
AdaLearner: An Adaptive Distributed Mobile Learning
System for Neural Networks

Jiachen Mao†, Zhuwei Qin‡, Zirui Xu‡, Kent W. Nixon†, Xiang Chen‡, Hai Li†, and Yiran Chen†
†Duke University, USA; ‡George Mason University, USA

†{jiachen.mao, kwn8, hai.li, yiran.chen}@duke.edu; ‡{zqin, zxu21, xchen26}@gmu.edu

Abstract—Neural networks hold a critical domain in machine learning
algorithms because of their self-adaptiveness and state-of-the-art perfor-
mance. Before the testing (inference) phases in practical use, sophisticated
training (learning) phases are required, calling for efficient training
methods with higher accuracy and shorter converging time. Many existing
studies focus on the training optimization on high-performance servers or
computing clusters, e.g. GPU clusters. However, training neural networks
on resource-constrained devices, e.g. mobile platforms, is an important
research topic barely touched. In this paper, we implement AdaLearner–
an adaptive distributed mobile learning system for neural networks
that trains a single network with heterogenous mobile resources under
the same local network in parallel. To exploit the potential of our
system, we adapt neural networks training phase to mobile device-wise
resources and fiercely decrease the transmission overhead for better
system scalability. On three representative neural network structures
trained from two image classification datasets, AdaLearner boosts the
training phase significantly. For example, on LeNet, 1.75-3.37⇥ speedup
is achieved when increasing the worker nodes from 2 to 8, thanks to the
achieved high execution parallelism and excellent scalability.

I. INTRODUCTION
Triggered by the unprecedented development in neural networks,

a broad range of applications have emerged because of their state-of-
the-art performance, e.g. object classification, language precessing,
and motion estimation [1][2][3]. Due to the plethora of embedded
sensors available on the platform, mobile devices represent the
largest market where these applications are fed into practical use,
enabling mobile navigation systems [4], speech-based human-device
interaction, and augmented reality games [5]. However, a significant
limitation of neural networks is the requirement for the neural
network models to be trained before their practical use (testing). In
comparison with the testing phase, the training phase has significantly
higher computational complexity and memory consumption.

Many works have been done to minimize the time required for
the training phase, ranging from algorithm-level optimization (e.g.
low variance Stochastic Gradient Descent (SGD) [6]) to hardware-
level acceleration (e.g. Resistive Random Access Memory (ReRAM)
[7]), allowing DNN training to be applied to increasingly challenging
real-world problems. Recent developments in deep learning software
also shifts the focus away from frequency scaling and towards
massive parallelization. In [8], Abadi et al. built TensorFlow, which
enables distributed training by converting the neural network into
an executable graph, with each device responsible for a unique
subgraph. In [9], Li et al. proposed parameter server, featuring
many architecture-level optimizations resulting in excellent execution
scalability during the training phase of neural networks.

However, these previous works focus mainly on designing around
powerful, dedicated server clusters, neglecting that it is mobile
devices which are the primary source for the majority of data
collected from the outside world. Thus, in this paper, we explore
an important research topic that is barely touched: distributed learn-
ing on multiple mobile devices under wireless local area network
(WLAN). By utilizing such a solution, neither private data nor trained
models will be accessible by the outside world, and no extra cost is
needed for establishment of cloud-based resources. Unlike previous
works regarding distributed mobile computing systems for neural
networks [10], we advocate a distributed mobile system that can not

only test, but also train, a single neural network. Concretely, our
contributions include:

• We propose AdaLearner–an adaptive distributed mobile system
for neural networks training, consisting of two core distributed
training architectures, which are discussed in Section IV;

• We design an adaptive scheduler for AdaLearner in Section VII,
which adapts the training configuration (e.g. number of worker
nodes (WNs), batch size, transmission data size) to heteroge-
neous mobile resources and network circumstances.

• We adopt and improve 1-bit quantization in AdaLearner, which
can increase the system scalability by fiercely compressing the
transmission data size to only 1-bit with little or no accuracy
drop, which is detailed in Section VI;

• We implement and experiment AdaLearner on ARM-based
smartphones by modifying and combining the state-of-the-art
libraries for neural network training in Section VIII.

We evaluate AdaLearner on three neural network models which are
trained from two well-known image classification datasets (MNIST,
CIFAR-10). Take the experimental results of LeNet on MNIST as an
example, compared with local training, AdaLearner accelerates the
training by 1.75-3.37⇥, when increasing the WNs from 2 to 8.

