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Abstract— Deep Neural Networks (DNNs) are pervasively ap-
plied in many artificial intelligence (AI) applications. The high
performance of DNNs comes at the cost of larger size and higher
compute complexity. Recent studies show that DNNs have much
redundancy, such as the zero-value parameters and excessive nu-
merical precision. To reduce computing complexity, many redun-
dancy reduction techniques have been proposed, including prun-
ing and data quantization. In this paper, we demonstrate our co-
optimization of the DNN algorithm and hardware which exploits
the model redundancy to accelerate DNNs.

I. INTRODUCTION

DNNs made remarkable success in AI applications, particu-
larly in computation visions. To achieve higher accuracy, DNN
models tend to be larger and more complex. This results in
challenges when deploying DNNs on real-world computing
platforms [1]. At the same time, a lot of redundancies exist
in the DNN models and appear as the zero-value parameters
(including feature maps and weights), weight correlation and
excessive data precision [2, 3]. The redundancies induce a con-
siderable waste of the storage, memory bandwidth and com-
putation resource. To provide improved computing effciency,
various redundancy reduction approaches have been explored,
from the sparse or pruning network, low-rank approximation
(LRA), low data precision and data quantization.

In traditional sparsity methods, DNN training uses the reg-
ularization term to to avoid the overfitting and generate the s-
parse models [4, 5, 6]. Recent pruning methods remove the
zero/low-value weights or activations to diminish the model
size in the retraining process [7, 8, 9, 10]. However, these
pruned models can gain the trivial speedup due to the non-
structured connections. Thus, we propose a hardware-friendly
regularization method to directly learn a structured compressed
network and accelerate the DNNs on general hardware plat-
forms [11, 12].

LRA can obtain a compact and approximate network model
by matrix decomposition [13, 14, 15, 16]. However, to learn
an accurate network structure, LRA needs the reiterations of
decomposing, fine-tuning, etc., resulting in extra computation
overhead. We capitalize on the weight redundancy in neural
networks and propose a new method for LRA, which gains 2×
speedup on modern GPU without accuracy loss [17].

The training of large-scale DNN models requires the huge

amount of input data and is often deployed on distributed sys-
tems, where data parallelism is adopted [18, 19, 20]. The gra-
dient synchronization dominates the computation overhead in
training process [21]. Since the arithmetic precision used on
general platforms is redundant for DNN computation, the low
precision gradient techniques have been widely studied to re-
duce gradient synchronization cost [21, 22, 23]. We explored
the gradient quantization and proposed 3-level gradients to cut
down the overhead of gradient synchronization and accelerate
the distributed training [24].

In this paper, we walk through our proposed redundancy re-
duction schemes, including the software/hardware co-designs
of the structured sparse neural network, an enhanced LRA al-
gorithms and the ternary quantized gradients training for the
distributed DNN [11, 12, 17, 24]. Firstly, we introduce the re-
lated works about redundancy reduction of DNN in Section II
and then present the details of our designs in the aspects of s-
parse, LRA and low precision, respectively in Section III, IV,
and V. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Sparsity regularization and pruning
The sparsification and pruning methods naturally reduce the

demanded computation and storage resources and have been
widely studied. Han et al. [7, 8, 10] removed the connected
weights according to the pre-established threshold. The acti-
vations with zero input and output connections are also pruned.
Therefore, the reduction of the network model size was signif-
icant and the pruned networks could fit in on-chip SRAM [8].
After pruning, the remain weights are stored in a random for-
mat, leading to irregular memory accesses in the computation
that is difficult to achieve attractive acceleration without the
dedicated hardware support [9].

