute in the cloud, and hence
deserve more careful considerations.

It is seen in the above discussions that conical graupel may perform
substantial horizontal movements during the fall. Fig. 12 shows the
trajectory of the 5 mm graupel as it falls from its original position (0, 0,
0) during t= 0 to t = 1.68 s. Fig. 12(a) shows that the trajectory is a
complicated spirally curve that leads to a horizontal position that is
about 0.35 m away from the origin. Fig. 12(b) shows that the graupel
orientation and horizontal position keeps changing as it falls. The si-
mulated fall attitudes include all motion modes reported by Pflaum
et al. (1978) who performed vertical wind tunnel study of graupel hy-
drodynamics. These motions include rotation, pendulum swing, sailing,
and tumbling. Thus our study shows that the complicated motions of
highly nonspherical ice hydrometeors such as conical graupel can be
successfully simulated by computational fluid dynamics techniques. All
these motion modes may impact the horizontal translation of graupel.

The average horizontal speed VH of the graupel after it reached a
quasi-steady fall attitude is shown in Fig. 13. In general, larger graupel
tend to have larger horizontal speeds than smaller ones, although the
4 mm graupel has slightly higher VH than the 5 mm graupel but the
difference is small. Given a long time, the graupel may travel far from
the origin as they fall. We see, for example, from Fig. 13(a) that VH is
about 0.31 m s−1 for d= 5 mm. Thus, in an hour the 5 mm graupel
could potentially move a horizontal distance of ~1 km if it moves in the
same direction away from the origin during this time period. Note this
distance is translated purely due to the fall attitude of the graupel alone
and has nothing to do with the in-cloud wind speed. This implies that
the distribution of ice hydrometeors such as conical graupel in clouds
can be much wider than predicted by cloud microphysical models that

Fig. 6. Same as Fig. 3 except for d= 1 mm.

Fig. 7. Same as Fig. 4 except for d= 1 mm. (For interpretation of the references to colour
in this figure, the reader is referred to the web version of this article.)
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Fig. 8. Same as Fig. 2 except for d= 5 mm.

Fig. 9. Same as Fig. 3 except for d= 5 mm.
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consider only vertical fall attitudes.
Fig. 13(b) shows the plot for VH as a function of Reynolds number

NRe. We use linear fit for the data points in Fig. 13(a) and (b) as:

= − +V d0.06854 0.08126H (11)

and

= − +V N0.01472 0.0003916H Re (12)

Although a more sophisticated 3rd-order polynomial can fit the
points better, it is felt unnecessary as there is no theoretical justification
of such high-order fit.

3.3. Drag coefficients

The drag coefficients of the falling graupel after they reach steady
state terminal fall velocity are calculated according to

=
−∞

C F
ρ u V A

2
( )

,D
D

a t G
2 (13)

where FD is the frag force acting on the graupel and AG is the cross-
sectional area of the graupel defined as a constant, π(d/2)2. We used
(u∞−Vt) to obtain the quasi-steady Reynolds number as defined in Eq.
(10). This is also consistent with that in Hashino et al. (2016).

Fig. 14 shows the comparison of the drag coefficients calculated in
the present study with that of Wang and Kubicek (2013), sphere,
Heymsfield and Kajikawa (1987) and Bӧhm (1992). We see that the
present results are in general lower than that obtained by Wang and
Kubicek (2013). This is likely due to the assumption on Wang and
Kubicek (2013) that the graupel fall with fixed orientation whereas the
present study allows the graupel to adjust the orientation in response to
the instantaneous hydrodynamic force which tends to decrease the fluid
resistance. Consequently the drag and hence the drag coefficients are
generally lower in the present study.

In this regard, it is interesting to observe that the presently calcu-
lated drag coefficients are close to that of a sphere. This can be inter-
preted in the following manner. The reason why conical graupel drag
deviates from that of a sphere is of course mainly due to its

Fig. 10. θx and θy as a function of time for d= 5 mm.

Fig. 11. Same as Fig. 4 except for d= 5 mm.

Fig. 12. Trajectory of the d = 5 mm graupel from t = 0 to
t = 1.68 s. (a) Trajectory. (b) Enlarged view corresponding to
the section indicated by the white box in (a) showing the fall
orientations.
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nonspherical shape. In Wang and Kubicek (2013) the graupel orienta-
tion is fixed and the shape effect is also fixed, causing deviations from
the sphere drag. In the present case, the graupel is allowed to adjust its
orientation in response to the nonspherical shape drag and thus par-
tially compensate the shape factor. Hence it is reasonable to expect that
the drag be closer to that of a sphere.

The drag coefficients of Heymsfield and Kajikawa (1987) and Bӧhm
(1992) are higher than the present results possibly because of the dif-
ference in shape parameters. The graupel particles in the present study
are all of the standard shape and aspect ratio, and surfaces are assumed
to be smooth. The data used by Heymsfield and Kajikawa (1987) and
Bӧhm (1992) were from observations of natural graupel whose shapes
are not uniform and surfaces are not smooth. Roughness on the surface
normally causes higher drag if all other factors remain the same. Hence
it is reasonable to expect the drag coefficient to be higher.

From Fig. 14, it appears to be reasonable to use spherical drag
coefficient to approximate the drag coefficient of a conical particle of
the same Reynolds number. However, it is to be reminded that this
approximation should be used only for drag calculations. As seen in the
previous section, conical particles will perform significant horizontal
translations which are probably not true for a spherical particle.

4. Summary and outlook

In the above sections, we reported our recent numerical simulation
results of the free fall of conical graupel of idealized conical shape with
smooth surface. We demonstrated that the computational fluid dyna-
mical models can simulate the fall of conical graupel fairly realistically.
All major motion modes – rotation, pendulum swing, sailing and tum-
bling – are successfully and realistically simulated. This shows that CFD
packages can be used for calculations of hydrometeor motions in
clouds. This is a much safer way to understand the hydrometeor dy-
namics than performing direct aircraft observations in clouds which can
be dangerous and expensive. We have previously demonstrated that the
motions of ice crystals (Cheng et al., 2015; Hashino et al., 2014, 2016)
and hailstones (Cheng and Wang, 2013) can be successfully simulated.
The present work fills an important gap for the understanding of large
ice hydrometeors.

Natural graupel usually have various degrees of surface roughness
which tend to cause higher drag on the conical body, as indicated by
Fig. 14. We plan to perform simulations of the fall behavior of graupel
with rough surface by simulating the roughness using the SMOSS
technique described in Wang (1999).

It is also noted that this study is performed under the assumption
that there is no turbulence imposed on the flow. Impact of externally
imposed turbulence can be significant on the fall attitude and growth
behavior of hydrometeors but it will require additional studies in the
future.

One of the major gaps that still needs to be filled is the motions of
snow aggregates (snowflakes). This knowledge is a necessity to un-
derstand the snow aggregation process which is a very large gap in
cloud physics. We have already performed some tests using the same
techniques as the present study and the preliminary results are en-
couraging. Hopefully we can report the full results in the near future.

Once the flow fields are obtained, it is possible to utilize these flow
fields to perform ventilation coefficient and collision efficiency calcu-
lations for ice hydrometeors. We will also perform these studies in the
near future.
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