II. BACKGROUND

A. Distributed Training Methods
There are two ways to train a neural network distributedly:
Model parallelism: In model parallelism, all the WNs are provided

with the same data, but with each holding only a part of the
model [11]. As an example in the left part of Fig. 1, each WN
processes only a single layer of the original neural network, with
intermediate results from each layer being transmitted WN-to-WN as
calculations are performed. Model parallelism is highly useful when
training extremely large-scale models which require more memory
than any single device could provide.

Data parallelism: In data parallelism, as illustrated in the right
part of Fig. 1, all WNs maintain a local copy of the entire model
to be trained, but with each being fed a different minibatch of
the overall data [9]. After all WNs complete training with their
allocated minibatches, computation results are collected by the group
owner (GO) and combined into an updated model. Whether there
is an independent node acting as the scheduler varies in different
training scenarios [11][12]. While it incurs a larger impact on memory
utilization, data parallelism allows for less inter-node communi-
cation frequency and partitioning complexity compared to model
parallelism. Considering communication as a critical overhead, in
AdaLearner, we leverage data parallelism for neural network training.

N
od
e1

N
od
e2

N
od

e3

N
ode1

Node2 Node3

Model

Model

Data Data

Model

Fig. 1: Data parallelism (left) and model parallelism (right).



B. Backgroupagation with SGD

Stochastic Gradient Descent (SGD) is a popular gradient descent
approach for training a wide range of models, including linear support
vector machines, logistic regression and Bayesian graphical models.
When training a neural network on n examples: (x1, y1), ..., (xn

, y

n

),
we often target at optimizing the following problem:

Min{F (w)}, F (w) =
1

n

nX

i=1

L(w;x
i

, y

i

), (1)

where L(·) represents the loss function and w denotes the weights.
For instance, if we use a square loss in the training phase, then the
loss function will be: L(w) = (w>

x

i

− y

i

)2. In order to update
the weights for the minimization of F (w), a partial derivative with
respect to each weight in w is calculated by backpropagating through
all the layers in the neural network. The update procedure from
iteration l to l + 1 can be formulated as:

w

l+1 = w

l

− ⌘
@F (w)

@w

, (2)

where ⌘ is the learning rate. However, in each iteration of gradient
descent, backpropagation is applied to all the n training examples,
encountering expensive computation cost. SGD is thus introduced
where each iteration only consists a mini-batch of the whole training
examples. Hence, the F (w) in Eq. 2 can be approximated as:

F

0
(w) =

1

t

tX

i=1

L(w;x
i

, y

i

)), (3)

where t is the minibatch size for a single update.
In this paper, we adopt traditional backpropagation with SGD and

migrate this procedure to the distributed scenario.

III. SYSTEM DESIGN MOTIVATION

In parallel training, the total execution time consumed in the
training phase with N WNs can be expressed as:

T

total

= Max(
W

comp[i]

C[i]

)+
W

trans

B

·N+

NX

j=1

D[j], i = 1, 2...N. (4)

Where W

comp

and W

trans

respectively denote the device-wise
minibatch size and the transmission data size of node i in a single
training iteration; C[i] describes the computing capability of node i,
which illustrates the minibatch size that can be completed per unit of
time; B is the available WiFi bandwidth; while D[j] stands for the
wakeup time for WN j. In AdaLearner, we set W

comp

and W

trans

in Eq. 4 as our main optimization target.
Adaptive Configuration for Computation: To minimize

Max(
W

comp[i]

C[i]
) in Eq. 4, we need to excellently balance the comput-

ing workload within each WN in Eq. 3. From Eq. 3, we can find that
there is a significant solution space w.r.t. the optimal size t=W

comp

of the minibatch. Therefore, in AdaLearner, we adaptively determine
the minibatch size allocated to each WN as a function of the mobile
device’s available computing resources for optimal parallelism.

Beyond this, it can be seen from Eq. 4 that as the number of
WNs increases, the contribution of the actual training computations
decreases due to their parallel nature, causing the total execution time
to be dominated by the transmission overhead. In such cases, we also
need to adaptively choose the optimal number of WNs.

Adaptive Configuration for Communication: Communication
is always a big bottleneck for distributed training system because
of the tremendous amount of data to be transmitted between WNs,
which are unavoidable for each update iteration. Such data includes
model gradients, parameters, and etc. Traditionally, each number in
the model is a full-precision, 32 bit floating point value, which is
actually unnecessarily accurate in certain situations.