Compared to the random sparsity and pruning methods, we
focus on accelerating DNN on general platforms. We design a
structured sparsity learning on the convolutional layers to gen-
erate a structured DNN model [11]. When deployed with the
proposed model, the computation of DNNs on hardware plat-
forms gains significantly speedup [12].
B. Low rank approximation

LRA decomposes a large model to a compact one with more
lightweight layers by weight/tensor factorization, thus reduce
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Fig. 1. The proposed Structured Sparsity Learning (SSL) for DNNs. [11, 12]
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Fig. 2. The system architecture overview of the FPGA-based sparse CNN
accelerator.

computation complexity. Denil et al. [13] studied different dic-
tionaries to remove the redundancy between filters and chan-
nels in DNNs. Jaderberg et al. [15] explored filter and data
reconstruction optimizations to attain optimal separable basis,
and achieved 4.5× speedup on CPUs. Denton et al. [14] ex-
tended LRA to larger-scale DNNs, and achieved 2× speedup
for the first two layers with 1% accuracy loss. Many new de-
composition methods were proposed [16, 25] and effectively
reduce the computation complexity and gains acceleration in
state-of-the-art DNNs [26, 27]. However, the number of hyper-
parameters in LRA method increases linearly with the layer
depth, and the computation complexity increases linearly or
even exponentially [15]. Therefore, we design a new LRA to
train a DNN model with lower ranks and higher computation
efficiency [17].
C. Low precision

State-of-the-art DNN designs have widely exploited reduced
data precision to optimize the computing efficiency [28, 29].
Low-precision data representation can reduce the storage de-
mand of the DNN models, lowering the data bandwidth re-
quirements.

For distributed training in large DNN model, the gradients
with smaller bit width can alleviate communication expense
of gradient synchronization [22]. DoReFa-Net reduced the
bit widths of weights, activations and gradients to 1, 2 and 6,
respectively [30]. However, DoReFa-Net had 9.8% accuracy
loss as it targeted at acceleration on single worker. F. Seide et
al. applied 1-bit Stochastic Gradient Descent (SGD) to accel-
erate distributed training [22]. However, this method requires
floating-point gradients to converge to a good initial point for
the following 1-bit SGD. Our proposed TernGrad focuses on
speeding up the distributed training by decreasing the commu-
nicated gradients to three numerical levels {−1; 0; 1} [24].

III. CO-DESIGN IN SPARSE DNN
A. Methodology

We focus mainly on the Structured Sparsity Learning (SS-
L) on convolutional layers to regularize the structure of DNNs.
Suppose the weights of convolutional layers in a DNN form a
sequence of 4-D tensors W (l) ∈ RNl×Cl×Ml×Kl , where Nl,

Cl, Ml and Kl are the dimensions of the l-th (1 ≤ l ≤ L)
weight tensor along the axes of filter, channel, spatial height
and spatial width, respectively. L denotes the number of con-
volutional layers. Then the proposed generic optimization tar-
get of a DNN with structured sparsity regularization can be
formulated as:

E(W ) = ED(W ) + λR(W ) + λg

L∑
l=1

Rg

(
W (l)

)
. (1)

Here W represents the collection of all weights in the DNN;
ED(W ) is the loss on data; R(·) represents the original regu-
larization method applying on every weight to avoid the over-
fitting problem. Rg(·) is the additional structured sparsity reg-
ularization on each layer, using Group Lasso. The regulariza-
tion of Group Lasso on a set of weights w can be represented
as Rg(w) =

∑G
g=1 ||w(g)||g , where w(g) is a group of partial

weights in w and G is the total number of groups. The learned
“structure” is decided by the way of splitting groups of w(g).

We investigate and formulate the filer-wise, channel-wise
and shape-wise structured sparsity in Fig.1. The optimization
target of learning the filer-wise and channel-wise Group Lasso
can be defined as

λn

L∑
l=1

 Nl∑
nl=1

||W (l)
nl,:,:,:||g

 + λc

L∑
l=1

 Cl∑
cl=1

||W (l)
:,cl,:,:||g

 (2)

where W (l)
nl,:,:,: is the nl-th filter and W

(l)
:,cl,:,: is the cl-th chan-

nel of all filters in the l-th layer. W
(l)
:,cl,ml,kl

denotes the vec-
tor of all corresponding weights located at spatial position of
(ml, kl) in the 2D filters across the cl-th channel. The arbitrary
shape-wise Group Lasso is formulated as:

λs

L∑
l=1

 Cl∑
cl=1

Ml∑
ml=1

Kl∑
kl=1

||W (l)
:,cl,ml,kl

||g

 (3)

B. SSL based Hardware Designs
SSL based Mobile computing. We focus on the distributed

mobile system with mobile computing and transmission char-
acteristics and enhance the system performance by employing
the SSL scheme.

We characterize the computing overhead of convolutional
layers in DNN which is operated using GEneral Matrix to Ma-
trix Multiplication (GEMM). GEMM first reshapes the 3D in-
put feature map into 1D columns and then multiply the re-
shaped matrix with the filter matrix. The memory intensi-
ty of the reshaping steps and computing intensity of matrix-
to-matrix multiplication steps are the critical causes of the
high execution time in convolutional computations. We can
train DNN to be less computing-intensive using filter-wise &
channel-wise group lasso in Eq. 2 and less memory intensive
with the help of the shape-wise group lasso in Eq. 3. Moreover,
to reduce the communication cost among the work nodes, we
use non-arbitrary group lasso regularization to zero out for al-
l the filters in spatial height and spatial width in the shared
parts of tensors. Thus, those tensors do not need to be trans-
mitted, resulting in considerable decrease in transmission data
size. The rationale of the non-arbitrary group lasso regulariza-
tion is clarified in Fig. 1.
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TABLE I
PERFORMANCE EVALUATION ON SPARSE CONV AND FC LAYERS OF

ALEXNET ON IMAGENET.

Layer Shape-wise Filter-wise Computation Efficiency
Sparsity Sparsity CPU GPU VC707

Conv1 0% 9.4% 17.7% 11.5% 74.7%
Conv2 63.2% 12.9% 46.6% 24.9% 73.0%
Conv3 76.9% 40.6% 37.3% 9.3% 56.2%
Conv4 84.7% 46.9% 47.5% 13.6% 57.2%
Conv5 80.7% 0% 61.3% 9.1% 61.6%

Conv Total 61.1% 21.9% 36.2% 13.7% 64.5%
FC1 47.5% 9.7% 4.4% 1.1% 14.6%
FC2 43.5% 4.3% 4.7% 1.0% 13.1%
FC3 29.6% 3.3% 3.7% 0.6% 12.5%

FC Total 40.2% 7.5% 4.3% 15.01% 13.4%

SSL based FPGA Framework. To enable the DNN accel-
eration on FPGA, we propose a co-design framework to im-
prove the efficiency of DNNs implementation.

Fig. 2 gives an overview of the proposed system architec-
ture designed to implement sparse DNNs effectively. PEs ar-
ray is the computation power of the accelerator. The num-
ber of PE is critical for the computing efficacy of DNNs but
is limited by FPGA resources. Data Fetcher load vector ar-
rays of an input feature map into Feature Map Bank at run-
time. Weight Buffer insures the continuity of DMA service.
The available hardware resource and memory bandwidth of
the FPGA board include the number of MACs, the effective
BRAM space and the memory bandwidth to off-chip DRAM.
Assume rmac units of resource are needed to construct a s-
ingle MAC, R DSPs are available on chip and Sc MACs for
the inner parallelism of a PE, Sp ≤ R

rmac·Sc
. Excluding the

portion for interfacing to memory and other support functions,
Weight Buffer and Feature Map Bank can use αM of BRAM.
In terms of BRAM space, Sp ≤ αM

msub·DW , whereDW denotes
the data width and msub is the size of sub-matrices. During
computation, kernel weights and feature maps are streamed
into PEs from the off-chip memory. Tcomp should be larger
than TIO, otherwise implementing more PEs will incur low
computation efficiency. According to the performance model,
Sp ≤ Ncomp·B

Sc·NIO
, where B is the available memory bandwidth

and Ncomp and NIO are respectively the number of computa-
tion data and data streamed from off-chip memory Therefore,
the number of PEs in a particular FPGA platform can be for-
mulated as: Sp =

⌊
min( R

rmac·Sc
, αM
msub·DW ,

Ncomp·B
Sc·NIO

)
⌋
. The

experimental results of the proposed framework for CNN ac-
celeration are presented in Section C.
C. Experiment

We present the effectiveness of SSL when optimizing the
DNN for distributed mobile platform and the FPGA-based
framework.