Model Initializer

Execution Middleware

Group Owner Node 0

Computation Scheduler

Communication Scheduler

Model Structure

Training
Configuration

Model Parameters

Node 1 Node 2

Computing Cluster Generator

Fig. 2: System overview of AdaLearner.

In response to this, AdaLearner adopts a fierce quantization
technology–1-bit quantization [12], aimed at compressing the preci-
sion of model parameters in order to significantly reduce transmission
size. Besides greatly minimized transmission data size, 1-bit quanti-
zation need little extra compression overhead.

IV. ADALEARNER SYSTEM FRAMEWORK

A. Software Components

Fig. 2 gives an overview of AdaLeaner including 3 components:
Model Initializer: The model initializer generates the necessary

files for training a model: symbol files and parameter files. Sym-
bol files record the structure of the layers while parameter files
define connection weights. Additionally, the model initializer of
AdaLeaner generates a configuration file which contains meta data
such as learning rate, batch size, and etc.

Execution Middleware: Execution middleware is the fundamental
component in AdaLearner. This execution middleware includes both
the computation and communication scheduler, which is deployed
to each WN and be responsible for their identical computation and
communication works in the training phase.

Computing Cluster Generator: When training a neural network,
the mobile device held by the user is designated as the GO and all the
other assisting devices are designated as WNs. The computing cluster
generator runs on the GO, which first enables its Wi-Fi hotspot feature
and determines the number of WNs which subsequently connect to
it. The GO then collects the IP addresses of all connected WNs for
future communication. Last, the GO collects meta data, which include
the computing capabilities from each of the WNs.

B. System Architecture of AdaLearner

In AdaLearner, we provide two training architectures to deal with
the tradeoff between computation cost and communication cost.

1) Architecture for Efficient Computation: Fig. 3(a) details the dis-
tributed architecture in AdaLearner for efficient computation, which
is leveraged when the communication network is less congested, all
WNs first load the training data and model into memory. Then, the
model is trained on a minibatch of data using forward and backward
propagation. This results in the generation of model gradients, which
are then transmitted back to the GO. As data is being transmitted
to the GO, each WN begins to load the training data for the
next minibatch. After gathering all the gradients from the WNs,
GO merges the gradients, updates its local model parameters, and
transmits the updated model parameters to all the WNs. Once the
WNs have received the updated model parameters, a new iteration is
triggered. The total training procedure here are similar to the local
training scheme with high parallelism and computation efficiency.

2) Architecture for Efficient Communication: Scalability is a crit-
ical optimization target for distributed systems, with communication
costs always being the main bottleneck which restricts this. Compared
with traditional data centers, communication in mobile networks
suffers greater limitations due to the limited radio channels and com-
paratively low transmission bandwidth. Under such circumstances,



GOWorker 0 Worker 1

3

Trained Model

Data and Model

1

4

2

Load Load

Save

Data and Model

Next MiniBatch Next MiniBatch

Initial Model

Load

w w

g g

Compute Gradients g Compute Gradients g

Merge g from workers

Update weights w
Load Next Batch Data Load Next Batch Data

(a) Distributed architecture for efficient computation.

GOWorker 0 Worker 1

3

Trained Model

Data and Model

1

4

2

Load Load

Save

Data and Model

Next MiniBatch Next MiniBatch

Initial Model

Load

g g

g g

Compute Gradients g Compute Gradients g

Merge g from workers

Update weights w

Load Next Batch Data Load Next Batch Data

Encode

Update weights w

Encode

Decode
Encode

Decode Decode

(b) Distributed architecture for efficient communication.
Fig. 3: Two training architectures in AdaLearner for computation-communication tradeoff.

SOURCE TARGET METADATA DATA

Learning Rate
Compression Parameters

Model Gradients
Model Weights

Fig. 4: Message format in AdaLearner.

an alternative training architecture is proposed in Fig. 3(b), which
is tailored to minimize communication overhead. Different from
Fig. 3(a), there are additional steps of data encoding and a decoding
performed by both the GO and WNs before and after every data
transmission. The encoding process is utilized to compress the data
which will be transmitted, thus reducing transmission time overhead.
The detailed compression technology utilized and the corresponding
tradeoff between the transmission data size and the extra cost for
encoding decoding procedures will be described in Section VI.