We evaluate SSL on the distributed mobile platform, which
is established with five Google Nexus 5 smart phones. Three
variants of CaffeNet models Model 1, Model 2, and Model 3
are trained by SSL. Fig. 3 shows the 3 models can effectively
reduce the memory usage as high as 65.9% in average. The
reduced computing time is 27%, 35%, and 39% respectively.
Fig. 4 depicts the practical performance on mobile devices of
3 sparsity regularization models and the results show signifi-
cantly reduced FLOP are 33% – 57%. Contributed from the
non-arbitrary shape-wise Group Lasso, the computing time of
matrix multiplication steps reduces 25.7% on average, occupy-
ing 12% of total computing time. Given a distributed mobile
network with 4 work nodes as shown in Fig. 5, the transmission
time can be reduced by 22%.

Table I reports the performance of Conv1∼ Conv5 when the
AlexNet is compressed according to shape-wise and filter-wise
sparsity on FPGA-based platform. The evaluated platform is
Xilinx FPGA VC707 board. Based on the performance and re-
source utilization model, we implement 32 PEs on the FPGA
platform. The computation efficiency represents the ratio of
the practical performance over the peak performance. Across
all the sparse Conv layers, our accelerator achieves an aver-
age computation efficiency of 64.5% on VC707. Averagely,
compared to the well-tuned CPU and GPU implementations,
our FPGA implementation on VC707 improves computation
efficiency 1.8× and 4.7×, respectively.

IV. FORCE REGULARIZATION BASED LRA

A. Methodology
There exists correlation among trained filters in DNNs and

those filters lie in a low-rank space. Fig. 6 presents the re-
sults of correlation analysis of the first convolutional filters
in AlexNet and GoogLeNet using Linear Discriminant Anal-
ysis (LDA). The results indicates high correlation among fil-
ters within a cluster. The filters are normalized to unit vectors
and colored to four clusters by k-means clustering, and then
projected to 2D space by LDA to maximize cluster separation.
There are many lower-rank approximation methods. For the
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cross-filter approximation, a convolutional layer, general a 4D
tensor is approximated by a linear combination of the basis of
a low-rank space. Since the linear combination essentially is
a 1× 1 convolution, a convolutional layer can be decomposed
into two sequential lightweight convolutional layers. Thus, the
computation complexity potentially decreases.

To achieve more accurate filter approximation in low rank,
our basic rationale is nudging filters during the training such
that the filters within a cluster are coordinated closer and some
adjacent clusters are even merged into one cluster. We propose
Force Regularization to coordinate more weight information
into lower-rank space.

B. Force Regularization

Inspired by Newton’s Laws, Force Regularization intro-
duces extra gradients to data loss gradients, gently adjust the
lengths and directions of data loss gradients so as to nudge fil-
ters to a more correlated state.

As illustrated in Fig. 7, suppose the filter Wn ∈ W is
reshaped as a vector Wn ∈ R1×CHW and normalized as
wn ∈ R1×CHW (∀n ∈ [1...N ]), with their origin at O.
We introduce the pair-wise attractive force fji = f(wj −
wi) (∀i, j ∈ [1...N ]) on wi generated by wj . The gradient
of Force Regularization to update filter Wi is defined as

∆Wi =

N∑
j=1

∆Wij = ||Wi||
N∑

j=1

(
fji − fjiw

T
i wi

)
, (4)

where || · || is the Euclidean norm. We derive the Force Reg-
ularization gradient from the normalized filters based on the
following facts: (1) A normalized filter is on the unit hyper-
sphere, and its orientation is the only free parameter we need
to optimize; (2) The gradient of Wi can be easily scaled by
the vector length ||Wi|| without changing the angular veloc-
ity. The regularization gradient in Eq. (4) is perpendicular to
filter vector and can be efficiently computed by addition and
multiplication.

The final updating of weights by gradient descent is

Wi ←Wi − η ·
(
∂E(W)

∂Wi
− λs ·∆Wi

)
1, (5)

where E(W) is data loss, η is learning rate and λs > 0 is the
coefficient of Force Regularization to trade off the rank and
accuracy. We select λs by cross-validation in this work.