3) Synchronization Mechanism: As a result of hardware limita-
tions in the radio module of mobile devices, the communication
between GO and WNs can only occur sequentially. Only one pair
of devices can communicate at any given time. To maintain high
parallelism, the GO maintains a First In First Out (FIFO) synchro-
nization mechanism. For example, in Fig. 3(a), as WN0 is the first
to transmit gradients to GO, and is followed by WN1, the GO sends
back weights in the same sequence, first to WN0, then to WN1.

4) Message Format: The message format utilized in AdaLearner
is detailed in Fig. 4. The head of the messages in AdaLearner is the
identifier of the sender and the receiver of the message. The following
number of bytes contain the meta data such as the adaptive learning
rate for a minibatch. If the data is compressed, the compression
parameter for decoding is also included in the meta data section. The
last part is the main body of the message, containing the gradients
or the weights of the neural network.

V. COMPUTATION COST IN ADAPTIVE SCHEDULER

In Eq 4 and Eq 3, we assume the computing time is linearly related
to minibatch size, which is consistent with our experimental results.
Fig 5 shows the time consumption for the forward and backward
procedures with increasing minibatch size on Nexus 5X. For LeNet
and ConvNet, the time consumption is proportional to the minibatch
size. An exception occurs on MLP, where the computation efficiency
keeps increasing with the increase of minibatch size. It is because
that MLP is a neural network with low computation cost and memory
usage. When the minibatch size is small, MLP does not utilize the
maximum resources in the mobile device and thus showing a lower
efficiency. However, after a minibatch size of approximately 50, it,
too, begins to reflect the expected linear relationship.

Without loss of generality, we utilize lookup table to record the
device-wise relationship between minibatch size and their corre-

-200

-100

0

100

200

0

10000

20000

30000

40000

LeNet ConvNet MLP

C
om

pu
tin

g
Ti
m
e
(m

s)

200

0

100

2.0E+4

1.0E+4

1.0E+010 30 50 70 90 110 130 150
Minibatch Size

C
om

puting
Tim

e
(m

s)

Fig. 5: Time consumption with different minibatch sizes.

Minibatch Size
Node1 Node2 Node3 Time Threshold
20 25 30 200 ms
30 35 40 300 ms
40 55 75 400 ms

Fig. 6: Lookup table for minibatch size and computing time.

sponding time consumption on heterogeneous mobile devices. The
table in Fig. 6 presents an example of such a lookup table containing
computing capability meta data from three WNs. For example, in
order to train a model with a total minibatch size of 75, our adaptive
scheduler searches the lookup table for WN combinations for each
number of WN, favoring devices with higher computing capability.
First, our adaptive scheduler will search the worker node with the best
computation capability, which is WN3 in Fig. 6 and the corresponding
estimation time is 400ms. Secondly, it searches the second line of
Fig. 6, where the total minibatch size of WN2 and WN3 is 75. In this
scenario, the total computation time is 300ms. Last, the first line in
Fig. 6 will be searched and the corresponding result is 200ms. In this
way, AdaLearner can quickly estimate that 400ms, 300ms, 200ms

is needed for one, two and three WNs, respectively.

VI. COMMUNICATION COST IN ADAPTIVE SCHEDULER

Transmission efficiency is critical for mobile networks scalability.
Among many data compression technologies targeting at efficient
neural network training [12][13]. We adopt the concept of 1-bit
quantization in our communication efficient architecture in Fig. 3(b).
The choice is based on two reasons: (1) The compression rate is
the highest among all the existing technologies. Each number to be
transmitted is quantized to 1 bit, the compression ratio of which is
1/32 because the original data are represented as 32 bits floating
point numbers; (2) 1-bit quantization enables less extra computation
cost because of its simple quantization function.

A. 1-bit Quantization with Error Feedback

In 1-bit quantization, we set 0 as the quantization threshold. All
the number larger than or equals 0 is set as 1 while all the negative
numbers are set as 0. In order to make up of the loss introduced
by 1-bit quantization, the quantization error of last minibatch will be



Node 1
Quantization

Weight Update
Unquantization

GO

Unquantization× 2
Quantization

Node 2
Quantization

Weight Update
Unquantization

1-bit 1-bit
1-bit1-bit

Error Feedback

Error Feedback

Error Feedback

Fig. 7: Tradeoff between computation and communication costs.

added to the current one [12]. Assume the gradients calculated by
k-th minibatch is G[k], the quantization can be expressed as:

G

quantized[k] = Q(G[k] +∆[k−1]), (5)

where Q(·) stands for the quantization function. ∆[k−1] represents
the quantization error of (k-1) minibatch and G

quantized[k] is the
quantized 1-bit results to be transmitted. After the quantization
procedure in Eq 5, a new quantization error feedback is calculated
for next minibatch:

∆[k] = G[k] −Q−1(G
quantized[k]). (6)

With the effect of error feedback, the quantization errors are
accumulated and expressed in the subsequent iterations of minibatch.
Therefore, we can losslessly compress the gradients between nodes
to 1 bit with little or no accuracy drop and the experimental results
will be presented in experiment section.
B. Gradients Aggregating Scheme

Conventionally, 1-bit SGD is realized in GPUs cluster without
central scheduler and each GPU in N GPUs is responsible for
aggregating a 1/N subset of the model parameters [12]. Such training
topology is not suitable in our distributed mobile system. Different
from conventional realization, AdaLearner incorporates 1-bit SGD
to the training architecture in Fig. 3(b). After deriving the gradients
on each WN, the gradients experiences the quantization procedure
in Eq 5 and then transmit them to GO. GO gathers all the gradients
in 1-bit format and sums them up in unquantized form. After post-
processing the gradients in GO, a second quantization is applied
before transmitted back to each WN. Each WN will then unquantize
the received 1-bit gradients and updates the model parameters locally.
The quantization and unquantization modules are embedded in the
encoder and decoder in Fig. 3(b). In order to conduct unquantization
procedure in GO, two numbers are required to be transmitted along
with the 1-bit gradients for each column of the original weight matrix,
which represents the multiplication scalar for positive and negative
gradients. They are calculated by averaging all the original positive
and negative gradients. Mind that original 1-bit quantization is
utilized in Recurrent Neural Networks (RNNs), which only contains
fully-connected layers. However, AdaLearner targets at all the neural
network structures, including convolutional layers, for which we
innovatively calculate the positive and negative scalar for each filter.

C. Computation / Communication Tradeoff

Such gradients aggregation scheme introduces the tradeoff between
computation cost and communication cost. The procedures with
red square background in Fig. 7 detail the extra computation cost
yielded by reduced communication cost utilizing 1-bit quantization.
Before and after each communication, quantization and unquantiza-
tion procedures are necessary. In order to reach high parallelism,
the procedure for calculating the new error feedback is executed in
parallel without influencing the total execution time.

If we transmit the 32-bit floating point numbers between N nodes,
the communication overhead can be formulated as:

T

comm

= N · Wtrans

B

+D, (7)

where W

trans

means the original transmission data size under the
network of bandwith B. Here D denotes the total wakeup time
during the communication, which is assumed to be a constant in our
formula. Alternatively, by applying 1-bit quantization technology, the
communication can be expressed as:

T

1bit
comm

= 2 · Wtrans

S

q

+ (N + 1)
W

trans

S

uq

+
T

comm

Z

+D, (8)

where S

q

and S

uq

respectively denote the quantization and unquan-
tization speed (bits per unit time), which are also pre-tested on each
mobile device. In Eq 8, Z equals 32 here because the transmission
data size is 1/32 of the original transmission data size. Because
the unquantization procedure of GO in Fig. 7 is done sequentially,
the time consumption on unquantization is linearly related to the
number of WNs. Thus, the decision function of whether to leverage
communication efficient scheme with N WNs is given by:

Decision = T

1bit
comm

<T

comm

? True : False,

(9)

which simply compares between the communication costs for these
two training schemes and chooses the one with less communication
time. If Eq 9 holds, the scheduler will use communication efficient
training because the extra computation overhead is smaller than saved
communication overhead and vice versa.

VII. INCORPORATE ADAPTIVE SCHEDULER TO ADALEARNER

In this sections, we give the comprehensive scheme, which adapts
the optimal configuration (number of WNs, minibatch size, commu-
nication scheme) to the current mobile resources. As described in
Algorithm 1, the outside loop iteratively estimate the execution time
with different WNs. For each iteration, our scheme estimates the
time consumption with and without data compression and pick the
one with less time estimation. The scheme keeps running until it
reaches the max WNs number or the minimal total estimated time.
In AdaLearner, we only focus on the partition scheme with max-
imal parallelism of total minibatch size (W

comp

), where W

comp

=P
N

i=1 Wcomp[i]. The total minibatch size in AdaLearner is predefined
by the users and it is worth to mention that we test our system with
the most commonly used configuration where W

comp

= 128.

Algorithm 1 Mobile resource-based adaptive scheduling scheme.
Input: Number of available WNs: N , Lookup table: T

lookup

, which
contains minibatch size with respect to the time consumption of each
node iŒ [1, N ], Transmission data size: W

trans

, Quantization and
Unquantization speed: S

q

and S

uq

, Network bandwidth: B.
Initialization: Estimation time: T

est

=1, Total minibatch size:
W

comp

=C
constant

(C
constant

= 128 in our experiments),
1: for each int n Œ [1, N ] do
2: Partition W

comp

into n WNs based on the lookup table
T

lookup

and get the estimated computing time: T
comp

.
3: if Eq 9 is true then:
4: Estimate communication overhead using Eq 7.
5: Estimated training time: T

temp

= T

comp

+T 1bit
comm

.
6: else:
7: Estimate communication overhead using Eq 8.
8: Estimated training time: T

temp

= T

comp

+T
comm

.
9: if T

temp

> T

est

then : break the loop.
10: else: T

est

= T

temp

.

Output: The optimal number of WNs: n, the minibatch size for each
WN, and the communication scheme to use.



Computation
Communication

Computation
Communication

Computation
Communication

2000

1000

500

0

1500

12000

6000

3000

0

9000

16000

8000

4000

0

12000
Ti
m
e
C
on
su
m
pt
io
n
(m

s)

Local 2 3 4 5 6 Local 2 3 4 5 6 7 8 Local 2 3 4 5 6 7 8
Number of Worker NodesNumber of Worker Nodes Number of Worker Nodes

(a) MLP (b) LeNet (c) ConvNet
Fig. 8: Time consumption on three neural network models with efficient computation architecture.

Communication
Computation
Encoding/Decoding

Communication
Computation
Encoding/Decoding

12000

6000

3000

0

9000

1000

500

250

0

750

16000

8000

4000

0

12000

Ti
m
e
C
on
su
m
pt
io
n
(m

s)

Local 2 3 4 5 6 Local 2 3 4 5 6 7 8 Local 2 3 4 5 6 7 8
Number of Worker NodesNumber of Worker Nodes Number of Worker Nodes

(a) MLP (b) LeNet (c) ConvNet

Communication
Computation
Encoding/Decoding

Fig. 9: Time consumption on three neural network models with efficient communication architecture.

VIII. EXPERIMENTS
A. System Implementation and Experiments Setup

In AdaLearner, we adopt and modify three cutting-edge software
libraries for the computation of neural network training and data
communication. Targeting at efficient computation, the local training
procedure is implemented based on MXNet [14], which is built under
the concept of [9]. MXNet is a high performance framework for
neural network training for desktops and servers realized in C++.
However, MXNet only provides the mobile platforms with testing
feature. In this work, we modify the neural network training code in
MXNet and recompile them to ARM-based Android devices. For effi-
cient communication, Message Passing Interface (MPI) is adopted in
AdaLearner. However, none currently existing MPI implementations
explicitly offer support for Android devices. As such, we modify the
source code and build process for an existing MPI implementation
called Open MPI [15] such that it compiled and ran on Android
devices. Open MPI relies on an SSH server and client implementation
to serve as its underlying communication channel between nodes.
Again, while multiple SSH implementations exist for standard Linux
distributions, none of them offer direct support for Android platforms
due to the difference in security and account implementations. To get
around this, we modify the source code of Dropbear [16], an open
source SSH implementation that specifically targets embedded device
with low storage, computing, and memory resources.

By merging the aforementioned libraries with the implementation
logic in AdaLearner, we realized a local distributed mobile system
for neural network training on mobile devices. Our experiments are
conducted on LG Nexus 5X running Android 6.0.1 with a 1.8 GHz
processor and 2GB RAM. The experimental setup is depicted in
Fig. 10. We conduct the experiments on two image classification
datasets: MNIST [17], CIFAR-10 [18]. In order to show the robust-
ness of AdaLearner on different model complexities, three neural
network model with increasing scales are tested based on these two
datasets, which are called Multi-layer Perceptron (MLP), LeNet [19],
and ConvNet [20], respectively. MLP only contains fully-connected
layers while LeNet and ConvNet are two representative Convolutional
Neural Networks (CNNs) on MNIST and CIFAR-10.

Fig. 10: Experimental setup.