Fig. 7 intuitively explains our method. Suppose each vector
wi is a rigid stick and there is a particle fixed at the endpoint.
The particle has unit mass, and the stick is massless and can
freely spin around the origin. Given the pair-wise attractive

1The gradient regularization (e.g., `2-norm) is omitted here for simplicity

TABLE II
THE SPEEDUPS OF AlexNet BY Force Regularization. [17]

Force Top-1 error conv3 conv4 conv5

None 43.21% rank 184 201 146
`2-norm 43.25% rank 124 106 129

None 43.21% GPU 1.58× 1.21× 1.15×
`2-norm 43.25% GPU 2.16× 2.03× 1.33×

None 43.21% CPU 1.78× 1.60× 1.47×
`2-norm 43.25% CPU 2.45× 2.76× 1.64×

None 43.21% theoretical 1.79× 1.72× 1.63×
`2-norm 43.25% theoretical 2.65× 3.26× 1.85×
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Fig. 8. Distributed SGD with data parallelism. [24]

forces (e.g., universal gravitation) fji, Eq. (4) is the accelera-
tion of particle i. As the forces are attractive, neighbor parti-
cles tend to spin around the origin to assemble together. If all
filters could be extremely collapsed toward one point mean-
while maintain classification accuracy, it implies the filters are
over-redundant and we can attain a very efficient DNN by de-
composing it to a rank-one space.

In Eq. (4), fji = f(wj −wi) is the force function related to
distance. We define `2-norm Force f`2(wj −wi) as wj −wi

and name `1-norm Force f`1(wj − wi) as wj−wi

||wj−wi|| in this
work.

C. Experiments

In our experiments, we first train DNNs with Force Reg-
ularization, then decompose DNNs using LRA methods and
fine-tune them to recover accuracy. To prove the effective ac-
celeration of Force Regularization, we adopt the speedup of
state-of-the-art LRAs [13, 25] as our baseline. Our speedup
is achieved in the case that the DNN filters are first coordi-
nated by Force Regularization and then decomposed using the
same LRAs. The practical GPU speed is profiled by the ad-
vanced hardware (NVIDIA GTX 1080) and software (cuDNN
5.0). The CPU speed is measured in Intel Xeon E5-2630 and
ATLAS library.

Table II summarizes the speedups of PCA approximation of
AlexNet with and without `2-norm Force Regularization. With
ignorable accuracy difference, Force Regularization success-
fully coordinates filters to a lower-rank space and accelerates
the testing by a higher factor, comparing with the state-of-the-
art LRA. Similar results are observed when applying `1-norm
force. In CPU mode of Table II, Force Regularization achieves
2× speedup of total convolutional time. Table II also shows
that practical speedup is different from theoretical speedup.



V. TERNGRAD IN DISTRIBUTED DEEP LEARNING

A. Methodology
Fig. 8 formulates the distributed training problem of syn-

chronous SGD using data parallelism. At iteration t, a mini-
batch of training samples are split and fed into multiple work-
ers (i ∈ {1, ..., N}). Worker i computes the gradients g

(i)
t

of parameters w.r.t. its input samples z
(i)
t . All gradients are

first synchronized and averaged at parameter server, and then
sent back to update workers. Note that parameter servers in
most implementations [18, 20] are used to preserve shared pa-
rameters, while here we utilize it to maintain shared gradi-
ents. In Fig. 8, each worker keeps a copy of parameters lo-
cally. We name this technique as parameter localization. The
parameter consistency among workers can be maintained by
random initialization with an identical seed. Parameter local-
ization changes the communication of parameters in floating-
point form to the transfer of quantized gradients that require
much lighter traffic.

B. TernGrad
Different from traditional distributed training, TernGrad

will quantize all gradients g into ternary precision before send-
ing to parameter server. Formally, with a random binary vector
bt, gt is ternarized as

g̃t = ternarize(gt) = st · sign (gt) ◦ bt, (6)

where st , max (abs (gt)) is a scaler that can shrink ±1 to a
much smaller amplitude. ◦ is the Hadamard product. sign(·)
and abs(·) respectively returns the sign and absolute value of
each element. Compared with the default precision 32-bit gra-
dients used in modern deep learning frameworks, TernGrad
can at least reduce the worker-to-server traffic by a factor of
32/log2(3) = 20.18×.