B. Evaluation of Efficient Computation Architecture
The bars in Fig. 8 show the relationship between the number

of WNs and their corresponding execution time utilizing efficient
computation training architecture. For efficient computation archi-
tecture, the total execution time for training is made up of the
computation time denoted by the blue bars and the communication
time which is presented as the orange part of the stacked column
in Fig. 8. Here we define the baseline as the training time on local
device. Additionally, the total training time in the experimental results
indicate the time consumption as the time spent in a whole distributed
training procedure of a single minibatch iteration. The total number of
iterations is defined by the users. We can find that these three neural
network models shows different results compared with the baseline:

Fig. 8(a) shows the distributed training time on MLP, which keeps
increasing with the increase of number of WNs. On the one hand,
MLP is a model with only fully-connected layers and is of extreme
small scale and thus requiring less computation cost. On the other
hand, the model size is comparatively big (0.44MB), increasing the
communication overhead. Therefore, compared with the local training
time (183ms), the communication overhead accounts for the main
part in the total training time, which occupies from 76% to 93% of
the total training time for 2 to 6 WNs. In this scenario, our scheduler
assigns all the work to local device for the shortest training time.

The experimental results on LeNet in Fig. 8(b) show an obvious
reduction in total training time when the WNs increases from 2 to
4. The optimal setting of 4 WNs costs 6208ms, reaching 1.78⇥
speedup compared with the local training time of 11031ms. How-
ever, if we further increase the number of WNs, the total training
time is immersed by the communication cost, leading to a worse
performance. Hence, 4 WNs is optimal for LeNet in our efficient
computation architecture of AdaLearner.

Because of the intensive computation cost of ConvNet on Cifar-
10 and small parameter size, the total training time keeps decreasing
from 2 to 8 WNs in Fig. 8(c). For example, the total training time
of ConvNet is 3976ms while it costs 14780ms for local execution,
demonstrating 3.72⇥ acceleration.

C. Evaluation of Efficient Communication Architecture
The bars in Fig. 9 demonstrate the total training time using efficient

communication architecture with 1-bit quantization technology. Be-
sides computation cost and communication cost, Fig. 9 also includes
the time of the encoding and decoding procedures. It can be clearly
viewed that the extra overhead for encoding and decoding procedures



A
cc

ur
ac

y
(%

)

Number of Epochs
(a) MLP (b) LeNet (c) ConvNet

Baseline 2 Workers
3 Workers 4 Workers

Baseline 2 Workers
3 Workers 4 Workers

Baseline 2 Workers
3 Workers 4 Workers

100

96

94

90

98

92

100

98

97

95

99

96

100

80

70

50

90

60

Number of Epochs Number of Epochs1 40 1 20 1 300

Fig. 11: Accuracy results using 1-bit quantization under different number of WNs.

is low when compared with computation cost and communication
cost, which is at most 10%, 8.5%, and 1.3% of the total training
time for MLP, LeNet, and ConvNet.

Mind that the communication time is the summation of transmis-
sion time and wakeup time. The wakeup time in our experiments is
tested to be about 100ms in average, which affects the parallelism of
small-scale neural network model like MLP: In Fig. 9(a), although
the transmission time decreases from 1572ms to 630ms, the com-
munication overhead is still the bottleneck with 1-bit quantization.

Thanks to the effectiveness of 1-bit quantization, when performing
LeNet in AdaLearner with efficient communication architecture, the
scalability is better than that of efficient computation architecture.
As illustrated in Fig. 9(b), the total training time keeps decreasing
from 2 to 8 WNs. In 8 WNs scenario, the total training time comes
to 3276ms, boasting the execution by 3.37⇥, which is better than
the optimal scenario in efficient computation architecture (1.78⇥).
The same result occurs for ConvNet in Fig. 9(c), where the total
training time is decreased to 3262ms, which is lower than 3976 ms

in efficient computation architecture, achieving 3.53⇥ speedup.
D. Performance / Accuracy Tradeoff

The use of 1-bit quantization will may cause the tradeoff be-
tween training performance and potential accuracy drop. Fig. 11(a),
Fig. 11(b), and Fig. 11(c) presents the accuracy results with the
increase of training epoch with 2, 3, and 4 WNs on MLP, LeNet,
and ConvNet. respectively.