As aforementioned, parameter localization reduces server-
to-worker traffic by pulling quantized gradients from servers.
However, summing up ternary values in

∑
i g̃

(i)
t will produce

more possible levels and thereby the final averaged gradient gt
is no longer ternary. It emerges as a vital issue when workers
use different scalers s(i)t . To minimize the number of levels,
we propose a shared scaler st = max({s(i)t } : i = 1...N)
across all the workers. We name this technique as scaler shar-
ing. The sharing process has a small overhead of transferring
2N floating scalars. By integrating parameter localization and
scaler sharing, the maximum number of levels in gt decreases
to 2N + 1. As a result, the server-to-worker communication
reduces by a factor of 32/log2(1 + 2N), unless N ≥ 230.

To improve the convergence of TernGrad, we proposed
layer-wise ternarizing and gradient clipping. As gradients are
back propagated, the range of gradients in each layer changes.
Instead of adopting a large global maximum scaler, we inde-
pendently ternarize gradients in each layer using the layer-wise
scalers. More specific, we separately ternarize the gradients of
biases and weights by using Eq. (6), where gt could be the gra-
dients of biases or weights in each layer. To approach the stan-
dard bound more closely, we can split gradients to more buck-
ets and ternarize each bucket independently. However, this will
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introduce more floating scalers and increase communication.
Layer-wise ternarizing can shrink the bound gap resulted from
the dynamic ranges of the gradients across layers. However,
the dynamic range within a layer still remains as a problem.
We propose gradient clipping, which limits the magnitude of
each gradient gi in g as

f(gi) =

{
gi |gi| ≤ cσ
sign(gi) · cσ |gi| > cσ

, (7)

where σ is the standard derivation of gradients in g. c is a
hyper-parameter to select, but we cross validate it only once
and use the constant in all our experiments. In distributed train-
ing, gradient clipping is applied to every worker before ternar-
izing. By applying both layer-wise ternarizing and gradient
clipping techniques, TernGrad can converge to the same ac-
curacy as standard SGD. Removing any of the two techniques
can result in accuracy degradation.

C. Experiments
We evaluate TernGrad by AlexNet and GoogLeNet trained

on ImageNet and are performed by TensorFlow[31]. Tern-
Grad converges to approximate accuracy levels regardless of
mini-batch size. Fig. 9 plots training details vs. iteration when
mini-batch size is 512. Fig. 9(a) shows that the convergence
curve of TernGrad matches well with the baseline’s, demon-
strating the effectiveness of TernGrad. The training data loss
in Fig. 9(b) shows that TernGrad converges to a slightly lower
level, which further proves the capability of TernGrad to mini-
mize the target function even with ternary gradients. A smaller
dropout ratio in TernGrad can be another reason of the lower
loss. Fig. 9(c) simply illustrate that on average 71.32% gradi-
ents of a fully-connected layer (fc6) are ternarized to zeros.

Fig. 10 presents the training throughput on two dif-
ferent GPUs clusters. Our results show that TernGrad
effectively increases the training throughput for AlexNet,



VggNet-A and GoogLeNet. The speedup depends on the
communication-to-computation ratio of the DNN, the num-
ber of GPUs, and the communication bandwidth. DNNs with
larger communication-to-computation ratios (e.g. AlexNet and
VggNet-A) can benefit more from TernGrad than those with s-
maller ratios (e.g., GoogLeNet). Even on a very high-end HPC
system with InfiniBand and NVLink, TernGrad is still able to
double the training speed of VggNet-A on 128 nodes as shown
in Fig. 10(b). Moreover, the TernGrad becomes more efficient
when the bandwidth becomes smaller, such as 1Gbps Ethernet
and PCI switch in Fig. 10(a) where TernGrad can have 3.04×
training speedup for AlexNet on 8 GPUs.

VI. SUMMARY AND CONCLUSIONS

In this work, we summarize our cross-layer optimizations
to accelerate DNNs. Structured Sparsity Learning (SSL) reg-
ularizes the structures (i.e., filters, channels, filter shapes, and
layer depth) of DNNs and accelerate the DNNs on both the mo-
bile distribute platforms and FPGA-based architecture. Force
Regularization coordinates more weights into low-rank space,
gains 2× speedup for DNNs on GPU without accuracy loss.
For the large-scale distributed learning, TernGrad uses three
numerical levels {−1, 0, 1} to represent gradients and signifi-
cantly accelerates the DNN distributed learning.
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