Fig. 11(a) depicts the accuracy on MLP. Compared with the base-
line accuracy without 1-bit quantization (97.8%), 1-bit quantization
results in the accuracy of 97.5%, 97.5%, and 97% respectively
for 2, 3, and 4 WNs. The accuracy drop is limited in less than
0.8%. For LeNet on MNIST, the corresponding accuracies of 2, 3,
and 4 WNs in the 20th epochs are 99.12%, 99.00%, and 99.01%.
The accuracy drop is constrained within 0.2% in comparison to the
original baseline of 99.2%. However, the accuracy drops higher in
ConvNet in Fig. 11(c). Compare with the baseline accuracy of 81.2%
without using 1-bit quantization, our communication efficient training
with 1-bit quantization on 2, 3, and 4 WNs can only reaches the
accuracy 79.4%, 78.1%, and 77.3%, incurring 2.9% accuracy loss
in average. The high accuracy loss is due to the complexity of the
dataset and the comparatively simple model structure adopt in our
experiment. Hence, whether to utilize 1-bit quantization is according
to the user real demand of performance-accuracy tradeoff.

IX. CONCLUSION

In this work, we propose AdaLearner - an adaptive distributed
mobile learning system for neural networks to enable parallel training
of neural networks on mobile platforms. In AdaLearner, we first de-
sign the architectures tailored for distributed mobile devices, namely,
efficient computation architecture and efficient communication archi-
tecture. Then, 1-bit quantization technology is adopted in efficient
communication architecture to largely compress the transmission data
size for better system scalability. Additionally, an adaptive scheduler

is designed to adapt the training configuration to the mobile resources
so as to realize high execution parallelism. Finally, we realize all the
functionality of AdaLearner on distributed Android mobile devices
and provide the total execution speedup with respect to different
number of worker nodes.

X. ACKNOWLEDGMENT
This work was supported in part by NSF grants CNS-1717657 and

SPX-1725456. REFERENCES

[1] J. Qiu et al., “Going deeper with embedded fpga platform for con-
volutional neural network,” in Proceedings of the 2016 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2016, pp. 26–35.

[2] S. Han et al., “Ese: Efficient speech recognition engine with compressed
lstm on fpga,” arXiv preprint arXiv:1612.00694, 2016.

[3] A. Jain and et al, “Modeep: a deep learning framework using motion
features for human pose estimation,” in Proceedings of Asian Conference
on Computer Vision (ACCV), 2014, pp. 302–315.

[4] M. Limmer and et al, “Robust deep-learning-based road-prediction for
augmented reality navigation systems at night,” in Proc. of Intelligent
Transportation Systems (ITSC). IEEE, 2016, pp. 1888–1895.

[5] V. Mnih and et al, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, 2015.

[6] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent
using predictive variance reduction,” in Proc. of Advances in neural
information processing systems (NIPS), 2013, pp. 315–323.

[7] L. Song and et al, “Pipelayer: A pipelined reram-based accelerator for
deep learning,” in High Performance Computer Architecture, 2017.

[8] M. Abadi and et al, “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv:1603.04467, 2016.

[9] M. Li and et al, “Scaling distributed machine learning with the parameter
server,” in Operation System Design and Implementation, vol. 14, 2014.

[10] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn: Local
distributed mobile computing system for deep neural network,” in 2017
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2017, pp. 1396–1401.

[11] J. Dean and et al, “Large scale distributed deep networks,” in Proc. of
Advances in neural information processing systems (NIPS), 2012, pp.
1223–1231.

[12] F. Seide and et al, “1-bit stochastic gradient descent and its application to
data-parallel distributed training of speech dnns,” in Interspeech, 2014.

[13] T. Dettmers, “8-bit approximations for parallelism in deep learning,”
CoRR, vol. abs/1511.04561, 2015. [Online]. Available: http://arxiv.org/
abs/1511.04561

[14] T. Chen and et al, “Mxnet: a flexible and efficient machine learn-
ing library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[15] E. Gabriel and et al, “Open mpi: Goals, concept, and design of a next
generation mpi implementation,” in Proc. of European Parallel Virtual
Machine/Message Passing Interface Users’Group Meeting. Springer,
2004, pp. 97–104.

[16] M. Johnston, “Dropbear ssh server and client,” 2005.
[17] Y. LeCun and et al, “The mnist database of handwritten digits,” 1998.
[18] A. Krizhevsky and et al, “Learning multiple layers of features from tiny

images,” 2009.
[19] Y. LeCun and et al, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324,
1998.

[20] A. Krizhevsky and et al, “Imagenet classification with deep convolu-
tional neural networks,” in Proc. of Advances in neural information
processing systems (NIPS), 2012, pp. 1097–1105.


